1
|
Leal MG, Dos Martírios Luz JE, Fidelix YL, Roig-Hierro E, Bonuzzi GMG. The Effects of the Nocturnal Sleep on Learning of a Complex Motor Skill in Young and Older Adults. Exp Aging Res 2024:1-14. [PMID: 39666308 DOI: 10.1080/0361073x.2024.2439741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND/STUDY CONTEXT Research on older adults has shown impairments in nocturnal sleep, impacting motor memory consolidation and learning. However, previous studies primarily focus on simple tasks, limiting generalization to complex motor activities. Moreover, no evidence exists on how sleep influences adaptability and relearning in older adults. METHODS Sixty older adults and 60 young adults practiced an underarm dart-throwing task. The participants were divided into 2 sub-groups: SLEEP, which practiced in the evening and was retested on the morning of the following day, and CONTROL, which practiced in the morning and was retested in the evening on the same day. The practice and retention phases were spaced 12 hours. We analyzed motor learning through persistence, adaptability and relearning rate. RESULTS Sleep did not enhance motor learning for any group. While young adults exhibited retention, older adults did not, especially after nocturnal sleep. There was no difference between sub-groups in adaptability. Older adults demonstrated inferior relearning compared to young adults, independently of sleep. CONCLUSION Nocturnal sleep did not influence memory consolidation in any group. On the contrary, our findings suggest that nocturnal sleep harms retention in older adults. Age-related characteristics induce a worse relearning rate regardless of sleep occurrence.
Collapse
Affiliation(s)
- Marina Gonçalves Leal
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina, Brazil
| | | | - Yara Lucy Fidelix
- Department of Physical Education, Federal University of Vale do São Francisco, Petrolina, Brazil
| | - Eric Roig-Hierro
- Department of Applied Didatics, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
2
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024; 102:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Debarnot U, Metais A, Legrand M, Blache Y, Saimpont A. Interlimb transfer of sequential motor learning between upper and lower effectors. Gait Posture 2024; 113:412-418. [PMID: 39094235 DOI: 10.1016/j.gaitpost.2024.07.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Interlimb transfer of sequential motor learning (SML) refers to the positive influence of prior experiences in performing the same sequential movements using different effectors. Despite evidence from intermanual SML, and while most daily living activities involve interlimb cooperation and coordination between the four limbs, nothing is known about bilateral SML transfer between the upper and lower limbs. RESEARCH QUESTION We examined the transfer of bilateral SML from the upper to the lower limbs and vice versa. METHODS Twenty-four participants had to learn an initial bilateral SML task using the upper limbs and then performed the same sequence using the lower limbs during a transfer SML task. They performed the reversed situation 1 month apart. The performance was evaluated at the beginning and the end of both initial and transfer SML practice phases. RESULTS Significant and reciprocal transfer gains in performance were observed regardless of the effectors. Greater transfer gains in performance were observed at the beginning of the transfer SML from the lower to the upper limbs (44 %) but these gains vanished after practice with the transfer effectors (5 %). Although smaller gains were initially achieved in the transfer of SML from the upper to the lower limbs (15 %), these gains persisted and remained significant (9 %) after practice with the transfer effectors. SIGNIFICANCE Our results provide evidence of a reciprocal and asymmetrical interlimb transfer of bilateral SML between the upper and lower limbs. These findings could be leveraged as a relevant strategy in the context of sports and functional rehabilitation.
Collapse
Affiliation(s)
- Ursula Debarnot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France; Institut Universitaire de France.
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Marion Legrand
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Yoann Blache
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
4
|
Van Roy A, Albouy G, Burns RD, King BR. Children exhibit a developmental advantage in the offline processing of a learned motor sequence. COMMUNICATIONS PSYCHOLOGY 2024; 2:30. [PMID: 39242845 PMCID: PMC11332225 DOI: 10.1038/s44271-024-00082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/20/2024] [Indexed: 09/09/2024]
Abstract
Changes in specific behaviors across the lifespan are frequently reported as an inverted-U trajectory. That is, young adults exhibit optimal performance, children are conceptualized as developing systems progressing towards this ideal state, and older adulthood is characterized by performance decrements. However, not all behaviors follow this trajectory, as there are instances in which children outperform young adults. Here, we acquired data from 7-35 and >55 year-old participants and assessed potential developmental advantages in motor sequence learning and memory consolidation. Results revealed no credible evidence for differences in initial learning dynamics among age groups, but 7- to 12-year-old children exhibited smaller sequence-specific learning relative to adolescents, young adults and older adults. Interestingly, children demonstrated the greatest performance gains across the 5 h and 24 h offline periods, reflecting enhanced motor memory consolidation. These results suggest that children exhibit an advantage in the offline processing of recently learned motor sequences.
Collapse
Affiliation(s)
- Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Geneviève Albouy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ryan D Burns
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
5
|
Weightman M, Robinson B, Mitchell MP, Garratt E, Teal R, Rudgewick-Brown A, Demeyere N, Fleming MK, Johansen-Berg H. Sleep and motor learning in stroke (SMiLES): a longitudinal study investigating sleep-dependent consolidation of motor sequence learning in the context of recovery after stroke. BMJ Open 2024; 14:e077442. [PMID: 38355178 PMCID: PMC10868290 DOI: 10.1136/bmjopen-2023-077442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION There is growing evidence that sleep is disrupted after stroke, with worse sleep relating to poorer motor outcomes. It is also widely acknowledged that consolidation of motor learning, a critical component of poststroke recovery, is sleep-dependent. However, whether the relationship between disrupted sleep and poor outcomes after stroke is related to direct interference of sleep-dependent motor consolidation processes, is currently unknown. Therefore, the aim of the present study is to understand whether measures of motor consolidation mediate the relationship between sleep and clinical motor outcomes post stroke. METHODS AND ANALYSIS We will conduct a longitudinal observational study of up to 150 participants diagnosed with stroke affecting the upper limb. Participants will be recruited and assessed within 7 days of their stroke and followed up at approximately 1 and 6 months. The primary objective of the study is to determine whether sleep in the subacute phase of recovery explains the variability in upper limb motor outcomes after stroke (over and above predicted recovery potential from the Predict Recovery Potential algorithm) and whether this relationship is dependent on consolidation of motor learning. We will also test whether motor consolidation mediates the relationship between sleep and whole-body clinical motor outcomes, whether motor consolidation is associated with specific electrophysiological sleep signals and sleep alterations during subacute recovery. ETHICS AND DISSEMINATION This trial has received both Health Research Authority, Health and Care Research Wales and National Research Ethics Service approval (IRAS: 304135; REC: 22/LO/0353). The results of this trial will help to enhance our understanding of the role of sleep in recovery of motor function after stroke and will be disseminated via presentations at scientific conferences, peer-reviewed publication, public engagement events, stakeholder organisations and other forms of media where appropriate. TRIAL REGISTRATION NUMBER ClinicalTrials.gov: NCT05746260, registered on 27 February 2023.
