1
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024; 102:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Filho JMVM, de Oliveira AAR, de Bruin VMS, Viana RB, de Bruin PFC. Influence of sleep on motor skill acquisition in children: a systematic review. J Sleep Res 2024:e14309. [PMID: 39205321 DOI: 10.1111/jsr.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Effects of sleep on procedural (implicit) memory consolidation in children remain controversial. The aim of this systematic review was to synthesise the evidence on the influence of sleep on motor skills acquisition in children. Four electronic databases were searched: PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Excerpta Medica Database (Embase), and Biblioteca Virtual em Saúde (BVS). Original studies, published until October 17, 2023, on motor skill acquisition in children aged ≤12 years, in which the intervention group slept after motor skill training, while the control group remained awake, were considered for inclusion. Risk of bias was evaluated using the Cochrane's Risk of Bias 2 tool. The review protocol was pre-registered at the International Prospective Register of Systematic Reviews (PROSPERO protocol number: CRD42022363868) and all reported items followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of the 7241 articles initially retrieved, nine met the primary criteria and were included in this review. Of these, six studies reported that daytime or night-time sleep intervention improved motor skill acquisition, as compared to wakefulness. All studies presented a high risk of bias. In conclusion, the evidence summarised suggests that sleep may enhance motor skills acquisition and could be important for motor development in childhood. However, due to the high risk of bias in the included studies, future randomised controlled trials with high methodological quality are necessary to better clarify this topic.
Collapse
Affiliation(s)
| | | | | | - Ricardo Borges Viana
- Human Anatomy Laboratory, Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
3
|
McGregor KM, Novak T, Nocera JR, Mammino K, Wolf SL, Krishnamurthy LC. Examination of acute spin exercise on GABA levels in aging and stroke: The EASE study protocol. PLoS One 2024; 19:e0297841. [PMID: 39008457 PMCID: PMC11249249 DOI: 10.1371/journal.pone.0297841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/08/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Changes in regional levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) may indicate the potential for favorable responses to the treatment of stroke affecting the upper extremity. By selectively altering GABA levels during training, we may induce long-term potentiation and adjust excitatory/inhibitory balance (E/I balance). However, the impact of this alteration may be limited by neural damage or aging. Aerobic exercise has been shown to increase GABA levels in the sensorimotor cortex and improve motor learning by widening the dynamic range of E/I balance. The cross-sectional project, Effects of Acute Exercise on Functional Magnetic Resonance Spectroscopy Measures of GABA in Aging and Chronic Stroke (EASE), is designed to assess the functional relevance of changes in GABA concentration within the sensorimotor cortex before and after an acute aerobic exercise session. METHODS/DESIGN EASE will enroll 30 participants comprised of healthy younger adults (18-35 years; n = 10), older adults (60+ years; n = 10), and persons with chronic stroke (n = 10) affecting distal upper extremity function. We will use resting magnetic resonance spectroscopy to measure all participants' GABA levels at rest before and after aerobic exercise. In addition, we will employ functional magnetic resonance spectroscopy using motor skill acquisition and recall tasks in healthy adults. We hypothesize that acute aerobic exercise will increase resting sensorimotor GABA concentration and that higher GABA resting levels will predict better motor learning performance on measures taken both inside and outside the magnet. We also hypothesize that a higher dynamic range of GABA during task-based spectroscopy in healthy adults will predict better motor skill acquisition and recall. DISCUSSION The EASE project will evaluate the effect of acute exercise on GABA levels as a biomarker of upper extremity motor skill learning with two populations (aging adults and those with chronic stroke). We predict that acute exercise, higher sensorimotor GABA levels, and broader dynamic range will be related to better motor skill acquisition.
Collapse
Affiliation(s)
- Keith M. McGregor
- Birmingham VA Geriatric Research Education and Clinical Center, Birmingham VA Health Care System, Birmingham, Alabama, United States of America
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham School of Health Professions, Birmingham, Alabama, United States of America
| | - Thomas Novak
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Joe R. Nocera
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kevin Mammino
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
| | - Steven L. Wolf
- Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, United States of America
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lisa C. Krishnamurthy
- Atlanta VA Health Care System, Decatur, Georgia, United States of America
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech and Emory, Atlanta, Georgia, United States of America
- Department of Physics & Astronomy, Georgia State University, Atlanta, Georgia, United States of America
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
4
|
Taylor EM, Cadwallader CJ, Curtin D, Chong TTJ, Hendrikse JJ, Coxon JP. High-intensity acute exercise impacts motor learning in healthy older adults. NPJ SCIENCE OF LEARNING 2024; 9:9. [PMID: 38368455 PMCID: PMC10874400 DOI: 10.1038/s41539-024-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Healthy aging is associated with changes in motor sequence learning, with some studies indicating decline in motor skill learning in older age. Acute cardiorespiratory exercise has emerged as a potential intervention to improve motor learning, however research in healthy older adults is limited. The current study investigated the impact of high-intensity interval exercise (HIIT) on a subsequent sequential motor learning task. Twenty-four older adults (aged 55-75 years) completed either 20-minutes of cycling, or an equivalent period of active rest before practicing a sequential force grip task. Skill learning was assessed during acquisition and at a 6-hour retention test. In contrast to expectation, exercise was associated with reduced accuracy during skill acquisition compared to rest, particularly for the oldest participants. However, improvements in motor skill were retained in the exercise condition, while a reduction in skill was observed following rest. Our findings indicate that high-intensity exercise conducted immediately prior to learning a novel motor skill may have a negative impact on motor performance during learning in older adults. We also demonstrated that exercise may facilitate early offline consolidation of a motor skill within this population, which has implications for motor rehabilitation.
Collapse
Affiliation(s)
- Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Claire J Cadwallader
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, 3065, Australia
| | - Joshua J Hendrikse
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Norup M, Bjørndal JR, Nielsen AL, Wiegel P, Lundbye-Jensen J. Dynamic motor practice improves movement accuracy, force control and leads to increased corticospinal excitability compared to isometric motor practice. Front Hum Neurosci 2023; 16:1019729. [PMID: 36684837 PMCID: PMC9849878 DOI: 10.3389/fnhum.2022.1019729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The central nervous system has a remarkable ability to plan motor actions, to predict and monitor the sensory consequences during and following motor actions and integrate these into future actions. Numerous studies investigating human motor learning have employed tasks involving either force control during isometric contractions or position control during dynamic tasks. To our knowledge, it remains to be elucidated how motor practice with an emphasis on position control influences force control and vice versa. Furthermore, it remains unexplored whether these distinct types of motor practice are accompanied by differential effects on corticospinal excitability. In this study, we tested motor accuracy and effects of motor practice in a force or position control task allowing wrist flexions of the non-dominant hand in the absence of online visual feedback. For each trial, motor performance was quantified as errors (pixels) between the displayed target and the movement endpoint. In the main experiment, 46 young adults were randomized into three groups: position control motor practice (PC), force control motor practice (FC), and a resting control group (CON). Following assessment of baseline motor performance in the position and force control tasks, intervention groups performed motor practice with, augmented visual feedback on performance. Motor performance in both tasks was assessed following motor practice. In a supplementary experiment, measures of corticospinal excitability were obtained in twenty additional participants by application of transcranial magnetic stimulation to the primary motor cortex hot spot of the flexor carpi radialis muscle before and following either position or force control motor practice. Following motor practice, accuracy in the position task improved significantly more for PC compared to FC and CON. For the force control task, both the PC and FC group improved more compared to CON. The two types of motor practice thus led to distinct effects including positive between-task transfer accompanying dynamic motor practice The results of the supplementary study demonstrated an increase in corticospinal excitability following dynamic motor practice compared to isometric motor practice. In conclusion, dynamic motor practice improves movement accuracy, and force control and leads to increased corticospinal excitability compared to isometric motor practice.
