1
|
Vermunt L, Sutphen CL, Dicks E, de Leeuw DM, Allegri RF, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Day GS, Ewers M, Farlow MR, Fox NC, Ghetti B, Graff-Radford NR, Hassenstab J, Jucker M, Karch CM, Kuhle J, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Perrin RJ, Preische O, Schofield PR, Suárez-Calvet M, Xiong C, Scheltens P, Teunissen CE, Visser PJ, Bateman RJ, Benzinger TLS, Fagan AM, Gordon BA, Tijms BM. Axonal damage and inflammation response are biological correlates of decline in small-world values: a cohort study in autosomal dominant Alzheimer's disease. Brain Commun 2024; 6:fcae357. [PMID: 39440304 PMCID: PMC11495221 DOI: 10.1093/braincomms/fcae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The grey matter of the brain develops and declines in coordinated patterns during the lifespan. Such covariation patterns of grey matter structure can be quantified as grey matter networks, which can be measured with magnetic resonance imaging. In Alzheimer's disease, the global organization of grey matter networks becomes more random, which is captured by a decline in the small-world coefficient. Such decline in the small-world value has been robustly associated with cognitive decline across clinical stages of Alzheimer's disease. The biological mechanisms causing this decline in small-world values remain unknown. Cerebrospinal fluid (CSF) protein biomarkers are available for studying diverse pathological mechanisms in humans and can provide insight into decline. We investigated the relationships between 10 CSF proteins and small-world coefficient in mutation carriers (N = 219) and non-carriers (N = 136) of the Dominantly Inherited Alzheimer Network Observational study. Abnormalities in Amyloid beta, Tau, synaptic (Synaptosome associated protein-25, Neurogranin) and neuronal calcium-sensor protein (Visinin-like protein-1) preceded loss of small-world coefficient by several years, while increased levels in CSF markers for inflammation (Chitinase-3-like protein 1) and axonal injury (Neurofilament light) co-occurred with decreasing small-world values. This suggests that axonal loss and inflammation play a role in structural grey matter network changes.
Collapse
Affiliation(s)
- Lisa Vermunt
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | | | - Ellen Dicks
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Diederick M de Leeuw
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Ricardo F Allegri
- Instituto de Investigaciones Neurológicas FLENI, Buenos Aires, Argentina
| | - Sarah B Berman
- Department of Neurology, Alzheimer’s Disease Research Center, and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilian-University Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin R Farlow
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Nick C Fox
- Dementia Research Institute at UCL, University College London Institute of Neurology, London W1T 7NF, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, London WC1N 3AR, UK
| | - Bernardino Ghetti
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | | | - Jason Hassenstab
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Celeste M Karch
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, University Hospital and University Basel, 4031 Basel, Switzerland
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Ludwig-Maximilians-Universität München, D-80539 München, Germany
| | - Colin L Masters
- Florey Institute, Melbourne, Parkville Vic 3052, Australia
- The University of Melbourne, Melbourne, Parkville Vic 3052, Australia
| | - Eric McDade
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, 558-8585 Osaka, Japan
| | - John C Morris
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Perrin
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - Peter R Schofield
- Neuroscience Research Australia & School of Medical Sciences, NSW 2052 Sydney, Sydney, Australia
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, 08005 Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, 08003 Barcelona, Spain
| | - Chengjie Xiong
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip Scheltens
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
- Life Science Partners, 1071 DV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Departmentt of Laboratory Medicine, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, 6229 ER Maastricht, Netherlands
| | | | | | - Anne M Fagan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Betty M Tijms
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Programme Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Xiao Y, Gao L, Hu Y. Disrupted single-subject gray matter networks are associated with cognitive decline and cortical atrophy in Alzheimer's disease. Front Neurosci 2024; 18:1366761. [PMID: 39165340 PMCID: PMC11334729 DOI: 10.3389/fnins.2024.1366761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/18/2024] [Indexed: 08/22/2024] Open
Abstract