Collapse
Affiliation(s)
- Matthew Weightman
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Barbara Robinson
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Morgan P Mitchell
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emma Garratt
- Buckinghamshire Oxfordshire and Berkshire West Integrated Care Board (BOB ICB), Oxford, Oxfordshire, UK
| | - Rachel Teal
- MRC Stroke Unit, Oxford Centre for Enablement, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew Rudgewick-Brown
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Nele Demeyere
- Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Melanie K Fleming
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Nicolas J, Carrier J, Swinnen SP, Doyon J, Albouy G, King BR. Targeted memory reactivation during post-learning sleep does not enhance motor memory consolidation in older adults. J Sleep Res 2024; 33:e14027. [PMID: 37794602 DOI: 10.1111/jsr.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers. A total of 17 older participants were trained on a motor task involving two auditory-cued sequences. During a post-learning nap, two auditory cues were played: one associated to a learned (i.e., reactivated) sequence and one control. Performance during two delayed re-tests did not differ between reactivated and non-reactivated sequences. Moreover, both associated and control sounds modulated brain responses, yet there were no consistent differences between the auditory cue types. Our results collectively demonstrate that older adults do not benefit from specific reactivation of a motor memory trace by an associated auditory cue during post-learning sleep. Based on previous research, it is possible that auditory stimulation during post-learning sleep could have boosted motor memory consolidation in a non-specific manner.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| |
Collapse
|
7
|
Weightman M, Robinson B, Fallows R, Henry AL, Kyle SD, Garratt E, Pick A, Teal R, Ajina S, Demeyere N, Espie CA, Seymour B, Johansen-Berg H, Fleming MK. Improving sleep and learning in rehabilitation after stroke, part 2 (INSPIRES2): study protocol for a home-based randomised control trial of digital cognitive behavioural therapy (dCBT) for insomnia. BMJ Open 2023; 13:e071764. [PMID: 37024247 PMCID: PMC10083871 DOI: 10.1136/bmjopen-2023-071764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
INTRODUCTION Consolidation of motor skill learning, a key component of rehabilitation post-stroke, is known to be sleep dependent. However, disrupted sleep is highly prevalent after stroke and is often associated with poor motor recovery and quality of life. Previous research has shown that digital cognitive behavioural therapy (dCBT) for insomnia can be effective at improving sleep quality after stroke. Therefore, the aim of this trial is to evaluate the potential for sleep improvement using a dCBT programme, to improve rehabilitation outcomes after stroke. METHODS AND ANALYSIS We will conduct a parallel-arm randomised controlled trial of dCBT (Sleepio) versus treatment as usual among individuals following stroke affecting the upper limb. Up to 100 participants will be randomly allocated (2:1) into either the intervention (6-8 week dCBT) or control (continued treatment as usual) group. The primary outcome of the study will be change in insomnia symptoms pre to post intervention compared with treatment as usual. Secondary outcomes include improvement in overnight motor memory consolidation and sleep measures between intervention groups, correlations between changes in sleep behaviour and overnight motor memory consolidation in the dCBT group and changes in symptoms of depression and fatigue between the dCBT and control groups. Analysis of covariance models and correlations will be used to analyse data from the primary and secondary outcomes. ETHICS AND DISSEMINATION The study has received approval from the National Research Ethics Service (22/EM/0080), Health Research Authority (HRA) and Health and Care Research Wales (HCRW), IRAS ID: 306 291. The results of this trial will be disseminated via presentations at scientific conferences, peer-reviewed publication, public engagement events, stakeholder organisations and other forms of media where appropriate. TRIAL REGISTRATION NUMBER NCT05511285.
Collapse
Affiliation(s)
- Matthew Weightman
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Barbara Robinson
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ricky Fallows
- Patient and Public Involvement (PPI) Author, Oxford, UK
| | - Alasdair L Henry
- Big Health Ltd, London, UK
- Sir Jules Thorn Sleep & Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Simon D Kyle
- Sir Jules Thorn Sleep & Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Emma Garratt
- Oxfordshire Stroke Rehabilitation Unit (OSRU), Oxford Health NHS Foundation Trust, Oxford, UK
| | - Anton Pick
- Oxford Centre for Enablement (OCE), Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rachel Teal
- MRC Stroke Unit, Oxford Centre for Enablement (OCE), Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sara Ajina
- Department of Rehabilitation and Therapy Services, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Nele Demeyere
- Wolfson Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Cognitive Neuropsychology Centre, Department of Experimental Psychology, Oxford University, Oxford, UK
| | - Colin A Espie
- Big Health Ltd, London, UK
- Sir Jules Thorn Sleep & Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ben Seymour
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Melanie K Fleming
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Metais A, Muller CO, Boublay N, Breuil C, Guillot A, Daligault S, Di Rienzo F, Collet C, Krolak-Salmon P, Saimpont A. Anodal tDCS does not enhance the learning of the sequential finger-tapping task by motor imagery practice in healthy older adults. Front Aging Neurosci 2022; 14:1060791. [PMID: 36570544 PMCID: PMC9780548 DOI: 10.3389/fnagi.2022.1060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Motor imagery practice (MIP) and anodal transcranial direct current stimulation (a-tDCS) are innovative methods with independent positive influence on motor sequence learning (MSL) in older adults. Objective The present study investigated the effect of MIP combined with a-tDCS over the primary motor cortex (M1) on the learning of a finger tapping sequence of the non-dominant hand in healthy older adults. Methods Thirty participants participated in this double-blind sham-controlled study. They performed three MIP sessions, one session per day over three consecutive days and a retention test 1 week after the last training session. During training / MIP, participants had to mentally rehearse an 8-element finger tapping sequence with their left hand, concomitantly to either real (a-tDCS group) or sham stimulation (sham-tDCS group). Before and after MIP, as well as during the retention test, participants had to physically perform the same sequence as fast and accurately as possible. Results Our main results showed that both groups (i) improved their performance during the first two training sessions, reflecting acquisition/on-line performance gains, (ii) stabilized their performance from one training day to another, reflecting off-line consolidation; as well as after 7 days without practice, reflecting retention, (iii) for all stages of MSL, there was no significant difference between the sham-tDCS and a-tDCS groups. Conclusion This study highlights the usefulness of MIP in motor sequence learning for older adults. However, 1.5 mA a-tDCS did not enhance the beneficial effects of MIP, which adds to the inconsistency of results found in tDCS studies. Future work is needed to further explore the best conditions of use of tDCS to improve motor sequence learning with MIP.
Collapse
Affiliation(s)
- Angèle Metais
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Camille O. Muller
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,EuroMov Digital Health in Motion, Université Montpellier, IMT Mines Alès, Montpellier, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Sébastien Daligault
- Centre de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Christian Collet
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France,*Correspondence: Arnaud Saimpont,
| |
Collapse
|
9
|
Gudberg C, Stevelink R, Douaud G, Wulff K, Lazari A, Fleming MK, Johansen-Berg H. Individual differences in slow wave sleep architecture relate to variation in white matter microstructure across adulthood. Front Aging Neurosci 2022; 14:745014. [PMID: 36092806 PMCID: PMC9453235 DOI: 10.3389/fnagi.2022.745014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep plays a key role in supporting brain function and resilience to brain decline. It is well known that sleep changes substantially with aging and that aging is associated with deterioration of brain structure. In this study, we sought to characterize the relationship between slow wave slope (SWslope)—a key marker of sleep architecture and an indirect proxy of sleep quality—and microstructure of white matter pathways in healthy adults with no sleep complaints. Participants were 12 young (24–27 years) and 12 older (50–79 years) adults. Sleep was assessed with nocturnal electroencephalography (EEG) and the Pittsburgh Sleep Quality Index (PSQI). White matter integrity was assessed using tract-based spatial statistics (TBSS) on tensor-based metrics such as Fractional Anisotropy (FA) and Mean Diffusivity (MD). Global PSQI score did not differ between younger (n = 11) and older (n = 11) adults (U = 50, p = 0.505), but EEG revealed that younger adults had a steeper SWslope at both frontal electrode sites (F3: U = 2, p < 0.001, F4: U = 4, p < 0.001, n = 12 younger, 10 older). There were widespread correlations between various diffusion tensor-based metrics of white matter integrity and sleep SWslope, over and above effects of age (n = 11 younger, 9 older). This was particularly evident for the corpus callosum, corona radiata, superior longitudinal fasciculus, internal and external capsule. This indicates that reduced sleep slow waves may be associated with widespread white matter deterioration. Future studies should investigate whether interventions targeted at improving sleep architecture also impact on decline in white matter microstructure in older adults.
