1
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
2
|
Butruille L, Sébillot A, Ávila K, Vancamp P, Demeneix BA, Pifferi F, Remaud S. Increased oligodendrogenesis and myelination in the subventricular zone of aged mice and gray mouse lemurs. Stem Cell Reports 2023; 18:534-554. [PMID: 36669492 PMCID: PMC9969077 DOI: 10.1016/j.stemcr.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
The adult rodent subventricular zone (SVZ) generates neural stem cells (NSCs) throughout life that migrate to the olfactory bulbs (OBs) and differentiate into olfactory interneurons. Few SVZ NSCs generate oligodendrocyte precursor cells (OPCs). We investigated how neurogliogenesis is regulated during aging in mice and in a non-human primate (NHP) model, the gray mouse lemur. In both species, neuronal commitment decreased with age, while OPC generation and myelin content unexpectedly increased. In the OBs, more tyrosine hydroxylase interneurons in old mice, but fewer in lemurs, marked a surprising interspecies difference that could relate to our observation of a continuous ventricle in lemurs. In the corpus callosum, aging promoted maturation of OPCs into mature oligodendrocytes in mice but blocked it in lemurs. The present study highlights similarities and dissimilarities between rodents and NHPs, revealing that NHPs are a more relevant model than mice to study the evolution of biomarkers of aging.
Collapse
Affiliation(s)
- Lucile Butruille
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France.
| | - Anthony Sébillot
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Katia Ávila
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Pieter Vancamp
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Barbara A Demeneix
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France
| | - Fabien Pifferi
- UMR 7179 Mecadev, CNRS/Muséum National d'Histoire Naturelle, 1 Avenue du Petit Château, 91800 Brunoy, France
| | - Sylvie Remaud
- Laboratory Molecular Physiology and Adaptation, CNRS UMR 7221, Department Adaptations of Life, Muséum National d'Histoire Naturelle, 7 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
3
|
Tal A. The future is 2D: spectral-temporal fitting of dynamic MRS data provides exponential gains in precision over conventional approaches. Magn Reson Med 2023; 89:499-507. [PMID: 36121336 PMCID: PMC10087547 DOI: 10.1002/mrm.29456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Many MRS paradigms produce 2D spectral-temporal datasets, including diffusion-weighted, functional, and hyperpolarized and enriched (carbon-13, deuterium) experiments. Conventionally, temporal parameters-such as T2 , T1 , or diffusion constants-are assessed by first fitting each spectrum independently and subsequently fitting a temporal model (1D fitting). We investigated whether simultaneously fitting the entire dataset using a single spectral-temporal model (2D fitting) would improve the precision of the relevant temporal parameter. METHODS We derived a Cramer Rao lower bound for the temporal parameters for both 1D and 2D approaches for 2 experiments: a multi-echo experiment designed to estimate metabolite T2 s, and a functional MRS experiment designed to estimate fractional change ( δ $$ \delta $$ ) in metabolite concentrations. We investigated the dependence of the relative standard deviation (SD) of T2 in multi-echo and δ $$ \delta $$ in functional MRS. RESULTS When peaks were spectrally distant, 2D fitting improved precision by approximately 20% relative to 1D fitting, regardless of the experiment and other parameter values. These gains increased exponentially as peaks drew closer. Dependence on temporal model parameters was weak to negligible. CONCLUSION Our results strongly support a 2D approach to MRS fitting where applicable, and particularly in nuclei such as hydrogen and deuterium, which exhibit substantial spectral overlap.
