1
|
Harris BN, Yavari M, Ramalingam L, Mounce PL, Alers Maldonado K, Chavira AC, Thomas S, Scoggin S, Biltz C, Moustaid-Moussa N. Impact of Long-Term Dietary High Fat and Eicosapentaenoic Acid on Behavior and Hypothalamic-Pituitary-Adrenal Axis Activity in Amyloidogenic APPswe/PSEN1dE9 Mice. Neuroendocrinology 2024; 114:553-576. [PMID: 38301617 PMCID: PMC11153005 DOI: 10.1159/000536586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) alters neurocognitive and emotional function and causes dysregulation of multiple homeostatic processes. The leading AD framework pins amyloid beta plaques and tau tangles as primary drivers of dysfunction. However, many additional variables, including diet, stress, sex, age, and pain tolerance, interact in ways that are not fully understood to impact the onset and progression of AD pathophysiology. We asked: (1) does high-fat diet, compared to low-fat diet, exacerbate AD pathophysiology and behavioral decline? And, (2) can supplementation with eicosapentaenoic (EPA)-enriched fish oil prevent high-fat-diet-induced changes? METHODS Male and female APPswePSdE9 mice, and their non-transgenic littermates, were randomly assigned to a diet condition (low-fat, high-fat, high-fat with EPA) and followed from 2 to 10 months of age. We assessed baseline corticosterone concentration during aging, pain tolerance, cognitive function, stress coping, and corticosterone response to a stressor. RESULTS Transgenic mice were consistently more active than non-transgenic mice but did not perform worse on either cognitive task, even though we recently reported that these same transgenic mice exhibited metabolic changes and had increased amyloid beta. Mice fed high-fat diet had higher baseline and post-stressor corticosterone, but diet did not impact cognition or pain tolerance. Sex had the biggest influence, as female mice were consistently more active and had higher corticosterone than males. CONCLUSION Overall, diet, genotype, and sex did not have consistent impacts on outcomes. We found little support for predicted interactions and correlations, suggesting diet impacts metabolic function and amyloid beta levels, but these outcomes do not translate to changes in behaviors measured here.
Collapse
Affiliation(s)
- Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Molecular Metabolism, School of Public Health, Harvard University, Boston, MA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
- Current address: Department of Nutritional and Food Studies Syracuse University, Syracuse, NY
| | - P. Logan Mounce
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | | | - Angela C. Chavira
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Sarah Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Shane Scoggin
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Caroline Biltz
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX
- Obesity Research Institute, Office of Research & Innovation, Texas Tech University
| |
Collapse
|
2
|
Soto PL, Young ME, DiMarco GM, George B, Melnikova T, Savonenko AV, Harris BN. Longitudinal assessment of cognitive function in the APPswe/PS1dE9 mouse model of Alzheimer's-related beta-amyloidosis. Neurobiol Aging 2023; 128:85-99. [PMID: 37120419 PMCID: PMC10239324 DOI: 10.1016/j.neurobiolaging.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
Preclinical models of Alzheimer's disease (AD)-related cognitive decline can be useful for developing therapeutics. The current study longitudinally assessed short-term memory, using a delayed matching-to-position (DMTP) task, and attention, using a 3-choice serial reaction time (3CSRT) task, from approximately 18 weeks of age through death or 72 weeks of age in APPswe/PS1dE9 mice, a widely used mouse model of AD-related amyloidosis. Both transgenic (Tg) and non-Tg mice exhibited improvements in DMTP accuracy over time. Breaks in testing reduced DMTP accuracy but accuracy values quickly recovered in both Tg and non-Tg mice. Both Tg and non-Tg mice exhibited high accuracy in the 3CSRT task with breaks in testing briefly reducing accuracy values equivalently in the 2 genotypes. The current results raise the possibility that deficits in Tg APPswe/PS1dE9 mice involve impairments in learning rather than declines in established performances. A better understanding of the factors that determine whether deficits develop will be useful for designing evaluations of potential pharmacotherapeutics and may reveal interventions for clinical application.
Collapse
Affiliation(s)
- Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | - Michael E Young
- Department of Psychology, Kansas State University, Manhattan, KS, USA
| | - Giuliana M DiMarco
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Brianna George
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
DiMarco GM, Harris BN, Savonenko AV, Soto PL. Acute stressors do not impair short-term memory or attention in an aged mouse model of amyloidosis. Front Behav Neurosci 2023; 17:1151833. [PMID: 37250187 PMCID: PMC10213425 DOI: 10.3389/fnbeh.2023.1151833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Memory impairment in Alzheimer's disease patients is thought to be associated with the accumulation of amyloid-beta peptides and tau proteins. However, inconsistent reports of cognitive deficits in pre-clinical studies have raised questions about the link between amyloid-beta and cognitive decline. One possible explanation may be that studies reporting memory deficits often involve behavioral assessments that entail a high stress component. In contrast, in tasks without a high stress component transgenic mice do not consistently show declines in memory. The glucocorticoid cascade hypothesis of aging and the vicious cycle of stress framework suggest that stress exacerbates dementia progression by initiating a cycle of hypothalamic-pituitary-adrenal axis activation and subsequent brain deterioration. Using the APPswe/PS1dE9 mouse model of amyloidosis, we assessed whether stressor exposure prior to testing differentially impaired cognitive performance of aged male and female mice. As part of a larger study, mice performed a delayed match-to-position (DMTP) or a 3-choice serial-reaction time (3CSRT) task. Unexpectedly, these mice did not exhibit cognitive declines during aging. Therefore, at 73 and 74 weeks of age, we exposed mice to a predator odor or forced swim stressor prior to testing to determine if stress revealed cognitive deficits. We predicted stressor exposure would decrease performance accuracy more robustly in transgenic vs. non-transgenic mice. Acute stressor exposure increased accuracy in the DMTP task, but not in the 3CSRT task. Our data suggest that acute stressor exposure prior to testing does not impair cognitive performance in APPswe/PS1dE9 mice.
