1
|
Machaalani R, Rodriguez M, Vivekanandarajah A. Focal granule cell bilamination of the dentate gyrus-its prevalence across the human age spectrum and review of the literature. J Neuropathol Exp Neurol 2025; 84:22-33. [PMID: 39468770 DOI: 10.1093/jnen/nlae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
The prevalence of focal granule cell bilamination (FGCB) in the hippocampal dentate gyrus varies from 0% to 44%, depending on age and study population. FGCB is commonly thought to be a specific feature of temporal lobe epilepsy (TLE) but its prevalence in cases without TLE is unclear. Using formalin-fixed, paraffin-embedded hippocampal sections, this retrospective postmortem study evaluated the prevalence of FGCB and other granule cell pathologies in infants (1-12 months of age, n = 16), children (4-10 years, n = 6), and adults (28-91 years, n = 15) with no known history of epilepsy or seizures. We found FGCB in 6% of infants, 17% of children, and 27% of adults. We then compared our findings with those in published reports of sudden unexpected deaths in infancy (SUDI), childhood (SUDC), and epilepsy (SUDEP), and in surgical specimens from patients with TLE. The reported prevalence of FGCB in those studies was 6%-19% in infants, 0%-17% in children, and 0%-2% in adults in non-seizure-related cases and 9% in children and 3%-25% in adults with TLE. Our findings highlight the presence of FGCB in individuals with no known epilepsy/seizure-related histories in proportions similar to those reported in individuals with clinical epilepsy.
Collapse
Affiliation(s)
- Rita Machaalani
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Michael Rodriguez
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW, Australia
| | - Arunnjah Vivekanandarajah
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Öz P, Kamalı O, Saka HB, Gör C, Uzbay İT. Baseline prepulse inhibition dependency of orexin A and REM sleep deprivation. Psychopharmacology (Berl) 2024; 241:1213-1225. [PMID: 38427059 PMCID: PMC11106105 DOI: 10.1007/s00213-024-06555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
RATIONALE Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.
Collapse
Affiliation(s)
- Pınar Öz
- Department of Molecular Biology and Genetics, Üsküdar University, Istanbul, Turkey.
- Faculty of Engineering and Natural Sciences, Üsküdar University Central Campus Block A, Altunizade Mah. Haluk Türksoy Sk. No : 14 34362, Üsküdar, Istanbul, Turkey.
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey.
| | - Osman Kamalı
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | - Hacer Begüm Saka
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
- Department of Neuroscience, Koç University, Istanbul, Turkey
| | - Ceren Gör
- Department of Neuroscience, Üsküdar University, Istanbul, Turkey
| | | |
Collapse
|
3
|
Satpati A, Pereira FL, Soloviev AV, Mladinov M, Larsen E, Hua SL, Tu CL, Leite REP, Suemoto CK, Rodriguez RD, Paes VR, Walsh C, Spina S, Seeley WW, Pasqualucci CA, Filho WJ, Chang W, Neylan TC, Grinberg LT. The wake- and sleep-modulating neurons of the lateral hypothalamic area demonstrate a differential pattern of degeneration in Alzheimers disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583765. [PMID: 38559184 PMCID: PMC10979907 DOI: 10.1101/2024.03.06.583765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Sleep-wake dysfunction is an early and common event in Alzheimer's disease (AD). The lateral hypothalamic area (LHA) regulates the sleep and wake cycle through wake-promoting orexinergic neurons (OrxN) and sleep-promoting melanin-concentrating hormone or MCHergic neurons (MCHN). These neurons share close anatomical proximity with functional reciprocity. This study investigated LHA OrxN and MCHN loss patterns in AD individuals. Understanding the degeneration pattern of these neurons will be instrumental in designing potential therapeutics to slow down the disease progression and remediate the sleep-wake dysfunction in AD. METHODS Postmortem human brain tissue from donors with AD (across progressive stages) and controls were examined using unbiased stereology. Formalin-fixed, celloidin-embedded hypothalamic sections were stained with Orx-A/MCH, p-tau (CP13), and counterstained with gallocyanin. Orx or MCH-positive neurons with or without CP13 inclusions and gallocyanin-stained neurons were considered for stereology counting. Additionally, we extracted RNA from the LHA using conventional techniques. We used customized Neuropathology and Glia nCounter (Nanostring) panels to study gene expression. Wald statistical test was used to compare the groups, and the genes were considered differentially expressed when the p-value was <.05. RESULTS We observed a progressive decline in OrxN alongside a relative preservation of MCHN. OrxN decreased by 58% (p=0.03) by Braak stages (BB) 1-2 and further declined to 81% (p=0.03) by BB 5-6. Conversely, MCHN demonstrated a non-statistical significant decline (27%, p=0.1088) by BB 6. We observed a progressive increase in differentially expressed genes (DEGs), starting with glial profile changes in BB2. While OrxN loss was observed, Orx-related genes showed upregulation in BB 3-4 compared to BB 0-1. GO and KEGG terms related to neuroinflammatory pathways were mainly enriched. CONCLUSIONS To date, OrxN loss in the LHA represents the first neuronal population to die preceding the loss of LC neurons. Conversely, MCHN shows resilience to AD p-tau accumulation across Braak stages. The initial loss of OrxN correlates with specific neuroinflammation, glial profile changes, and an overexpression of HCRT, possibly due to hyperexcitation following compensation mechanisms. Interventions preventing OrxN loss and inhibiting p-tau accumulation in the LHA could prevent neuronal loss in AD and, perhaps, the progression of the disease.
Collapse
|
4
|
Chen PY, Chiu CC, Chang CK, Lu ML, Huang CY, Chen CH, Huang MC. Higher orexin-A levels are associated with treatment response to clozapine in patients with schizophrenia: A cross-sectional study. J Psychopharmacol 2024; 38:258-267. [PMID: 38279671 DOI: 10.1177/02698811231225610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Clozapine is the primary antipsychotic (APD) for treatment-resistant schizophrenia (TRS). However, only 40% of patients with TRS respond to clozapine, constituting a subgroup of clozapine-resistant patients. Recently, the neuropeptide orexin-A was shown to be involved in the pathophysiology of schizophrenia. This study evaluated the association of orexin-A levels with the clozapine response in patients with TRS. METHODS We recruited 199 patients with schizophrenia, including 37 APD-free and 162 clozapine-treated patients. Clozapine-treated patients were divided into clozapine-responsive (n = 100) and clozapine-resistant (n = 62) groups based on whether they had achieved psychotic remission defined by the 18-item Brief Psychiatric Rating Scale (BPRS-18). We compared blood orexin-A levels among the three groups and performed regression analysis to determine the association of orexin-A level with treatment response in clozapine-treated patients. We also explored the correlation between orexin-A levels and cognitive function, assessed using the CogState Schizophrenia Battery. RESULTS Clozapine-responsive patients had higher orexin-A levels than clozapine-resistant and APD-free patients. Orexin-A level was the only factor significantly associated with treatment response after adjustment. Orexin-A levels were negatively correlated with BPRS-18 full scale and positive, negative, and general symptoms subscale scores. We also observed a positive correlation between orexin-A levels and verbal memory, visual learning and memory, and working memory function. CONCLUSIONS This cross-sectional study showed that higher levels of orexin-A are associated with treatment response to clozapine in patients with TRS. Future prospective studies examining changes in orexin-A level following clozapine treatment and the potential benefit of augmenting orexin-A signaling are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychology, National Chengchi University, Taipei, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Kuo Chang
- Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Wang-Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Hawley AL, Baum JI. Nutrition as the foundation for successful aging: a focus on dietary protein and omega-3 polyunsaturated fatty acids. Nutr Rev 2024; 82:389-406. [PMID: 37319363 DOI: 10.1093/nutrit/nuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).
Collapse
Affiliation(s)
- Aubree L Hawley
- School of Human and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
6
|
Kron JOZJ, Keenan RJ, Hoyer D, Jacobson LH. Orexin Receptor Antagonism: Normalizing Sleep Architecture in Old Age and Disease. Annu Rev Pharmacol Toxicol 2024; 64:359-386. [PMID: 37708433 DOI: 10.1146/annurev-pharmtox-040323-031929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.