Collapse
Affiliation(s)
- Malene Norup
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark,Department of Midwifery, Physiotherapy, Occupational Therapy and Psychomotor Therapy, Faculty of Health, University College Copenhagen, Copenhagen, Denmark,*Correspondence: Malene Norup,
| | - Jonas Rud Bjørndal
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - August Lomholt Nielsen
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Wiegel
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Kaminski E, Maudrich T, Bassler P, Ordnung M, Villringer A, Ragert P. tDCS over the primary motor cortex contralateral to the trained hand enhances cross-limb transfer in older adults. Front Aging Neurosci 2022; 14:935781. [PMID: 36204550 PMCID: PMC9530461 DOI: 10.3389/fnagi.2022.935781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Transferring a unimanual motor skill to the untrained hand, a phenomenon known as cross-limb transfer, was shown to deteriorate as a function of age. While transcranial direct current stimulation (tDCS) ipsilateral to the trained hand facilitated cross-limb transfer in older adults, little is known about the contribution of the contralateral hemisphere to cross-limb transfer. In the present study, we investigated whether tDCS facilitates cross-limb transfer in older adults when applied over the motor cortex (M1) contralateral to the trained hand. Furthermore, the study aimed at investigating short-term recovery of tDCS-associated cross-limb transfer. In a randomized, double-blinded, sham-controlled setting, 30 older adults (67.0 ± 4.6 years, 15 female) performed a short grooved-pegboard training using their left hand, while anodal (a-tDCS) or sham-tDCS (s-tDCS) was applied over right M1 for 20 min. Left (LHtrained) - and right-hand (RHuntrained) performance was tested before and after training and in three recovery measures 15, 30 and 45 min after training. LHtrained performance improved during both a-tDCS and s-tDCS and improvements persisted during recovery measures for at least 45 min. RHuntrained performance improved only following a-tDCS but not after s-tDCS and outlasted the stimulation period for at least 45 min. Together, these data indicate that tDCS over the M1 contralateral to the trained limb is capable of enhancing cross-limb transfer in older adults, thus showing that cross-limb transfer is mediated not only by increased bi-hemispheric activation.
Collapse
Affiliation(s)
- Elisabeth Kaminski
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- *Correspondence: Elisabeth Kaminski,
| | - Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Pauline Bassler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Madeleine Ordnung
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Matthews D, Cancino EE, Falla D, Khatibi A. Exploring pain interference with motor skill learning in humans: A systematic review. PLoS One 2022; 17:e0274403. [PMID: 36099284 PMCID: PMC9470002 DOI: 10.1371/journal.pone.0274403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022] Open
Abstract
Motor learning underpins successful motor skill acquisition. Although it is well known that pain changes the way we move, it’s impact on motor learning is less clear. The aim of this systematic review was to synthesize evidence on the impact of experimental and clinical pain on task performance and activity-dependent plasticity measures across learning and explore these findings in relation to different pain and motor learning paradigms. Five databases were searched: Web of Science, Scopus, MEDLINE, Embase and CINAHL. Two reviewers independently screened the studies, extracted data, and assessed risk of bias using the Cochrane ROB2 and ROBIN-I. The overall strength of evidence was rated using the GRADE guidelines. Due to the heterogeneity of study methodologies a narrative synthesis was employed. Twenty studies were included in the review: fifteen experimental pain and five clinical pain studies, covering multiple motor paradigms. GRADE scores for all outcome measures suggested limited confidence in the reported effect for experimental pain and clinical pain, on motor learning. There was no impact of pain on any of the task performance measures following acquisition except for ‘accuracy’ during a tongue protrusion visuomotor task and ‘timing of errors’ during a motor adaptation locomotion task. Task performance measures at retention, and activity dependent measures at both acquisition and retention showed conflicting results. This review delivers a detailed synthesis of research studies exploring the impact of pain on motor learning. This is despite the challenges provided by the heterogeneity of motor learning paradigms, outcome measures and pain paradigms employed in these studies. The results highlight important questions for further research with the goal of strengthening the confidence of findings in this area.
Collapse
Affiliation(s)
- David Matthews
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - Edith Elgueta Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Peng L, Peng Y, Chen Z, Wang C, Long Z, Peng H, Shi Y, Shen L, Xia K, Leotti VB, Jardim LB, Tang B, Qiu R, Jiang H. The progression rate of spinocerebellar ataxia type 3 varies with disease stage. J Transl Med 2022; 20:226. [PMID: 35568848 PMCID: PMC9107762 DOI: 10.1186/s12967-022-03428-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In polyglutamine (polyQ) diseases, the identification of modifiers and the construction of prediction model for progression facilitate genetic counseling, clinical management and therapeutic interventions. METHODS Data were derived from the longest longitudinal study, with 642 examinations by International Cooperative Ataxia Rating Scale (ICARS) from 82 SCA3 participants. Using different time scales of disease duration, we performed multiple different linear, quadratic and piece-wise linear growth models to fit the relationship between ICARS scores and duration. Models comparison was employed to determine the best-fitting model according to goodness-of-fit tests, and the analysis of variance among nested models. RESULTS An acceleration was detected after 13 years of duration: ICARS scores progressed 2.445 (SE: 0.185) points/year before and 3.547 (SE: 0.312) points/year after this deadline. Piece-wise growth model fitted better to studied data than other two types of models. The length of expanded CAG repeat (CAGexp) in ATXN3 gene significantly influenced progression. Age at onset of gait ataxia (AOga), a proxy for aging process, was not an independent modifier but affected the correlation between CAGexp and progression. Additionally, gender had no significant effect on progression rate of ICARS. The piece-wise growth models were determined as the predictive models, and ICARS predictions from related models were available. CONCLUSIONS We first confirmed that ICARS progressed as a nonlinear pattern and varied according to different stages in SCA3. In addition to ATXN3 CAGexp, AOga or aging process regulated the progression by interacting with CAGexp.
Collapse
Affiliation(s)
- Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Chunrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhe Long
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, 410008, Hunan, China
| | - Vanessa B Leotti
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91509-900, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90035-003, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90035-903, Brazil.,Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, Porto Alegre, 90035-903, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-903, Brazil
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,School of Basic Medical Science, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China. .,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.
| |
Collapse
|
9
|
Jünemann K, Marie D, Worschech F, Scholz DS, Grouiller F, Kliegel M, Van De Ville D, James CE, Krüger THC, Altenmüller E, Sinke C. Six Months of Piano Training in Healthy Elderly Stabilizes White Matter Microstructure in the Fornix, Compared to an Active Control Group. Front Aging Neurosci 2022; 14:817889. [PMID: 35242025 PMCID: PMC8886041 DOI: 10.3389/fnagi.2022.817889] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022] Open
Abstract
While aging is characterized by neurodegeneration, musical training is associated with experience-driven brain plasticity and protection against age-related cognitive decline. However, evidence for the positive effects of musical training mostly comes from cross-sectional studies while randomized controlled trials with larger sample sizes are rare. The current study compares the influence of six months of piano training with music listening/musical culture lessons in 121 musically naïve healthy elderly individuals with regard to white matter properties using fixel-based analysis. Analyses revealed a significant fiber density decline in the music listening/musical culture group (but not in the piano group), after six months, in the fornix, which is a white matter tract that naturally declines with age. In addition, these changes in fiber density positively correlated to episodic memory task performances and the amount of weekly piano training. These findings not only provide further evidence for the involvement of the fornix in episodic memory encoding but also more importantly show that learning to play the piano at an advanced age may stabilize white matter microstructure of the fornix.