Collapse
Affiliation(s)
- Giuliana M. DiMarco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Breanna N. Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Alena V. Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul L. Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
The aging mouse brain: cognition, connectivity and calcium. Cell Calcium 2021; 94:102358. [PMID: 33517250 DOI: 10.1016/j.ceca.2021.102358] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Aging is a complex process that differentially impacts multiple cognitive, sensory, neuronal and molecular processes. Technological innovations now allow for parallel investigation of neuronal circuit function, structure and molecular composition in the brain of awake behaving adult mice. Thus, mice have become a critical tool to better understand how aging impacts the brain. However, a more granular systems-based approach, which considers the impact of age on key features relating to neural processing, is required. Here, we review evidence probing the impact of age on the mouse brain. We focus on a range of processes relating to neuronal function, including cognitive abilities, sensory systems, synaptic plasticity and calcium regulation. Across many systems, we find evidence for prominent age-related dysregulation even before 12 months of age, suggesting that emerging age-related alterations can manifest by late adulthood. However, we also find reports suggesting that some processes are remarkably resilient to aging. The evidence suggests that aging does not drive a parallel, linear dysregulation of all systems, but instead impacts some processes earlier, and more severely, than others. We propose that capturing the more fine-scale emerging features of age-related vulnerability and resilience may provide better opportunities for the rejuvenation of the aged brain.
Collapse
|
5
|
Martínez-García I, Hernández-Soto R, Villasana-Salazar B, Ordaz B, Peña-Ortega F. Alterations in Piriform and Bulbar Activity/Excitability/Coupling Upon Amyloid-β Administration in vivo Related to Olfactory Dysfunction. J Alzheimers Dis 2021; 82:S19-S35. [PMID: 33459655 DOI: 10.3233/jad-201392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Deficits in odor detection and discrimination are premature symptoms of Alzheimer's disease (AD) that correlate with pathological signs in the olfactory bulb (OB) and piriform cortex (PCx). Similar olfactory dysfunction has been characterized in AD transgenic mice that overproduce amyloid-β peptide (Aβ), which can be prevented by reducing Aβ levels by immunological and pharmacological means, suggesting that olfactory dysfunction depends on Aβ accumulation and Aβ-driven alterations in the OB and/or PCx, as well as on their activation. However, this possibility needs further exploration. OBJECTIVE To characterize the effects of Aβ on OB and PCx excitability/coupling and on olfaction. METHODS Aβ oligomerized solution (containing oligomers, monomers, and protofibrils) or its vehicle were intracerebroventricularlly injected two weeks before OB and PCx excitability and synchrony were evaluated through field recordings in vivo and in brain slices. Synaptic transmission from the OB to the PCx was also evaluated in slices. Olfaction was assessed through the habituation/dishabituation test. RESULTS Aβ did not affect lateral olfactory tract transmission into the PCx but reduced odor habituation and cross-habituation. This olfactory dysfunction was related to a reduction of PCx and OB network activity power in vivo. Moreover, the coherence between PCx-OB activities was also reduced by Aβ. Finally, Aβ treatment exacerbated the 4-aminopyridine-induced excitation in the PCx in slices. CONCLUSION Our results show that Aβ-induced olfactory dysfunction involves a complex set of pathological changes at different levels of the olfactory pathway including alterations in PCx excitability and its coupling with the OB. These pathological changes might contribute to hyposmia in AD.
Collapse
Affiliation(s)
- Ignacio Martínez-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
6
|
Karunakaran S. Unraveling Early Signs of Navigational Impairment in APPswe/PS1dE9 Mice Using Morris Water Maze. Front Neurosci 2021; 14:568200. [PMID: 33384577 PMCID: PMC7770143 DOI: 10.3389/fnins.2020.568200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mild behavioral deficits, which are part of normal aging, can be early indicators of an impending Alzheimer's disease. Using the APPswe/PS1dE9 (APP/PS1) mouse model of Alzheimer's disease, we utilized the Morris water maze spatial learning paradigm to systematically evaluate mild behavioral deficits that occur during the early stages of disease pathogenesis. Conventional behavioral analysis using this model indicates that spatial memory is intact at 2 months of age. In this study, we used an alternative method to analyze the behavior of mice, aiming to gain a better understanding of the nature of cognitive deficits by focusing on the unsuccessful trials during water maze learning rather than on the successful ones. APP/PS1 mice displayed a higher number of unsuccessful trials during the initial days of training, unlike their wild-type counterparts. However, with repeated trial and error, learning in APP/PS1 reached levels comparable to that of the wild-type mice during the later days of training. Individual APP/PS1 mice preferred a non-cognitive search strategy called circling, which led to abrupt learning transitions and an increased number of unsuccessful trials. These findings indicate the significance of subtle intermediate readouts as early indicators of conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Smitha Karunakaran
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
Van den Broeck L, Sierksma A, Hansquine P, Thonnard D, Callaerts-Vegh Z, D'Hooge R. Comparison between touchscreen operant chambers and water maze to detect early prefrontal dysfunction in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12695. [PMID: 32812350 DOI: 10.1111/gbb.12695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022]
Abstract
The relative lack of sensitive and clinically valid tests of rodent behavior might be one of the reasons for the limited success of the clinical translation of preclinical Alzheimer's disease (AD) research findings. There is a general interest in innovative behavioral methodology, and protocols have been proposed for touchscreen operant chambers that might be superior to existing cognitive assessment methods. We assessed and analyzed touchscreen performance in several novel ways to examine the possible occurrence of early signs of prefrontal (PFC) functional decline in the APP/PS1 mouse model of AD. Touchscreen learning performance was compared between APP/PS1-21 mice and wildtype littermates on a C57BL/6J background at 3, 6 and 12 months of age in parallel to the assessment of spatial learning, memory and cognitive flexibility in the Morris water maze (MWM). We found that older mice generally needed more training sessions to complete the touchscreen protocol than younger ones. Older mice also displayed defects in MWM working memory performance, but touchscreen protocols detected functional changes beginning at 3 months of age. Histological changes in PFC of APP/PS1 mice indeed occurred as early as 3 months. Our results suggest that touchscreen operant protocols are more sensitive to PFC dysfunction, which is of relevance to the use of these tasks and devices in preclinical AD research and experimental pharmacology.