Collapse
Affiliation(s)
- Jarrah O-Z J Kron
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
| | - Ryan J Keenan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniel Hoyer
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia;
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia;
| |
Collapse
|
7
|
Roh SE, Xiao M, Delgado A, Kwak C, Savonenko A, Bakker A, Kwon HB, Worley P. Sleep and circadian rhythm disruption by NPTX2 loss of function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559408. [PMID: 37808783 PMCID: PMC10557648 DOI: 10.1101/2023.09.26.559408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Sleep and circadian rhythm disruption (SCRD) is commonly observed in aging, especially in individuals who experience progressive cognitive decline to mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, precise molecular mechanisms underlying the association between SCRD and aging are not fully understood. Orexin A is a well-characterized "sleep neuropeptide" that is expressed in hypothalamic neurons and evokes wake behavior. The importance of Orexin is exemplified in narcolepsy where it is profoundly down-regulated. Interestingly, the synaptic immediate early gene NPTX2 is co-expressed in Orexin neurons and is similarly reduced in narcolepsy. NPTX2 is also down-regulated in CSF of some cognitively normal older individuals and predicts the time of transition from normal cognition to MCI. The association between Orexin and NPTX2 is further evinced here where we observe that Orexin A and NPTX2 are highly correlated in CSF of cognitively normal aged individuals and raises the question of whether SCRD that are typically attributed to Orexin A loss of function may be modified by concomitant NPTX2 down-regulation. Is NPTX2 an effector of sleep or simply a reporter of orexin-dependent SCRD? To address this question, we examined NPTX2 KO mice and found they retain Orexin expression in the brain and so provide an opportunity to examine the specific contribution of NPTX2 to SCRD. Our results reveal that NPTX2 KO mice exhibit a disrupted circadian onset time, coupled with increased activity during the sleep phase, suggesting difficulties in maintaining states. Sleep EEG indicates distinct temporal allocation shifts across vigilance states, characterized by reduced wake and increased NREM time. Evident sleep fragmentation manifests through alterations of event occurrences during Wake and NREM, notably during light transition periods, in conjunction with an increased frequency of sleep transitions in NPTX2 KO mice, particularly between Wake and NREM. EEG spectral analysis indicated significant shifts in power across various frequency bands in the wake, NREM, and REM states, suggestive of disrupted neuronal synchronicity. An intriguing observation is the diminished occurrence of sleep spindles, one of the earliest measures of human sleep disruption, in NPTX2 KO mice. These findings highlight the effector role of NPTX2 loss of function as an instigator of SCRD and a potential mediator of sleep disruption in aging.
Collapse
Affiliation(s)
- Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meifang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ana Delgado
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chuljung Kwak
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alena Savonenko
- Department of Neuroanatomy, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
Blackman J, Morrison HD, Gabb V, Biswas B, Li H, Turner N, Jolly A, Trender W, Hampshire A, Whone A, Coulthard E. Remote evaluation of sleep to enhance understanding of early dementia due to Alzheimer's Disease (RESTED-AD): an observational cohort study protocol. BMC Geriatr 2023; 23:590. [PMID: 37742001 PMCID: PMC10518099 DOI: 10.1186/s12877-023-04288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Sleep and circadian rhythm disorders are well recognised in both AD (Alzheimer's Disease) dementia and MCI-AD (Mild Cognitive Impairment due to Alzheimer's Disease). Such abnormalities include insomnia, excessive daytime sleepiness, decreased sleep efficiency, increased sleep fragmentation and sundowning. Enhancing understanding of sleep abnormalities may unveil targets for intervention in sleep, a promising approach given hypotheses that sleep disorders may exacerbate AD pathological progression and represent a contributory factor toward impaired cognitive performance and worse quality of life. This may also permit early diagnosis of AD pathology, widely acknowledged as a pre-requisite for future disease-modifying therapies. This study aims to bridge the divide between in-laboratory polysomnographic studies which allow for rich characterisation of sleep but in an unnatural setting, and naturalistic studies typically approximating sleep through use of non-EEG wearable devices. It is also designed to record sleep patterns over a 2 month duration sufficient to capture both infradian rhythm and compensatory responses following suboptimal sleep. Finally, it harnesses an extensively phenotyped population including with AD blood biomarkers. Its principal aims are to improve characterisation of sleep and biological rhythms in individuals with AD, particularly focusing on micro-architectural measures of sleep, compensatory responses to suboptimal sleep and the relationship between sleep parameters, biological rhythms and cognitive performance. METHODS/DESIGN This observational cohort study has two arms (AD-MCI / mild AD dementia and aged-matched healthy adults). Each participant undergoes a baseline visit for collection of demographic, physiological and neuropsychological information utilising validated questionnaires. The main study period involves 7 nights of home-based multi-channel EEG sleep recording nested within an 8-week study period involving continuous wrist-worn actigraphy, sleep diaries and regular brief cognitive tests. Measurement of sleep parameters will be at home thereby obtaining a real-world, naturalistic dataset. Cognitive testing will be repeated at 6 months to stratify participants by longitudinal disease progression. DISCUSSION This study will generate new insights particularly in micro-architectural measures of sleep, circadian patterns and compensatory sleep responses in a population with and without AD neurodegenerative change. It aims to enhance standards of remotely based sleep research through use of a well-phenotyped population and advanced sleep measurement technology.
Collapse
Affiliation(s)
- Jonathan Blackman
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Hamish Duncan Morrison
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Victoria Gabb
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Bijetri Biswas
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
| | - Haoxuan Li
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Nicholas Turner
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
| | - Amy Jolly
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - William Trender
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Alan Whone
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
| | - Elizabeth Coulthard
- Bristol Medical School, University of Bristol, Bristol, BS2 8DZ UK
- Bristol Brain Centre, North Bristol NHS Trust, Bristol, BS10 5NB UK
- Bristol Medical School, Learning & Research Building, Southmead Hospital, University of Bristol, Bristol, BS10 5NB UK
| |
Collapse
|
9
|
McGregor R, Matzeu A, Thannickal TC, Wu F, Cornford M, Martin-Fardon R, Siegel JM. Sensitivity of Hypocretin System to Chronic Alcohol Exposure: A Human and Animal Study. Neuroscience 2023; 522:1-10. [PMID: 37121379 PMCID: PMC10681027 DOI: 10.1016/j.neuroscience.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
Human heroin addicts and mice administered morphine for a 2 week period show a greatly increased number of hypothalamic hypocretin (Hcrt or orexin) producing neurons with a concomitant reduction in Hcrt cell size. Male rats addicted to cocaine similarly show an increased number of detectable Hcrt neurons. These findings led us to hypothesize that humans with alcohol use disorder (AUD) would show similar changes. We now report that humans with AUD have a decreased number and size of detectable Hcrt neurons. In addition, the intermingled melanin concentrating hormone (MCH) neurons are reduced in size. We saw no change in the size and number of tuberomammillary histamine neurons in AUD. Within the Hcrt/MCH neuronal field we found that microglia cell size was increased in AUD brains. In contrast, male rats with 2 week alcohol exposure, sufficient to elicit withdrawal symptoms, show no change in the number or size of Hcrt, MCH and histamine neurons, and no change in the size of microglia. The present study indicates major differences between the response of Hcrt neurons to opioids and that to alcohol in human subjects with a history of substance abuse.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA.
| | - Alessandra Matzeu
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, SR-107, La Jolla, CA 92037, USA
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| | - Frank Wu
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| | - Marcia Cornford
- Department of Pathology, Harbor University of California, Los Angeles, Medical, Center, Torrance, CA 90509, USA
| | - Rémi Martin-Fardon
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, SR-107, La Jolla, CA 92037, USA
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, 90095, USA; Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, Los Angele, California 91343, USA
| |
Collapse
|
10
|
Bedbrook CN, Nath RD, Nagvekar R, Deisseroth K, Brunet A. Rapid and precise genome engineering in a naturally short-lived vertebrate. eLife 2023; 12:e80639. [PMID: 37191291 PMCID: PMC10188113 DOI: 10.7554/elife.80639] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The African turquoise killifish is a powerful vertebrate system to study complex phenotypes at scale, including aging and age-related disease. Here, we develop a rapid and precise CRISPR/Cas9-mediated knock-in approach in the killifish. We show its efficient application to precisely insert fluorescent reporters of different sizes at various genomic loci in order to drive cell-type- and tissue-specific expression. This knock-in method should allow the establishment of humanized disease models and the development of cell-type-specific molecular probes for studying complex vertebrate biology.
