1
|
van Gils V, Rizzo M, Côté J, Viechtbauer W, Fanelli G, Salas-Salvadó J, Wimberley T, Bulló M, Fernandez-Aranda F, Dalsgaard S, Visser PJ, Jansen WJ, Vos SJB. The association of glucose metabolism measures and diabetes status with Alzheimer's disease biomarkers of amyloid and tau: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 159:105604. [PMID: 38423195 DOI: 10.1016/j.neubiorev.2024.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Conflicting evidence exists on the relationship between diabetes mellitus (DM) and Alzheimer's disease (AD) biomarkers. Therefore, we conducted a random-effects meta-analysis to evaluate the correlation of glucose metabolism measures (glycated hemoglobin, fasting blood glucose, insulin resistance indices) and DM status with AD biomarkers of amyloid-β and tau measured by positron emission tomography or cerebrospinal fluid. We selected 37 studies from PubMed and Embase, including 11,694 individuals. More impaired glucose metabolism and DM status were associated with higher tau biomarkers (r=0.11[0.03-0.18], p=0.008; I2=68%), but were not associated with amyloid-β biomarkers (r=-0.06[-0.13-0.01], p=0.08; I2=81%). Meta-regression revealed that glucose metabolism and DM were specifically associated with tau biomarkers in population settings (p=0.001). Furthermore, more impaired glucose metabolism and DM status were associated with lower amyloid-β biomarkers in memory clinic settings (p=0.004), and in studies with a higher prevalence of dementia (p<0.001) or lower cognitive scores (p=0.04). These findings indicate that DM is associated with biomarkers of tau but not with amyloid-β. This knowledge is valuable for improving dementia and DM diagnostics and treatment.
Collapse
Affiliation(s)
- Veerle van Gils
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Marianna Rizzo
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jade Côté
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Wolfgang Viechtbauer
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Unitat de Nutrició Humana, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Alimentació, Nutrició, Desenvolupament i Salut Mental, Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain
| | - Theresa Wimberley
- The National Center for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
| | - Mònica Bulló
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain; Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), Reus 43201, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, Reus 43201, Spain
| | - Fernando Fernandez-Aranda
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid 28029, Spain; Department of Clinical Psychology, Bellvitge University Hospital-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Spain
| | - Søren Dalsgaard
- The National Center for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark; iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Pieter Jelle Visser
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Alzheimer Center and Department of Neurology, Amsterdam Neuroscience Campus, VU University Medical Center, Amsterdam, the Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Cardoso S, Guerreiro M, Montalvo A, Silva D, Alves L, de Mendonça A. Amyloid-Negative, Neurodegeneration-Negative Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2024; 101:369-377. [PMID: 39177603 DOI: 10.3233/jad-240621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Background The concept of amnestic mild cognitive impairment (aMCI) was developed to identify patients at an initial stage of Alzheimer's disease (AD). However, some patients with aMCI do not present biomarkers of amyloid pathology or neuronal injury. Objective To know the natural history of amyloid-negative and neurodegeneration-negative patients with aMCI, namely to ascertain: 1) whether these patients remain cognitively stable or they present a slow decline in neuropsychological tests; 2) whether the memory complaints subside with the apparently benign clinical course of the disorder or if they persist along the time. Methods Patients who fulfilled criteria for aMCI with no biomarkers of amyloid pathology or neuronal injury were selected from a large cohort of non-demented patients with cognitive complaints, and were followed with clinical and neuropsychological assessments. Results Twenty-one amyloid-negative and neurodegeneration-negative aMCI patients were followed for 7.1±3.7 years. At the baseline they had more pronounced deficits in verbal learning (California Verbal Learning Test) and were also impaired in Word Recall and Logical Memory. However, they did not decline in any cognitive test during follow-up. The patients maintained a high level of subjective memory complaints from baseline (9.7±4.1) to the follow-up visit (9.2±4.1, a non-significant difference), in spite of a statistically significant decrease in the depressive symptoms, with Geriatric Depression Scale (15 items) score 4.9±2.8 at baseline and 3.2±1.8 at the follow-up visit. Conclusions Amyloid-negative, neurodegeneration-negative aMCI is a chronic clinical condition characterized by the long-term persistence of cognitive deficits and distressing memory complaints. Adequate strategies to treat this condition are needed.