Collapse
Affiliation(s)
- Lore Van den Broeck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annerieke Sierksma
- Laboratory for the Research of Neurodegenerative Diseases, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Pierre Hansquine
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | - David Thonnard
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| | | | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
8
|
Lam V, Takechi R, Albrecht MA, D'Alonzo ZJ, Graneri L, Hackett MJ, Coulson S, Fimognari N, Nesbit M, Mamo JCL. Longitudinal Performance of Senescence Accelerated Mouse Prone-Strain 8 (SAMP8) Mice in an Olfactory-Visual Water Maze Challenge. Front Behav Neurosci 2018; 12:174. [PMID: 30210312 PMCID: PMC6121094 DOI: 10.3389/fnbeh.2018.00174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Morris water maze (MWM) is widely used to assess cognitive deficits in pre-clinical rodent models. Latency time to reach escape platform is frequently reported, but may be confounded by deficits in visual acuity, or differences in locomotor activity. This study compared performance of Senescence Accelerated Mouse Prone-Strain 8 (SAMP8) and control Senescence Accelerated Mouse Resistant-Strain 1 (SAMR1) mice in classical MWM, relative to performance in a newly developed olfactory-visual maze testing protocol. Performance indicated as the escape time to rescue platform for classical MWM testing showed that SAMP8 mice as young as 6 weeks of age did poorly relative to age-matched SAMR1 mice. The olfactory-visual maze challenge described better discriminated SAMP8 vs. SAMR1 mice than classical MWM testing, based on latency time measures. Consideration of the distance traveled rather than latency time in the classical MWM found no treatment effects between SAMP8 and SAMR1 at 40 weeks of age and the olfactory-visual measures of performance confirmed the classical MWM findings. Longitudinal (repeat) assessment of SAMP8 and SAMR1 performance at 6, 20, 30, and 40 weeks of age in the olfactory-visual testing protocol showed no age-associated deficits in SAMP8 mice to the last age end-point indicated. Collectively, the results from this study suggest the olfactory-visual testing protocol may be advantageous compared to classical MWM as it avoids potential confounders of visual impairment in some strains of mice and indeed, may offer insight into cognitive and behavioral deficits that develop with advanced age in the widely used SAMP8 murine model.
Collapse
Affiliation(s)
- Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Matthew A Albrecht
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Zachary John D'Alonzo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Liam Graneri
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Stephanie Coulson
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Nicholas Fimognari
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
9
|
McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, Reilly M, Lynch MA. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer's disease. Brain Behav Immun 2016; 58:191-200. [PMID: 27422717 DOI: 10.1016/j.bbi.2016.07.143] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
The effects of Toll-like receptor (TLR) activation in peripheral cells are well characterized but, although several TLRs are expressed on cells of the brain, the consequences of their activation on neuronal function remain to be fully investigated, particularly in the context of assessing their potential as therapeutic targets in neurodegenerative diseases. Several endogenous TLR ligands have been identified, many of which are soluble factors released from cells exposed to stressors. In addition, amyloid-β (Aβ) the main constituent of the amyloid plaques in Alzheimer's disease (AD), activates TLR2, although it has also been shown to bind to several other receptors. The objective of this study was to determine whether activation of TLR2 played a role in the developing inflammatory changes and Aβ accumulation in a mouse model of AD. Wild type and transgenic mice that overexpress amyloid precursor protein and presenilin 1 (APP/PS1 mice) were treated with anti-TLR2 antibody for 7months from the age of 7-14months. We demonstrate that microglial and astroglial activation, as assessed by MHCII, CD68 and GFAP immunoreactivity was decreased in anti-TLR2 antibody-treated compared with control (IgG)-treated mice. This was associated with reduced Aβ plaque burden and improved performance in spatial learning. The data suggest that continued TLR2 activation contributes to the developing neuroinflammation and pathology and may be provide a strategy for limiting the progression of AD.