Collapse
Affiliation(s)
- Claire N Bedbrook
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ravi D Nath
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Rahul Nagvekar
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anne Brunet
- Department of Genetics, Stanford UniversityStanfordUnited States
- Glenn Laboratories for the Biology of Aging at StanfordStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
12
|
Hu S, Ren L, Wang Y, Lei Z, Cai J, Pan S. The association between serum orexin A and short-term neurological improvement in patients with mild to moderate acute ischemic stroke. Brain Behav 2023; 13:e2845. [PMID: 36573700 PMCID: PMC9847589 DOI: 10.1002/brb3.2845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The serum orexin A level was significantly lower among patients with acute ischemic stroke (AIS) and negatively related to the volume of the infarction, but the relationship between serum orexin A and prognosis of AIS was still unclear. We aimed to clarify the association between serum orexin A and the short-term neurological improvement in patients with mild to moderate AIS. METHODS We consecutively enrolled patients with first ever mild to moderate AIS admitted to hospital within 48 h from symptom onset in this prospective observational study. The serum orexin A concentrations were determined on the second morning since the admission. The short-term neurological improvement was defined as more than 1 point decrease in the National Institute of Health Stroke Scale score within 7 days after admission. RESULTS We detected increased serum orexin A level in mild to moderate AIS patients with early onset of stroke-related insomnia (33.44 vs 18.66 pg/ml, p = .004) as well as in patients with short-term neurological improvement compared to those without improvement (31.78 vs 16.24 pg/ml, p = .038). The serum orexin A level was positively associated with the short-term neurological improvement after adjusting for sleep condition and other related variables. CONCLUSION Serum orexin A might be a useful biomarker for the assessment of early prognosis in patients with mild to moderate AIS.
Collapse
Affiliation(s)
- Shiyu Hu
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Neurology Department of Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lijie Ren
- Neurology Department of Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yang Wang
- Neurology Department of Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhihao Lei
- Neurology Department of Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Jingjing Cai
- Neurology Department of Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Suyue Pan
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
He Z, Wang X, Ma K, Zheng L, Zhang Y, Liu C, Sun T, Wang P, Rong W, Niu J. Selective activation of the hypothalamic orexinergic but not melanin-concentrating hormone neurons following pilocarpine-induced seizures in rats. Front Neurosci 2022; 16:1056706. [DOI: 10.3389/fnins.2022.1056706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
IntroductionSleep disorders are common comorbidities in patients with temporal lobe epilepsy (TLE), but the underlying mechanisms remain poorly understood. Since the lateral hypothalamic (LH) and the perifornical orexinergic (ORX) and melanin-concentrating hormone (MCH) neurons are known to play opposing roles in the regulation of sleep and arousal, dysregulation of ORX and MCH neurons might contribute to the disturbance of sleep-wakefulness following epileptic seizures.MethodsTo test this hypothesis, rats were treated with lithium chloride and pilocarpine to induce status epilepticus (SE). Electroencephalogram (EEG) and electromyograph (EMG) were recorded for analysis of sleep-wake states before and 24 h after SE. Double-labeling immunohistochemistry of c-Fos and ORX or MCH was performed on brain sections from the epileptic and control rats. In addition, anterograde and retrograde tracers in combination with c-Fos immunohistochemistry were used to analyze the possible activation of the amygdala to ORX neural pathways following seizures.ResultsIt was found that epileptic rats displayed prolonged wake phase and decreased non-rapid eye movement (NREM) and rapid eye movement (REM) phase compared to the control rats. Prominent neuronal activation was observed in the amygdala and the hypothalamus following seizures. Interestingly, in the LH and the perifornical nucleus, ORX but not MCH neurons were significantly activated (c-Fos+). Neural tracing showed that seizure-activated (c-Fos+) ORX neurons were closely contacted by axon terminals originating from neurons in the medial amygdala.DiscussionThese findings suggest that the spread of epileptic activity from amygdala to the hypothalamus causes selective activation of the wake-promoting ORX neurons but not sleep-promoting MCH neurons, which might contribute to the disturbance of sleep-wakefulness in TLE.
Collapse
|
14
|
Hajdarovic KH, Yu D, Webb AE. Understanding the aging hypothalamus, one cell at a time. Trends Neurosci 2022; 45:942-954. [PMID: 36272823 PMCID: PMC9671837 DOI: 10.1016/j.tins.2022.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
The hypothalamus is a brain region that integrates signals from the periphery and the environment to maintain organismal homeostasis. To do so, specialized hypothalamic neuropeptidergic neurons control a range of processes, such as sleep, feeding, the stress response, and hormone release. These processes are altered with age, which can affect longevity and contribute to disease status. Technological advances, such as single-cell RNA sequencing, are upending assumptions about the transcriptional identity of cell types in the hypothalamus and revealing how distinct cell types change with age. In this review, we summarize current knowledge about the contribution of hypothalamic functions to aging. We highlight recent single-cell studies interrogating distinct cell types of the mouse hypothalamus and suggest ways in which single-cell 'omics technologies can be used to further understand the aging hypothalamus and its role in longevity.
Collapse
Affiliation(s)
| | - Doudou Yu
- Graduate program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
15
|
Pizza F, Barateau L, Dauvilliers Y, Plazzi G. The orexin story, sleep and sleep disturbances. J Sleep Res 2022; 31:e13665. [PMID: 35698789 DOI: 10.1111/jsr.13665] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The orexins, also known as hypocretins, are two neuropeptides (orexin A and B or hypocretin 1 and 2) produced by a few thousand neurons located in the lateral hypothalamus that were independently discovered by two research groups in 1998. Those two peptides bind two receptors (orexin/hypocretin receptor 1 and receptor 2) that are widely distributed in the brain and involved in the central physiological regulation of sleep and wakefulness, orexin receptor 2 having the major role in the maintenance of arousal. They are also implicated in a multiplicity of other functions, such as reward seeking, energy balance, autonomic regulation and emotional behaviours. The destruction of orexin neurons is responsible for the sleep disorder narcolepsy with cataplexy (type 1) in humans, and a defect of orexin signalling also causes a narcoleptic phenotype in several animal species. Orexin discovery is unprecedented in the history of sleep research, and pharmacological manipulations of orexin may have multiple therapeutic applications. Several orexin receptor antagonists were recently developed as new drugs for insomnia, and orexin agonists may be the next-generation drugs for narcolepsy. Given the broad range of functions of the orexin system, these drugs might also be beneficial for treating various conditions other than sleep disorders in the near future.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Abstract
Hypocretin neuron hyperexcitability underlies disrupted sleep quality associated with age.
Collapse
Affiliation(s)
- Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, VIC, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
17
|
HATTA KOTARO. Prevention of Delirium Via Melatonin and Orexin Neurotransmission. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:12-16. [PMID: 38911008 PMCID: PMC11189796 DOI: 10.14789/jmj.jmj21-0035-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 06/25/2024]
Abstract
The fundamental conception of delirium is altered arousal. In addition, sleep-wake cycle isturbances including insomnia, excessive daytime napping, and disintegration of the xpected circadian patterns have been described as a characteristic component of delirium or decades, and demonstrated to be a core symptom domain of delirium. Although on-pharmacological interventions are successful to some extent, they have limitations due o various biological etiologies for delirium. Among pharmacological interventions, ntipsychotics seem to be effective, but they are not suitable for preventive use because f relatively frequent side-effects such as extrapyramidal symptoms. Recently, new type of rugs for insomnia have been focused with respect to delirium prevention. Recent eta-analyses show effectiveness of melatonin receptor agonists and orexin receptor ntagonists for delirium prevention, and real-world data support them.