Collapse
Affiliation(s)
- Christel Gudberg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Remi Stevelink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Katharina Wulff
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Radiation Sciences and Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Melanie K. Fleming
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Melanie K. Fleming,
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Fernández RS, Picco S, Beron JC, Bavassi L, Campos J, Allegri RF, Pedreira ME. Improvement of episodic memory retention by a memory reactivation intervention across the lifespan: from younger adults to amnesic patients. Transl Psychiatry 2022; 12:144. [PMID: 35383151 PMCID: PMC8983690 DOI: 10.1038/s41398-022-01915-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Spontaneous reactivation of recently acquired memories is a fundamental mechanism of memory stabilization. Re-exposure to specific learned cues during sleep or awake states, namely targeted memory reactivation, has been shown to improve memory retention at long delays. Manipulation of memory reactivation could have potential clinical value in populations with memory deficits or cognitive decline. However, no previous study investigated a target memory reactivation approach on those populations. Here we tested the hypothesis that a reactivation-based intervention would improve episodic memory performance in healthy adults and amnestic patients. On Day 1, young adults, old adults and amnestic Mild Cognitive Impairment patients (n = 150) learned face-name pairs and 24 h later either received a reactivation intervention or a reactivation control (Day 2). On Day 3, associative and item memory were assessed. A robust Bayesian Generalized Mixed Model was implemented to estimate intervention effects on groups. Groups that underwent the reactivation-based intervention showed improved associative memory retention. Notably, amnestic patients benefited more from the intervention as they also had better item memory retention than controls. These findings support memory reactivation as stabilization and strengthening mechanism irrespectively of age and cognitive status, and provides proof-of-concept evidence that reactivation-based interventions could be implemented in the treatment and rehabilitation of populations with memory deficits.
Collapse
Affiliation(s)
- Rodrigo S Fernández
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE - CONICET), Ciudad de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina.
| | - Soledad Picco
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE - CONICET), Ciudad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Cruz Beron
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE - CONICET), Ciudad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Luz Bavassi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE - CONICET), Ciudad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Campos
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Fleni, Buenos Aires, Argentina
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Neuropsychiatry and Neuropsychology, Fleni, Buenos Aires, Argentina
| | - María E Pedreira
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE - CONICET), Ciudad de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Johnson BP, Cohen LG. Reward and plasticity: Implications for neurorehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:331-340. [PMID: 35034746 DOI: 10.1016/b978-0-12-819410-2.00018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroplasticity follows nervous system injury in the presence or absence of rehabilitative treatments. Rehabilitative interventions can be used to modulate adaptive neuroplasticity, reducing motor impairment and improving activities of daily living in patients with brain lesions. Learning principles guide some rehabilitative interventions. While basic science research has shown that reward combined with training enhances learning, this principle has been only recently explored in the context of neurorehabilitation. Commonly used reinforcers may be more or less rewarding depending on the individual or the context in which the task is performed. Studies in healthy humans showed that both reward and punishment can enhance within-session motor performance; but reward, and not punishment, improves consolidation and retention of motor skills. On the other hand, neurorehabilitative training after brain lesions involves complex tasks (e.g., walking and activities of daily living). The contribution of reward to neurorehabilitation is incompletely understood. Here, we discuss recent research on the role of reward in neurorehabilitation and the needed directions of future research.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
12
|
Sousa FYM, Silva YDMRE, Santos AKDS, Palma GCDS, Lemos RLF, Bonuzzi GMG. The role of nocturnal sleep on the retention, adaptability, and relearning rate of a motor skill. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-657420220017221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Kim T, Buchanan JJ, Bernard JA, Wright DL. Improving online and offline gain from repetitive practice using anodal tDCS at dorsal premotor cortex. NPJ SCIENCE OF LEARNING 2021; 6:31. [PMID: 34686693 PMCID: PMC8536655 DOI: 10.1038/s41539-021-00109-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Administering anodal transcranial direct current stimulation at the left dorsal premotor cortex (PMd) but not right PMd throughout the repetitive practice of three novel motor sequences resulted in improved offline performance usually only observed after interleaved practice. This gain only emerged following overnight sleep. These data are consistent with the proposed proprietary role of left PMd for motor sequence learning and the more recent claim that PMd is central to sleep-related consolidation of novel skill memory.
Collapse
Affiliation(s)
- Taewon Kim
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - John J Buchanan
- Department of Kinesiology, Texas A&M University, College Station, TX, 77845, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77845, USA
| | - Jessica A Bernard
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77845, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77845, USA
| | - David L Wright
- Department of Kinesiology, Texas A&M University, College Station, TX, 77845, USA
| |
Collapse
|
14
|
Leong RLF, Lo JC, Chee MWL. Sleep-dependent prospective memory consolidation is impaired with aging. Sleep 2021; 44:zsab069. [PMID: 33755184 PMCID: PMC8436136 DOI: 10.1093/sleep/zsab069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Existing literature suggests that sleep-dependent memory consolidation is impaired in older adults but may be preserved for personally relevant information. Prospective memory (PM) involves remembering to execute future intentions in a timely manner and has behavioral importance. As previous work suggests that N3 sleep is important for PM in young adults, we investigated if the role of N3 sleep in PM consolidation would be maintained in older adults. METHODS Forty-nine young adults (mean age ± SD: 21.8 ± 1.61 years) and 49 healthy older adults (mean age ± SD: 65.7 ± 6.30 years) were randomized into sleep and wake groups. After a semantic categorization task, participants encoded intentions comprising four related and four unrelated cue-action pairs. They were instructed to remember to perform these actions in response to cue words presented during a second semantic categorization task 12 h later that encompassed either daytime wake (09:00 am-21:00 pm) or overnight sleep with polysomnography (21:00 pm-09:00 am). RESULTS The significant condition × age group × relatedness interaction suggested that the sleep benefit on PM intentions varied according to age group and relatedness (p = 0.01). For related intentions, sleep relative to wake benefitted young adults' performance (p < 0.001) but not older adults (p = 0.30). For unrelated intentions, sleep did not improve PM for either age group. While post-encoding N3 was significantly associated with related intentions' execution in young adults (r = 0.43, p = 0.02), this relationship was not found for older adults (r = -0.07, p = 0.763). CONCLUSIONS The age-related impairment of sleep-dependent memory consolidation extends to PM. Our findings add to an existing body of work suggesting that the link between sleep and memory is functionally weakened in older adulthood.