Collapse
Affiliation(s)
- Sandra Cardoso
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | - Dina Silva
- Department of Psychology and Educational Sciences and Centre for Biomedical Research (CBMR), Cognitive Neuroscience Research Group, Universidade do Algarve, Faro, Portugal
| | - Luísa Alves
- Chronic Diseases Research Centre, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
3
|
Penfold RB, Carrell DS, Cronkite DJ, Pabiniak C, Dodd T, Glass AM, Johnson E, Thompson E, Arrighi HM, Stang PE. Development of a machine learning model to predict mild cognitive impairment using natural language processing in the absence of screening. BMC Med Inform Decis Mak 2022; 22:129. [PMID: 35549702 PMCID: PMC9097352 DOI: 10.1186/s12911-022-01864-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Patients and their loved ones often report symptoms or complaints of cognitive decline that clinicians note in free clinical text, but no structured screening or diagnostic data are recorded. These symptoms/complaints may be signals that predict who will go on to be diagnosed with mild cognitive impairment (MCI) and ultimately develop Alzheimer's Disease or related dementias. Our objective was to develop a natural language processing system and prediction model for identification of MCI from clinical text in the absence of screening or other structured diagnostic information. METHODS There were two populations of patients: 1794 participants in the Adult Changes in Thought (ACT) study and 2391 patients in the general population of Kaiser Permanente Washington. All individuals had standardized cognitive assessment scores. We excluded patients with a diagnosis of Alzheimer's Disease, Dementia or use of donepezil. We manually annotated 10,391 clinic notes to train the NLP model. Standard Python code was used to extract phrases from notes and map each phrase to a cognitive functioning concept. Concepts derived from the NLP system were used to predict future MCI. The prediction model was trained on the ACT cohort and 60% of the general population cohort with 40% withheld for validation. We used a least absolute shrinkage and selection operator logistic regression approach (LASSO) to fit a prediction model with MCI as the prediction target. Using the predicted case status from the LASSO model and known MCI from standardized scores, we constructed receiver operating curves to measure model performance. RESULTS Chart abstraction identified 42 MCI concepts. Prediction model performance in the validation data set was modest with an area under the curve of 0.67. Setting the cutoff for correct classification at 0.60, the classifier yielded sensitivity of 1.7%, specificity of 99.7%, PPV of 70% and NPV of 70.5% in the validation cohort. DISCUSSION AND CONCLUSION Although the sensitivity of the machine learning model was poor, negative predictive value was high, an important characteristic of models used for population-based screening. While an AUC of 0.67 is generally considered moderate performance, it is also comparable to several tests that are widely used in clinical practice.
Collapse
Affiliation(s)
- Robert B Penfold
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA.
| | - David S Carrell
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - David J Cronkite
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Chester Pabiniak
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Tammy Dodd
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Ashley Mh Glass
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Eric Johnson
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | - Ella Thompson
- Kaiser Permanente Washington Health Research Institute, 1730 Minor Ave., Suite 1600, Seattle, WA, 98101, USA
| | | | - Paul E Stang
- Janssen Research and Development, LLC, Raritan, USA
| |
Collapse
|
4
|
Kučikienė D, Costa AS, Banning LCP, van Gils V, Schulz JB, Ramakers IHGB, Verhey FRJ, Vos SJB, Reetz K. The Role of Vascular Risk Factors in Biomarker-Based AT(N) Groups: A German-Dutch Memory Clinic Study. J Alzheimers Dis 2022; 87:185-195. [PMID: 35275532 DOI: 10.3233/jad-215391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The relation between vascular risk factors (VRFs) and Alzheimer's disease (AD) is important due to possible pathophysiological association. OBJECTIVE To assess the prevalence of VRFs in biomarker-based AT(N) groups and the associations between VRFs, AD cerebrospinal fluid (CSF) biomarkers, brain magnetic resonance imaging (MRI), and cognition in clinical context. METHODS We included patients from two memory clinics in University Hospital Aachen (Germany) and Maastricht University Medical Centre (The Netherlands). Subjects were older than 45 years and had available data on demographics, VRFs, CSF AD biomarkers, and MRI. We categorized individuals in normal AD biomarkers, non-AD change, and AD-continuum groups based on amyloid (A), tau (T), and neurodegeneration (N) status in CSF and MRI. Regression models were corrected for age, sex, and site. RESULTS We included 838 participants (mean age 68.7, 53.2% male, mean MMSE 24.9). The most common VRFs were smoking (60.9%), hypertension (54.6%), and dyslipidemia (37.8%). Alcohol abuse and smoking were most frequent in the non-AD-change group, and coronary heart disease and carotid artery stenosis in the AD continuum group. Higher rates of depression were found in the normal AD biomarkers group. Parietal atrophy and cortical microbleeds were specific for the AD continuum group. Carotid artery stenosis was associated with pathological Aβ 42 and T-tau values, and diabetes and alcohol abuse were associated with worse medial temporal atrophy and atrial fibrillation, with worse cognition. CONCLUSION VRFs are common in memory clinic patients, showing differences across the AT(N) biomarker groups. This is important for prevention and individualized treatment of dementia.
Collapse
Affiliation(s)
- Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - Leonie C P Banning
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| | - Inez H G B Ramakers
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Frans R J Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, the Netherlands
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,JARA-Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Cardoso S, Silva D, Alves L, Guerreiro M, Mendonça AD. The Outcome of Patients with Amyloid-Negative Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2022; 86:629-640. [DOI: 10.3233/jad-215465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Patients with amnestic mild cognitive impairment (aMCI) are usually at an initial stage of Alzheimer’s disease (AD). However, some patients with aMCI do not present biomarkers of amyloid pathology characteristic of AD. The significance of amyloid-negative aMCI is not presently clear. Objective: To know the etiology and prognosis of amyloid-negative aMCI. Methods: Patients who fulfilled criteria for aMCI and were amyloid negative were selected from a large cohort of non-demented patients with cognitive complaints and were followed with clinical and neuropsychological assessments. Results: Few amyloid-negative aMCI had evidence of neurodegeneration at the baseline, as reflected in cerebrospinal fluid elevated tau protein levels. About half of the patients remained essentially stable for long periods of time. Others manifested a psychiatric disorder that was not apparent at baseline, namely major depression or bipolar disorder. Remarkably, about a quarter of patients developed neurodegenerative disorders other than AD, mostly frontotemporal dementia or Lewy body disease. Conclusion: Amyloid-negative aMCI is a heterogeneous condition. Many patients remain clinically stable, but others may later manifest psychiatric conditions or evolve to neurodegenerative disorders. Prudence is needed when communicating to the patient and family the results of biomarkers, and clinical follow-up should be advised.