Collapse
Affiliation(s)
- KOTARO HATTA
- Corresponding author: Kotaro Hatta, Department of Psychiatry, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo 177-8521, Japan, TEL: +81-3-5923-3111 E-mail:
| |
Collapse
|
18
|
Umetsu R, Tanaka M, Nakayama Y, Kato Y, Ueda N, Nishibata Y, Hasegawa S, Matsumoto K, Takeyama N, Iguchi K, Tanaka H, Hinoi E, Inagaki N, Inden M, Muto Y, Nakamura M. Neuropsychiatric Adverse Events of Montelukast: An Analysis of Real-World Datasets and drug-gene Interaction Network. Front Pharmacol 2022; 12:764279. [PMID: 34987393 PMCID: PMC8720925 DOI: 10.3389/fphar.2021.764279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Montelukast is a selective leukotriene receptor antagonist that is widely used to treat bronchial asthma and nasal allergy. To clarify the association between montelukast and neuropsychiatric adverse events (AEs), we evaluated case reports recorded between January 2004 and December 2018 in the Food and Drug Administration Adverse Event Reporting System (FAERS). Furthermore, we elucidated the potential toxicological mechanisms of montelukast-associated neuropsychiatric AEs through functional enrichment analysis of human genes interacting with montelukast. The reporting odds ratios of suicidal ideation and depression in the system organ class of psychiatric disorders were 21.5 (95% confidence interval (CI): 20.3–22.9) and 8.2 (95% CI: 7.8–8.7), respectively. We explored 1,144 human genes that directly or indirectly interact with montelukast. The molecular complex detection (MCODE) plug-in of Cytoscape detected 14 clusters. Functional analysis indicated that several genes were significantly enriched in the biological processes of “neuroactive ligand–receptor interaction.” “Mood disorders” and “major depressive disorder” were significant disease terms related to montelukast. Our retrospective analysis based on the FAERS demonstrated a significant association between montelukast and neuropsychiatric AEs. Functional enrichment analysis of montelukast-associated genes related to neuropsychiatric symptoms warrant further research on the underlying pharmacological mechanisms.
Collapse
Affiliation(s)
- Ryogo Umetsu
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Mizuki Tanaka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoko Nakayama
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yamato Kato
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Natsumi Ueda
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuri Nishibata
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Shiori Hasegawa
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyoka Matsumoto
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Noriaki Takeyama
- Laboratory of Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroyuki Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Gifu Pharmaceutical University, Gifu, Japan.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Naoki Inagaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshinori Muto
- Department of Functional Bioscience, Gifu University School of Medicine, Gifu, Japan
| | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
19
|
Li S, Zhang R, Hu S, Lai J. Plasma Orexin-A Levels in Patients With Schizophrenia: A Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:879414. [PMID: 35693955 PMCID: PMC9174516 DOI: 10.3389/fpsyt.2022.879414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Orexins are polypeptides regulating appetite, sleep-wake cycle, and cognition functions, which are commonly disrupted in patients with schizophrenia. Patients with schizophrenia show a decreased connectivity between the prefrontal cortex and midline-anterior thalamus, and orexin can directly activate the axon terminal of cells within the prefrontal cortex and selectively depolarize neurons in the midline intralaminar nuclei of the thalamus. To address the relationship between orexin and schizophrenia, this study performed a meta-analysis on the alteration of plasma orexin-A levels in patients with schizophrenia. METHOD We searched eligible studies in PubMed, Embase, Cochrane, and China National Knowledge Infrastructure (CNKI) from 1998 to September 3, 2021. A total of 8 case-control studies were included in the meta-analyses, providing data on 597 patients with schizophrenia and 370 healthy controls. The Stata version 16.0 software was used to calculate the Hedges's adjusted g with 95% confidence intervals (CI). RESULTS The plasma orexin-A levels were not altered in subjects with schizophrenia (n = 597) when compared to healthy controls (n = 370). Subgroup analyses of gender (male and female vs. only male), country (China vs. other countries), medication (medication vs. non-medication), and the measurement of plasma orexin-A (Enzyme-linked immunosorbent assay vs. radioimmunoassay) revealed heterogeneity ranging from 30.15 to 98.15%, but none showed a significant alteration of plasma orexin-A levels in patients with schizophrenia. Heterogeneity was lower in the other countries and radioimmunoassay subgroup, while other subgroups remained to be highly heterogeneous. No significant evidence of publication bias was found either in Begg's test or the Egger's test. CONCLUSION The present meta-analysis indicated that patients with schizophrenia did not show abnormal plasma levels of orexin-A. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021283455, identifier: CRD42021283455.
Collapse
Affiliation(s)
- Shaoli Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruili Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorders' Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Akça ÖF, Sağlam E, Kılınç I, Bilgiç A. Orexin a levels of adolescents with major depressive disorder. Int J Psychiatry Clin Pract 2021; 25:403-406. [PMID: 34032542 DOI: 10.1080/13651501.2021.1927106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study examines orexin A levels in adolescents with major depressive disorder (MDD). METHODS Serum orexin A levels of adolescents with MDD (n = 40) were compared to healthy controls (n = 38) using ANCOVA test. In addition, the relationship between orexin A levels and MDD symptom severity (i.e., child depression inventory) was investigated in the MDD group using correlation and linear regression analyses. RESULTS Orexin A levels of the subjects with MDD were similar to controls while controlling for age, gender, body mass index, and anxiety levels of the subjects. In addition, correlation and regression analyses did not reveal any relationship between orexin A and MDD symptoms. DISCUSSION Adolescent MDD is not associated with orexin A according to the findings of this study. Future studies considering the effect of stress on this relationship would improve our understanding of this issue.Key PointsAdult studies exploring the relationship between orexin A and major depressive disorder reported contradictory findings.This study showed no relationship between serum orexin A levels and depressive symptom severity among adolescents with major depressive disorder.Orexin A levels of the subjects with major depressive disorder are not significantly different from healthy adolescents.
Collapse
Affiliation(s)
- Ö F Akça
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - E Sağlam
- Department of Child and Adolescent Psychiatry, Ankara City Hospital, Ankara, Turkey
| | - I Kılınç
- Department of Biochemistry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - A Bilgiç
- Department of Child and Adolescent Psychiatry, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
21
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
22
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
23
|
Xiang J, Zhang S, Xu R, Chu H, Biswas S, Yu S, Miao D, Li W, Li S, Brown AJ, Yang H, Xu Y, Li B, Liu H. Elevated HB-EGF expression in neural stem cells causes middle age obesity by suppressing Hypocretin/Orexin expression. FASEB J 2021; 35:e21345. [PMID: 33715219 DOI: 10.1096/fj.202001945r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Obesity is common in the middle aged population and it increases the risks of diabetes, cardiovascular diseases, certain cancers, and dementia. Yet, its etiology remains incompletely understood. Here, we show that ectopic expression of HB-EGF, an important regulator of neurogenesis, in Nestin+ neuroepithelial progenitors with the Cre-LoxP system leads to development of spontaneous middle age obesity in male mice accompanied by hyperglycemia and insulin resistance. The Nestin-HB-EGF mice show decreases in food uptake, energy expenditure, and physical activity, suggesting that reduced energy expenditure underlies the pathogenesis of this obesity model. However, HB-EGF expression in appetite-controlling POMC or AgRP neurons or adipocytes fails to induce obesity. Mechanistically, HB-EGF suppresses expression of Hypocretin/Orexin, an orexigenic neuropeptide hormone, in the hypothalamus of middle aged Nestin-HB-EGF mice. Hypothalamus Orexin administration alleviates the obese and hyperglycemic phenotypes in Nestin-HB-EGF mice. This study uncovers an important role for HB-EGF in regulating Orexin expression and energy expenditure and establishes a midlife obesity model whose pathogenesis involves age-dependent changes in hypothalamus neurons.