Collapse
Affiliation(s)
- Ruth L F Leong
- Centre for Sleep and Cognition, Human Potential Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - June C Lo
- Centre for Sleep and Cognition, Human Potential Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Human Potential Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Fitzroy AB, Kainec KA, Seo J, Spencer RMC. Encoding and consolidation of motor sequence learning in young and older adults. Neurobiol Learn Mem 2021; 185:107508. [PMID: 34450244 DOI: 10.1016/j.nlm.2021.107508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
Sleep benefits motor memory consolidation in young adults, but this benefit is reduced in older adults. Here we sought to understand whether differences in the neural bases of encoding between young and older adults contribute to aging-related differences in sleep-dependent consolidation of an explicit variant of the serial reaction time task (SRTT). Seventeen young and 18 older adults completed two sessions (nap, wake) one week apart. In the MRI, participants learned the SRTT. Following an afternoon interval either awake or with a nap (recorded with high-density polysomnography), performance on the SRTT was reassessed in the MRI. Imaging and behavioral results from SRTT performance showed clear sleep-dependent consolidation of motor sequence learning in older adults after a daytime nap, compared to an equal interval awake. Young adults, however, showed brain activity and behavior during encoding consistent with high SRTT performance prior to the sleep interval, and did not show further sleep-dependent performance improvements. Young adults did show reduced cortical activity following sleep, suggesting potential systems-level consolidation related to automatization. Sleep physiology data showed that sigma activity topography was affected by hippocampal and cortical activation prior to the nap in both age groups, and suggested a role of theta activity in sleep-dependent automatization in young adults. These results suggest that previously observed aging-related sleep-dependent consolidation deficits may be driven by aging-related deficiencies in fast learning processes. Here we demonstrate that when sufficient encoding strength is reached with additional training, older adults demonstrate intact sleep-dependent consolidation of motor sequence learning.
Collapse
Affiliation(s)
- Ahren B Fitzroy
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Kyle A Kainec
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Jeehye Seo
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States.
| | - Rebecca M C Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, United States; Department of Psychological & Brain Sciences, University of Massachusetts Amherst, United States; Institute for Applied Life Sciences, University of Massachusetts Amherst, United States.
| |
Collapse
|
16
|
Kawai M, Schneider LD, Linkovski O, Jordan JT, Karna R, Pirog S, Cotto I, Buck C, Giardino WJ, O'Hara R. High-Resolution Spectral Sleep Analysis Reveals a Novel Association Between Slow Oscillations and Memory Retention in Elderly Adults. Front Aging Neurosci 2021; 12:540424. [PMID: 33505299 PMCID: PMC7829345 DOI: 10.3389/fnagi.2020.540424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022] Open
Abstract
Objective: In recognition of the mixed associations between traditionally scored slow wave sleep and memory, we sought to explore the relationships between slow wave sleep, electroencephalographic (EEG) power spectra during sleep and overnight verbal memory retention in older adults. Design, Setting, Participants, and Measurements: Participants were 101 adults without dementia (52% female, mean age 70.3 years). Delayed verbal memory was first tested in the evening prior to overnight polysomnography (PSG). The following morning, subjects were asked to recall as many items as possible from the same List (overnight memory retention; OMR). Partial correlation analyses examined the associations of delayed verbal memory and OMR with slow wave sleep (SWS) and two physiologic EEG slow wave activity (SWA) power spectral bands (0.5-1 Hz slow oscillations vs. 1-4 Hz delta activity). Results: In subjects displaying SWS, SWS was associated with enhanced delayed verbal memory, but not with OMR. Interestingly, among participants that did not show SWS, OMR was significantly associated with a higher slow oscillation relative power, during NREM sleep in the first ultradian cycle, with medium effect size. Conclusions: These findings suggest a complex relationship between SWS and memory and illustrate that even in the absence of scorable SWS, older adults demonstrate substantial slow wave activity. Further, these slow oscillations (0.5-1 Hz), in the first ultradian cycle, are positively associated with OMR, but only in those without SWS. Our findings raise the possibility that precise features of slow wave activity play key roles in maintaining memory function in healthy aging. Further, our results underscore that conventional methods of sleep evaluation may not be sufficiently sensitive to detect associations between SWA and memory in older adults.
Collapse
Affiliation(s)
- Makoto Kawai
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Sierra Pacific Mental Illness Research Education and Clinical Centers (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Logan D. Schneider
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Sierra Pacific Mental Illness Research Education and Clinical Centers (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Omer Linkovski
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
| | - Josh T. Jordan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Psychology, Dominican University of California, San Rafael, CA, United States
| | - Rosy Karna
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sophia Pirog
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Isabelle Cotto
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Casey Buck
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - William J. Giardino
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, United States
- Sierra Pacific Mental Illness Research Education and Clinical Centers (MIRECC), VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
17
|
Perceval G, Martin AK, Copland DA, Laine M, Meinzer M. Multisession transcranial direct current stimulation facilitates verbal learning and memory consolidation in young and older adults. BRAIN AND LANGUAGE 2020; 205:104788. [PMID: 32199339 DOI: 10.1016/j.bandl.2020.104788] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/27/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
This study investigated effects of multisession transcranial direct-current stimulation on learning and maintenance of novel memory content and scrutinised effects of baseline cognitive status and the role of multi-session tDCS on overnight memory consolidation. In a prospective, randomized, double-blind, parallel-group, sham-tDCS controlled design, 101 healthy young and older adults completed a five-day verbal associative learning paradigm while receiving multisession tDCS to the task-relevant left prefrontal cortex. In older adults, active multisession tDCS enhanced recall performance after each daily training session. Effects were maintained the next morning and during follow-up assessments (one week; three months). In young adults, multisession tDCS significantly increased long-term recall. Unlike previous findings in the motor domain, beneficial effects of multisession tDCS on cognitive learning and memory were notexclusively due to enhanced memory consolidation. Positive stimulation effects were primarily found in participants with lower baseline learning ability, suggesting that multisession tDCS may counteract memory impairment in health and disease.
Collapse
Affiliation(s)
- Garon Perceval
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia; Department of Psychology, School of Education, Soochow University, Suzhou, China
| | - Andrew K Martin
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia; University of Kent, Department of Psychology, Canterbury, UK
| | - David A Copland
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia; The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Matti Laine
- Åbo Akademi University, Department of Psychology, Turku, Finland
| | - Marcus Meinzer
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia; University Medicine Greifswald, Department of Neurology, Greifswald, Germany.
| |
Collapse
|
18
|
Sensorimotor performance is improved by targeted memory reactivation during a daytime nap in healthy older adults. Neurosci Lett 2020; 731:134973. [PMID: 32305379 DOI: 10.1016/j.neulet.2020.134973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022]
Abstract
Sensorimotor consolidation occurs during sleep. However, the benefit of sleep-based consolidation decreases with age due to decreased sleep quality and quantity. This study aimed to enhance sensorimotor performance through repetitive delivery of task-based auditory cues during sleep, known as targeted memory reactivation (TMR). Healthy older adults performed a non-dominant arm throwing task before and after a 1 h nap. While napping, half of participants received TMR throughout the hour. Participants who received TMR during sleep demonstrated a greater overall change in throwing accuracy from the start of the first to the end of the second throwing task session. However, there was no generalization of throwing accuracy to variants of the task or to a novel dart throwing task. Findings support the use of TMR during sleep to enhance task-specific sensorimotor performance in healthy older adults despite age-related decreases in sleep quality and quantity. Future research is needed to evaluate the effects of TMR on rehabilitation protocols.