Collapse
Affiliation(s)
- Sandra Cardoso
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Dina Silva
- Cognitive Neuroscience Research Group, Department of Psychology and Educational Sciences and Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
| | - Luísa Alves
- Chronic Diseases Research Centre, NOVA Medical School, NOVA University of Lisbon, Portugal
| | | | | |
Collapse
|
6
|
Zhornitsky S, Chaudhary S, Le TM, Chen Y, Zhang S, Potvin S, Chao HH, van Dyck CH, Li CSR. Cognitive dysfunction and cerebral volumetric deficits in individuals with Alzheimer's disease, alcohol use disorder, and dual diagnosis. Psychiatry Res Neuroimaging 2021; 317:111380. [PMID: 34482052 PMCID: PMC8579376 DOI: 10.1016/j.pscychresns.2021.111380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Epidemiological surveys suggest that excessive drinking is associated with higher risk of Alzheimer's disease (AD). The present study utilized data from the National Alzheimer's Coordinating Center to examine cognition as well as gray/white matter and ventricular volumes among participants with AD and alcohol use disorder (AD/AUD, n = 52), AD only (n = 701), AUD only (n = 67), and controls (n = 1283). AUD diagnosis was associated with higher Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) in AD than in non-AD. AD performed worse on semantic fluency and Trail Making Test A + B (TMT A + B) and showed smaller total GMV, WMV, and larger ventricular volume than non-AD. AD had smaller regional GMV in the inferior/superior parietal cortex, hippocampal formation, occipital cortex, inferior frontal gyrus, posterior cingulate cortex, and isthmus cingulate cortex than non-AD. AUD had significantly smaller somatomotor cortical GMV and showed a trend towards smaller volume in the hippocampal formation, relative to non-AUD participants. Misuse of alcohol has an additive effect on dementia severity among AD participants. Smaller hippocampal volume is a common feature of both AD and AUD. Although AD is associated with more volumetric deficits overall, AD and AUD are associated with atrophy in largely distinct brain regions.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Stéphane Potvin
- Centre de recherche de l'Institut, Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Herta H Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06519, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
7
|
Shinjyo N, Kita K. Infection and Immunometabolism in the Central Nervous System: A Possible Mechanistic Link Between Metabolic Imbalance and Dementia. Front Cell Neurosci 2021; 15:765217. [PMID: 34795562 PMCID: PMC8592913 DOI: 10.3389/fncel.2021.765217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer's disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.
Collapse
Affiliation(s)
- Noriko Shinjyo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Lee S, Kim D, Youn H, Hyung WSW, Suh S, Kaiser M, Han CE, Jeong HG. Brain network analysis reveals that amyloidopathy affects comorbid cognitive dysfunction in older adults with depression. Sci Rep 2021; 11:4299. [PMID: 33619307 PMCID: PMC7900108 DOI: 10.1038/s41598-021-83739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Late-life depression (LLD) may increase the risk of Alzheimer's dementia (AD). While amyloidopathy accelerates AD progression, its role in such patients has not yet been elucidated. We hypothesized that cerebral amyloidopathy distinctly affects the alteration of brain network topology and may be associated with distinct cognitive symptoms. We recruited 26 and 27 depressed mild cognitive impairment (MCI) patients with (LLD-MCI-A(+)) and without amyloid accumulation (LLD-MCI-A(-)), respectively, and 21 normal controls. We extracted structural brain networks using their diffusion-weighted images. We aimed to compare the distinct network deterioration in LLD-MCI with and without amyloid accumulation and the relationship with their distinct cognitive decline. Thus, we performed a group comparison of the network topological measures and investigated any correlations with neurocognitive testing scores. Topological features of brain networks were different according to the presence of amyloid accumulation. Disrupted network connectivity was highly associated with impaired recall and recognition in LLD-MCI-A(+) patients. Inattention and dysexecutive function were more influenced by the altered networks involved in fronto-limbic circuitry dysfunction in LLD-MCI-A(-) patients. Our results show that alterations in brain network topology may reflect different cognitive dysfunction depending on amyloid accumulation in depressed older adults with MCI.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea
| | - Daegyeom Kim
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Won Seok William Hyung
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
- Department of Functional Neurosurgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea.
| | - Hyun-Ghang Jeong
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea.