Collapse
Affiliation(s)
- Jinnan Xiang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyang Zhang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiyao Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hongshang Chu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Soma Biswas
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxiang Yu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Weidong Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shentian Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Yuhong Xu
- Pharmacy School, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.,Center for Traditional Chinese Medicine and Stem Cell Research, The Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Huijuan Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Soler JE, Xiong H, Samad F, Manfredsson FP, Robison AJ, Núñez AA, Yan L. Orexin (hypocretin) mediates light-dependent fluctuation of hippocampal function in a diurnal rodent. Hippocampus 2021; 31:1104-1114. [PMID: 34263969 DOI: 10.1002/hipo.23376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/30/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Environmental lighting conditions play a central role in cognitive function, but the underlying mechanisms remain unclear. Utilizing a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), we previously found that daytime light intensity affects hippocampal function in this species in a manner similar to its effects in humans. Compared to animals housed in a 12:12 h bright light-dark (brLD) cycle, grass rats kept in a 12:12 h dim light-dark (dimLD) cycle showed impaired spatial memory in the Morris water maze (MWM) and reduced CA1 apical dendritic spine density. The present study explored the neural substrates mediating the effects of daylight intensity on hippocampal function focusing on the hypothalamic orexin (hypocretin) system. First, animals housed in dimLD were treated with daily intranasal administration of orexin A peptide over five training days of the MWM task. Compared to vehicle controls, this treatment led to superior spatial memory accompanied by increased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II α and glutamate receptor 1 within the CA1. To assess the role of hippocampal orexinergic signaling, an adeno-associated viral vector (AAV) expressing an orexin receptor 1 (OX1R) shRNA was injected into the dorsal hippocampus targeting the CA1 of animals housed in brLD. AAV-mediated knockdown of OX1R within the hippocampus resulted in deficits in MWM performance and reduced CA1 apical dendritic spine density. These results are consistent with the view that the hypothalamic orexinergic system underlies the modulatory role of daytime illumination on hippocampal function in diurnal mammals.
Collapse
Affiliation(s)
- Joel E Soler
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Hang Xiong
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Faiez Samad
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Fredric P Manfredsson
- Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Alfred J Robison
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA.,Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Antonio A Núñez
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA.,Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
25
|
Fronczek R, Schinkelshoek M, Shan L, Lammers GJ. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:343-358. [PMID: 34225940 DOI: 10.1016/b978-0-12-820107-7.00021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypocretin-1 and 2 (or orexin A and B) are neuropeptides exclusively produced by a group of neurons in the lateral and dorsomedial hypothalamus that project throughout the brain. In accordance with this, the two different hypocretin receptors are also found throughout the brain. The hypocretin system is mainly involved in sleep-wake regulation, but also in reward mechanisms, food intake and metabolism, autonomic regulation including thermoregulation, and pain. The disorder most strongly linked to the hypocretin system is the primary sleep disorder narcolepsy type 1 caused by a lack of hypocretin signaling, which is most likely due to an autoimmune process targeting the hypocretin-producing neurons. However, the hypocretin system may also be affected, but to a lesser extent and less specifically, in various other neurological disorders. Examples are neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease, immune-mediated disorders such as multiple sclerosis, neuromyelitis optica, and anti-Ma2 encephalitis, and genetic disorders such as type 1 diabetus mellitus and Prader-Willi Syndrome. A partial hypocretin deficiency may contribute to the sleep features of these disorders.
Collapse
Affiliation(s)
- Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands.
| | - Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| |
Collapse
|
26
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
27
|
Lu J, Huang ML, Li JH, Jin KY, Li HM, Mou TT, Fronczek R, Duan JF, Xu WJ, Swaab D, Bao AM. Changes of Hypocretin (Orexin) System in Schizophrenia: From Plasma to Brain. Schizophr Bull 2021; 47:1310-1319. [PMID: 33974073 PMCID: PMC8379539 DOI: 10.1093/schbul/sbab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypocretin (also called orexin) regulates various functions, such as sleep-wake rhythms, attention, cognition, and energy balance, which show significant changes in schizophrenia (SCZ). We aimed to identify alterations in the hypocretin system in SCZ patients. We measured plasma hypocretin-1 levels in SCZ patients and healthy controls and found significantly decreased plasma hypocretin-1 levels in SCZ patients, which was mainly due to a significant decrease in female SCZ patients compared with female controls. In addition, we measured postmortem hypothalamic hypocretin-1-immunoreactivity (ir), ventricular cerebrospinal fluid (CSF) hypocretin-1 levels, and hypocretin receptor (Hcrt-R) mRNA expression in the superior frontal gyrus (SFG) in SCZ patients and controls We observed a significant decrease in the amount of hypothalamic hypocretin-1 ir in SCZ patients, which was due to decreased amounts in female but not male patients. Moreover, Hcrt-R2 mRNA in the SFG was decreased in female SCZ patients compared with female controls, while male SCZ patients showed a trend of increased Hcrt-R1 mRNA and Hcrt-R2 mRNA expression compared with male controls. We conclude that central hypocretin neurotransmission is decreased in SCZ patients, especially female patients, and this is reflected in the plasma.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Man-Li Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jin-Hui Li
- Department of Traditional Chinese Medicine & Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kang-Yu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Mei Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jin-Feng Duan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Wei-Juan Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Dick Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China,To whom correspondence should be addressed; Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; tel: +86 571 88208789, fax: +86 571 88208094, e-mail:
| |
Collapse
|
28
|
Li H, Lu J, Li S, Huang B, Shi G, Mou T, Xu Y. Increased Hypocretin (Orexin) Plasma Level in Depression, Bipolar Disorder Patients. Front Psychiatry 2021; 12:676336. [PMID: 34135789 PMCID: PMC8200484 DOI: 10.3389/fpsyt.2021.676336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022] Open
Abstract
As hypocretin can markedly affect neurophysiological and behavioural processes in mood disorders. However, few studies have measured changes in hypocretin levels in patients with mood disorders. We estimated the hypocretin-1 plasma levels in mood disorder patients and controls (CON) using an enzyme-linked immunosorbent assay. Results: (i) The hypocretin-1 plasma level was significantly higher in major depressive disorder (MDD) patients [59.04 (35.78-80.12) pg/ml, P < 0.001] and bipolar disorder (BD) patients [65.50 (58.46-74.57) pg/ml, P < 0.001] patients than in CON [49.25 (28.51-80.40) pg/ml]. Moreover, the plasma hypocretin-1 levels in the BD group were significantly higher than those in the MDD group (P < 0.001). (ii). In the MDD group, patients with higher suicidal ideation had higher hypocretin-1 levels [62.09 (38.23-80.12) pg/ml] than those with lower suicidal ideation [59.63 (35.79-77.37) pg/ml), P = 0.032]. (iii). Plasma hypocretin-1 levels were increased in both female and male mood disorder patients compared to CON [male: MDD 60.51 (35.79-80.12) pg/ml; BD 65.40 (58.76-74.14) pg/ml; CON 45.63 (28.51-62.05) pg/ml; all P < 0.016; female: MDD 57.37 (34.59-80.40) pg/ml; BD 65.61 (58.46-74.57) pg/ml; CON 52.92 (38.23-78.89) pg/ml; all P < 0.015]. (iv). In CON, we found a significant negative correlation between plasma hypocretin-1 levels and age (rho = -0.251, P = 0.032), while this negative correlation was absent in the MDD and BD groups. Limitations may partly arise from the relatively small sample size and the medication history of patients participating in our research. We concluded that the clear changes found in plasma hypocretin-1 levels might be applied in the diagnosis of depression and the differential diagnosis of MDD and BD. The clear suicidal-ideation-related change found in hypocretin-1 levels in depression might be taken into account in the prevention of suicidal behaviour and further study of hypocretin-targeted therapies.