Collapse
Affiliation(s)
- Kristin Jünemann
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Florian Worschech
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Daniel S Scholz
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Ecole Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Tillmann H C Krüger
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Eckart Altenmüller
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| |
Collapse
|
10
|
Rangarajan V, Schreiber JJ, Barragan B, Schaefer SY, Honeycutt CF. Delays in the Reticulospinal System Are Associated With a Reduced Capacity to Learn a Simulated Feeding Task in Older Adults. Front Neural Circuits 2022; 15:681706. [PMID: 35153677 PMCID: PMC8829385 DOI: 10.3389/fncir.2021.681706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Learning declines with age. Recent evidence indicates that the brainstem may play an important role in learning and motor skill acquisition. Our objective was to determine if delays in the reticular formation, measured via the startle reflex, correspond to age-related deficits in learning and retention. We hypothesized that delays in the startle reflex would be linearly correlated to learning and retention deficits in older adults. To determine if associations were unique to the reticulospinal system, we also evaluated corticospinal contributions with transcranial magnetic stimulation. Our results showed a linear relationship between startle onset latency and percent learning and retention but no relationship between active or passive motor-evoked potential onsets or peak-to-peak amplitude. These results lay the foundation for further study to evaluate if (1) the reticular formation is a subcortical facilitator of skill acquisition and (2) processing delays in the reticular formation contribute to age-related learning deficits.
Collapse
|
11
|
Johnson BP, Cohen LG. Reward and plasticity: Implications for neurorehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:331-340. [PMID: 35034746 DOI: 10.1016/b978-0-12-819410-2.00018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroplasticity follows nervous system injury in the presence or absence of rehabilitative treatments. Rehabilitative interventions can be used to modulate adaptive neuroplasticity, reducing motor impairment and improving activities of daily living in patients with brain lesions. Learning principles guide some rehabilitative interventions. While basic science research has shown that reward combined with training enhances learning, this principle has been only recently explored in the context of neurorehabilitation. Commonly used reinforcers may be more or less rewarding depending on the individual or the context in which the task is performed. Studies in healthy humans showed that both reward and punishment can enhance within-session motor performance; but reward, and not punishment, improves consolidation and retention of motor skills. On the other hand, neurorehabilitative training after brain lesions involves complex tasks (e.g., walking and activities of daily living). The contribution of reward to neurorehabilitation is incompletely understood. Here, we discuss recent research on the role of reward in neurorehabilitation and the needed directions of future research.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
12
|
Petitet P, Spitz G, Emir UE, Johansen-Berg H, O'Shea J. Age-related decline in cortical inhibitory tone strengthens motor memory. Neuroimage 2021; 245:118681. [PMID: 34728243 PMCID: PMC8752967 DOI: 10.1016/j.neuroimage.2021.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 11/02/2022] Open
Abstract
Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.
Collapse
Affiliation(s)
- Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Centre de Recherche en Neurosciences de Lyon, Equipe Trajectoires, Inserm UMR-S 1028, CNRS UMR 5292, Université Lyon 1, Bron, France.
| | - Gershon Spitz
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| | - Uzay E Emir
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences (NDCN), John Radcliffe Hospital, Headington, Oxford, United Kingdom; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity (OHBA), University of Oxford Department of Psychiatry, Warneford Hospital, Warneford Lane, Oxford, United Kingdom.
| |
Collapse
|
13
|
Fitzroy AB, Kainec KA, Seo J, Spencer RMC. Encoding and consolidation of motor sequence learning in young and older adults. Neurobiol Learn Mem 2021; 185:107508. [PMID: 34450244 DOI: 10.1016/j.nlm.2021.107508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Sleep benefits motor memory consolidation in young adults, but this benefit is reduced in older adults. Here we sought to understand whether differences in the neural bases of encoding between young and older adults contribute to aging-related differences in sleep-dependent consolidation of an explicit variant of the serial reaction time task (SRTT). Seventeen young and 18 older adults completed two sessions (nap, wake) one week apart. In the MRI, participants learned the SRTT. Following an afternoon interval either awake or with a nap (recorded with high-density polysomnography), performance on the SRTT was reassessed in the MRI. Imaging and behavioral results from SRTT performance showed clear sleep-dependent consolidation of motor sequence learning in older adults after a daytime nap, compared to an equal interval awake. Young adults, however, showed brain activity and behavior during encoding consistent with high SRTT performance prior to the sleep interval, and did not show further sleep-dependent performance improvements. Young adults did show reduced cortical activity following sleep, suggesting potential systems-level consolidation related to automatization. Sleep physiology data showed that sigma activity topography was affected by hippocampal and cortical activation prior to the nap in both age groups, and suggested a role of theta activity in sleep-dependent automatization in young adults. These results suggest that previously observed aging-related sleep-dependent consolidation deficits may be driven by aging-related deficiencies in fast learning processes. Here we demonstrate that when sufficient encoding strength is reached with additional training, older adults demonstrate intact sleep-dependent consolidation of motor sequence learning.
Collapse
Affiliation(s)
- Ahren B Fitzroy
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Kyle A Kainec
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Jeehye Seo
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Rebecca M C Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, United States.
| |
Collapse
|
14
|
Johnson BP, Cohen LG, Westlake KP. The Intersection of Offline Learning and Rehabilitation. Front Hum Neurosci 2021; 15:667574. [PMID: 33967725 PMCID: PMC8098688 DOI: 10.3389/fnhum.2021.667574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Brian P Johnson
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States.,Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
15
|
Egger S, Wälchli M, Rüeger E, Taube W. Interference of balance tasks revisited: Consolidation of a novel balance task is impaired by subsequent learning of a similar postural task. Gait Posture 2021; 84:182-186. [PMID: 33360382 DOI: 10.1016/j.gaitpost.2020.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Interference effects have repeatedly been demonstrated for simple motor tasks but not for the complex whole-body task of balancing. It was therefore assumed that different balance tasks are so specific that they do not elicit interacting adaptations; neither in a positive (contextual interference) nor in a negative way (disruption of motor consolidation). RESEARCH QUESTION Is a novel balancing task susceptible to interference if a similar balance task is learned shortly afterwards? METHODS The common A1-B-A2 interference intervention design was applied. Participants were assigned to one of four intervention groups that differed with respect to task B. All four groups performed postural task A on a rocker board device (6 series of 8 trials of 8 s). Shortly after completion of task A, participants performed their respective task B (postural wobble board (P-WB), ballistic force, accuracy) or rested (control group). 24 h later, all groups performed a retention test of task A consisting of one series of 8 trials. To test for interference, we calculated repeated mixed design analysis of covariance (ANCOVA). RESULTS For the retention test, the ANCOVA revealed a significant TIME*GROUP interaction (p = .010), which was followed up by separate Bonferroni-corrected post-hoc tests for each group. These tests showed a significant performance decrease for the P-WB group (p = .016) but no change in performance for the other three groups. SIGNIFICANCE In contrast to previous findings, our results indicate that the complex whole-body task of balancing is susceptible to interference, but only, when task B consists of a similar balance task. This is of great functional relevance as for example fall prevention programs incorporate many different balance tasks to prepare participants for all sorts of situations. In such interventions, it seems therefore advisable to apply a random instead of a blocked practice design.