Collapse
Affiliation(s)
- Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Chen X, Fan X, Song X, Gardner M, Du F, Öngür D. White Matter Metabolite Relaxation and Diffusion Abnormalities in First-Episode Psychosis: A Longitudinal Study. Schizophr Bull 2022; 48:712-720. [PMID: 34999898 PMCID: PMC9077413 DOI: 10.1093/schbul/sbab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microstructural abnormalities in the white matter (WM) are implicated in the pathophysiology of psychosis. In vivo magnetic resonance spectroscopy (MRS) can probe the brain's intracellular microenvironment through the measurement of transverse relaxation and diffusion of neurometabolites and possibly provide cell-specific information. In our previous studies, we observed differential metabolite signal abnormalities in first episode and chronic stages of psychosis. In the present work, longitudinal data were presented for the first time on white matter cell-type specific abnormalities using a combination of diffusion tensor spectroscopy (DTS), T2 MRS, and diffusion tensor imaging (DTI) from a group of 25 first episode psychosis patients and nine matched controls scanned at baseline and one and two years of follow-up. We observed significantly reduced choline ADC in the year 1 of follow-up (0.194 µm2/ms) compared to baseline (0.229 µm2/ms), followed by a significant increase in NAA ADC in the year 2 follow-up (0.258 µm2/ms) from baseline (0.222 µm2/ms) and year 1 follow-up (0.217 µm2/ms). In contrast, NAA T2 relaxation, reflecting a related but different aspect of microenvironment from diffusion, was reduced at year 1 follow-up (257 ms) compared to baseline (278 ms). These abnormalities were observed in the absence of any abnormalities in water relaxation and diffusion at any timepoint. These findings indicate that abnormalities are seen in in glial-enriched (choline) signals in early stages of psychosis, followed by the subsequent emergence of neuronal-enriched (NAA) diffusion abnormalities, all in the absence of nonspecific water signal abnormalities.
Collapse
Affiliation(s)
- Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Xiaoying Fan
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Margaret Gardner
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Same Brain, Different Look?-The Impact of Scanner, Sequence and Preprocessing on Diffusion Imaging Outcome Parameters. J Clin Med 2021; 10:jcm10214987. [PMID: 34768507 PMCID: PMC8584364 DOI: 10.3390/jcm10214987] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022] Open
Abstract
In clinical diagnostics and longitudinal studies, the reproducibility of MRI assessments is of high importance in order to detect pathological changes, but developments in MRI hard- and software often outrun extended periods of data acquisition and analysis. This could potentially introduce artefactual changes or mask pathological alterations. However, if and how changes of MRI hardware, scanning protocols or preprocessing software affect complex neuroimaging outcomes from, e.g., diffusion weighted imaging (DWI) remains largely understudied. We therefore compared DWI outcomes and artefact severity of 121 healthy participants (age range 19–54 years) who underwent two matched DWI protocols (Siemens product and Center for Magnetic Resonance Research sequence) at two sites (Siemens 3T Magnetom Verio and Skyrafit). After different preprocessing steps, fractional anisotropy (FA) and mean diffusivity (MD) maps, obtained by tensor fitting, were processed with tract-based spatial statistics (TBSS). Inter-scanner and inter-sequence variability of skeletonised FA values reached up to 5% and differed largely in magnitude and direction across the brain. Skeletonised MD values differed up to 14% between scanners. We here demonstrate that DTI outcome measures strongly depend on imaging site and software, and that these biases vary between brain regions. These regionally inhomogeneous biases may exceed and considerably confound physiological effects such as ageing, highlighting the need to harmonise data acquisition and analysis. Future studies thus need to implement novel strategies to augment neuroimaging data reliability and replicability.