Collapse
Affiliation(s)
- Haimei Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shangda Li
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Bochao Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Gongde Shi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Department of Psychiatry, Brain Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Romanella SM, Roe D, Tatti E, Cappon D, Paciorek R, Testani E, Rossi A, Rossi S, Santarnecchi E. The Sleep Side of Aging and Alzheimer's Disease. Sleep Med 2021; 77:209-225. [PMID: 32912799 PMCID: PMC8364256 DOI: 10.1016/j.sleep.2020.05.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/23/2023]
Abstract
As we age, sleep patterns undergo significant modifications in micro and macrostructure, worsening cognition and quality of life. These are associated with remarkable brain changes, like deterioration in synaptic plasticity, gray and white matter, and significant modifications in hormone levels. Sleep alterations are also a core component of mild cognitive impairment (MCI) and Alzheimer's Disease (AD). AD night time is characterized by a gradual decrease in slow-wave activity and a substantial reduction of REM sleep. Sleep abnormalities can accelerate AD pathophysiology, promoting the accumulation of amyloid-β (Aβ) and phosphorylated tau. Thus, interventions that target sleep disturbances in elderly people and MCI patients have been suggested as a possible strategy to prevent or decelerate conversion to dementia. Although cognitive-behavioral therapy and pharmacological medications are still first-line treatments, despite being scarcely effective, new interventions have been proposed, such as sensory stimulation and Noninvasive Brain Stimulation (NiBS). The present review outlines the current state of the art of the relationship between sleep modifications in healthy aging and the neurobiological mechanisms underlying age-related changes. Furthermore, we provide a critical analysis showing how sleep abnormalities influence the prognosis of AD pathology by intensifying Aβ and tau protein accumulation. We discuss potential therapeutic strategies to target sleep disruptions and conclude that there is an urgent need for testing new therapeutic sleep interventions.
Collapse
Affiliation(s)
- S M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - D Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - E Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY, USA
| | - D Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - E Testani
- Sleep Medicine Center, Department of Neurology, Policlinico Santa Maria Le Scotte, Siena, Italy
| | - A Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - S Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - E Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Berteotti C, Liguori C, Pace M. Dysregulation of the orexin/hypocretin system is not limited to narcolepsy but has far-reaching implications for neurological disorders. Eur J Neurosci 2020; 53:1136-1154. [PMID: 33290595 DOI: 10.1111/ejn.15077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022]
Abstract
Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.
Collapse
Affiliation(s)
- Chiara Berteotti
- PRISM Lab, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Claudio Liguori
- Sleep Medicine Centre, Neurology Unit, University Hospital Tor Vergata, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Pace
- Genetics and Epigenetics of Behaviour Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
31
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
32
|
Pu C, Tian S, He S, Chen W, He Y, Ren H, Zhu J, Tang J, Huang X, Xiang Y, Fu Y, Xiang T. Depression and stress levels increase risk of liver cancer through epigenetic downregulation of hypocretin. Genes Dis 2020; 9:1024-1037. [PMID: 35685472 PMCID: PMC9170575 DOI: 10.1016/j.gendis.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that Hypocretin (HCRT, Orexin) are involved in stress regulation of depression through the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanism by which Hypocretin regulate neurobiological responses is unknown. Herein, the effects of chronic stress on the epigenetic modification of HCRT and its association with depression were explored with regard to a potential role in cancer progression. In the study, Sprague Dawley (SD) rats were used to establish an animal model of cancer with depression by administrating n-nitrosodiethylamine (DEN) and chronic unpredictable mild stress (CUMS). RNA-sequencing was used to detect differentially expressed genes in the hippocampus of rats and quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of RNA-sequencing. The status of HCRT promoter methylation was assessed by methylation specific polymerase chain reaction. Behavioral tests showed that rats exposed to CUMS had significant depressive-like behaviors. The number of liver tumors and tumor load in depressed rats exposed to CUMS was higher than in SD rats without CUMS. RNA-sequencing revealed that HCRT was one of the most siginificantly downregulated gene in the hippocampus of SD rats with CUMS compared to non-stressed group, which was validated by qRT-PCR. HCRT mRNA expression was downregulated and the promoter for HCRT was hyper-methylated in those with depression. These results identified a critical role for chronic psychological stressors in tumorigenesis and cancer progression, via epigenetic HCRT downregulation. Such epigenetic downregulation may be the molecular basis for the association of cancer with depression.
Collapse
|
33
|
Garbarino S, Lanteri P, Prada V, Falkenstein M, Sannita WG. Circadian Rhythms, Sleep, and Aging. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract. Circadian mechanisms and the sleep-wakefulness rhythms guarantee survival, adaptation, efficient action in everyday life or in emergencies and well-being. Disordered circadian processes at central and/or cellular levels, sleep disorders, and unhealthy wakefulness/sleep rhythms can impair the physiological circadian organization and result in subjective, professional, or behavioral changes ranging from functional inadequacy to higher risks at work or on the road to medical relevance. Circadian rhythms and the sleep organization change ontogenetically; major changes result from normal aging and from the multiple diseases that are often associated. There are circular functional interactions involving sleep/sleep disorders, the autonomic and immune systems, and the functional changes in the circadian system due to aging that deserve attention but have been overlooked thus far.
Collapse
Affiliation(s)
- Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, Genova, Italy
| | - Paola Lanteri
- Department of Diagnostics and Applied Technology, Neurophysiopathology Center, Fondazione IRCCS, Istituto Neurologico C. Besta, Milano, Italy
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, Genova, Italy
| | | | - Walter G. Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, Genova, Italy
| |
Collapse
|
34
|
Romanella SM, Roe D, Paciorek R, Cappon D, Ruffini G, Menardi A, Rossi A, Rossi S, Santarnecchi E. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev 2020; 61:101067. [PMID: 32380212 PMCID: PMC8363192 DOI: 10.1016/j.arr.2020.101067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-β (Aβ) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.
Collapse
Affiliation(s)
- Sara M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Daniel Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Padova Neuroscience Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Liu C, Xue Y, Liu MF, Wang Y, Chen L. Orexin and Parkinson's disease: A protective neuropeptide with therapeutic potential. Neurochem Int 2020; 138:104754. [PMID: 32422324 DOI: 10.1016/j.neuint.2020.104754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. PD is characterized by motor dysfunctions as well as non-motor disorders. Orexin (also known as hypocretin) is a kind of neuropeptide involved in the regulation of motor control, the sleep/wake cycle, learning and memory, gastric motility and respiratory function. Several lines of evidence suggest that the orexinergic system is involved in the manifestations of PD, especially the non-motor disorders. Recent studies have revealed the protective actions and potential therapeutic applications of orexin in both cellular and animal models of PD. Here we present a brief overview of the involvement of the orexinergic system in PD, including the pathological changes in the lateral hypothalamus, the loss of orexinergic neurons and the fluctuation of orexin levels in CSF. Furthermore, we also review the neuroprotective effects of orexin in cellular and animal models of PD.