Collapse
Affiliation(s)
- S Egger
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland.
| | - M Wälchli
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - E Rüeger
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - W Taube
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Levin O, Netz Y, Ziv G. Behavioral and Neurophysiological Aspects of Inhibition-The Effects of Acute Cardiovascular Exercise. J Clin Med 2021; 10:E282. [PMID: 33466667 PMCID: PMC7828827 DOI: 10.3390/jcm10020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
This review summarizes behavioral and neurophysiological aspects of inhibitory control affected by a single bout of cardiovascular exercise. The review also examines the effect of a single bout of cardiovascular exercise on these processes in young adults with a focus on the functioning of prefrontal pathways (including the left dorsolateral prefrontal cortex (DLPFC) and elements of the prefrontal-basal ganglia pathways). Finally, the review offers an overview on the potential effects of cardiovascular exercise on GABA-ergic and glutamatergic neurotransmission in the adult brain and propose mechanisms or processes that may mediate these effects. The main findings show that a single bout of cardiovascular exercise can enhance inhibitory control. In addition, acute exercise appears to facilitate activation of prefrontal brain regions that regulate excitatory and inhibitory pathways (specifically but not exclusively the prefrontal-basal-ganglia pathways) which appear to be impaired in older age. Based on the reviewed studies, we suggest that future work examine the beneficial effects of exercise on the inhibitory networks in the aging brain.
Collapse
Affiliation(s)
- Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, 3001 Heverlee, Belgium;
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Yael Netz
- The Academic College at Wingate, Netanya 4290200, Israel;
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel;
| |
Collapse
|
17
|
Pelosin E, Cerulli C, Ogliastro C, Lagravinese G, Mori L, Bonassi G, Mirelman A, Hausdorff JM, Abbruzzese G, Marchese R, Avanzino L. A Multimodal Training Modulates Short Afferent Inhibition and Improves Complex Walking in a Cohort of Faller Older Adults With an Increased Prevalence of Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 75:722-728. [PMID: 30874799 DOI: 10.1093/gerona/glz072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Falls are frequent in Parkinson's disease and aging. Impairments in the cholinergic-mediated attentional supervision of gait may contribute to increased fall risk, especially when obstacles challenge gait. Interventions combining motor-cognitive approaches have been shown to improve motor performance, cognitive skills, and falls number. Here, we hypothesized that an intervention simulating an attention-demanding walking condition could affect not only complex gait performance and fall risk but also short-latency afferent inhibition (SAI), as a marker of cholinergic activity. METHODS Thirty-nine participants at falls risk (24 Parkinson's disease participants and 15 older adults) were recruited in a randomized controlled trial. Participants were assigned to treadmill training or treadmill training with non-immersive virtual reality intervention and trained three times a week for 6 weeks. SAI, a transcranial magnetic stimulation paradigm, was used to assess cholinergic activity. Gait kinematics was measured during usual walking and while negotiating physical obstacles. Transcranial magnetic stimulation and gait assessments were performed pre, post, and 6 months post-intervention. RESULTS Treadmill training combined with non-immersive virtual reality induced an increase in inhibition of the SAI protocol on cortical excitability, improved obstacle negotiation performance, and induced a reduction of the number of falls compared with treadmill training. Furthermore, the more SAI increased after training, the more the obstacle negotiation performance improved and fall rate decreased. CONCLUSIONS We provide evidence that an innovative rehabilitation approach targeting cognitive components of complex motor actions can induce changes in cortical cholinergic activity, as indexed by SAI, thereby enabling functional gait improvements.
Collapse
Affiliation(s)
- Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Cecilia Cerulli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy
| | - Carla Ogliastro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Italy
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Israel.,Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel.,Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | | | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCSS, Genova, Italy.,Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Italy
| |
Collapse
|
18
|
Goldthorpe RA, Rapley JM, Violante IR. A Systematic Review of Non-invasive Brain Stimulation Applications to Memory in Healthy Aging. Front Neurol 2020; 11:575075. [PMID: 33193023 PMCID: PMC7604325 DOI: 10.3389/fneur.2020.575075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been acknowledged that memory changes over the course of one's life, irrespective of diseases like dementia. Approaches to mitigate these changes have however yielded mixed results. Brain stimulation has been identified as one novel approach of augmenting older adult's memory. Thus far, such approaches have however been nuanced, targeting different memory domains with different methodologies. This has produced an amalgam of research with an unclear image overall. This systematic review therefore aims to clarify this landscape, evaluating, and interpreting available research findings in a coherent manner. A systematic search of relevant literature was conducted across Medline, PsycInfo, Psycarticles and the Psychology and Behavioral Sciences Collection, which uncovered 44 studies employing non-invasive electrical brain stimulation in healthy older adults. All studies were of generally good quality spanning numerous memory domains. Within these, evidence was found for non-invasive brain stimulation augmenting working, episodic, associative, semantic, and procedural memory, with the first three domains having the greatest evidence base. Key sites for stimulation included the left dorsolateral prefrontal cortex (DLPFC), temporoparietal region, and primary motor cortex, with transcranial direct current stimulation (tDCS) holding the greatest literature base. Inconsistencies within the literature are highlighted and interpreted, however this discussion was constrained by potential confounding variables within the literature, a risk of bias, and challenges defining research aims and results. Non-invasive brain stimulation often did however have a positive and predictable impact on older adult's memory, and thus warrants further research to better understand these effects.
Collapse
Affiliation(s)
| | | | - Ines R. Violante
- School of Psychology, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
19
|
Investigating the influence of paired-associative stimulation on multi-session skill acquisition and retention in older adults. Clin Neurophysiol 2020; 131:1497-1507. [DOI: 10.1016/j.clinph.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/19/2020] [Accepted: 04/13/2020] [Indexed: 12/26/2022]
|
20
|
Beck MM, Grandjean MU, Hartmand S, Spedden ME, Christiansen L, Roig M, Lundbye-Jensen J. Acute Exercise Protects Newly Formed Motor Memories Against rTMS-induced Interference Targeting Primary Motor Cortex. Neuroscience 2020; 436:110-121. [PMID: 32311411 DOI: 10.1016/j.neuroscience.2020.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 01/08/2023]
Abstract
Acute cardiovascular exercise can promote motor memory consolidation following motor practice, and thus long-term retention, but the underlying mechanisms remain sparsely elucidated. Here we test the hypothesis that the positive behavioral effects of acute exercise involve the primary motor cortex and the corticospinal pathway by interfering with motor memory consolidation using non-invasive, low frequency, repetitive transcranial magnetic stimulation (rTMS). Forty-eight able-bodied, young adult male participants (mean age = 24.8 y/o) practiced a visuomotor accuracy task demanding precise and fast pinch force control. Following motor practice, participants either rested or exercised (20 min total: 3 × 3 min at 90% VO2peak) before receiving either sham rTMS or supra-threshold rTMS (115% RMT, 1 Hz) targeting the hand area of the contralateral primary motor cortex for 20 min. Retention was evaluated 24 h following motor practice, and motor memory consolidation was operationalized as overnight changes in motor performance. Low-frequency rTMS resulted in off-line decrements in motor performance compared to sham rTMS, but these were counteracted by a preceding bout of intense exercise. These findings demonstrate that a single session of exercise promotes early motor memory stabilization and protects the primary motor cortex and the corticospinal system against interference.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark.
| | - Marcus Udsen Grandjean
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - Sander Hartmand
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse Christiansen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfield Research Centre, Jewish Rehabilitation Hospital, Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Canada; School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Sensorimotor performance is improved by targeted memory reactivation during a daytime nap in healthy older adults. Neurosci Lett 2020; 731:134973. [PMID: 32305379 DOI: 10.1016/j.neulet.2020.134973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022]
Abstract
Sensorimotor consolidation occurs during sleep. However, the benefit of sleep-based consolidation decreases with age due to decreased sleep quality and quantity. This study aimed to enhance sensorimotor performance through repetitive delivery of task-based auditory cues during sleep, known as targeted memory reactivation (TMR). Healthy older adults performed a non-dominant arm throwing task before and after a 1 h nap. While napping, half of participants received TMR throughout the hour. Participants who received TMR during sleep demonstrated a greater overall change in throwing accuracy from the start of the first to the end of the second throwing task session. However, there was no generalization of throwing accuracy to variants of the task or to a novel dart throwing task. Findings support the use of TMR during sleep to enhance task-specific sensorimotor performance in healthy older adults despite age-related decreases in sleep quality and quantity. Future research is needed to evaluate the effects of TMR on rehabilitation protocols.