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Guo DH, Yamamoto M, Hernandez CM, Khodadadi H, Baban B, Stranahan AM. Visceral adipose NLRP3 impairs cognition in obesity via IL-1R1 on CX3CR1+ cells. J Clin Invest 2020; 130:1961-1976. [PMID: 31935195 DOI: 10.1172/jci126078] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Induction of the inflammasome protein cryopyrin (NLRP3) in visceral adipose tissue (VAT) promotes release of the proinflammatory cytokine IL-1β in obesity. Although this mechanism contributes to peripheral metabolic dysfunction, effects on the brain remain unexplored. We investigated whether visceral adipose NLRP3 impairs cognition by activating microglial IL-1 receptor 1 (IL-1R1). After observing protection against obesity-induced neuroinflammation and cognitive impairment in NLRP3-KO mice, we transplanted VAT from obese WT or NLRP3-KO donors into lean recipient mice. Transplantation of VAT from a WT donor (TRANSWT) increased hippocampal IL-1β and impaired cognition, but VAT transplants from comparably obese NLRP3-KO donors (TRANSKO) had no effect. Visceral adipose NLRP3 was required for deficits in long-term potentiation (LTP) in transplant recipients, and LTP impairment in TRANSWT mice was IL-1 dependent. Flow cytometric and gene expression analyses revealed that VAT transplantation recapitulated the effects of obesity on microglial activation and IL-1β gene expression, and visualization of hippocampal microglia revealed similar effects in vivo. Inducible ablation of IL-1R1 in CX3CR1-expressing cells eliminated cognitive impairment in mice with dietary obesity and in transplant recipients and restored immunoquiescence in hippocampal microglia. These results indicate that visceral adipose NLRP3 impairs memory via IL-1-mediated microglial activation and suggest that NLRP3/IL-1β signaling may underlie correlations between visceral adiposity and cognitive impairment in humans.
Collapse
Affiliation(s)
- De-Huang Guo
- Department of Neuroscience and Regenerative Medicine
| | | | | | | | - Babak Baban
- Department of Oral Biology, and.,Plastic Surgery Section, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
10
|
de Leeuw FA, van der Flier WM, Tijms BM, Scheltens P, Mendes VM, Manadas B, Bierau J, van Wijk N, van den Heuvel EG, Mohajeri MH, Teunissen CE, Kester MI. Specific Nutritional Biomarker Profiles in Mild Cognitive Impairment and Subjective Cognitive Decline Are Associated With Clinical Progression: The NUDAD Project. J Am Med Dir Assoc 2020; 21:1513.e1-1513.e17. [DOI: 10.1016/j.jamda.2019.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
|
11
|
Schoentgen B, Gagliardi G, Défontaines B. Environmental and Cognitive Enrichment in Childhood as Protective Factors in the Adult and Aging Brain. Front Psychol 2020; 11:1814. [PMID: 32793081 PMCID: PMC7385286 DOI: 10.3389/fpsyg.2020.01814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Some recent studies have highlighted a link between a favorable childhood environment and the strengthening of neuronal resilience against the changes that occur in natural aging neurodegenerative disease. Many works have assessed the factors – both internal and external – that can contribute to delay the phenotype of an ongoing neurodegenerative brain pathology. At the crossroads of genetic, environmental and lifestyle factors, these relationships are unified by the concept of cognitive reserve (CR). This review focuses on the protective effects of maintaining this CR through the cognitive aging process, and emphasizes the most essential time in life for the development and strengthening of this CR. The in-depth study of this research shows that early stimulation with regard to social and sensory interactions, contributes to the proper development of cognitive, affective and psychosocial capacities. Childhood thus appears to be the most active phase in the development of CR, and as such we hypothesize that this constitutes the first essential period of primary prevention of pathological aging and loss of cognitive capacities. If this hypothesis is correct, early stimulation of the environment would therefore be considered as a true primary prevention and a public health issue. The earlier identification of neurodevelopmental disorders, which can affect personal and professional development across the lifespan, could therefore have longer-term impacts and provide better protection against aging.
Collapse
Affiliation(s)
- Bertrand Schoentgen
- Réseau Aloïs Pôle Enfant (Pediatric Aloïs Network), Paris, France.,Réseau Aloïs (Aloïs Network), Paris, France
| | - Geoffroy Gagliardi
- Réseau Aloïs (Aloïs Network), Paris, France.,UPMC Univ Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle (ICM) - Hôpital Pitié-Salpêtrière, Sorbonne Universités, Paris, France
| | - Bénédicte Défontaines
- Réseau Aloïs Pôle Enfant (Pediatric Aloïs Network), Paris, France.,Réseau Aloïs (Aloïs Network), Paris, France
| |
Collapse
|
12
|
Rosenberg A, Solomon A, Jelic V, Hagman G, Bogdanovic N, Kivipelto M. Progression to dementia in memory clinic patients with mild cognitive impairment and normal β-amyloid. ALZHEIMERS RESEARCH & THERAPY 2019; 11:99. [PMID: 31805990 PMCID: PMC6896336 DOI: 10.1186/s13195-019-0557-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Background Determination of β-amyloid (Aβ) positivity and likelihood of underlying Alzheimer’s disease (AD) relies on dichotomous biomarker cut-off values. Individuals with mild cognitive impairment (MCI) and Aβ within the normal range may still have a substantial risk of developing dementia, primarily of Alzheimer type. Their prognosis, as well as predictors of clinical progression, are not fully understood. The aim of this study was to explore the associations of cerebrospinal fluid (CSF) biomarkers (Aβ42, total tau, phosphorylated tau) and other characteristics, including modifiable vascular factors, with the risk of progression to dementia among patients with MCI and normal CSF Aβ42. Methods Three hundred eighteen memory clinic patients with CSF and clinical data, and at least 1-year follow-up, were included. Patients had normal CSF Aβ42 levels based on clinical cut-offs. Cox proportional hazard models with age as time scale and adjusted for sex, education, and cognition (Mini-Mental State Examination) were used to investigate predictors of progression to dementia and Alzheimer-type dementia. Potential predictors included CSF biomarkers, cognitive performance (verbal learning and memory), apolipoprotein E (APOE) ε4 genotype, medial temporal lobe atrophy, family history of dementia, depressive symptoms, and vascular factors, including the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) risk score. Predictive performance of patient characteristics was further explored with Harrell C statistic. Results Lower normal Aβ42 and higher total tau and phosphorylated tau were associated with higher dementia risk, and the association was not driven by Aβ42 values close to cut-off. Additional predictors included poorer cognition, APOE ε4 genotype, higher systolic blood pressure, and lower body mass index, but not the CAIDE dementia risk score. Aβ42 individually and in combination with other CSF biomarkers improved the risk prediction compared to age and cognition alone. Medial temporal lobe atrophy or vascular factors did not increase the predictive performance. Conclusions Possibility of underlying AD pathology and increased dementia risk should not be ruled out among MCI patients with CSF Aβ42 within the normal range. While cut-offs may be useful in clinical practice to identify high-risk individuals, personalized risk prediction tools incorporating continuous biomarkers may be preferable among individuals with intermediate risk. The role of modifiable vascular factors could be explored in this context.