Collapse
|
19
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Lee Shing Y, Werkle-Bergner M. Memory quality modulates the effect of aging on memory consolidation during sleep: Reduced maintenance but intact gain. Neuroimage 2020; 209:116490. [PMID: 31883456 PMCID: PMC7068706 DOI: 10.1016/j.neuroimage.2019.116490] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 01/29/2023] Open
Abstract
Successful consolidation of associative memories relies on the coordinated interplay of slow oscillations and sleep spindles during non-rapid eye movement (NREM) sleep. This enables the transfer of labile information from the hippocampus to permanent memory stores in the neocortex. During senescence, the decline of the structural and functional integrity of the hippocampus and neocortical regions is paralleled by changes of the physiological events that stabilize and enhance associative memories during NREM sleep. However, the currently available evidence is inconclusive as to whether and under which circumstances memory consolidation is impacted during aging. To approach this question, 30 younger adults (19-28 years) and 36 older adults (63-74 years) completed a memory task based on scene-word associations. By tracing the encoding quality of participants' individual memory associations, we demonstrate that previous learning determines the extent of age-related impairments in memory consolidation. Specifically, the detrimental effects of aging on memory maintenance were greatest for mnemonic contents of intermediate encoding quality, whereas memory gain of poorly encoded memories did not differ by age. Ambulatory polysomnography (PSG) and structural magnetic resonance imaging (MRI) data were acquired to extract potential predictors of memory consolidation from each participant's NREM sleep physiology and brain structure. Partial Least Squares Correlation was used to identify profiles of interdependent alterations in sleep physiology and brain structure that are characteristic for increasing age. Across age groups, both the 'aged' sleep profile, defined by decreased slow-wave activity (0.5-4.5 Hz), and a reduced presence of slow oscillations (0.5-1 Hz), slow, and fast spindles (9-12.5 Hz; 12.5-16 Hz), as well as the 'aged' brain structure profile, characterized by gray matter reductions in the medial prefrontal cortex, thalamus, entorhinal cortex, and hippocampus, were associated with reduced memory maintenance. However, inter-individual differences in neither sleep nor structural brain integrity alone qualified as the driving force behind age differences in sleep-dependent consolidation in the present study. Our results underscore the need for novel and age-fair analytic tools to provide a mechanistic understanding of age differences in memory consolidation.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Rue P.-A.-de-Faucigny 2, 1701, Fribourg, Switzerland
| | - Yee Lee Shing
- Department of Developmental Psychology, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629, Frankfurt Am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany.
| |
Collapse
|
20
|
Schapiro AC, Reid AG, Morgan A, Manoach DS, Verfaellie M, Stickgold R. The hippocampus is necessary for the consolidation of a task that does not require the hippocampus for initial learning. Hippocampus 2019; 29:1091-1100. [PMID: 31157946 DOI: 10.1002/hipo.23101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
During sleep, the hippocampus plays an active role in consolidating memories that depend on it for initial encoding. There are hints in the literature that the hippocampus may have a broader influence, contributing to the consolidation of memories that may not initially require the area. We tested this possibility by evaluating learning and consolidation of the motor sequence task (MST) in hippocampal amnesics and demographically matched control participants. While the groups showed similar initial learning, only controls exhibited evidence of overnight consolidation. These results demonstrate that the hippocampus can be required for normal consolidation of a task without being required for its acquisition, suggesting that the area plays a broader role in coordinating memory consolidation than has previously been assumed.
Collapse
Affiliation(s)
- Anna C Schapiro
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allison G Reid
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Alexandra Morgan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Dara S Manoach
- Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, Massachusetts.,Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Barnhoorn JS, Van Asseldonk EHF, Verwey WB. Differences in chunking behavior between young and older adults diminish with extended practice. PSYCHOLOGICAL RESEARCH 2019; 83:275-285. [PMID: 29270674 PMCID: PMC6433807 DOI: 10.1007/s00426-017-0963-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/12/2017] [Indexed: 11/27/2022]
Abstract
Previous research found reduced motor chunking behavior in older adults compared to young adults. However, it remains unclear whether older adults are unable to use a chunking strategy or whether they are just slower in developing them. Our goal was to investigate the effect of extended practice on the development of chunking behavior in healthy older adults. A group of young and a group of healthy older adults between 74 and 85 years of age visited the lab on 2 days. A sequence of 3 and a sequence of 6 elements were both practiced 432 times in a discrete sequence production task. We found that age differences in chunking behavior, as measured by the difference between initiation and execution of the sequence, diminish with extended practice. Furthermore, in older, but not in young adults, slow responses that are often interpreted as the first response of a next motor chunk were associated with a finger that was also slow during performance of the random sequences. This finding calls for more attention to biomechanical factors in future theory about aging and sequence learning.
Collapse
Affiliation(s)
- J. S. Barnhoorn
- Cognitive Psychology and Ergonomics, MIRA, University of Twente, Enschede, The Netherlands
| | - E. H. F. Van Asseldonk
- Department of Biomechanical Engineering, MIRA, University of Twente, Enschede, The Netherlands
| | - W. B. Verwey
- Cognitive Psychology and Ergonomics, MIRA, University of Twente, Enschede, The Netherlands
- Human Performance Laboratories, Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| |
Collapse
|
22
|
Vien C, Boré A, Boutin A, Pinsard B, Carrier J, Doyon J, Fogel S. Thalamo-Cortical White Matter Underlies Motor Memory Consolidation via Modulation of Sleep Spindles in Young and Older Adults. Neuroscience 2019; 402:104-115. [PMID: 30615913 DOI: 10.1016/j.neuroscience.2018.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/23/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
Abstract
Ample evidence suggests that consolidation of the memory trace associated with a newly acquired motor sequence is supported by thalamo-cortical spindle activity during subsequent sleep, as well as functional changes in a distributed cortico-striatal network. To date, however, no studies have investigated whether the structural white matter connections between these regions affect motor sequence memory consolidation in relation with sleep spindles. Here, we used diffusion weighted imaging (DWI) tractography to reconstruct the major fascicles of the cortico-striato-pallido-thalamo-cortical loop in both young and older participants who were trained on an explicit finger sequence learning task before and after a daytime nap. Thereby, this allowed us to examine whether post-learning sleep spindles measured using polysomnographic recordings interact with consolidation processes and this specific neural network. Our findings provide evidence corroborating the critical role of NREM2 thalamo-cortical sleep spindles in motor sequence memory consolidation, and show that the post-learning changes in these neurophysiological events relate specifically to white matter characteristics in thalamo-cortical fascicles. Moreover, we demonstrate that microstructure along this fascicle relates indirectly to offline gains in performance through an increase of spindle density over motor-related cortical areas. These results suggest that the integrity of thalamo-cortical projections, via their impact on sleep spindle generation, may represent one of the critical mechanisms modulating the expression of sleep-dependent offline gains following motor sequence learning in healthy adults.
Collapse
Affiliation(s)
- Catherine Vien
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada
| | - Arnaud Boré
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Arnaud Boutin
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, 75006 Paris, France
| | - Julie Carrier
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; University of Montreal, Montreal, Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montreal, Montreal, Canada
| | - Julien Doyon
- Functional Neuroimaging Unit, CRIUGM, Montreal, QC, Canada; McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
23
|
Backhaus W, Braass H, Gerloff C, Hummel FC. Can Daytime Napping Assist the Process of Skills Acquisition After Stroke? Front Neurol 2018; 9:1002. [PMID: 30524365 PMCID: PMC6262055 DOI: 10.3389/fneur.2018.01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 01/14/2023] Open
Abstract
Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10-20 min), or (iii) long nap (50-80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains.
Collapse
Affiliation(s)
- Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Hanna Braass
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C. Hummel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit? Neural Plast 2018; 2018:3076986. [PMID: 30186317 PMCID: PMC6110005 DOI: 10.1155/2018/3076986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/28/2018] [Indexed: 12/26/2022] Open
Abstract
Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions.