Collapse
|
22
|
Fresnoza S, Christova M, Bieler L, Körner C, Zimmer U, Gallasch E, Ischebeck A. Age-Dependent Effect of Transcranial Alternating Current Stimulation on Motor Skill Consolidation. Front Aging Neurosci 2020; 12:25. [PMID: 32116653 PMCID: PMC7016219 DOI: 10.3389/fnagi.2020.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/22/2020] [Indexed: 12/30/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is the application of subthreshold, sinusoidal current to modulate ongoing brain rhythms related to sensory, motor and cognitive processes. Electrophysiological studies suggested that the effect of tACS applied at an alpha frequency (8–12 Hz) was state-dependent. The effects of tACS, that is, an increase in parieto-occipital electroencephalography (EEG) alpha power and magnetoencephalography (MEG) phase coherence, was only observed when the eyes were open (low alpha power) and not when the eyes were closed (high alpha power). This state-dependency of the effects of alpha tACS might extend to the aging brain characterized by general slowing and decrease in spectral power of the alpha rhythm. We additionally hypothesized that tACS will influence the motor cortex, which is involved in motor skill learning and consolidation. A group of young and old healthy adults performed a serial reaction time task (SRTT) with their right hand before and after the tACS stimulation. Each participant underwent three sessions of stimulation: sham, stimulation applied at the individual participant’s alpha peak frequency or individual alpha peak frequency (iAPF; α-tACS) and stimulation with iAPF plus 2 Hz (α2-tACS) to the left motor cortex for 10 min (1.5 mA). We measured the effect of stimulation on general motor skill (GMS) and sequence-specific skill (SS) consolidation. We found that α-tACS and α2-tACS improved GMS and SS consolidation in the old group. In contrast, α-tACS minimally improved GMS consolidation but impaired SS consolidation in the young group. On the other hand, α2-tACS was detrimental to the consolidation of both skills in the young group. Our results suggest that individuals with aberrant alpha rhythm such as the elderly could benefit more from tACS stimulation, whereas for young healthy individuals with intact alpha rhythm the stimulation could be detrimental.
Collapse
Affiliation(s)
- Shane Fresnoza
- Institute of Psychology University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Monica Christova
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria.,Institute of Physiotherapy, University of Applied Sciences FH-JOANNEUM, Graz, Austria
| | - Lara Bieler
- Institute of Psychology University of Graz, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Christof Körner
- Institute of Psychology University of Graz, Graz, Austria.,BioTechMed, Graz, Austria
| | - Ulrike Zimmer
- Institute of Psychology University of Graz, Graz, Austria.,Faculty of Human Sciences, Medical School Hamburg (MSH), Hamburg, Germany
| | - Eugen Gallasch
- BioTechMed, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Anja Ischebeck
- Institute of Psychology University of Graz, Graz, Austria.,Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Explaining Individual Differences in Fine Motor Performance and Learning in Older Adults: The Contribution of Muscle Strength and Cardiovascular Fitness. J Aging Phys Act 2019; 27:725-738. [PMID: 30747569 DOI: 10.1123/japa.2018-0289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It remains controversial whether aging influences motor learning and whether physiological factors, such as local strength or fitness, are associated with fine motor performance and learning in older adults (OA). OA (n = 51) and young adults (YA, n = 31) performed a short-term motor learning session using a precision grip force modulation task. The rate of improvement of OA compared with YA was steeper with respect to performance variability and temporal precision. Both age groups showed positive transfer during an unpracticed variant of the force modulation task. Local muscle strength (pinch and grip strength) and high cardiovascular fitness positively predicted fine motor performance, whereas initial performance, muscle strength, and motor fitness (heterogeneous motor test battery) negatively predicted rate of improvement. Analyses indicated potentials, but also limits of plasticity for OA.
Collapse
|
24
|
Posttraining Alpha Transcranial Alternating Current Stimulation Impairs Motor Consolidation in Elderly People. Neural Plast 2019; 2019:2689790. [PMID: 31428143 PMCID: PMC6681583 DOI: 10.1155/2019/2689790] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/27/2019] [Accepted: 06/13/2019] [Indexed: 11/23/2022] Open
Abstract
The retention of a new sequential motor skill relies on repeated practice and subsequent consolidation in the absence of active skill practice. While the early phase of skill acquisition remains relatively unaffected in older adults, posttraining consolidation appears to be selectively impaired by advancing age. Motor learning is associated with posttraining changes of oscillatory alpha and beta neuronal activities in the motor cortex. However, whether or not these oscillatory dynamics relate to posttraining consolidation and how they relate to the age-specific impairment of motor consolidation in older adults remains elusive. Transcranial alternating current stimulation (tACS) is a noninvasive brain stimulation technique capable of modulating such neuronal oscillations. Here, we examined whether tACS targeting M1 immediately following explicit motor sequence training is capable of modulating motor skill consolidation in older adults. In two sets of double-blind, sham-controlled experiments, tACS targeting left M1 was applied at either 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) immediately after termination of a motor sequence training with the right (dominant) hand. Task performance was retested after an interval of 6 hours to assess consolidation of the training-acquired skill. EEG was recorded over left M1 to be able to detect local after-effects on oscillatory activity induced by tACS. Relative to the sham intervention, consolidation was selectively disrupted by posttraining alpha-tACS of M1, while posttraining beta-tACS of M1 had no effect on delayed retest performance compared to the sham intervention. No significant postinterventional changes of oscillatory activity in M1 were detected following alpha-tACS or beta-tACS. Our findings point to a frequency-specific interaction of tACS with posttraining motor memory processing and may suggest an inhibitory role of immediate posttraining alpha oscillations in M1 with respect to motor consolidation in healthy older adults.
Collapse
|
25
|
Mooney RA, Cirillo J, Byblow WD. Neurophysiological mechanisms underlying motor skill learning in young and older adults. Exp Brain Res 2019; 237:2331-2344. [DOI: 10.1007/s00221-019-05599-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/04/2019] [Indexed: 01/03/2023]
|
26
|
Espenhahn S, van Wijk BCM, Rossiter HE, de Berker AO, Redman ND, Rondina J, Diedrichsen J, Ward NS. Cortical beta oscillations are associated with motor performance following visuomotor learning. Neuroimage 2019; 195:340-353. [PMID: 30954709 PMCID: PMC6547051 DOI: 10.1016/j.neuroimage.2019.03.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/26/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023] Open
Abstract
People vary in their capacity to learn and retain new motor skills. Although the relationship between neuronal oscillations in the beta frequency range (15-30 Hz) and motor behaviour is well established, the electrophysiological mechanisms underlying individual differences in motor learning are incompletely understood. Here, we investigated the degree to which measures of resting and movement-related beta power from sensorimotor cortex account for inter-individual differences in motor learning behaviour in the young and elderly. Twenty young (18-30 years) and twenty elderly (62-77 years) healthy adults were trained on a novel wrist flexion/extension tracking task and subsequently retested at two different time points (45-60 min and 24 h after initial training). Scalp EEG was recorded during a separate simple motor task before each training and retest session. Although short-term motor learning was comparable between young and elderly individuals, there was considerable variability within groups with subsequent analysis aiming to find the predictors of this variability. As expected, performance during the training phase was the best predictor of performance at later time points. However, regression analysis revealed that movement-related beta activity significantly explained additional variance in individual performance levels 45-60 min, but not 24 h after initial training. In the context of disease, these findings suggest that measurements of beta-band activity may offer novel targets for therapeutic interventions designed to promote rehabilitative outcomes.