Collapse
Affiliation(s)
- Anna Rosenberg
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | - Alina Solomon
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Vesna Jelic
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital-Huddinge, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,The Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
13
|
Alcolea D, Clarimón J, Carmona-Iragui M, Illán-Gala I, Morenas-Rodríguez E, Barroeta I, Ribosa-Nogué R, Sala I, Sánchez-Saudinós MB, Videla L, Subirana A, Benejam B, Valldeneu S, Fernández S, Estellés T, Altuna M, Santos-Santos M, García-Losada L, Bejanin A, Pegueroles J, Montal V, Vilaplana E, Belbin O, Dols-Icardo O, Sirisi S, Querol-Vilaseca M, Cervera-Carles L, Muñoz L, Núñez R, Torres S, Camacho MV, Carrió I, Giménez S, Delaby C, Rojas-Garcia R, Turon-Sans J, Pagonabarraga J, Jiménez A, Blesa R, Fortea J, Lleó A. The Sant Pau Initiative on Neurodegeneration (SPIN) cohort: A data set for biomarker discovery and validation in neurodegenerative disorders. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:597-609. [PMID: 31650016 PMCID: PMC6804606 DOI: 10.1016/j.trci.2019.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction The SPIN (Sant Pau Initiative on Neurodegeneration) cohort is a multimodal biomarker platform designed for neurodegenerative disease research following an integrative approach. Methods Participants of the SPIN cohort provide informed consent to donate blood and cerebrospinal fluid samples, receive detailed neurological and neuropsychological evaluations, and undergo a structural 3T brain MRI scan. A subset also undergoes other functional or imaging studies (video-polysomnogram, 18F-fluorodeoxyglucose PET, amyloid PET, Tau PET). Participants are followed annually for a minimum of 4 years, with repeated cerebrospinal fluid collection and imaging studies performed every other year, and brain donation is encouraged. Results The integration of clinical, neuropsychological, genetic, biochemical, imaging, and neuropathological information and the harmonization of protocols under the same umbrella allows the discovery and validation of key biomarkers across several neurodegenerative diseases. Discussion We describe our particular 10-year experience and how different research projects were unified under an umbrella biomarker program, which might be of help to other research teams pursuing similar approaches. The SPIN cohort is a multimodal biomarker program for research in neurodegeneration. We describe how research projects were unified under an umbrella biomarker program. Integrating clinical and biological data allows discovery and validation of markers. As a clinical group, we keep the SPIN cohort focused in patient-oriented research.
Collapse
Affiliation(s)
- Daniel Alcolea
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Jordi Clarimón
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - María Carmona-Iragui
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Ignacio Illán-Gala
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Estrella Morenas-Rodríguez
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Isabel Barroeta
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Roser Ribosa-Nogué
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Isabel Sala
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Belén Sánchez-Saudinós
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Laura Videla
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Andrea Subirana
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Bessy Benejam
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Sílvia Valldeneu
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Susana Fernández
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Teresa Estellés
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Miren Altuna
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Miguel Santos-Santos
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Lídia García-Losada
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Alexandre Bejanin
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Jordi Pegueroles
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Víctor Montal
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Eduard Vilaplana
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Olivia Belbin
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Sònia Sirisi
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Marta Querol-Vilaseca
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Laura Cervera-Carles
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Laia Muñoz
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Raúl Núñez
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Soraya Torres
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - M Valle Camacho
- Nuclear Medicine Department, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignasi Carrió
- Nuclear Medicine Department, Institut d'Investigacions Biomèdiques Sant Pau - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Giménez
- Respiratory Department, Multidisciplinary Sleep Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Constance Delaby
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Université de Montpellier, CHU de Montpellier, Laboratoire de Biochimie-Protéomique clinique, INSERM U1183, Montpellier, France
| | - Ricard Rojas-Garcia
- Department of Neurology, Neuromuscular Diseases Unit, MND Clinic, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras, Ciberer, Spain
| | - Janina Turon-Sans
- Department of Neurology, Neuromuscular Diseases Unit, MND Clinic, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras, Ciberer, Spain