Collapse
|
6
|
Effects of fingolimod, a sphingosine-1-phosphate (S1P) receptor agonist, on white matter microstructure, cognition and symptoms in schizophrenia. Brain Imaging Behav 2021; 15:1802-1814. [PMID: 32893328 DOI: 10.1007/s11682-020-00375-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several lines of evidence have implicated white matter (WM) deficits in schizophrenia, including microstructural alterations from diffusion tensor (DTI) brain imaging studies. It has been proposed that dysregulated inflammatory processes, including heightened activity of circulating lymphocytes, may contribute to WM pathology in this illness. Fingolimod is a sphingosine-1-phosphate (S1P) receptor agonist that is approved for the treatment of relapsing multiple sclerosis (MS). Fingolimod robustly decreases the number of circulating lymphocytes through sequestration of these cells in lymph tissue. In addition, this agent improved WM microstructure as shown by increases in DTI fractional anisotropy (FA). In this pilot study, we assessed the effects of fingolimod on WM microstructure, cognition and symptoms in an eight-week, double-blind trial. Forty subjects with schizophrenia or schizoaffective disorder were randomized 1:1 to fingolimod (0.5 mg/day) and placebo. Fingolimod caused significant reductions in circulating lymphocytes (p < .001). In addition, there was a statistically non-significant association (p = .089) between DTI-FA change in the WM skeleton and fingolimod. There were significant relationships between the degree of lymphocyte reductions and increases in FA in the corpus collosum (p = .004) and right superior longitudinal fasciculus ( p = .02), and a non-significant correlation with the WM skeleton. There were no significant fingolimod versus placebo interactions on cognitive or symptom measures. There were no serious adverse events related to fingolimod treatment. Future studies with larger samples and treatment durations are needed to further establish fingolimod's potential therapeutic effects in schizophrenia.
Collapse
|
7
|
Shu P, Zhu H, Jin W, Zhou J, Tong S, Sun J. The Resilience and Vulnerability of Human Brain Networks Across the Lifespan. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1756-1765. [PMID: 34410925 DOI: 10.1109/tnsre.2021.3105991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Resilience, the ability for a system to maintain its basic functionality when suffering from lesions, is a critical property for human brain, especially in the brain aging process. This study adopted a novel metric of network resilience, the Resilience Index (RI), to assess human brain resilience with three different lifespan datasets. Based on the structural brain networks constructed from diffusion tensor imaging (DTI), we observed an inverted-U relationship between RI and age, that is, RI increased during development and early adulthood, reached a peak at about 35 years old, and then decreased during aging, which suggested that brain resilience could be quantified by RI. Furthermore, we studied brain network vulnerability by the decreases in RI when virtual lesions occurred to nodes (i.e., brain regions) or edges (i.e., structural brain connectivity). We found that the strong edges were markedly vulnerable, and the homotopic edges were the most prominent representatives of vulnerable edges. In other words, an arbitrary attack on homotopic edges would have a high probability to degrade brain network resilience. These findings suggest the change of human brain resilience across the lifespan and provide a new perspective for exploring human brain vulnerability.
Collapse
|
8
|
Adanyeguh IM, Branzoli F, Delorme C, Méneret A, Monin ML, Luton MP, Durr A, Sabidussi E, Mochel F. Multiparametric characterization of white matter alterations in early stage Huntington disease. Sci Rep 2021; 11:13101. [PMID: 34162958 PMCID: PMC8222368 DOI: 10.1038/s41598-021-92532-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is a monogenic, fully penetrant neurodegenerative disorder. Widespread white matter damage affects the brain of patients with HD at very early stages of the disease. Fixel-based analysis (FBA) is a novel method to investigate the contribution of individual crossing fibers to the white matter damage and to detect possible alterations in both fiber density and fiber-bundle morphology. Diffusion-weighted magnetic resonance spectroscopy (DW-MRS), on the other hand, quantifies the motion of brain metabolites in vivo, thus enabling the investigation of microstructural alteration of specific cell populations. The aim of this study was to identify novel specific microstructural imaging markers of white matter degeneration in HD, by combining FBA and DW-MRS. Twenty patients at an early stage of HD and 20 healthy controls were recruited in a monocentric study. Using diffusion imaging we observed alterations to the brain microstructure and their morphology in patients with HD. Furthermore, FBA revealed specific fiber populations that were affected by the disease. Moreover, the mean diffusivity of the intra-axonal metabolite N-acetylaspartate, co-measured with N-acetylaspartylglutamate (tNAA), was significantly reduced in the corpus callosum of patients compared to controls. FBA and DW-MRS of tNAA provided more specific information about the biological mechanisms underlying HD and showed promise for early investigation of white matter degeneration in HD.