Collapse
|
25
|
Targeted Neuromodulation of Abnormal Interhemispheric Connectivity to Promote Neural Plasticity and Recovery of Arm Function after Stroke: A Randomized Crossover Clinical Trial Study Protocol. Neural Plast 2018; 2018:9875326. [PMID: 29721010 PMCID: PMC5867606 DOI: 10.1155/2018/9875326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/10/2018] [Accepted: 02/11/2018] [Indexed: 12/29/2022] Open
Abstract
Background Despite intensive rehabilitation efforts, most stroke survivors have persistent functional disability of the paretic arm and hand. These motor impairments may be due in part to maladaptive changes in structural and functional connections between brain regions. The following early stage clinical trial study protocol describes a noninvasive brain stimulation approach to target transcallosally mediated interhemispheric connections between the ipsi- and contralesional motor cortices (iM1 and cM1) using corticocortical paired associative stimulation (ihPAS). This clinical trial aims to characterize ihPAS-induced modulation of interhemispheric connectivity and the effect on motor skill performance and learning in chronic stroke survivors. Methods/Design A repeated-measures, cross-over design study will recruit 20 individuals post-stroke with chronic mild–moderate paretic arm impairment. Each participant will complete an active ihPAS and control ihPAS session. Assessments of cortical excitability and motor skill performance will be conducted prior to and at four time points following the ihPAS intervention. The primary outcome measures will be: TMS-evoked interhemispheric motor connectivity, corticomotor excitability, and response time on a modified serial reaction time task. Discussion/Conclusion The findings from this single-site early stage clinical trial will provide foundational results to inform the design of larger-scale, multisite clinical trials to evaluate the therapeutic potential of ihPAS-based neuromodulation for upper limb recovery after stroke. This trial is registered with NCT02465034.
Collapse
|
26
|
King BR, Saucier P, Albouy G, Fogel SM, Rumpf JJ, Klann J, Buccino G, Binkofski F, Classen J, Karni A, Doyon J. Cerebral Activation During Initial Motor Learning Forecasts Subsequent Sleep-Facilitated Memory Consolidation in Older Adults. Cereb Cortex 2018; 27:1588-1601. [PMID: 26802074 DOI: 10.1093/cercor/bhv347] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Older adults exhibit deficits in motor memory consolidation; however, little is known about the cerebral correlates of this impairment. We thus employed fMRI to investigate the neural substrates underlying motor sequence memory consolidation, and the modulatory influence of post-learning sleep, in healthy older adults. Participants were trained on a motor sequence and retested following an 8-h interval including wake or diurnal sleep as well as a 22-h interval including a night of sleep. Results demonstrated that a post-learning nap improved offline consolidation across same- and next-day retests. This enhanced consolidation was reflected by increased activity in the putamen and the medial temporal lobe, including the hippocampus, regions that have previously been implicated in sleep-dependent neural plasticity in young adults. Moreover, for the first time in older adults, the neural substrates subserving initial motor learning, including the putamen, cerebellum, and parietal cortex, were shown to forecast subsequent consolidation depending on whether a post-learning nap was afforded. Specifically, sufficient activation in a motor-related network appears to be necessary to trigger sleep-facilitated consolidation in older adults. Our findings not only demonstrate that post-learning sleep can enhance motor memory consolidation in older adults, but also provide the system-level neural correlates of this beneficial effect.
Collapse
Affiliation(s)
- Bradley R King
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada.,Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Philippe Saucier
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Genevieve Albouy
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
| | - Stuart M Fogel
- Brain and Mind Institute and Department of Psychology, Western University, London, Canada
| | | | - Juliane Klann
- Division of Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Giovanni Buccino
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy and IRCCS Neuromed, Pozzilli, Italy
| | - Ferdinand Binkofski
- Division of Clinical and Cognitive Neurosciences, Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Avi Karni
- Sagol Department of Neurobiology, Department of Human Biology and The E.J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Julien Doyon
- Functional Neuroimaging Unit, Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
27
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
28
|
Blischke K, Malangré A. Task Complexity Modulates Sleep-Related Offline Learning in Sequential Motor Skills. Front Hum Neurosci 2017; 11:374. [PMID: 28790905 PMCID: PMC5525265 DOI: 10.3389/fnhum.2017.00374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Recently, a number of authors have advocated the introduction of gross motor tasks into research on sleep-related motor offline learning. Such tasks are often designed to be more complex than traditional key-pressing tasks. However, until now, little effort has been undertaken to scrutinize the role of task complexity in any systematic way. Therefore, the effect of task complexity on the consolidation of gross motor sequence memory was examined by our group in a series of three experiments. Criterion tasks always required participants to produce unrestrained arm movement sequences by successively fitting a small peg into target holes on a pegboard. The sequences always followed a certain spatial pattern in the horizontal plane. The targets were visualized prior to each transport movement on a computer screen. The tasks differed with respect to sequence length and structural complexity. In each experiment, half of the participants initially learned the task in the morning and were retested 12 h later following a wake retention interval. The other half of the subjects underwent practice in the evening and was retested 12 h later following a night of sleep. The dependent variables were the error rate and total sequence execution time (inverse to the sequence execution speed). Performance generally improved during acquisition. The error rate was always low and remained stable during retention. The sequence execution time significantly decreased again following sleep but not after waking when the sequence length was long and structural complexity was high. However, sleep-related offline improvements were absent when the sequence length was short or when subjects performed a highly regular movement pattern. It is assumed that the occurrence of sleep-related offline performance improvements in sequential motor tasks is associated with a sufficient amount of motor task complexity.
Collapse
Affiliation(s)
- Klaus Blischke
- Laboratory of Training Science, Department of Sport Science, Training Science, Saarland UniversitySaarbrüecken, Germany
| | - Andreas Malangré
- Laboratory of Training Science, Department of Sport Science, Training Science, Saarland UniversitySaarbrüecken, Germany
| |
Collapse
|
29
|
Scullin MK, Fairley J, Decker MJ, Bliwise DL. The Effects of an Afternoon Nap on Episodic Memory in Young and Older Adults. Sleep 2017; 40:3059371. [PMID: 28329381 PMCID: PMC5445560 DOI: 10.1093/sleep/zsx035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Study Objectives In young adults, napping is hypothesized to benefit episodic memory retention (eg, via consolidation). Whether this relationship is present in older adults has not been adequately tested but is an important question because older adults display marked changes in sleep and memory. Design Between-subjects design. Setting Sleep laboratory at Emory University School of Medicine. Participants Fifty healthy young adults (18-29) and 45 community-dwelling older adults (58-83). Intervention Participants were randomly assigned to a 90-minute nap opportunity or an equal interval of quiet wakefulness. Measurements and Results Participants underwent an item-wise directed forgetting learning procedure in which they studied words that were individually followed by the instruction to "remember" or "forget." Following a 90-minute retention interval filled with quiet wakefulness or a nap opportunity, they were asked to free recall and recognize those words. Young adults retained significantly more words following a nap interval than a quiet wakefulness interval on both free recall and recognition tests. There was modest evidence for greater nap-related retention of "remember" items relative to "forget" items for free recall but not recognition. Older adults' memory retention did not differ across nap and quiet wakefulness conditions, although they demonstrated greater fragmentation, lower N3, and lower rapid eye movement duration than the young adults. Conclusions In young adults, an afternoon nap benefits episodic memory retention, but such benefits decrease with advancing age.