Collapse
Affiliation(s)
- Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
36
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Swaab DF, Bao AM. Sex differences in stress-related disorders: Major depressive disorder, bipolar disorder, and posttraumatic stress disorder. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:335-358. [PMID: 33008536 DOI: 10.1016/b978-0-444-64123-6.00023-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stress-related disorders, such as mood disorders and posttraumatic stress disorder (PTSD), are more common in women than in men. This sex difference is at least partly due to the organizing effect of sex steroids during intrauterine development, while activating or inhibiting effects of circulating sex hormones in the postnatal period and adulthood also play a role. Such effects result in structural and functional changes in neuronal networks, neurotransmitters, and neuropeptides, which make the arousal- and stress-related brain systems more vulnerable to environmental stressful events in women. Certain brainstem nuclei, the amygdala, habenula, prefrontal cortex, and hypothalamus are important hubs in the stress-related neuronal network. Various hypothalamic nuclei play a central role in this sexually dimorphic network. This concerns not only the hypothalamus-pituitary-adrenal axis (HPA-axis), which integrates the neuro-endocrine-immune responses to stress, but also other hypothalamic nuclei and systems that play a key role in the symptoms of mood disorders, such as disordered day-night rhythm, lack of reward feelings, disturbed eating and sex, and disturbed cognitive functions. The present chapter focuses on the structural and functional sex differences that are present in the stress-related brain systems in mood disorders and PTSD, placing the HPA-axis in the center. The individual differences in the vulnerability of the discussed systems, caused by genetic and epigenetic developmental factors warrant further research to develop tailor-made therapeutic strategies.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Key Laboratory of Mental Disorder Management, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Scarpelli S, Bartolacci C, D'Atri A, Gorgoni M, De Gennaro L. Mental Sleep Activity and Disturbing Dreams in the Lifespan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3658. [PMID: 31569467 PMCID: PMC6801786 DOI: 10.3390/ijerph16193658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep significantly changes across the lifespan, and several studies underline its crucial role in cognitive functioning. Similarly, mental activity during sleep tends to covary with age. This review aims to analyze the characteristics of dreaming and disturbing dreams at different age brackets. On the one hand, dreams may be considered an expression of brain maturation and cognitive development, showing relations with memory and visuo-spatial abilities. Some investigations reveal that specific electrophysiological patterns, such as frontal theta oscillations, underlie dreams during sleep, as well as episodic memories in the waking state, both in young and older adults. On the other hand, considering the role of dreaming in emotional processing and regulation, the available literature suggests that mental sleep activity could have a beneficial role when stressful events occur at different age ranges. We highlight that nightmares and bad dreams might represent an attempt to cope the adverse events, and the degrees of cognitive-brain maturation could impact on these mechanisms across the lifespan. Future investigations are necessary to clarify these relations. Clinical protocols could be designed to improve cognitive functioning and emotional regulation by modifying the dream contents or the ability to recall/non-recall them.
Collapse
Affiliation(s)
- Serena Scarpelli
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Chiara Bartolacci
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Aurora D'Atri
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Maurizio Gorgoni
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
| | - Luigi De Gennaro
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185 Rome, Italy.
- IRCCS Santa Lucia Foundation, 00142 Rome, Italy.
| |
Collapse
|
39
|
Riganello F, Prada V, Soddu A, di Perri C, Sannita WG. Circadian Rhythms and Measures of CNS/Autonomic Interaction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2336. [PMID: 31269700 PMCID: PMC6651187 DOI: 10.3390/ijerph16132336] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
The physiological role and relevance of the mechanisms sustaining circadian rhythms have been acknowledged. Abnormalities of the circadian and/or sleep-wakefulness cycles can result in major metabolic disorders or behavioral/professional inadequacies and stand as independent risk factors for metabolic, psychiatric, and cerebrovascular disorders and early markers of disease. Neuroimaging and clinical evidence have documented functional interactions between autonomic (ANS) and CNS structures that are described by a concept model (Central Autonomic Network) based on the brain-heart two-way interplay. The circadian rhythms of autonomic function, ANS-mediated processes, and ANS/CNS interaction appear to be sources of variability adding to a variety of environmental factors, and may become crucial when considering the ANS major role in internal environment constancy and adaptation that are fundamental to homeostasis. The CNS/ANS interaction has not yet obtained full attention and systematic investigation remains overdue.
Collapse
Affiliation(s)
- Francesco Riganello
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, 4000 Liège, Belgium
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, 16132 Genova, Italy
| | - Andres Soddu
- Department of Physics and Astronomy, Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Carol di Perri
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, 4000 Liège, Belgium
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Walter G Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genova, Polyclinic Hospital San Martino IRCCS, 16132 Genova, Italy.
| |
Collapse
|
40
|
Stanojlovic M, Pallais Yllescas JP, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019; 316:R571-R583. [PMID: 30726119 PMCID: PMC6589608 DOI: 10.1152/ajpregu.00383.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Aging affects numerous physiological processes, as well as behavior. A large number of these processes are regulated, at least partially, by hypothalamic orexin neurons, and orexin tone may decrease with normal aging. In this study, we hypothesized that designer receptors exclusively activated by designer drugs (DREADD) stimulation of orexin neuronal activity will ameliorate the effect of aging on behavioral and metabolic alterations in young and middle-aged mice. DREADD targeting was achieved by stereotaxic injection of AAV vectors (AAV2-hSyn-DIO-hM3D(Gq)-mCherry) into the lateral hypothalamus of 5- and 12-mo old orexin-cre female mice and was confirmed by immunohistochemistry (IHC) analysis of orexin A and mCherry expression. After recovery, animals were subjected to a behavioral test battery consisting of the elevated plus maze (EPM), open field (OFT), and novel object recognition tests (NORT) to assess effects of aging on anxiety-like behavior, general locomotion, and working memory. A comprehensive laboratory animal monitoring system (CLAMS) was used to measure spontaneous physical activity (SPA) and energy expenditure (EE). The results indicate that activation of orexin neurons mitigates aging-induced reductions in anxiety-like behavior in middle-aged mice (P < 0.005) and increases locomotion in both young and middle-aged mice (P < 0.05). Activation of orexin neurons increases SPA (P < 0.01) and EE (P < 0.005) in middle-aged mice, restoring the levels to that observed in young animals. Results from this study identify orexin neurons as potential therapeutic targets for age-related impairments in cognitive and anxiety-related behavior, and energy balance.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | - Vijaya Mavanji
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| |
Collapse
|
41
|
Roles of aging in sleep. Neurosci Biobehav Rev 2019; 98:177-184. [DOI: 10.1016/j.neubiorev.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
|
42
|
Montesano A, Baumgart M, Avallone L, Castaldo L, Lucini C, Tozzini ET, Cellerino A, D'Angelo L, de Girolamo P. Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri. J Comp Neurol 2019; 527:1508-1526. [PMID: 30666646 DOI: 10.1002/cne.24638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Orexin A (OXA) and neuropeptide Y (NPY) are two hypothalamic neuropeptides involved in the regulation of feeding behavior and food intake in all vertebrates. Accumulating evidences document that they undergo age-related modifications, with consequences on metabolism, sleep/wake disorders and progression of neurodegenerations. The present study addressed the age related changes in expression and distribution of orexin A (its precursor is also known as hypocretin-HCRT) and NPY, and their regulation by food intake in the short-lived vertebrate model Nothobranchius furzeri. Our experiments, conducted on male specimens, show that: (a) HCRT and OXA and NPY mRNA and protein are localized in neurons of diencephalon and optic tectum, as well as in numerous fibers projecting through the entire neuroaxis, and are colocalized in specific nuclei; (b) in course of aging, HCRT and NPY expressing neurons are localized also in telencephalon and rhombencephalon; (c) HCRT expressing neurons increased slightly in the diencephalic area of old animals and in fasted animals, whereas NPY increased sharply; (d) central HCRT levels are not regulated neither in course of aging nor by food intake; and (e) central NPY levels are augmented in course of aging, and regulated by food intake only in young. These findings represent a great novelty in the study of central orexinergic and NPY-ergic systems in vertebrates', demonstrating an uncommon and unprecedented described regulation of these two orexigenic neuropeptides.