Collapse
Affiliation(s)
- Isaac M Adanyeguh
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Francesca Branzoli
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France.,Center for NeuroImaging Research (CENIR), Institut du Cerveau Et de La Moelle Épinière, 75013, Paris, France
| | - Cécile Delorme
- Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Aurélie Méneret
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France.,Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marie-Lorraine Monin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Marie-Pierre Luton
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Alexandra Durr
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Emanoel Sabidussi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, ICM, 75013, Paris, France. .,Department of Genetics, Center for Neurometabolic Diseases, AP-HP, La Pitié-Salpêtrière University Hospital, 47 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
9
|
Lundell H, Ingo C, Dyrby TB, Ronen I. Cytosolic diffusivity and microscopic anisotropy of N-acetyl aspartate in human white matter with diffusion-weighted MRS at 7 T. NMR IN BIOMEDICINE 2021; 34:e4304. [PMID: 32232909 PMCID: PMC8244075 DOI: 10.1002/nbm.4304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Metabolite diffusion measurable in humans in vivo with diffusion-weighted spectroscopy (DW-MRS) provides a window into the intracellular morphology and state of specific cell types. Anisotropic diffusion in white matter is governed by the microscopic properties of the individual cell types and their structural units (axons, soma, dendrites). However, anisotropy is also markedly affected by the macroscopic orientational distribution over the imaging voxel, particularly in DW-MRS, where the dimensions of the volume of interest (VOI) are much larger than those typically used in diffusion-weighted imaging. One way to address the confound of macroscopic structural features is to average the measurements acquired with uniformly distributed gradient directions to mimic a situation where fibers present in the VOI are orientationally uniformly distributed. This situation allows the extraction of relevant microstructural features such as transverse and longitudinal diffusivities within axons and the related microscopic fractional anisotropy. We present human DW-MRS data acquired at 7 T in two different white matter regions, processed and analyzed as described above, and find that intra-axonal diffusion of the neuronal metabolite N-acetyl aspartate is in good correspondence to simple model interpretations, such as multi-Gaussian diffusion from disperse fibers where the transverse diffusivity can be neglected. We also discuss the implications of our approach for current and future applications of DW-MRS for cell-specific measurements.
Collapse
Affiliation(s)
- Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreDenmark
| | - Carson Ingo
- Department of Physical Therapy and Human Movement SciencesNorthwestern UniversityChicagoIllinois
- Department of NeurologyNorthwestern UniversityChicagoIllinois
| | - Tim B. Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreDenmark
- Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
10
|
Genovese G, Marjańska M, Auerbach EJ, Cherif LY, Ronen I, Lehéricy S, Branzoli F. In vivo diffusion-weighted MRS using semi-LASER in the human brain at 3 T: Methodological aspects and clinical feasibility. NMR IN BIOMEDICINE 2021; 34:e4206. [PMID: 31930768 PMCID: PMC7354897 DOI: 10.1002/nbm.4206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/18/2019] [Accepted: 10/07/2019] [Indexed: 05/08/2023]
Abstract
Diffusion-weighted (DW-) MRS investigates non-invasively microstructural properties of tissue by probing metabolite diffusion in vivo. Despite the growing interest in DW-MRS for clinical applications, little has been published on the reproducibility of this technique. In this study, we explored the optimization of a single-voxel DW-semi-LASER sequence for clinical applications at 3 T, and evaluated the reproducibility of the method under different experimental conditions. DW-MRS measurements were carried out in 10 healthy participants and repeated across three sessions. Metabolite apparent diffusion coefficients (ADCs) were calculated from mono-exponential fits (ADCexp ) up to b = 3300 s/mm2 , and from the diffusional kurtosis approach (ADCK ) up to b = 7300 s/mm2 . The inter-subject variabilities of ADCs of N-acetylaspartate + N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine, choline containing compounds, and myo-inositol were calculated in the posterior cingulate cortex (PCC) and in the corona radiata (CR). We explored the effect of physiological motion on the DW-MRS signal and the importance of cardiac gating and peak thresholding to account for signal amplitude fluctuations. Additionally, we investigated the dependence of the intra-subject variability on the acquisition scheme using a bootstrapping resampling method. Coefficients of variation were lower in PCC than CR, likely due to the different sensitivities to motion artifacts of the two regions. Finally, we computed coefficients of repeatability for ADCexp and performed power calculations needed for designing clinical studies. The power calculation for ADCexp of tNAA showed that in the PCC seven subjects per group are sufficient to detect a difference of 5% between two groups with an acquisition time of 4 min, suggesting that ADCexp of tNAA is a suitable marker for disease-related intracellular alteration even in small case-control studies. In the CR, further work is needed to evaluate the voxel size and location that minimize the motion artifacts and variability of the ADC measurements.