Collapse
Affiliation(s)
- Claire L McDonald
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Edel Hennessy
- Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California San Francisco, San Francisco General Hospital, 1001 Potrero av, Bld#1, Room#101, 94110 San Francisco, CA, United States
| | - Ana Rubio-Araiz
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| | - Brian Keogh
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - William McCormack
- Immune Regulation Research Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, Ireland
| | - Peter McGuirk
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - Mary Reilly
- Opsona Therapeutics LTD, 2nd Floor Ashford House, Tara Street, Dublin 2 D02 VX67, Ireland
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
10
|
Kajiwara Y, McKenzie A, Dorr N, Gama Sosa MA, Elder G, Schmeidler J, Dickstein DL, Bozdagi O, Zhang B, Buxbaum JD. The human-specific CASP4 gene product contributes to Alzheimer-related synaptic and behavioural deficits. Hum Mol Genet 2016; 25:4315-4327. [PMID: 27516385 DOI: 10.1093/hmg/ddw265] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that innate immune signalling molecules are involved in late-onset Alzheimer's disease (LOAD) risk. Amyloid beta (Aβ) accumulates in AD brain, and has been proposed to act as a trigger of innate immune responses. Caspase-4 is an important part of the innate immune response. We recently characterized transgenic mice carrying human CASP4, and observed that the mice manifested profound innate immune responses to lipopolysaccharide (LPS). Since these inflammatory processes are important in the aetiology of AD, we have now analysed the correlation of expression of caspase-4 in human brain with AD risk genes, and studied caspase-4 effects on AD-related phenotypes in APPswe/PS1deltaE9 (APP/PS1) mice. We observed that the expression of caspase-4 was strongly correlated with AD risk genes including TYROBP, TREM2, CR1, PSEN1, MS4A4A and MS4A6A in LOAD brains. Caspase-4 expression was upregulated in CASP4/APP/PS1 mice in a region-specific manner, including hippocampus and prefrontal cortex. In APP/PS1 mice, caspase-4 expression led to impairments in the reversal phase of a Barnes maze task and in hippocampal synaptic plasticity, without affecting soluble or aggregated Aβ levels. Caspase-4 was expressed predominantly in microglial cells, and in the presence of CASP4, more microglia were clustered around amyloid plaques. Furthermore, our data indicated that caspase-4 modulates microglial cells in a manner that increases proinflammatory processes. We propose that microglial caspase-4 expression contributes to the cognitive impairments in AD, and that further study of caspase-4 will enhance our understanding of AD pathogenesis and may lead to novel therapeutic targets in AD.
Collapse
Affiliation(s)
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | | | | | - Gregory Elder
- Department of Psychiatry.,Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.,Department of Neurology
| | | | - Dara L Dickstein
- Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bin Zhang
- Department of Genetics and Genomic Sciences.,Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Joseph D Buxbaum
- Department of Psychiatry .,Department of Genetics and Genomic Sciences.,Department of Neuroscience.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Montgomery KS, Edwards G, Levites Y, Kumar A, Myers CE, Gluck MA, Setlow B, Bizon JL. Deficits in hippocampal-dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis. Hippocampus 2016; 26:455-71. [PMID: 26418152 PMCID: PMC4803574 DOI: 10.1002/hipo.22535] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 11/08/2022]
Abstract
Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the "transfer" of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative "transfer learning" task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswe PS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β-amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal-dependent learning may be useful for early identification of AD-like pathology.
Collapse
Affiliation(s)
- Karienn S. Montgomery
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX
| | - George Edwards
- Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, University of Texas Health Science Center in Houston, Houston, TX
| | - Yona Levites
- Department of Neuroscience, University of Florida, Gainesville, FL
| | - Ashok Kumar
- Department of Neuroscience, University of Florida, Gainesville, FL
| | - Catherine E. Myers
- VA New Jersey Health Care System, East Orange, NJ 07018
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Mark A. Gluck
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL
| | | |
Collapse
|
12
|
Cayzac S, Mons N, Ginguay A, Allinquant B, Jeantet Y, Cho YH. Altered hippocampal information coding and network synchrony in APP-PS1 mice. Neurobiol Aging 2015; 36:3200-3213. [PMID: 26391642 DOI: 10.1016/j.neurobiolaging.2015.08.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
β-amyloid is hypothesized to harm neural function and cognitive abilities by perturbing synaptic transmission and plasticity in Alzheimer's disease (AD). To assess the impact of this pathology on hippocampal neurons' ability to encode flexibly environmental information across learning, we performed electrophysiological recordings of CA1 hippocampal unit activity in AD transgenic mice as they acquired an action-reward association in a spatially defined environment; the behavioral task enabled the precise timing of discrete and intentional behaviors of the animal. We found that the proportion of behavioral task-sensitive cells in wild-type (WT) mice typically increased, whereas the proportion of place cells decreased with learning. In AD mice, this learning-dependent change of cell-discharge patterns was absent, and cells exhibited similar firings from the beginning to firings attained at the late learning stage in wild-type cells. These inflexible hippocampal representations of task and space throughout learning are accompanied by remarkable alterations of local oscillatory activity in the theta and ultra-fast ripple frequencies as well as learning abilities. The present data offer new insights into the in vivo cellular and network processes by which β-amyloid and other AD mutations may exert its harmful effects to produce cognitive and behavioral impairments in early stage of AD.
Collapse
Affiliation(s)
- Sebastien Cayzac
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France
| | - Nicole Mons
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France
| | - Antonin Ginguay
- Laboratoire INSERM, UMR 894-Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; Service de Biochimie, Hôpitaux Universitaires Paris-Centre, Hôpital Cochin, AP-HP, Paris, France
| | - Bernadette Allinquant
- Laboratoire INSERM, UMR 894-Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Yannick Jeantet
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France
| | - Yoon H Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287 Pessac Cedex, France; University of Bordeaux, Pessac Cedex, France.
| |
Collapse
|
13
|
Martel G, Simon A, Nocera S, Kalainathan S, Pidoux L, Blum D, Leclère-Turbant S, Diaz J, Geny D, Moyse E, Videau C, Buée L, Epelbaum J, Viollet C. Aging, but not tau pathology, impacts olfactory performances and somatostatin systems in THY-Tau22 mice. Neurobiol Aging 2014; 36:1013-28. [PMID: 25433460 DOI: 10.1016/j.neurobiolaging.2014.10.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 11/15/2022]
Abstract
Somatostatin (SOM) cortical levels decline in Alzheimer's disease (AD) in correlation with cognitive impairment severity, the latter being closely related to the presence of neurofibrillary tangles. Impaired olfaction is another hallmark of AD tightly related to tau pathology in the olfactory pathways. Recent studies showed that SOM modulates olfactory processing, suggesting that alterations in SOM levels participate to olfactory deficits in AD. Herein, we first observed that human olfactory peduncle and cortex are enriched in SOM cells and fibers, in aged postmortem brains. Then, the possible link between SOM alterations and olfactory deficits was evaluated by exploring the impact of age and tau hyperphosphorylation on olfactory SOM networks and behavioral performances in THY-Tau22 mice, a tauopathy transgenic model. Distinct molecular repertoires of SOM peptide and receptors were associated to sensory or cortical olfactory processing structures. Aging mainly affected SOM neurotransmission in piriform and entorhinal cortex in wild-type mice, although olfactory performances decreased. However, no further olfactory impairment was evidenced in THY-Tau22 mice until 12 months although tau pathology early affected olfactory cortical structures. Thus, tau hyperphosphorylation per se has a limited impact on olfactory performances in THY-Tau22 mice.