Collapse
Affiliation(s)
- Svenja Espenhahn
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK; Department of Radiology, Cumming School of Medicine, University of Calgary, 2500, University Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, Postbus 15926, 1001, NK, Amsterdam, the Netherlands; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, WC1N 3BG, London, UK
| | - Holly E Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, CF24 4HQ, Cardiff, UK
| | - Archy O de Berker
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, WC1N 3BG, London, UK
| | - Nell D Redman
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK
| | - Jane Rondina
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK
| | - Joern Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
27
|
Vien C, Boré A, Boutin A, Pinsard B, Carrier J, Doyon J, Fogel S. Thalamo-Cortical White Matter Underlies Motor Memory Consolidation via Modulation of Sleep Spindles in Young and Older Adults. Neuroscience 2019; 402:104-115. [PMID: 30615913 DOI: 10.1016/j.neuroscience.2018.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
Abstract
Ample evidence suggests that consolidation of the memory trace associated with a newly acquired motor sequence is supported by thalamo-cortical spindle activity during subsequent sleep, as well as functional changes in a distributed cortico-striatal network. To date, however, no studies have investigated whether the structural white matter connections between these regions affect motor sequence memory consolidation in relation with sleep spindles. Here, we used diffusion weighted imaging (DWI) tractography to reconstruct the major fascicles of the cortico-striato-pallido-thalamo-cortical loop in both young and older participants who were trained on an explicit finger sequence learning task before and after a daytime nap. Thereby, this allowed us to examine whether post-learning sleep spindles measured using polysomnographic recordings interact with consolidation processes and this specific neural network. Our findings provide evidence corroborating the critical role of NREM2 thalamo-cortical sleep spindles in motor sequence memory consolidation, and show that the post-learning changes in these neurophysiological events relate specifically to white matter characteristics in thalamo-cortical fascicles. Moreover, we demonstrate that microstructure along this fascicle relates indirectly to offline gains in performance through an increase of spindle density over motor-related cortical areas. These results suggest that the integrity of thalamo-cortical projections, via their impact on sleep spindle generation, may represent one of the critical mechanisms modulating the expression of sleep-dependent offline gains following motor sequence learning in healthy adults.
Collapse
Affiliation(s)
- Catherine Vien
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada
| | - Arnaud Boré
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Arnaud Boutin
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, 75006 Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montreal, Montreal, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
28
|
Hübner L, Godde B, Voelcker-Rehage C. Acute Exercise as an Intervention to Trigger Motor Performance and EEG Beta Activity in Older Adults. Neural Plast 2018; 2018:4756785. [PMID: 30675151 PMCID: PMC6323490 DOI: 10.1155/2018/4756785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022] Open
Abstract
Acute bouts of exercise have been shown to improve fine motor control performance and to facilitate motor memory consolidation processes in young adults. Exercise effects might be reflected in EEG task-related power (TRPow) decreases in the beta band (13-30 Hz) as an indicator of active motor processing. This study aimed to investigate those effects in healthy older adults. Thirty-eight participants (65-74 years of age) were assigned to an experimental (EG, acute exercise) or a control group (CG, rest). Fine motor control was assessed using a precision grip force modulation (FM) task. FM performance and EEG were measured at (1) baseline (immediately before acute exercise/rest), (2) during practice sessions immediately after, (3) 30 minutes, and (4) 24 hours (FM only) after exercise/rest. A marginal significant effect indicated that EG revealed more improvement in fine motor performance immediately after exercise than CG after resting. EG showed enhanced consolidation of short-term and long-term motor memory, whereas CG revealed only a tendency for short-term motor memory consolidation. Stronger TRPow decreases were revealed immediately after exercise in the contralateral frontal brain area as compared to the control condition. This finding indicates that acute exercise might enhance cortical activation and thus, improves fine motor control by enabling healthy older adults to better utilize existing frontal brain capacities during fine motor control tasks after exercise. Furthermore, acute exercise can act as a possible intervention to enhance motor memory consolidation in older adults.
Collapse
Affiliation(s)
- Lena Hübner
- Professorship of Sports Psychology, Institute of Human Movement Science and Health, Chemnitz University of Technology, Thüringer Weg 11, 09126 Chemnitz, Germany
| | - Ben Godde
- Psychology & Methods, Focus Area Diversity, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Claudia Voelcker-Rehage
- Professorship of Sports Psychology, Institute of Human Movement Science and Health, Chemnitz University of Technology, Thüringer Weg 11, 09126 Chemnitz, Germany
| |
Collapse
|
29
|
Walter CS, Hengge CR, Lindauer BE, Schaefer SY. Declines in motor transfer following upper extremity task-specific training in older adults. Exp Gerontol 2018; 116:14-19. [PMID: 30562555 DOI: 10.1016/j.exger.2018.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Age-related declines in function can limit older adults' independence with activities of daily living (ADLs). While task-specific training maybe a viable approach to improve function, limited clinical resources prevent extensive training on wide ranges of skills and contexts. Thus, training on one task for the benefit of another (i.e., transfer) is important in geriatric physical rehabilitation. The purpose of this study was to test whether motor transfer would occur between two functionally different upper extremity tasks that simulate ADLs in a sample of older adults following task-specific training. METHODS Ninety community dwelling adults ages 43 to 94 years old performed two trials of a functional dexterity and functional reaching task at baseline, and were then assigned to one of two groups. The training group completed 3 days of task-specific training (150 trials) on the functional reaching task, whereas the no-training group received no training on either task. Both groups were re-tested on both tasks at the end of Day 3. RESULTS No significant interactions were observed between group (training vs. no-training) and time (baseline vs. re-test) on the functional dexterity task (i.e. transfer task), indicating no difference in the average amount of change from baseline to re-test between the groups. However, post hoc bivariate linear regression revealed an effect of age on motor transfer within the training group. For those who trained on the functional reaching task, the amount of transfer to the dexterity task was inversely related to age. There was no significant relationship between age and motor transfer for the no-training group. DISCUSSION AND CONCLUSIONS Results of our a priori group analysis suggest that functional reaching training did not, on average, transfer to the dexterity task. However, post hoc regression analysis showed that motor transfer was both experience- and age-dependent, such that motor transfer may decline with advanced age. Future research will consider how functional and cognitive aging influences transfer of motor skills across different activities of daily living.
Collapse
Affiliation(s)
- Christopher S Walter
- Department of Physical Therapy, 1125 N. College Avenue, University of Arkansas for Medical Sciences, Fayetteville, AR 72703, USA
| | - Caitlin R Hengge
- University of Utah, 50 N. Medical Dr., Salt Lake City, UT 84112, USA
| | - Bergen E Lindauer
- University of Utah, 50 N. Medical Dr., Salt Lake City, UT 84112, USA
| | - Sydney Y Schaefer
- University of Utah, 50 N. Medical Dr., Salt Lake City, UT 84112, USA; School of Biological and Health Systems Engineering, 501 E. Tyler Mall, ECG 334A, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
30
|
Rulleau T, Robin N, Abou-Dest A, Chesnet D, Toussaint L. Does the Improvement of Position Sense Following Motor Imagery Practice Vary as a Function of Age and Time of Day? Exp Aging Res 2018; 44:443-454. [PMID: 30300100 DOI: 10.1080/0361073x.2018.1521496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The effectiveness of motor imagery practice is known to depend on age and on the ability to form motor images. In the same individual, motor imagery quality changes during the day, being better late in the morning for older adults and in the afternoon for younger adults. Does this mean that motor imagery practice should be done at specific time of the day depending on the age of participants to maximize motor learning? To examine whether the effect of motor imagery practice varies as a function of time of day and age, the authors used an arm configuration reproduction task and measured position sense accuracy before and after 135 kinesthetic motor imagery trials. Younger and older participants were randomly assigned to either a morning or an afternoon session. Data showed that the accuracy for reproducing arm configurations improved following imagery practice regardless of time of day for both younger and older adults. Moreover, the authors observed that the position sense was less accurate in the afternoon than in the morning in older participants (before and after motor imagery practice), while performance did not change during the day in younger participants. These results may have practical implications in motor learning and functional rehabilitation programs. They highlight the effectiveness of motor imagery practice for movement accuracy in both younger and older adults regardless of time of day. By contrast, they reveal that the assessment of position sense requires that the time of day be taken into account when practitioners want to report on the older patients' progress without making any mistakes.