| | - Javier Pagonabarraga
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Amanda Jiménez
- Endocrinology and Diabetes Department, Obesity Unit, Hospital Clinic de Barcelona - IDIBAPS, Barcelona, Spain
| | - Rafael Blesa
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| | - Juan Fortea
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain.,Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Alberto Lleó
- Department of Neurology, Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Ciberned, Spain
| |
Collapse
|
14
|
Bos I, Vos SJB, Schindler SE, Hassenstab J, Xiong C, Grant E, Verhey F, Morris JC, Visser PJ, Fagan AM. Vascular risk factors are associated with longitudinal changes in cerebrospinal fluid tau markers and cognition in preclinical Alzheimer's disease. Alzheimers Dement 2019; 15:1149-1159. [PMID: 31378575 DOI: 10.1016/j.jalz.2019.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Vascular factors increase the risk of Alzheimer's disease (AD). We investigated the associations between such factors, longitudinal AD cerebrospinal fluid biomarkers, and cognition. METHODS 433 cognitively normal participants were classified into four biomarker groups using their baseline amyloid (A+/-) and tau status (T+/-). 184 participants had undergone serial cerebrospinal fluid collection. Frequencies of risk factors and the Framingham Risk Score (FRS) were compared, and we tested the influence of risk factors on change in biomarker concentrations and cognition. RESULTS The absence of obesity, presence of hypertension, and a high FRS were associated with an increase in tau levels, particularly in A+T+ individuals. Risk factors were not associated with amyloid. Depression was associated with higher cognitive scores, whereas high FRS was associated with lower scores and a faster decline. DISCUSSION Our results demonstrate that vascular risk factors may enhance neurodegeneration but not amyloid accumulation in preclinical AD.
Collapse
Affiliation(s)
- Isabelle Bos
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Hassenstab
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Grant
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Frans Verhey
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Pieter Jelle Visser
- Department of Psychiatry & Neuropsychology, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands; Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Anne M Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Edwards III GA, Gamez N, Escobedo Jr. G, Calderon O, Moreno-Gonzalez I. Modifiable Risk Factors for Alzheimer's Disease. Front Aging Neurosci 2019; 11:146. [PMID: 31293412 PMCID: PMC6601685 DOI: 10.3389/fnagi.2019.00146] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Since first described in the early 1900s, Alzheimer's disease (AD) has risen exponentially in prevalence and concern. Research still drives to understand the etiology and pathogenesis of this disease and what risk factors can attribute to AD. With a majority of AD cases being of sporadic origin, the increasing exponential growth of an aged population and a lack of treatment, it is imperative to discover an easy accessible preventative method for AD. Some risk factors can increase the propensity of AD such as aging, sex, and genetics. Moreover, there are also modifiable risk factors-in terms of treatable medical conditions and lifestyle choices-that play a role in developing AD. These risk factors have their own biological mechanisms that may contribute to AD etiology and pathological consequences. In this review article, we will discuss modifiable risk factors and discuss the current literature of how each of these factors interplay into AD development and progression and if strategically analyzed and treated, could aid in protection against this neurodegenerative disease.
Collapse
Affiliation(s)
- George A. Edwards III
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Nazaret Gamez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| | - Gabriel Escobedo Jr.
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Olivia Calderon
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, Department of Neurology, The University of Texas Houston Health Science Center at Houston, Houston, TX, United States
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Department of Cell Biology, Facultad Ciencias, Universidad de Malaga, Malaga, Spain
| |
Collapse
|
16
|
Roth RM, Rotenberg S, Carmasin J, Billmeier S, Batsis JA. Neuropsychological Functioning in Older Adults with Obesity: Implications for Bariatric Surgery. J Nutr Gerontol Geriatr 2019; 38:69-82. [PMID: 30794078 DOI: 10.1080/21551197.2018.1564722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bariatric surgery is the most effective approach to treating morbid obesity, resulting in decreased morbidity, mortality, and improved quality of life. Research on outcomes has generally been restricted to young and middle-aged adults, despite a growing epidemic of obesity in older adults. The use of bariatric surgery has been limited in older individuals, in part due to concerns that preexisting cognitive dysfunction increases the risk of poor post-surgical outcomes, including cognitive decline. The literature on the relationship between obesity and cognition in older adults is emerging, but fraught by several methodological limitations. While there is insufficient research to determine the nature of cognitive outcomes following bariatric surgery in older adults, the aim of this paper is to review the existing evidence and make the case for further study.