Collapse
Affiliation(s)
- Guillaume Martel
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Axelle Simon
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Sonia Nocera
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Sahana Kalainathan
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Ludivine Pidoux
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - David Blum
- Inserm, UMR837, Jean-Pierre Aubert Research Centre, IMPRT, F-59000, Lille, France; Université de Lille, UDSL, F-59000, Lille, France
| | | | - Jorge Diaz
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - David Geny
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Emmanuel Moyse
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Catherine Videau
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Luc Buée
- Inserm, UMR837, Jean-Pierre Aubert Research Centre, IMPRT, F-59000, Lille, France; Université de Lille, UDSL, F-59000, Lille, France
| | - Jacques Epelbaum
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Cécile Viollet
- Inserm, UMR894, Center for Psychiatry & Neuroscience, 75014, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.
| |
Collapse
|
14
|
Edwards SR, Hamlin AS, Marks N, Coulson EJ, Smith MT. Comparative studies using the Morris water maze to assess spatial memory deficits in two transgenic mouse models of Alzheimer's disease. Clin Exp Pharmacol Physiol 2014; 41:798-806. [DOI: 10.1111/1440-1681.12277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/05/2014] [Accepted: 06/08/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Stephen R Edwards
- Centre for Integrated Preclinical Drug Development; The University of Queensland; Brisbane Qld Australia
| | - Adam S Hamlin
- Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Nicola Marks
- Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Elizabeth J Coulson
- Queensland Brain Institute; The University of Queensland; Brisbane Qld Australia
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development; The University of Queensland; Brisbane Qld Australia
| |
Collapse
|
15
|
Olfactory Dysfunction in the Elderly: Basic Circuitry and Alterations with Normal Aging and Alzheimer's Disease. CURRENT GERIATRICS REPORTS 2014; 3:91-100. [PMID: 25045620 DOI: 10.1007/s13670-014-0080-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Preclinical detection of Alzheimer disease is critical to determining at-risk individuals in order to improve patient and caregiver planning for their futures and to identify individuals likely to benefit from treatment as advances in therapeutics develop over time. Identification of olfactory dysfunction at the preclinical and early stages of the disease is a potentially useful method to accomplish these goals. We first review basic olfactory circuitry. We then evaluate the evidence of pathophysiological change in the olfactory processing pathways during aging and Alzheimer disease in both human and animal models. We also review olfactory behavioral studies during these processes in both types of models. In doing so, we suggest hypotheses about the localization and mechanisms of olfactory dysfunction and identify important avenues for future work.
Collapse
|
16
|
Alvarado-Martínez R, Salgado-Puga K, Peña-Ortega F. Amyloid beta inhibits olfactory bulb activity and the ability to smell. PLoS One 2013; 8:e75745. [PMID: 24086624 PMCID: PMC3784413 DOI: 10.1371/journal.pone.0075745] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 08/20/2013] [Indexed: 11/17/2022] Open
Abstract
Early olfactory dysfunction has been consistently reported in both Alzheimer's disease (AD) and in transgenic mice that reproduce some features of this disease. In AD transgenic mice, alteration in olfaction has been associated with increased levels of soluble amyloid beta protein (Aβ) as well as with alterations in the oscillatory network activity recorded in the olfactory bulb (OB) and in the piriform cortex. However, since AD is a multifactorial disease and transgenic mice suffer a variety of adaptive changes, it is still unknown if soluble Aβ, by itself, is responsible for OB dysfunction both at electrophysiological and behavioral levels. Thus, here we tested whether or not Aβ directly affects OB network activity in vitro in slices obtained from mice and rats and if it affects olfactory ability in these rodents. Our results show that Aβ decreases, in a concentration- and time-dependent manner, the network activity of OB slices at clinically relevant concentrations (low nM) and in a reversible manner. Moreover, we found that intrabulbar injection of Aβ decreases the olfactory ability of rodents two weeks after application, an effect that is not related to alterations in motor performance or motivation to seek food and that correlates with the presence of Aβ deposits. Our results indicate that Aβ disrupts, at clinically relevant concentrations, the network activity of the OB in vitro and can trigger a disruption in olfaction. These findings open the possibility of exploring the cellular mechanisms involved in early pathological AD as an approach to reduce or halt its progress.
Collapse
Affiliation(s)
- Reynaldo Alvarado-Martínez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Karla Salgado-Puga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Campus Juriquilla, Querétaro, México
| |
Collapse
|
17
|
Neural structures underlying set-shifting: roles of medial prefrontal cortex and anterior cingulate cortex. Behav Brain Res 2013; 250:91-101. [PMID: 23664821 DOI: 10.1016/j.bbr.2013.04.037] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/28/2013] [Accepted: 04/22/2013] [Indexed: 12/14/2022]
Abstract
Impaired attentional set-shifting and inflexible decision-making are problems frequently observed during normal aging and in several psychiatric disorders. To understand the neuropathophysiology of underlying inflexible behavior, animal models of attentional set-shifting have been developed to mimic tasks such as the Wisconsin Card Sorting Task (WCST), which tap into a number of cognitive functions including stimulus-response encoding, working memory, attention, error detection, and conflict resolution. Here, we review many of these tasks in several different species and speculate on how prefrontal cortex and anterior cingulate cortex might contribute to normal performance during set-shifting.