Collapse
Affiliation(s)
- Thomas Rulleau
- a Université de Poitiers, Université François-Rabelais de Tours, Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA, UMR 7295) , Poitiers , France.,b Unité de Recherche Clinique , Centre Hospitalier Départemental de La Roche sur Yon , La Roche sur Yon , France
| | - Nicolas Robin
- c Faculté des Sciences du Sport de Pointe-à-Pitre , Université des Antilles; Laboratoire "Adaptation au Climat Tropical, Exercice & Santé" (EA 3596) , Point-à-Pitre , France
| | - Amira Abou-Dest
- a Université de Poitiers, Université François-Rabelais de Tours, Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA, UMR 7295) , Poitiers , France
| | - David Chesnet
- d Maison des Sciences de l'Homme et de la Société (MSHS, USR 3565) , Poitiers , France
| | - Lucette Toussaint
- a Université de Poitiers, Université François-Rabelais de Tours, Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA, UMR 7295) , Poitiers , France
| |
Collapse
|
31
|
Centeno C, Medeiros D, Beck MM, Lugassy L, Gonzalez DF, Nepveu JF, Roig M. The effects of aging on cortico-spinal excitability and motor memory consolidation. Neurobiol Aging 2018; 70:254-264. [PMID: 30053741 DOI: 10.1016/j.neurobiolaging.2018.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/23/2018] [Accepted: 06/24/2018] [Indexed: 01/23/2023]
Abstract
We investigated whether cortico-spinal excitability (CSE), a marker of synaptic plasticity, is associated with age-related differences in the consolidation of motor memory. Young and older participants practiced a visuomotor tracking task. Skill retention was assessed 8 and 24 hours after motor practice. Transcranial magnetic stimulation applied over the primary motor cortex at rest and during an isometric muscle contraction was used to assess absolute and normalized to baseline CSE at different points after practice. When skill performance was normalized to baseline level, both groups showed similar gains in acquisition, but the young group showed better retention 24 hours after practice. The young group also showed greater absolute CSE assessed during the isometric muscle contraction. Although young participants with greater absolute CSE showed better skill retention, it was the capacity to increase CSE after motor practice, and not absolute CSE, what was associated with skill retention in older participants. Older adults who have the capacity to increase CSE during motor memory consolidation show a better capacity to retain motor skills.
Collapse
Affiliation(s)
- Carla Centeno
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - Diogo Medeiros
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - Mikkel Malling Beck
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - Liav Lugassy
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - David Fernandez Gonzalez
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - Jean Francois Nepveu
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Quebec, Canada.
| |
Collapse
|
32
|
Acute cardiovascular exercise promotes functional changes in cortico-motor networks during the early stages of motor memory consolidation. Neuroimage 2018; 174:380-392. [DOI: 10.1016/j.neuroimage.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
|
33
|
The protective effects of acute cardiovascular exercise on the interference of procedural memory. PSYCHOLOGICAL RESEARCH 2018; 83:1543-1555. [PMID: 29637259 DOI: 10.1007/s00426-018-1005-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/01/2018] [Indexed: 10/17/2022]
Abstract
Numerous studies have reported a positive impact of acute exercise for procedural skill memory. Previous work has revealed this effect, but these findings are confounded by a potential contribution of a night of sleep to the reported exercise-mediated reduction in interference. Thus, it remains unclear if exposure to a brief bout of exercise can provide protection to a newly acquired motor memory. The primary objective of the present study was to examine if a single bout of moderate-intensity cardiovascular exercise after practice of a novel motor sequence reduces the susceptibility to retroactive interference. To address this shortcoming, 17 individuals in a control condition practiced a novel motor sequence that was followed by test after a 6-h wake-filled interval. A separate group of 17 individuals experienced practice with an interfering motor sequence 45 min after practice with the original sequence and were then administered test trials 6 h later. One additional group of 12 participants was exposed to an acute bout of exercise immediately after practice with the original motor sequence but prior to practice with the interfering motor sequence and the subsequent test. In comparison with the control condition, increased response times were revealed during the 6-h test for the individuals that were exposed to interference. The introduction of an acute bout of exercise between the practice of the two motor sequences produced a reduction in interference from practice with the second task at the time of test, however, this effect was not statistically significant. These data reinforce the hypothesis that while there may be a contribution from exercise to post-practice consolidation of procedural skills which is independent of sleep, sleep may interact with exercise to strengthen the effects of the latter on procedural memory.
Collapse
|
34
|
King BR, Saucier P, Albouy G, Fogel SM, Rumpf JJ, Klann J, Buccino G, Binkofski F, Classen J, Karni A, Doyon J. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults. Cereb Cortex 2018; 27:1588-1601. [PMID: 26802074 DOI: 10.1093/cercor/bhv347] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.
Collapse
Affiliation(s)
- Bradley R King
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada.,Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Philippe Saucier
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Genevieve Albouy
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Stuart M Fogel
- Brain and Mind Institute and Department of Psychology, Western University, London, Canada
| | | | - Juliane Klann
- Division of Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Giovanni Buccino
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy and IRCCS Neuromed, Pozzilli, Italy
| | - Ferdinand Binkofski
- Division of Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Avi Karni
- Sagol Department of Neurobiology, Department of Human Biology and The E.J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Julien Doyon
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
35
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
36
|
Abstract
Motor skill acquisition occurs while practicing (on-line) and when asleep or awake (off-line). However, developmental questions still remain about whether children of various ages benefit similarly or differentially from night- and day-time sleeping. The likely circadian effects (time-of-day) and the possible between-test-interference (order effects) associated with children's off-line motor learning are currently unknown. Therefore, this study examines the contributions of over-night sleeping and mid-day napping to procedural skill learning. One hundred and eight children were instructed to practice a finger sequence task using computer keyboards. After an equivalent 11-h interval in one of the three states (sleep, nap, wakefulness), children performed the same sequence in retention tests and a novel sequence in transfer tests. Changes in the movement time and sequence accuracy were evaluated between ages (6-7, 8-9, 10-11years) during practice, and from skill training to retrievals across three states. Results suggest that night-time sleeping and day-time napping improved the tapping speed, especially for the 6-year-olds. The circadian factor did not affect off-line motor learning in children. The interference between the two counter-balanced retrieval tests was not found for the off-line motor learning. This research offers possible evidence about the age-related motor learning characteristics in children and a potential means for enhancing developmental motor skills. The dynamics between age, experience, memory formation, and the theoretical implications of motor skill acquisition are discussed.