Collapse
Affiliation(s)
- Guglielmo Genovese
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Lydia Yahia Cherif
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Itamar Ronen
- C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Francesca Branzoli
- Centre de NeuroImagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinère (ICM), F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France
- Corresponding author: Francesca Branzoli, Ph.D., Institut du cerveau et de la moelle épinière (ICM), Hôpital Pitié-Salpetrière, 47 boulevard de l’Hôpital, CS 21414, 75646 Paris Cedex 13, Phone number: +33 (0)1 57 27 46 46, Fax: +33 (0)1 45 83 19 28,
| |
Collapse
|
11
|
Sullivan DJ, Wu X, Gallo NR, Naughton NM, Georgiadis JG, Pelegri AA. Sensitivity analysis of effective transverse shear viscoelastic and diffusional properties of myelinated white matter. Phys Med Biol 2021; 66:035027. [PMID: 32599577 DOI: 10.1088/1361-6560/aba0cc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motivated by the need to interpret the results from a combined use of in vivo brain Magnetic Resonance Elastography (MRE) and Diffusion Tensor Imaging (DTI), we developed a computational framework to study the sensitivity of single-frequency MRE and DTI metrics to white matter microstructure and cell-level mechanical and diffusional properties. White matter was modeled as a triphasic unidirectional composite, consisting of parallel cylindrical inclusions (axons) surrounded by sheaths (myelin), and embedded in a matrix (glial cells plus extracellular matrix). Only 2D mechanics and diffusion in the transverse plane (perpendicular to the axon direction) was considered, and homogenized (effective) properties were derived for a periodic domain containing a single axon. The numerical solutions of the MRE problem were performed with ABAQUS and by employing a sophisticated boundary-conforming grid generation scheme. Based on the linear viscoelastic response to harmonic shear excitation and steady-state diffusion in the transverse plane, a systematic sensitivity analysis of MRE metrics (effective transverse shear storage and loss moduli) and DTI metric (effective radial diffusivity) was performed for a wide range of microstructural and intrinsic (phase-based) physical properties. The microstructural properties considered were fiber volume fraction, and the myelin sheath/axon diameter ratio. The MRE and DTI metrics are very sensitive to the fiber volume fraction, and the intrinsic viscoelastic moduli of the glial phase. The MRE metrics are nonlinear functions of the fiber volume fraction, but the effective diffusion coefficient varies linearly with it. Finally, the transverse metrics of both MRE and DTI are insensitive to the axon diameter in steady state. Our results are consistent with the limited anisotropic MRE and co-registered DTI measurements, mainly in the corpus callosum, available in the literature. We conclude that isotropic MRE and DTI constitutive models are good approximations for myelinated white matter in the transverse plane. The unidirectional composite model presented here is used for the first time to model harmonic shear stress under MRE-relevant frequency on the cell level. This model can be extended to 3D in order to inform the solution of the inverse problem in MRE, establish the biological basis of MRE metrics, and integrate MRE/DTI with other modalities towards increasing the specificity of neuroimaging.