Collapse
|
18
|
Wesson DW, Morales-Corraliza J, Mazella MJ, Wilson DA, Mathews PM. Chronic anti-murine Aβ immunization preserves odor guided behaviors in an Alzheimer's β-amyloidosis model. Behav Brain Res 2013; 237:96-102. [PMID: 23000537 PMCID: PMC3500395 DOI: 10.1016/j.bbr.2012.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 01/07/2023]
Abstract
Olfaction is often impaired in Alzheimer's disease (AD) and is also dysfunctional in mouse models of the disease. We recently demonstrated that short-term passive anti-murine-Aβ immunization can rescue olfactory behavior in the Tg2576 mouse model overexpressing a human mutation of the amyloid precursor protein (APP) after β-amyloid deposition. Here we tested the ability to preserve normal olfactory behaviors by means of long-term passive anti-murine-Aβ immunization. Seven-month-old Tg2576 and non-transgenic littermate (NTg) mice were IP-injected biweekly with the m3.2 murine-Aβ-specific antibody until 16 mo of age when mice were tested in the odor habituation test. While Tg2576 mice treated with a control antibody showed elevations in odor investigation times and impaired odor habituation compared to NTg, olfactory behavior was preserved to NTg levels in m3.2-immunized Tg2576 mice. Immunized Tg2576 mice had significantly less β-amyloid immunolabeling in the olfactory bulb and entorhinal cortex, yet showed elevations in Thioflavin-S labeled plaques in the piriform cortex. No detectable changes in APP metabolite levels other than Aβ were found following m3.2 immunization. These results demonstrate efficacy of chronic, long-term anti-murine-Aβ m3.2 immunization in preserving normal odor-guided behaviors in a human APP Tg model. Further, these results provide mechanistic insights into olfactory dysfunction as a biomarker for AD by yielding evidence that focal reductions of Aβ may be sufficient to preserve olfaction.
Collapse
Affiliation(s)
- Daniel W. Wesson
- Emotional Brain Institute Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, 10962
- Department of Child & Adolescent Psychiatry New York University School of Medicine New York, NY, 10016
| | - Jose Morales-Corraliza
- Center for Dementia Research Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, 10962
- Department of Psychiatry New York University School of Medicine New York, NY, 10016
| | - Matthew J. Mazella
- Center for Dementia Research Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, 10962
| | - Donald A. Wilson
- Emotional Brain Institute Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, 10962
- Department of Child & Adolescent Psychiatry New York University School of Medicine New York, NY, 10016
- Center for Neural Science New York University New York, NY, 10003
| | - Paul M. Mathews
- Center for Dementia Research Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, 10962
- Department of Psychiatry New York University School of Medicine New York, NY, 10016
| |
Collapse
|
19
|
Chen SQ, Cai Q, Shen YY, Wang PJ, Teng GJ, Zhang W, Zang FC. Age-related changes in brain metabolites and cognitive function in APP/PS1 transgenic mice. Behav Brain Res 2012; 235:1-6. [PMID: 22828014 DOI: 10.1016/j.bbr.2012.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/08/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) and the Morris water maze (MWM) have played an important role in Alzheimer's disease (AD) research. The aim of this study was to determine whether (1)H-MRS and the MWM can detect for early AD in APP/PS1 transgenic (tg) mice. (1)H-MRS was performed in 20 tg mice and 15 wild-type mice at 3, 5 and 8 months of age. The concentration of N-acetylaspartate (NAA), glutamate (Glu), myo-inositol (mI), choline (Cho) and creatine (Cr) in the hippocampus were measured, and the NAA/Cr, Glu/Cr, mI/Cr and Cho/Cr ratios were quantified. Additionally, the spatial learning and memory of the mice were evaluated by MWM. The (1)H-MRS revealed that mI levels in tg mice were significantly higher at 3 months of age compared to wt mice, while the NAA and Glu levels in 5- and 8-month-old tg mice were significantly decreased (p<0.05). Additionally, significant cognitive changes only occurred at 8 months of age in APP/PS1 tg mice. These results indicated that metabolic changes preceded overt cognitive dysfunctions in early-stage AD, suggesting that (1)H-MRS is a more sensitive biomarker for assessing early AD.
Collapse
Affiliation(s)
- Shuang-qing Chen
- Department of Radiology, Suzhou Hospital, Nanjing Medical University, Suzhou 215001, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer's disease and its models. Neuroscience 2012; 251:51-65. [PMID: 22687952 DOI: 10.1016/j.neuroscience.2012.05.050] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disorder characterized by a progressive loss of cognition and the presence of two hallmark lesions, senile plaques (SP) and neurofibrillary tangles (NFT), which result from the accumulation and deposition of the β-amyloid peptide (Aβ) and the aggregation of hyperphosphorylated tau protein, respectively. Initially, it was thought that Aβ fibrils, which make up SP, were the root cause of the massive neurodegeneration usual found in AD brains. Over time, the longstanding emphasis on fibrillar Aβ deposits and neuronal death slowly gave way to a new paradigm involving soluble oligomeric forms of Aβ, which play a prominent role in triggering the cognitive deficits by specifically targeting synapses and disrupting synaptic signaling pathways. While this paradigm is widely accepted today in the AD field, the molecular details have not been fully elucidated. In this review, we address some of the important evidence, which has led to the Aβ oligomer-centric hypothesis as well as some of the key findings concerning the effects of Aβ oligomers on synapses at a morphological and functional level. Understanding how Aβ oligomers target synapses provides an important framework for ongoing AD research, which can lead to the development of successful therapeutic strategies designed to alter or perhaps reverse the course of the disease.