Collapse
Affiliation(s)
- Jin H Yan
- Laboratory of Neuromotor Control and Learning, Shenzhen University, 3688 Nan Hai Ave, Shenzhen, Gangdong 518060, PR China.
| |
Collapse
|
37
|
Enhancement of motor consolidation by post-training transcranial direct current stimulation in older people. Neurobiol Aging 2017; 49:1-8. [DOI: 10.1016/j.neurobiolaging.2016.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/26/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022]
|
38
|
Berghuis KM, De Rond V, Zijdewind I, Koch G, Veldman MP, Hortobágyi T. Neuronal mechanisms of motor learning are age dependent. Neurobiol Aging 2016; 46:149-59. [DOI: 10.1016/j.neurobiolaging.2016.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/08/2023]
|
39
|
Bottary R, Sonni A, Wright D, Spencer RMC. Insufficient chunk concatenation may underlie changes in sleep-dependent consolidation of motor sequence learning in older adults. ACTA ACUST UNITED AC 2016; 23:455-9. [PMID: 27531835 PMCID: PMC4986853 DOI: 10.1101/lm.043042.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
Abstract
Sleep enhances motor sequence learning (MSL) in young adults by concatenating subsequences (“chunks”) formed during skill acquisition. To examine whether this process is reduced in aging, we assessed performance changes on the MSL task following overnight sleep or daytime wake in healthy young and older adults. Young adult performance enhancement was correlated with nREM2 sleep, and facilitated by preferential improvement of slowest within-sequence transitions. This effect was markedly reduced in older adults, and accompanied by diminished sigma power density (12–15 Hz) during nREM2 sleep, suggesting that diminished chunk concatenation following sleep may underlie reduced consolidation of MSL in older adults.
Collapse
Affiliation(s)
- Ryan Bottary
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Akshata Sonni
- Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - David Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843, USA
| | - Rebecca M C Spencer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
40
|
Sidaway B, Ala B, Baughman K, Glidden J, Cowie S, Peabody A, Roundy D, Spaulding J, Stephens R, Wright DL. Contextual Interference Can Facilitate Motor Learning in Older Adults and in Individuals With Parkinson's Disease. J Mot Behav 2016; 48:509-518. [DOI: 10.1080/00222895.2016.1152221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Müller NCJ, Genzel L, Konrad BN, Pawlowski M, Neville D, Fernández G, Steiger A, Dresler M. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline. PLoS One 2016; 11:e0157770. [PMID: 27333186 PMCID: PMC4917083 DOI: 10.1371/journal.pone.0157770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022] Open
Abstract
The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience-in our case piano skills-increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline.
Collapse
Affiliation(s)
- Nils C. J. Müller
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail: (NCJM); (MD)
| | - Lisa Genzel
- Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, United Kingdom
| | - Boris N. Konrad
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - David Neville
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Axel Steiger
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Max Planck Institute of Psychiatry, Munich, Germany
- * E-mail: (NCJM); (MD)
| |
Collapse
|
42
|
Snow NJ, Mang CS, Roig M, McDonnell MN, Campbell KL, Boyd LA. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task. PLoS One 2016; 11:e0150039. [PMID: 26901664 PMCID: PMC4764690 DOI: 10.1371/journal.pone.0150039] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. MATERIALS AND METHODS Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. RESULTS There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). DISCUSSION An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Cameron S. Mang
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, McGill University, Montréal, Canada
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montréal Centre for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
| | - Michelle N. McDonnell
- International Centre for Allied Health Evidence and Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Kristin L. Campbell
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Lara A. Boyd
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
43
|
Schaefer SY, Duff K. Rapid Responsiveness to Practice Predicts Longer-Term Retention of Upper Extremity Motor Skill in Non-Demented Older Adults. Front Aging Neurosci 2015; 7:214. [PMID: 26635601 PMCID: PMC4649025 DOI: 10.3389/fnagi.2015.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/02/2015] [Indexed: 11/13/2022] Open
Abstract
Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its long-term retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this “rapid responsiveness” was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status.
Collapse
Affiliation(s)
- Sydney Y Schaefer
- Motor Rehabilitation and Learning Laboratory, Utah State University Logan, UT, USA ; Department of Physical Therapy, University of Utah Salt Lake City, UT, USA ; Center on Aging, University of Utah Salt Lake City, UT, USA
| | - Kevin Duff
- Center on Aging, University of Utah Salt Lake City, UT, USA ; Department of Neurology, University of Utah Salt Lake City, UT, USA ; Center for Alzheimer's Care, Imaging and Research, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
44
|
Hoff M, Trapp S, Kaminski E, Sehm B, Steele CJ, Villringer A, Ragert P. Switching between hands in a serial reaction time task: a comparison between young and old adults. Front Aging Neurosci 2015; 7:176. [PMID: 26441638 PMCID: PMC4569733 DOI: 10.3389/fnagi.2015.00176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/31/2015] [Indexed: 12/23/2022] Open
Abstract
Healthy aging is associated with a variety of functional and structural brain alterations. These age-related brain alterations have been assumed to negatively impact cognitive and motor performance. Especially important for the execution of everyday activities in older adults (OA) is the ability to perform movements that depend on both hands working together. However, bimanual coordination is typically deteriorated with increasing age. Hence, a deeper understanding of such age-related brain-behavior alterations might offer the opportunity to design future interventional studies in order to delay or even prevent the decline in cognitive and/or motor performance over the lifespan. Here, we examined to what extent the capability to acquire and maintain a novel bimanual motor skill is still preserved in healthy OA as compared to their younger peers (YA). For this purpose, we investigated performance of OA (n = 26) and YA (n = 26) in a bimanual serial reaction time task (B-SRTT), on two experimental sessions, separated by 1 week. We found that even though OA were generally slower in global response times, they showed preserved learning capabilities in the B-SRTT. However, sequence specific learning was more pronounced in YA as compared to OA. Furthermore, we found that switching between hands during B-SRTT learning trials resulted in increased response times (hand switch costs), a phenomenon that was more pronounced in OA. These hand switch costs were reduced in both groups over the time course of learning. More interestingly, there were no group differences in hand switch costs on the second training session. These results provide novel evidence that bimanual motor skill learning is capable of reducing age-related deficits in hand switch costs, a finding that might have important implications to prevent the age-related decline in sensorimotor function.
Collapse
Affiliation(s)
- Maike Hoff
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Sabrina Trapp
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Mind and Brain Institute, Charité and Humboldt University Berlin, Germany
| | - Patrick Ragert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany ; Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig Leipzig, Germany
| |
Collapse
|
45
|
Berghuis KMM, Veldman MP, Solnik S, Koch G, Zijdewind I, Hortobágyi T. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9779. [PMID: 25956604 PMCID: PMC4425712 DOI: 10.1007/s11357-015-9779-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/14/2015] [Indexed: 05/19/2023]
Abstract
It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p < 0.001) with the skill retained 24 h later in MP and a 16 % improvement in AC. Corticospinal excitability at rest and during task did not change, but when measured during contraction at 20 % of maximal force, it strongly increased in MP and decreased in AC (interaction, p = 0.002). Intracortical inhibition at rest and during the task decreased and facilitation at rest increased in MP, but these metrics changed in the opposite direction in AC. These neuronal changes were especially profound at retention. Healthy old adults can learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.
Collapse
Affiliation(s)
- K. M. M. Berghuis
- />Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, Groningen, 9700 AD The Netherlands
| | - M. P. Veldman
- />Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, Groningen, 9700 AD The Netherlands
| | - S. Solnik
- />Motor Control Laboratory, Department of Kinesiology, Pennsylvania State University, State College, PA USA
- />University School of Physical Education, Wroclaw, Poland
| | - G. Koch
- />Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - I. Zijdewind
- />Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T. Hortobágyi
- />Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, Groningen, 9700 AD The Netherlands
- />Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|
46
|
Scullin MK, Bliwise DL. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 10:97-137. [PMID: 25620997 PMCID: PMC4302758 DOI: 10.1177/1745691614556680] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sleep is implicated in cognitive functioning in young adults. With increasing age, there are substantial changes to sleep quantity and quality, including changes to slow-wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half century of research across seven diverse correlational and experimental domains that historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects in healthy older adults (including correlations in the unexpected, negative direction) indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines.
Collapse
Affiliation(s)
- Michael K Scullin
- Department of Psychology and Neuroscience, Baylor University Department of Neurology, Emory University School of Medicine
| | | |
Collapse
|