Collapse
Affiliation(s)
- Daniel J Sullivan
- Department of Mechanical and Aerospace Engineering, Rutgers, the State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854-8058, United States of America
| | | | | | | | | | | |
Collapse
|
12
|
Fujimori J, Uryu K, Fujihara K, Wattjes MP, Suzuki C, Nakashima I. Measurements of the corpus callosum index and fractional anisotropy of the corpus callosum and their cutoff values are useful to assess global brain volume loss in multiple sclerosis. Mult Scler Relat Disord 2020; 45:102388. [PMID: 32659734 DOI: 10.1016/j.msard.2020.102388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Recent studies suggest that parameters of the corpus callosum (CC), such as the CC index (CCI) and fractional anisotropy (FA) of the CC, may be related to the degree of brain volume loss (BVL) in MS patients; however, cutoff values that determine the degree of BVL have not been set. METHODS Seventy-five MS patients and 21 healthy controls (HCs) underwent volumetric MRI examinations. MS patients were also evaluated for T2 lesion load, the CCI, and FA of the CC. Among the 75 MS patients, 20 had undergone cognitive assessments with the Symbol Digit Modalities Test (SDMT). After 75 MS patients were categorized into mild, moderate, or severe BVL subgroups according to our previous report, we performed receiver operating characteristic analysis to determine the cutoff values of CCI and FA, categorizing the MS patients into the three subgroups. RESULTS The volume of the CC was significantly reduced in MS patients compared to that in HCs. The CCI and FA were significantly associated with EDSS, disease duration, clinical phenotype, T2-lesion load, and whole brain volume. The FA was significantly correlated with the SDMT score. We identified optimal cutoff values for the CCI and FA of 0.32 (85% sensitivity, 92% specificity) and 0.39 (100% sensitivity, 92% specificity), respectively, which discriminated the severe BVL group from others, and 0.385 (84% sensitivity, 74% specificity) and 0.45 (81% sensitivity, 89% specificity), respectively, which discriminated the mild BVL group from others. CONCLUSION The CCI and FA cutoff values may be useful for evaluating the degree of MS brain atrophy in clinical practice.
Collapse
Affiliation(s)
- Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Kengo Uryu
- School of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Neurology, Fukushima Medical University School of Medicine and Multiple Sclerosis and Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
| | - Mike P Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Chihiro Suzuki
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
13
|
Diffusion tensor imaging of the corpus callosum in healthy aging: Investigating higher order polynomial regression modelling. Neuroimage 2020; 213:116675. [PMID: 32112960 DOI: 10.1016/j.neuroimage.2020.116675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Previous diffusion tensor imaging (DTI) studies confirmed the vulnerability of corpus callosum (CC) fibers to aging. However, most studies employed lower order regressions to study the relationship between age and white matter microstructure. The present study investigated whether higher order polynomial regression modelling can better describe the relationship between age and CC DTI metrics compared to lower order models in 140 healthy participants (ages 18-85). The CC was found to be non-uniformly affected by aging, with accelerated and earlier degradation occurring in anterior portion; callosal volume, fiber count, fiber length, mean fibers per voxel, and FA decreased with age while mean, axial, and radial diffusivities increased. Half of the parameters studied also displayed significant age-sex interaction or intracranial volume effects. Higher order models were chosen as the best fit, based on Bayesian Information Criterion minimization, in 16 out of 23 significant cases when describing the relationship between DTI measurements and age. Higher order model fits provided different estimations of aging trajectory peaks and decline onsets than lower order models; however, a likelihood ratio test found that higher order regressions generally did not fit the data significantly better than lower order polynomial or linear models. The results contrast the modelling approaches and highlight the importance of using higher order polynomial regression modelling when investigating associations between age and CC white matter microstructure.