Collapse
Affiliation(s)
- J Pozueta
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | | | | |
Collapse
|
21
|
Wesson DW, Varga-Wesson AG, Borkowski AH, Wilson DA. Respiratory and sniffing behaviors throughout adulthood and aging in mice. Behav Brain Res 2011; 223:99-106. [PMID: 21524667 PMCID: PMC3128824 DOI: 10.1016/j.bbr.2011.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/05/2011] [Accepted: 04/10/2011] [Indexed: 01/14/2023]
Abstract
Orienting responses are physiological and active behavioral reactions evoked by novel stimulus perception and are critical for survival. We explored whether odor orienting responses are impacted throughout both adulthood and normal and pathological aging in mice. Novel odor investigation (including duration and bout numbers) and its subsequent habituation as assayed in the odor habituation task were preserved in adult C57BL/6J mice up to 12 mo of age with <6% variability between age groups in investigation time. Separately, using whole-body plethysmography we found that both spontaneous respiration and odor-evoked sniffing behaviors were strikingly preserved in wildtype (WT) mice up to 26 mo of age. In contrast, mice accumulating amyloid-β protein in the brain by means of overexpressing mutations in the human amyloid precursor protein gene (APP) showed preserved spontaneous respiration up to 12 mo, but starting at 14 mo showed significant differences from WT. Similar to WTs, odor-evoked sniffing was not impacted in APP mice up to 26 mo. These results show that odor-orienting responses are minimally impacted throughout aging in mice, and suggest that the olfactomotor network is mostly spared of insults due to aging.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
22
|
Shineman DW, Basi GS, Bizon JL, Colton CA, Greenberg BD, Hollister BA, Lincecum J, Leblanc GG, Lee L(BH, Luo F, Morgan D, Morse I, Refolo LM, Riddell DR, Scearce-Levie K, Sweeney P, Yrjänheikki J, Fillit HM. Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies. Alzheimers Res Ther 2011; 3:28. [PMID: 21943025 PMCID: PMC3218805 DOI: 10.1186/alzrt90] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal models have contributed significantly to our understanding of the underlying biological mechanisms of Alzheimer's disease (AD). As a result, over 300 interventions have been investigated and reported to mitigate pathological phenotypes or improve behavior in AD animal models or both. To date, however, very few of these findings have resulted in target validation in humans or successful translation to disease-modifying therapies. Challenges in translating preclinical studies to clinical trials include the inability of animal models to recapitulate the human disease, variations in breeding and colony maintenance, lack of standards in design, conduct and analysis of animal trials, and publication bias due to under-reporting of negative results in the scientific literature. The quality of animal model research on novel therapeutics can be improved by bringing the rigor of human clinical trials to animal studies. Research communities in several disease areas have developed recommendations for the conduct and reporting of preclinical studies in order to increase their validity, reproducibility, and predictive value. To address these issues in the AD community, the Alzheimer's Drug Discovery Foundation partnered with Charles River Discovery Services (Morrisville, NC, USA) and Cerebricon Ltd. (Kuopio, Finland) to convene an expert advisory panel of academic, industry, and government scientists to make recommendations on best practices for animal studies testing investigational AD therapies. The panel produced recommendations regarding the measurement, analysis, and reporting of relevant AD targets, th choice of animal model, quality control measures for breeding and colony maintenance, and preclinical animal study design. Major considerations to incorporate into preclinical study design include a priori hypotheses, pharmacokinetics-pharmacodynamics studies prior to proof-of-concept testing, biomarker measurements, sample size determination, and power analysis. The panel also recommended distinguishing between pilot 'exploratory' animal studies and more extensive 'therapeutic' studies to guide interpretation. Finally, the panel proposed infrastructure and resource development, such as the establishment of a public data repository in which both positive animal studies and negative ones could be reported. By promoting best practices, these recommendations can improve the methodological quality and predictive value of AD animal studies and make the translation to human clinical trials more efficient and reliable.