Collapse
Affiliation(s)
- Michael K Scullin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Jacqueline Fairley
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| | - Michael J Decker
- Francis Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH
| | - Donald L Bliwise
- Department of Neurology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
30
|
Gui WJ, Li HJ, Guo YH, Peng P, Lei X, Yu J. Age-related differences in sleep-based memory consolidation: A meta-analysis. Neuropsychologia 2017; 97:46-55. [PMID: 28161367 DOI: 10.1016/j.neuropsychologia.2017.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 01/04/2023]
Abstract
A period of post-learning sleep benefits memory consolidation compared with an equal-length wake interval. However, whether this sleep-based memory consolidation changes as a function of age remains controversial. Here we report a meta-analysis that investigates the age differences in the sleep-based memory consolidation in two types of memory: declarative memory and procedural memory. The meta-analysis included 22 comparisons of the performance between young adults (N =640) and older adults (N =529) on behavioral tasks measuring sleep-based memory consolidation. Our results showed a significant overall sleep-based beneficial effect in young adults but not in older adults. However, further analyses suggested that the age differences were mainly manifested in sleep-based declarative memory consolidation but not in procedural memory consolidation. We discussed the possible underlying mechanisms for the age-related degradation in sleep-based memory consolidation. Further research is needed to determine the crucial components for sleep-related memory consolidation in older adults such as age-related changes in neurobiological and cardiovascular functions, which may play an important role in this context and have the potential to delineate the interrelationships between age-related changes in sleep and memory.
Collapse
Affiliation(s)
- Wen-Jun Gui
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hui-Jie Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Hua Guo
- MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom; University of Cambridge, The Old Schools, Cambridge CB2 1TN, United Kingdom
| | - Peng Peng
- Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln NE 68583, USA
| | - Xu Lei
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Backhaus W, Kempe S, Hummel FC. The effect of sleep on motor learning in the aging and stroke population - a systematic review. Restor Neurol Neurosci 2016; 34:153-64. [PMID: 26835597 DOI: 10.3233/rnn-150521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is extensive evidence for positive effects of sleep on motor learning in young individuals; however, the effects of sleep on motor learning in people with stroke and in healthy older individuals are not well understood. The aim of this systematic review was to quantify the association between sleep and procedural memory performance - a marker for motor learning - in healthy older people and people with stroke. After searches in PubMed, Medline and Embase fourteen studies, including 44 subjects after stroke and 339 healthy older participants were included. Overall, sleep was found to enhance motor performance in people after stroke in comparison to an equivalent time of wakefulness. In addition, although evidence is limited, sleep only enhanced motor performance in people after stroke and not in age-matched healthy older adults. In older adults the effect of a sleep intervention did - in general - not differ from equivalent periods of wakefulness. Tasks with whole hand or whole body movements could show significant changes. The results suggest a delayed retention effect after longer breaks including sleep, hinting towards a changed learning strategy as a result of aging. Current evidence for sleep dependent learning in people after stroke is promising, however sparse.
Collapse
|
32
|
Backhaus W, Braaß H, Gerloff C, Hummel F. EP 118. Can midday naps boost learning in older adults? Clin Neurophysiol 2016. [DOI: 10.1016/j.clinph.2016.05.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Bottary R, Sonni A, Wright D, Spencer RMC. Insufficient chunk concatenation may underlie changes in sleep-dependent consolidation of motor sequence learning in older adults. ACTA ACUST UNITED AC 2016; 23:455-9. [PMID: 27531835 PMCID: PMC4986853 DOI: 10.1101/lm.043042.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
Abstract
Sleep enhances motor sequence learning (MSL) in young adults by concatenating subsequences (“chunks”) formed during skill acquisition. To examine whether this process is reduced in aging, we assessed performance changes on the MSL task following overnight sleep or daytime wake in healthy young and older adults. Young adult performance enhancement was correlated with nREM2 sleep, and facilitated by preferential improvement of slowest within-sequence transitions. This effect was markedly reduced in older adults, and accompanied by diminished sigma power density (12–15 Hz) during nREM2 sleep, suggesting that diminished chunk concatenation following sleep may underlie reduced consolidation of MSL in older adults.
Collapse
Affiliation(s)
- Ryan Bottary
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Akshata Sonni
- Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - David Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, Texas 77843, USA
| | - Rebecca M C Spencer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
34
|
Backhaus W, Braass H, Renné T, Gerloff C, Hummel FC. Motor Performance Is not Enhanced by Daytime Naps in Older Adults. Front Aging Neurosci 2016; 8:125. [PMID: 27303292 PMCID: PMC4886106 DOI: 10.3389/fnagi.2016.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/13/2016] [Indexed: 12/03/2022] Open
Abstract
The impact of sleep on motor learning in the aging brain was investigated using an experimental diurnal nap setup. As the brain ages several components of learning as well as motor performance change. In addition, aging is also related to sleep architectural changes. This combination of slowed learning processes and impaired sleep behavior raises the question of whether sleep can enhance learning and specifically performance of procedural tasks in healthy, older adults. Previous research was able to show sleep-dependent consolidation overnight for numerous tasks in young adults. Some of these study findings can also be replicated for older adults. This study aims to clarify whether sleep-dependent consolidation can also be found during shorter periods of diurnal sleep. The impact of midday naps on motor consolidation was analyzed by comparing procedural learning using a sequence and a motor adaptation task, in a crossover fashion in healthy, non-sleep deprived, older adults randomly subjected to wake (45 min), short nap (10–20 min sleep) or long nap (50–70 min sleep) conditions. Older adults exhibited learning gains, these were not found to be sleep-dependent in either task. The results suggest that daytime naps do not have an impact on performance and motor learning in an aging population.
Collapse
Affiliation(s)
- Winifried Backhaus
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Hanna Braass
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-EppendorfHamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska InstitutetStockholm, Sweden
| | - Christian Gerloff
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Friedhelm C Hummel
- Brain Imaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-EppendorfHamburg, Germany; University Sleep Medicine Center Hamburg, University Medical Center Hamburg-Eppendorf and Agaplesion HospitalHamburg, Germany
| |
Collapse
|
35
|
Malangré A, Blischke K. Sleep-Related Offline Improvements in Gross Motor Task Performance Occur Under Free Recall Requirements. Front Hum Neurosci 2016; 10:134. [PMID: 27065834 PMCID: PMC4809884 DOI: 10.3389/fnhum.2016.00134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/14/2016] [Indexed: 12/02/2022] Open
Abstract
Nocturnal sleep effects on memory consolidation following gross motor sequence learning were examined using a complex arm movement task. This task required participants to produce non-regular spatial patterns in the horizontal plane by successively fitting a small peg into different target-holes on an electronic pegboard. The respective reaching movements typically differed in amplitude and direction. Targets were visualized prior to each transport movement on a computer screen. With this task we tested 18 subjects (22.6 ± 1.9 years; 8 female) using a between-subjects design. Participants initially learned a 10-element arm movement sequence either in the morning or in the evening. Performance was retested under free recall requirements 15 min post training, as well as 12 and 24 h later. Thus, each group was provided with one sleep-filled and one wake retention interval. Dependent variables were error rate (number of Erroneous Sequences, ES) and average sequence execution time (correct sequences only). Performance improved during acquisition. Error rate remained stable across retention. Sequence execution time (inverse to execution speed) significantly decreased again during the sleep-filled retention intervals, but remained stable during the respective wake intervals. These results corroborate recent findings on sleep-related enhancement consolidation in ecological valid, complex gross motor tasks. At the same time, they suggest this effect to be truly memory-based and independent from repeated access to extrinsic sequence information during retests.