Collapse
Affiliation(s)
- Alessia Montesano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Lab. Biology of Aging, Jena, Germany
| | - Mario Baumgart
- Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Lab. Biology of Aging, Jena, Germany
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | | | - Alessandro Cellerino
- Leibniz-Institute on Aging - Fritz Lipmann Institute (FLI), Lab. Biology of Aging, Jena, Germany.,Scuola Normale Superiore, Bio@SNS, c/o Istituto di Biofisica del CNR, Pisa, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Stazione Zoologica Anton Dohrn, Biology and Evolution of Marine Organisms, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| |
Collapse
|
43
|
Orexin-1 receptor is involved in ageing-related delayed emergence from general anaesthesia in rats. Br J Anaesth 2018; 121:1097-1104. [DOI: 10.1016/j.bja.2018.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022] Open
|
44
|
Aşçibaşi K, Deveci A, Cengiz Özyurt B, Oran Pirinçcioğlu A, Taneli F. Relationships between nicotine craving, orexin-leptin levels and temperament character traits among non-treatment seeking health professionals. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1458433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Kadir Aşçibaşi
- Department of Psychiatry, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Artuner Deveci
- Department of Psychiatry, Manisa Celal Bayar University Medicine Faculty, Manisa, Turkey
| | - Beyhan Cengiz Özyurt
- Department of Public Health, Manisa Celal Bayar University Medicine Faculty, Manisa, Turkey
| | | | - Fatma Taneli
- Department of Biochemistry, Manisa Celal Bayar University Medicine Faculty, Manisa, Turkey
| |
Collapse
|
45
|
Hayakawa K, Sakamoto Y, Kanie O, Ohtake A, Daikoku S, Ito Y, Shiota K. Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells. Epigenetics 2017; 12:764-778. [PMID: 28762874 DOI: 10.1080/15592294.2017.1346775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Orexin neurons regulate critical brain activities for controlling sleep, eating, emotions, and metabolism, and impaired orexin neuron function results in several neurologic disorders. Therefore, restoring normal orexin function and understanding the mechanisms of loss or impairment of orexin neurons represent important goals. As a step toward that end, we generated human orexin neurons from induced pluripotent stem cells (hiPSCs) by treatment with N-acetyl-d-mannosamine (ManNAc) and its derivatives. The generation of orexin neurons was associated with DNA hypomethylation, histone H3/H4 hyperacetylation, and hypo-O-GlcNAcylation on the HCRT gene locus, and, thereby, the treatment of inhibitors of SIRT1 and OGT were effective at inducing orexin neurons from hiPSCs. The prolonged exposure of orexin neurons to high glucose in culture caused irreversible silencing of the HCRT gene, which was characterized by H3/H4 hypoacetylation and hyper-O-GlcNAcylation. The DNA hypomethylation status, once established in orexin neurogenesis, was maintained in the HCRT-silenced orexin neurons, indicating that histone modifications, but not DNA methylation, were responsible for the HCRT silencing. Thus, the epigenetic status of the HCRT gene is unique to the hyperglycemia-induced silencing. Intriguingly, treatment of ManNAc and its derivatives reactivated HCRT gene expression, while inhibitors SIRT1 and the OGT did not. The present study revealed that the HCRT gene was silenced by the hyperglycemia condition, and ManNAc and its derivatives were useful for restoring the orexin neurons.
Collapse
Affiliation(s)
- Koji Hayakawa
- a Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Tokyo , Japan
| | - Yasuharu Sakamoto
- b Synthetic Cellular Chemistry Laboratory , RIKEN , 2-1 Hirosawa, Wako , Saitama , Japan
| | - Osamu Kanie
- c Japan Science and Technology Agency ERATO Glycotrilogy Project , 2-1 Hirosawa, Wako , Saitama , Japan.,d Present address: Institute of Advanced Biosciences, Tokai University , 4-1-1 Kitakaname, Hiratsuka , Kanagawa , Japan
| | - Atsuko Ohtake
- c Japan Science and Technology Agency ERATO Glycotrilogy Project , 2-1 Hirosawa, Wako , Saitama , Japan
| | - Shusaku Daikoku
- c Japan Science and Technology Agency ERATO Glycotrilogy Project , 2-1 Hirosawa, Wako , Saitama , Japan
| | - Yukishige Ito
- b Synthetic Cellular Chemistry Laboratory , RIKEN , 2-1 Hirosawa, Wako , Saitama , Japan.,c Japan Science and Technology Agency ERATO Glycotrilogy Project , 2-1 Hirosawa, Wako , Saitama , Japan
| | - Kunio Shiota
- a Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Tokyo , Japan.,e Waseda Research Institute for Science and Engineering, Waseda University , Tokyo , Japan
| |
Collapse
|
46
|
Manzardo AM, Johnson L, Miller JL, Driscoll DJ, Butler MG. Higher plasma orexin a levels in children with Prader-Willi syndrome compared with healthy unrelated sibling controls. Am J Med Genet A 2017; 170:2328-33. [PMID: 27518917 DOI: 10.1002/ajmg.a.37777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder associated with maladaptive social behavior, hyperphagia and morbid obesity. Orexin A is a hypothalamic neuropeptide important as a homeostatic regulator of feeding behavior and in energy metabolism through actions in the lateral hypothalamus. Dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia seen in PWS and we sought to assess orexin A levels in PWS relative to controls children. Morning fasting plasma orexin A levels were analyzed in 23 children (aged 5-11 years) with genetically confirmed PWS and 18 age and gender matched healthy unrelated siblings without PWS. Multiplex immune assays utilized the Milliplex Human Neuropeptide Magnetic panel and the Luminex platform. Natural log-transformed orexin A data were analyzed using general linear model adjusting for diagnosis, gender, age, total body fat, and body mass index (BMI). Plasma orexin A levels were significantly higher (P < 0.006) in children with PWS (average ±SD = 1,028 pg/ml ± 358) compared with unrelated siblings (average ±SD = 609 pg/ml ± 351; P < 0.001). Orexin A levels correlated with age in females and were significantly elevated in PWS even after these effects were controlled. These findings support the hypothesis that dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia in PWS. Further studies are warranted to better understand the complex relationship between orexin A levels and the problematic behaviors consistently found in individuals with PWS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ann M Manzardo
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lisa Johnson
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Jennifer L Miller
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Daniel J Driscoll
- Department of Pediatrics, University of Florida Medical Center, Gainesville, Florida
| | - Merlin G Butler
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
47
|
Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-Cronier J, Lord C, Sekerovick Z. Sex differences in age-related changes in the sleep-wake cycle. Front Neuroendocrinol 2017; 47:66-85. [PMID: 28757114 DOI: 10.1016/j.yfrne.2017.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/09/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
Age-related changes in sleep and circadian regulation occur as early as the middle years of life. Research also suggests that sleep and circadian rhythms are regulated differently between women and men. However, does sleep and circadian rhythms regulation age similarly in men and women? In this review, we present the mechanisms underlying age-related differences in sleep and the current state of knowledge on how they interact with sex. We also address how testosterone, estrogens, and progesterone fluctuations across adulthood interact with sleep and circadian regulation. Finally, we will propose research avenues to unravel the mechanisms underlying sex differences in age-related effects on sleep.
Collapse
Affiliation(s)
- Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada; Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, Québec, Canada; Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lauren Drogos
- Departments of Physiology & Pharmacology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jessica Cyr-Cronier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Catherine Lord
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Zoran Sekerovick
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
48
|
|
49
|
Abstract
Alzheimer's disease (AD) is the most frequent age-related dementia. It prevalently causes cognitive decline, although it is frequently associated with secondary behavioral disturbances. AD neurodegeneration characteristically produces a remarkable destruction of the sleep-wake cycle, with diurnal napping, nighttime arousals, sleep fragmentation, and REM sleep impairment. It was recently hypothesized that the orexinergic system was involved in AD pathology. Accordingly, recent papers showed the association between orexinergic neurotransmission dysfunction, sleep impairment, and cognitive decline in AD. Orexin is a hypothalamic neurotransmitter which physiologically produces wakefulness and reduces REM sleep and may alter the sleep-wake cycle in AD patients. Furthermore, the orexinergic system seems to interact with CSF AD biomarkers, such as beta-amyloid and tau proteins. Beta-amyloid accumulation is the main hallmark of AD pathology, while tau proteins mark brain neuronal injury due to AD pathology. Investigations so far suggest that orexinergic signaling overexpression alters the sleep-wake cycle and secondarily induces beta-amyloid accumulation and tau-mediated neurodegeneration. Therefore, considering that orexinergic system dysregulation impairs sleep-wake rhythms and may influence AD pathology, it is hypothesized that orexin receptor antagonists are likely potential preventive/therapeutic options in AD patients.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
50
|
Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron 2017; 94:19-36. [PMID: 28384471 PMCID: PMC5810920 DOI: 10.1016/j.neuron.2017.02.004] [Citation(s) in RCA: 644] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| |
Collapse
|