Collapse
Affiliation(s)
- Diana W Shineman
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| | - Guriqbal S Basi
- Elan Pharmaceuticals, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Jennifer L Bizon
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, 100 S. Newell Drive, Gainesville, FL 32610-0244, USA
| | - Carol A Colton
- Duke University Medical Center, 201H Bryan Research Building, Research Drive, Durham, NC 27710, USA
| | - Barry D Greenberg
- University Health Network, Toronto Western Research Institute, 399 Bathurst Street, MP 14-328, Toronto, ON, M5T 2S8, Canada
| | - Beth A Hollister
- Charles River Discovery Services, 3300 Gateway Centre Boulevard, Morrisville, NC 27560, USA
| | - John Lincecum
- ALS Therapy Development Institute, 215 First Street, Cambridge, MA 02142, USA
| | | | - Linda (Bobbi) H Lee
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
- Columbia University, 630 West 168th Street, Building PS 12-510, New York, NY 10032, USA
| | - Feng Luo
- Abbott Neuroscience, AP4-2, 100 Abbott Park Road, Abbott Park, IL 60064-6076, USA
| | - Dave Morgan
- USF Health Byrd Alzheimer Institute, University of South Florida, 4001 E. Fletcher Avenue, MDC Box 36, Tampa FL 33613, USA
| | - Iva Morse
- Genetically Engineered Models and Services/Charles River Laboratories, Inc., 251 Ballardvale Street, Wilmington, MA 01887, USA
| | - Lorenzo M Refolo
- National Institute on Aging, 7201 Wisconsin Avenue, Gateway Building, Suite 350, Bethesda, MD 20892, USA
| | - David R Riddell
- Pfizer Neuroscience Research Unit, MS 8220-3414, Eastern Point Road, Groton, CT 06340, USA
| | | | - Patrick Sweeney
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Juha Yrjänheikki
- Cerebricon Ltd./Charles River Discovery Services, Microkatu 1, Kuopio, Finland 70210
| | - Howard M Fillit
- Alzheimer's Drug Discovery Foundation, 57 West 57 Street, Suite 904, New York, NY 10019, USA
| |
Collapse
|
23
|
A novel operant testing regimen for multi-construct cognitive characterization of a murine model of Alzheimer's amyloid-related behavioral impairment. Neurobiol Learn Mem 2011; 96:443-51. [PMID: 21763776 DOI: 10.1016/j.nlm.2011.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/24/2022]
Abstract
A common method for modeling pathological and behavioral aspects of Alzheimer's disease (AD) is the transgenic mouse. While transgenic strains are often well characterized pathologically, behavioral studies of cognitive deficits often employ a limited set of aversively motivated, spatial learning and memory tests, under brief testing periods. Here we illustrate an alternative operant behavioral methodology to provide a comprehensive characterization under repetitive testing conditions, and with appetitive motivation. In this study, we employed the commonly used Tg2576 murine model of Alzheimer's disease amyloid pathology, since it has been the subject of many previous behavioral studies. In these mice, we compared the learning of simple and complex, as well as spatial and non-spatial rules. The mice were assessed on a progressively more complex and interlocking battery of operant tasks, ranging from simple rule learning to delayed recall, as well as tests of motor and sensory ability. In general, as compared to wild type control mice, within-group variability was high in the Tg2576 mice, and deficits were most apparent in more complex discrimination tasks. Furthermore, a consistent decrease in the rate at which Tg2576 mice completed testing trials was observed, pointing to a potential motivation difference or speed-accuracy tradeoffs as a defining characteristic of this strain under these test conditions. Using sensitive adjusting retention interval procedures, it was also possible to isolate a difference in retention interval and separate it from non-mnemonic processes. Overall, these experiments demonstrate the utility of this novel operant approach for characterizing the cognitive deficits of transgenic murine models of dementia.
Collapse
|
24
|
Wesson DW, Nixon RA, Levy E, Wilson DA. Mechanisms of neural and behavioral dysfunction in Alzheimer's disease. Mol Neurobiol 2011; 43:163-79. [PMID: 21424679 DOI: 10.1007/s12035-011-8177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
This review critically examines progress in understanding the link between Alzheimer's disease (AD) molecular pathogenesis and behavior, with an emphasis on the impact of amyloid-β. We present the argument that the AD research field requires more multifaceted analyses into the impacts of Alzheimer's pathogenesis which combine simultaneous molecular-, circuit-, and behavior-level approaches. Supporting this argument is a review of particular research utilizing similar, "systems-level" methods in mouse models of AD. Related to this, a critique of common physiological and behavioral models is made-highlighting the likely usefulness of more refined and specific tools in understanding the relationship between candidate molecular pathologies and behavioral dysfunction. Finally, we propose challenges for future research which, if met, may greatly extend our current understanding of how AD molecular pathology impacts neural network function and behavior and possibly may lead to refinements in disease therapeutics.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, New York University School of Medicine, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
25
|
Wesson DW, Wilson DA. Age and gene overexpression interact to abolish nesting behavior in Tg2576 amyloid precursor protein (APP) mice. Behav Brain Res 2011; 216:408-13. [PMID: 20804789 PMCID: PMC2975804 DOI: 10.1016/j.bbr.2010.08.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Elucidating the modulators of social behavioral is important in understanding the neural basis of behavior and in developing methods to enhance behavior in cases of disorder. The work here stems from the observation that the Alzheimer's disease mouse model Tg2576, overexpressing human mutations of the amyloid-β precursor protein (APP), fails to construct nests when supplied paper towels in their home cages. Experiments using commercially available cotton nesting material found similar results. Additional experiments revealed that the genotype effect is progressively modulated by age in APP mice but not their WT counterparts. There was no effect of sex on nesting behavior in any group. Finally, this effect was independent of ambient temperature - even when subjected to a cold environment, APP mice fail to build nests whereas WT mice do. These results suggest that the APP gene plays a role in affiliative behaviors and are discussed in relation to disorders characteristic of mutations in the APP gene and in affective dysfunction, including Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel W Wesson
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States.
| | | |
Collapse
|
26
|
Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model. J Neurosci 2010; 30:505-14. [PMID: 20071513 DOI: 10.1523/jneurosci.4622-09.2010] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease often results in impaired olfactory perceptual acuity-a potential biomarker of the disorder. However, the usefulness of olfactory screens to serve as informative indicators of Alzheimer's is precluded by a lack of knowledge regarding why the disease impacts olfaction. We addressed this question by assaying olfactory perception and amyloid-beta (Abeta) deposition throughout the olfactory system in mice that overexpress a mutated form of the human amyloid-beta precursor protein. Such mice displayed progressive olfactory deficits that mimic those observed clinically-some evident at 3 months of age. Also, at 3 months of age, we observed nonfibrillar Abeta deposition within the olfactory bulb-earlier than deposition within any other brain region. There was also a correlation between olfactory deficits and the spatial-temporal pattern of Abeta deposition. Therefore, nonfibrillar, versus fibrillar, Abeta-related mechanisms likely contribute to early olfactory perceptual loss in Alzheimer's disease. Furthermore, these results present the odor cross-habituation test as a powerful behavioral assay, which reflects Abeta deposition and thus may serve to monitor the efficacy of therapies aimed at reducing Abeta.
Collapse
|