Collapse
|
14
|
Magnetic Resonance Imaging as a Biomarker in Rodent Peripheral Nerve Injury Models Reveals an Age-Related Impairment of Nerve Regeneration. Sci Rep 2019; 9:13508. [PMID: 31534149 PMCID: PMC6751200 DOI: 10.1038/s41598-019-49850-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022] Open
Abstract
Assessment of myelin integrity in peripheral nerve injuries and pathologies has largely been limited to post-mortem analysis owing to the difficulty in obtaining biopsies without affecting nerve function. This is further encumbered by the small size of the tissue and its location. Therefore, the development of robust, non-invasive methods is highly attractive. In this study, we used magnetic resonance imaging (MRI) techniques, including magnetization transfer ratio (MTR), to longitudinally and non-invasively characterize both the sciatic nerve crush and lysolecithin (LCP) demyelination models of peripheral nerve injury in rodents. Electrophysiological, gene expression and histological assessments complemented the extensive MRI analyses in young and aged animals. In the nerve crush model, MTR analysis indicated a slower recovery in regions distal to the site of injury in aged animals, as well as incomplete recovery at six weeks post-crush when analyzing across the entire nerve surface. Similar regional impairments were also found in the LCP demyelination model. This research underlines the power of MTR for the study of peripheral nerve injury in small tissues such as the sciatic nerve of rodents and contributes new knowledge to the effect of aging on recovery after injury. A particular advantage of the approach is the translational potential to human neuropathies.
Collapse
|
15
|
1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo) Induces the Apoptosis of Dopaminergic Neurons via Oxidative Stress and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1292891. [PMID: 30984332 PMCID: PMC6431519 DOI: 10.1155/2019/1292891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Several in vitro studies have revealed the neurotoxicity of 1-trichloromethyl-1,2,3,4-tetrahydro-beta-carboline (TaClo). However, the underlying mechanism has not been completely elucidated, particularly in vivo. This study was designed to study the neurotoxicity of TaClo in vivo by stereotactically injecting TaClo into the striatum of Wistar rats. After the TaClo injections, rats were subjected to an open field test, and their distance travelled and tracks showed decreasing trends over time. The results of liquid chromatography-mass spectrometry analysis showed that the motor dysfunction of the TaClo-treated rats was accompanied by reduced dopamine levels in the striatum. Based on the diffusion tensor imaging data, the apparent diffusion coefficient of the nigrostriatal pathway was significantly increased, and subsequent histological staining revealed the demyelination of nigrostriatal fibres after the TaClo treatment. TaClo induced a loss of tyrosine hydroxylase-positive cells in the substantia nigra compacta. Regarding the underlying mechanism, TaClo caused oxidative stress in the nigrostriatal system by increasing the production of reactive oxygen species and reducing the mitochondria membrane potential. Meanwhile, the elevated expression of Iba-1, TNF-α, IL-6, Cox-2, and iNOS indicated microglial activation and a strong innate immune response in the nigrostriatal system. In addition, activated caspase-3 levels were increased. Thus, both mitochondrial impairments and the innate immune response are involved in TaClo-induced neurotoxicity.
Collapse
|
16
|
Fan Q, Tian Q, Ohringer NA, Nummenmaa A, Witzel T, Tobyne SM, Klawiter EC, Mekkaoui C, Rosen BR, Wald LL, Salat DH, Huang SY. Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. Neuroimage 2019; 191:325-336. [PMID: 30790671 DOI: 10.1016/j.neuroimage.2019.02.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Cerebral white matter exhibits age-related degenerative changes during the course of normal aging, including decreases in axon density and alterations in axonal structure. Noninvasive approaches to measure these microstructural alterations throughout the lifespan would be invaluable for understanding the substrate and regional variability of age-related white matter degeneration. Recent advances in diffusion magnetic resonance imaging (MRI) have leveraged high gradient strengths to increase sensitivity toward axonal size and density in the living human brain. Here, we examined the relationship between age and indices of axon diameter and packing density using high-gradient strength diffusion MRI in 36 healthy adults (aged 22-72) in well-defined central white matter tracts in the brain. A recently validated method for inferring the effective axonal compartment size and packing density from diffusion MRI measurements acquired with 300 mT/m maximum gradient strength was applied to the in vivo human brain to obtain indices of axon diameter and density in the corpus callosum, its sub-regions, and adjacent anterior and posterior fibers in the forceps minor and forceps major. The relationships between the axonal metrics, corpus callosum area and regional gray matter volume were also explored. Results revealed a significant increase in axon diameter index with advancing age in the whole corpus callosum. Similar analyses in sub-regions of the corpus callosum showed that age-related alterations in axon diameter index and axon density were most pronounced in the genu of the corpus callosum and relatively absent in the splenium, in keeping with findings from previous histological studies. The significance of these correlations was mirrored in the forceps minor and forceps major, consistent with previously reported decreases in FA in the forceps minor but not in the forceps major with age. Alterations in the axonal imaging metrics paralleled decreases in corpus callosum area and regional gray matter volume with age. Among older adults, results from cognitive testing suggested an association between larger effective compartment size in the corpus callosum, particularly within the genu of the corpus callosum, and lower scores on the Montreal Cognitive Assessment, largely driven by deficits in short-term memory. The current study suggests that high-gradient diffusion MRI may be sensitive to the axonal substrate of age-related white matter degeneration reflected in traditional DTI metrics and provides further evidence for regionally selective alterations in white matter microstructure with advancing age.