Collapse
Affiliation(s)
- Andreas Malangré
- Sport Science, Training Science, Saarland University Saarbruecken, Saarland, Germany
| | - Klaus Blischke
- Sport Science, Training Science, Saarland University Saarbruecken, Saarland, Germany
| |
Collapse
|
36
|
Backhaus W, Braaß H, Renné T, Krüger C, Gerloff C, Hummel FC. Daytime sleep has no effect on the time course of motor sequence and visuomotor adaptation learning. Neurobiol Learn Mem 2016; 131:147-54. [PMID: 27021017 DOI: 10.1016/j.nlm.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/26/2022]
Abstract
Sleep has previously been claimed to be essential for the continued learning processes of declarative information as well as procedural learning. This study was conducted to examine the importance of sleep, especially the effects of midday naps, on motor sequence and visuomotor adaptation learning. Thirty-five (27 females) healthy, young adults aged between 18 and 30years of age participated in the current study. Addressing potential differences in explicit sequence and motor adaptation learning participants were asked to learn both, a nine-element explicit sequence and a motor adaptation task, in a crossover fashion on two consecutive days. Both tasks were performed with their non-dominant left hand. Prior to learning, each participant was randomized to one of three interventions; (1) power nap: 10-20min sleep, (2) long nap: 50-80min sleep or (3) a 45-min wake-condition. Performance of the motor learning task took place prior to and after a midday rest period, as well as after a night of sleep. Both sleep conditions were dominated by Stage N2 sleep with embedded sleep spindles, which have been described to be associated with enhancement of motor performance. Significant performance changes were observed in both tasks across all interventions (sleep and wake) confirming that learning took place. In the present setup, the magnitude of motor learning was not sleep-dependent in young adults - no differences between the intervention groups (short nap, long nap, no nap) could be found. The effect of the following night of sleep was not influenced by the previous midday rest or sleep period. This finding may be related to the selectiveness of the human brain enhancing especially memory being thought of as important in the future. Previous findings on motor learning enhancing effects of sleep, especially of daytime sleep, are challenged.
Collapse
Affiliation(s)
- Winifried Backhaus
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hanna Braaß
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Clinical Chemistry, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, SE-171 76 Stockholm, Sweden
| | - Christian Krüger
- University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany
| | - Christian Gerloff
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; University Sleep Medicine Center Hamburg, A Cooperation of the University Medical Center Hamburg-Eppendorf and the Agaplesion Hospital, Falkenried 88, 20251 Hamburg, Germany.
| |
Collapse
|
37
|
Varga AW, Ducca EL, Kishi A, Fischer E, Parekh A, Koushyk V, Yau PL, Gumb T, Leibert DP, Wohlleber ME, Burschtin OE, Convit A, Rapoport DM, Osorio RS, Ayappa I. Effects of aging on slow-wave sleep dynamics and human spatial navigational memory consolidation. Neurobiol Aging 2016; 42:142-149. [PMID: 27143431 DOI: 10.1016/j.neurobiolaging.2016.03.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/28/2022]
Abstract
The consolidation of spatial navigational memory during sleep is supported by electrophysiological and behavioral evidence. The features of sleep that mediate this ability may change with aging, as percentage of slow-wave sleep is canonically thought to decrease with age, and slow waves are thought to help orchestrate hippocampal-neocortical dialog that supports systems level consolidation. In this study, groups of younger and older subjects performed timed trials before and after polysomnographically recorded sleep on a 3D spatial maze navigational task. Although younger subjects performed better than older subjects at baseline, both groups showed similar improvement across presleep trials. However, younger subjects experienced significant improvement in maze performance during sleep that was not observed in older subjects, without differences in morning psychomotor vigilance between groups. Older subjects had sleep quality marked by decreased amount of slow-wave sleep and increased fragmentation of slow-wave sleep, resulting in decreased slow-wave activity. Across all subjects, frontal slow-wave activity was positively correlated with both overnight change in maze performance and medial prefrontal cortical volume, illuminating a potential neuroanatomical substrate for slow-wave activity changes with aging and underscoring the importance of slow-wave activity in sleep-dependent spatial navigational memory consolidation.
Collapse
Affiliation(s)
- Andrew W Varga
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA.,Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Emma L Ducca
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Akifumi Kishi
- Graduate School of Education, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Esther Fischer
- Center for Brain Health, NYU School of Medicine, New York, NYU, 10016, USA
| | - Ankit Parekh
- NYU Polytechnic School of Engineering, Brooklyn, NY
| | - Viachaslau Koushyk
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Po Lai Yau
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016
| | - Tyler Gumb
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA.,Center for Brain Health, NYU School of Medicine, New York, NYU, 10016, USA
| | - David P Leibert
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA
| | | | - Omar E Burschtin
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Antonio Convit
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016
| | - David M Rapoport
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA
| | - Ricardo S Osorio
- Center for Brain Health, NYU School of Medicine, New York, NYU, 10016, USA
| | - Indu Ayappa
- NYU Sleep Disorders Center, NYU School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
38
|
Gudberg C, Johansen-Berg H. Sleep and Motor Learning: Implications for Physical Rehabilitation After Stroke. Front Neurol 2015; 6:241. [PMID: 26635718 PMCID: PMC4656813 DOI: 10.3389/fneur.2015.00241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Sleep is essential for healthy brain function and plasticity underlying learning and memory. In the context of physical impairment such as following a stroke, sleep may be particularly important for supporting critical recovery of motor function through similar processes of reorganization in the brain. Despite a link between stroke and poor sleep, current approaches to rehabilitative care often neglect the importance of sleep in clinical assessment and treatment. This review assimilates current evidence on the role of sleep in motor learning, with a focus on the implications for physical rehabilitation after stroke. We further outline practical considerations for integrating sleep assessment as a vital part of clinical care.
Collapse
Affiliation(s)
- Christel Gudberg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital , Oxford , UK ; Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology , Oxford , UK
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital , Oxford , UK
| |
Collapse
|
39
|
Mantua J, Baran B, Spencer RMC. Sleep benefits consolidation of visuo-motor adaptation learning in older adults. Exp Brain Res 2015; 234:587-95. [PMID: 26563162 DOI: 10.1007/s00221-015-4490-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/29/2015] [Indexed: 12/01/2022]
Abstract
Sleep is beneficial for performance across a range of memory tasks in young adults, but whether memories are similarly consolidated in older adults is less clear. Performance benefits have been observed following sleep in older adults for declarative learning tasks, but this benefit may be reduced for non-declarative, motor skill learning tasks. To date, studies of sleep-dependent consolidation of motor learning in older adults are limited to motor sequence tasks. To examine whether reduced sleep-dependent consolidation in older adults is generalizable to other forms of motor skill learning, we examined performance changes over intervals of sleep and wake in young (n = 62) and older adults (n = 61) using a mirror-tracing task, which assesses visuo-motor adaptation learning. Participants learned the task either in the morning or in evening, and performance was assessed following a 12-h interval containing overnight sleep or daytime wake. Contrary to our prediction, both young adults and older adults exhibited sleep-dependent gains in visuo-motor adaptation. There was a correlation between performance improvement over sleep and percent of the night in non-REM stage 2 sleep. These results indicate that motor skill consolidation remains intact with increasing age although this relationship may be limited to specific forms of motor skill learning.
Collapse
Affiliation(s)
- Janna Mantua
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 419 Tobin Hall/135 Hicks Way, Amherst, MA, 01003, USA
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Bengi Baran
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 419 Tobin Hall/135 Hicks Way, Amherst, MA, 01003, USA
| | - Rebecca M C Spencer
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 419 Tobin Hall/135 Hicks Way, Amherst, MA, 01003, USA.
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|