Collapse
Affiliation(s)
- Robert M Roth
- a Department of Psychiatry , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA.,b Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| | - Sivan Rotenberg
- a Department of Psychiatry , Geisel School of Medicine at Dartmouth , Lebanon , NH , USA.,b Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| | | | - Sarah Billmeier
- b Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA.,d Department of Surgery , Geisel School of Medicine at Dartmouth , Hanover , NH , USA
| | - John A Batsis
- b Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA.,e Department of Medicine , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,f The Dartmouth Institute for Health Policy and Clinical Practice , Lebanon , NH , USA
| |
Collapse
|
17
|
Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual Features in Alzheimer's Disease: From Basic Mechanisms to Clinical Overview. Neural Plast 2018; 2018:2941783. [PMID: 30405709 PMCID: PMC6204169 DOI: 10.1155/2018/2941783] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. It compromises patients' daily activities owing to progressive cognitive deterioration, which has elevated direct and indirect costs. Although AD has several risk factors, aging is considered the most important. Unfortunately, clinical diagnosis is usually performed at an advanced disease stage when dementia is established, making implementation of successful therapeutic interventions difficult. Current biomarkers tend to be expensive, insufficient, or invasive, raising the need for novel, improved tools aimed at early disease detection. AD is characterized by brain atrophy due to neuronal and synaptic loss, extracellular amyloid plaques composed of amyloid-beta peptide (Aβ), and neurofibrillary tangles of hyperphosphorylated tau protein. The visual system and central nervous system share many functional components. Thus, it is plausible that damage induced by Aβ, tau, and neuroinflammation may be observed in visual components such as the retina, even at an early disease stage. This underscores the importance of implementing ophthalmological examinations, less invasive and expensive than other biomarkers, as useful measures to assess disease progression and severity in individuals with or at risk of AD. Here, we review functional and morphological changes of the retina and visual pathway in AD from pathophysiological and clinical perspectives.
Collapse
Affiliation(s)
| | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Tellez-Conti
- Escuela Superior de Oftalmología-Instituto Barraquer de América, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
18
|
Bos I, Vos SJB, Jansen WJ, Vandenberghe R, Gabel S, Estanga A, Ecay-Torres M, Tomassen J, den Braber A, Lleó A, Sala I, Wallin A, Kettunen P, Molinuevo JL, Rami L, Chetelat G, de la Sayette V, Tsolaki M, Freund-Levi Y, Johannsen P, Novak GP, Ramakers I, Verhey FR, Visser PJ. Amyloid-β, Tau, and Cognition in Cognitively Normal Older Individuals: Examining the Necessity to Adjust for Biomarker Status in Normative Data. Front Aging Neurosci 2018; 10:193. [PMID: 29988624 PMCID: PMC6027060 DOI: 10.3389/fnagi.2018.00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/07/2018] [Indexed: 11/13/2022] Open
Abstract
We investigated whether amyloid-β (Aβ) and tau affected cognition in cognitively normal (CN) individuals, and whether norms for neuropsychological tests based on biomarker-negative individuals would improve early detection of dementia. We included 907 CN individuals from 8 European cohorts and from the Alzheimer's disease Neuroimaging Initiative. All individuals were aged above 40, had Aβ status and neuropsychological data available. Linear mixed models were used to assess the associations of Aβ and tau with five neuropsychological tests assessing memory (immediate and delayed recall of Auditory Verbal Learning Test, AVLT), verbal fluency (Verbal Fluency Test, VFT), attention and executive functioning (Trail Making Test, TMT, part A and B). All test except the VFT were associated with Aβ status and this influence was augmented by age. We found no influence of tau on any of the cognitive tests. For the AVLT Immediate and Delayed recall and the TMT part A and B, we calculated norms in individuals without Aβ pathology (Aβ- norms), which we validated in an independent memory-clinic cohort by comparing their predictive accuracy to published norms. For memory tests, the Aβ- norms rightfully identified an additional group of individuals at risk of dementia. For non-memory test we found no difference. We confirmed the relationship between Aβ and cognition in cognitively normal individuals. The Aβ- norms for memory tests in combination with published norms improve prognostic accuracy of dementia.
Collapse
Affiliation(s)
- Isabelle Bos
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, Netherlands
| | - Stephanie J B Vos
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, Netherlands
| | - Willemijn J Jansen
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, Netherlands
| | - Rik Vandenberghe
- University Hospital Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences KU Leuven, Leuven, Belgium
| | - Silvy Gabel
- Laboratory for Cognitive Neurology, Department of Neurosciences KU Leuven, Leuven, Belgium.,Alzheimer Research Centre KU Leuven, Leuven, Belgium
| | - Ainara Estanga
- Center for Research and Advanced Therapies CITA-Alzheimer Foundation, San Sebastián, Spain
| | - Mirian Ecay-Torres
- Center for Research and Advanced Therapies CITA-Alzheimer Foundation, San Sebastián, Spain
| | - Jori Tomassen
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center VU University Amsterdam, Amsterdam, Netherlands
| | - Anouk den Braber
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center VU University Amsterdam, Amsterdam, Netherlands.,Department of Biological Psychology VU University Amsterdam, Amsterdam, Netherlands
| | - Alberto Lleó
- Department of Neurology Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Isabel Sala
- Department of Neurology Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Anders Wallin
- Section for Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
| | - Petronella Kettunen
- Section for Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden.,Nuffield Department of Clinical Neurosciences University of Oxford, Oxford, United Kingdom
| | - José L Molinuevo
- Alzheimer's Disease & Other Cognitive Disorders Unit, Hopsital Clínic Consorci Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Barcelona Beta Brain Research Center Unversitat Pompeu Fabra, Barcelona, Spain
| | - Lorena Rami
- Alzheimer's Disease & Other Cognitive Disorders Unit, Hopsital Clínic Consorci Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Gaël Chetelat