Collapse
Affiliation(s)
- Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sean M Tobyne
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Beu ND, Burns NR, Baetu I. Polymorphisms in dopaminergic genes predict proactive processes of response inhibition. Eur J Neurosci 2019; 49:1127-1148. [DOI: 10.1111/ejn.14323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Nathan D. Beu
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| | - Nicholas R. Burns
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| | - Irina Baetu
- The School of Psychology University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
18
|
Palombo M, Shemesh N, Ronen I, Valette J. Insights into brain microstructure from in vivo DW-MRS. Neuroimage 2018; 182:97-116. [DOI: 10.1016/j.neuroimage.2017.11.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
|
19
|
Gatto RG, Li W, Gao J, Magin RL. In vivo diffusion MRI detects early spinal cord axonal pathology in a mouse model of amyotrophic lateral sclerosis. NMR IN BIOMEDICINE 2018; 31:e3954. [PMID: 30117615 DOI: 10.1002/nbm.3954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Diffusion magnetic resonance imaging (MRI) exhibits contrast that identifies macro- and microstructural changes in neurodegenerative diseases. Previous studies have shown that MR diffusion tensor imaging (DTI) can observe changes in spinal cord white matter in animals and humans affected with symptomatic amyotrophic lateral sclerosis (ALS). The goal of this preclinical work was to investigate the sensitivity of DTI for the detection of signs of tissue damage before symptoms appear. High-field MRI data were acquired using a 9.4-T animal scanner to examine the spinal cord of an ALS mouse model at pre- and post-symptomatic stages (days 80 and 120, respectively). The MRI results were validated using yellow fluorescent protein (YFP) via optical microscopy of spinal cord tissue slices collected from the YFP,G93A-SOD1 mouse strain. DTI maps of diffusion-weighted imaging (DWI) signal intensity, mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) were computed for axial slices of the lumbar region of the spinal cord. Significant changes were observed in FA (6.7% decrease, p < 0.01), AD (19.5% decrease, p < 0.01) and RD (16.1% increase, p < 0.001) at postnatal day 80 (P80). These differences were correlated with changes in axonal fluorescence intensity and membrane cellular markers. This study demonstrates the value of DTI as a potential tool to detect the underlying pathological progression associated with ALS, and may accelerate the discovery of therapeutic strategies for patients with this disease.
Collapse
Affiliation(s)
- Rodolfo G Gatto
- University of Illinois at Chicago, Anatomy and Cell Biology, Chicago, IL, USA
| | - Weiguo Li
- University of Illinois at Chicago, Bioengineering, Chicago, IL, USA
| | - Jin Gao
- University of Illinois at Chicago, Bioengineering, Chicago, IL, USA
| | - Richard L Magin
- University of Illinois at Chicago, Bioengineering, Chicago, IL, USA
| |
Collapse
|
20
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|