- Institut National de la Santé et de la Recherche Médicale UMR-S U1237, Université de Caen-Normandie GIP Cyceron, Caen, France
| | - Vincent de la Sayette
- Institut National de la Santé et de la Recherche Médicale U1077, Université de Caen Normandie Ecole Pratique des Hautes Etudes, Caen, France.,CHU de Caen Service de Neurologie, Caen, France
| | - Magda Tsolaki
- 1st Department of Neurology University General Hospital of Thessaloniki AHEPA, Thessaloniki, Greece
| | - Yvonne Freund-Levi
- Division of Clinical Geriatrics, Department of Neurobiology, Caring Sciences and Society (NVS) Karolinska Institutet, Stockholm, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry Norrtälje Hospital Tiohundra, Norrtälje, Sweden
| | - Peter Johannsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University Hospital University of Copenhagen, Copenhagen, Denmark
| | | | - Gerald P Novak
- Janssen Pharmaceutical Research and Development Titusville, NJ, United States
| | - Inez Ramakers
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, Netherlands
| | - Frans R Verhey
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, Alzheimer Center Limburg, School for Mental Health and Neuroscience Maastricht University, Maastricht, Netherlands.,Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Eldholm RS, Persson K, Barca ML, Knapskog AB, Cavallin L, Engedal K, Selbaek G, Skovlund E, Saltvedt I. Association between vascular comorbidity and progression of Alzheimer's disease: a two-year observational study in Norwegian memory clinics. BMC Geriatr 2018; 18:120. [PMID: 29788900 PMCID: PMC5964736 DOI: 10.1186/s12877-018-0813-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/09/2018] [Indexed: 11/30/2022] Open
Abstract
Background Vascular risk factors increase the risk of Alzheimer’s disease (AD), but there is limited evidence on whether comorbid vascular conditions and risk factors have an impact on disease progression. The aim of this study was to examine the association between vascular disease and vascular risk factors and progression of AD. Methods In a longitudinal observational study in three Norwegian memory clinics, 282 AD patients (mean age 73.3 years, 54% female) were followed for mean 24 (16–37) months. Vascular risk factors and vascular diseases were registered at baseline, and the vascular burden was estimated by the Framingham Stroke Risk Profile (FSRP). Cerebral medical resonance images (MRIs) were assessed for white matter hyperintensities (WMH), lacunar and cortical infarcts. The associations between vascular comorbidity and progression of dementia as measured by annual change in Clinical Dementia Rating Sum of Boxes (CDR-SB) scores were analysed by multiple regression analyses, adjusted for age and sex. Results Hypertension occurred in 83%, hypercholesterolemia in 53%, diabetes in 9%, 41% were overweight, and 10% were smokers. One third had a history of vascular disease; 16% had heart disease and 15% had experienced a cerebrovascular event. MRI showed lacunar infarcts in 16%, WMH with Fazekas score 2 in 26%, and Fazekas score 3 in 33%. Neither the vascular risk factors and diseases, the FSRP score, nor cerebrovascular disease was associated with disease progression in AD. Conclusions Although vascular risk factors and vascular diseases were prevalent, no impact on the progression of AD after 2 years was shown.
Collapse
Affiliation(s)
- Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway. .,Department of Geriatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Karin Persson
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Maria Lage Barca
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Lena Cavallin
- Department of Clinical Science, Intervention, and Technology, Division of Medical Imaging and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Memory Clinic, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Geir Selbaek
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Centre for Old Age Psychiatric Research, Innlandet Hospital Trust, Ottestad, Norway.,Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.,Department of Geriatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
20
|
Alves L, Cardoso S, Maroco J, de Mendonça A, Guerreiro M, Silva D. Neuropsychological Predictors of Long-Term (10 Years) Mild Cognitive Impairment Stability. J Alzheimers Dis 2018; 62:1703-1711. [DOI: 10.3233/jad-171034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Luísa Alves
- Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Sandra Cardoso
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - João Maroco
- Instituto Superior de Psicologia Aplicada, Lisbon, Portugal
| | | | | | - Dina Silva
- Cognitive Neuroscience Research Group, Department of Psychology and Educational Sciences and Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
| |
Collapse
|
21
|
Topiwala A, Ebmeier KP. Effects of drinking on late-life brain and cognition. EVIDENCE-BASED MENTAL HEALTH 2018; 21:12-15. [PMID: 29273599 PMCID: PMC10270452 DOI: 10.1136/eb-2017-102820] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/08/2017] [Accepted: 12/02/2017] [Indexed: 01/29/2023]
Abstract
Alcohol consumption is common in Western countries and has been increasing in older adults. Latest figures from Great Britain suggest 75% of those over 65 years drink, an increase from 71% 10 years ago. Chronic heavy intake is a well-established cause of brain atrophy and dementia, with a recent long-term prospective study from the USA reporting a doubling of the odds of later severe memory impairment in those with a history of an alcohol use disorder. Drinking of moderate amounts has been reported to be protective for brain health in a number of epidemiological studies, including some claims of possibly reducing dementia risk. Rigorous recent research has questioned this belief, with new evidence of harmful associations in moderate drinkers compared with abstainers. This has raised suspicion that reported protective effects of moderate drinking were due to confounding by socioeconomic class and intelligence. Clinicians should look out for cognitive impairment in heavy drinkers, considering that abstinence may induce a degree of clinical improvement. Discussions with patients regarding moderate drinking should be informed by recent research. Health benefits of moderate drinking at least for cognitive function are questionable, and if they exist are probably limited to one unit of alcohol daily with respect to other body systems.
Collapse
Affiliation(s)
- Anya Topiwala
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Klaus Peter Ebmeier
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| |
Collapse
|