Background Research has shown disrupted structural network measures related to cognitive decline and future cortical atrophy during the progression of Alzheimer's disease (AD). However, evidence regarding the individual variability of gray matter network measures and the associations with concurrent cognitive decline and cortical atrophy related to AD is still sparse. Objective To investigate whether alterations in single-subject gray matter networks are related to concurrent cognitive decline and cortical gray matter atrophy during AD progression. Methods We analyzed structural MRI data from 185 cognitively normal (CN), 150 mild cognitive impairment (MCI), and 153 AD participants, and calculated the global network metrics of gray matter networks for each participant. We examined the alterations of single-subject gray matter networks in patients with MCI and AD, and investigated the associations of network metrics with concurrent cognitive decline and cortical gray matter atrophy. Results The small-world properties including gamma, lambda, and sigma had lower values in the MCI and AD groups than the CN group. AD patients had reduced degree, clustering coefficient, and path length than the CN and MCI groups. We observed significant associations of cognitive ability with degree in the CN group, with gamma and sigma in the MCI group, and with degree, connectivity density, clustering coefficient, and path length in the AD group. There were significant correlation patterns between sigma values and cortical gray matter volume in the CN, MCI, and AD groups. Conclusion These findings suggest the individual variability of gray matter network metrics may be valuable to track concurrent cognitive decline and cortical atrophy during AD progression. This may contribute to a better understanding of cognitive decline and brain morphological alterations related to AD.
Collapse
Affiliation(s)
- Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yubin Hu
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | | |
Collapse
|
3
|
Jenkins LM, Heywood A, Gupta S, Kouchakidivkolaei M, Sridhar J, Rogalski E, Weintraub S, Popuri K, Rosen H, Wang L. Disinhibition in dementia related to reduced morphometric similarity of cognitive control network. Brain Commun 2024; 6:fcae124. [PMID: 38665960 PMCID: PMC11044061 DOI: 10.1093/braincomms/fcae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Disinhibition is one of the most distressing and difficult to treat neuropsychiatric symptoms of dementia. It involves socially inappropriate behaviours, such as hypersexual comments, inappropriate approaching of strangers and excessive jocularity. Disinhibition occurs in multiple dementia syndromes, including behavioural variant frontotemporal dementia, and dementia of the Alzheimer's type. Morphometric similarity networks are a relatively new method for examining brain structure and can be used to calculate measures of network integrity on large scale brain networks and subnetworks such as the salience network and cognitive control network. In a cross-sectional study, we calculated morphometric similarity networks to determine whether disinhibition in behavioural variant frontotemporal dementia (n = 75) and dementia of the Alzheimer's type (n = 111) was associated with reduced integrity of these networks independent of diagnosis. We found that presence of disinhibition, measured by the Neuropsychiatric Inventory Questionnaire, was associated with reduced global efficiency of the cognitive control network in both dementia of the Alzheimer's type and behavioural variant frontotemporal dementia. Future research should replicate this transdiagnostic finding in other dementia diagnoses and imaging modalities, and investigate the potential for intervention at the level of the cognitive control network to target disinhibition.
Collapse
Affiliation(s)
- Lisanne M Jenkins
- Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Ashley Heywood
- Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Sonya Gupta
- Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
| | | | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL 60611, USA
| | - Emily Rogalski
- Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University, Chicago, IL 60611, USA
| | - Karteek Popuri
- Computer Science, Memorial University of Newfoundland, St. Johns, NL A1C 5S7, Canada
| | - Howard Rosen
- Neurology, University of California, San Francisco, CA 94143, USA
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Stam CJ. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw Neurosci 2024; 8:1-23. [PMID: 38562292 PMCID: PMC10861166 DOI: 10.1162/netn_a_00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024] Open
Abstract
Understanding the concept of network hubs and their role in brain disease is now rapidly becoming important for clinical neurology. Hub nodes in brain networks are areas highly connected to the rest of the brain, which handle a large part of all the network traffic. They also show high levels of neural activity and metabolism, which makes them vulnerable to many different types of pathology. The present review examines recent evidence for the prevalence and nature of hub involvement in a variety of neurological disorders, emphasizing common themes across different types of pathology. In focal epilepsy, pathological hubs may play a role in spreading of seizure activity, and removal of such hub nodes is associated with improved outcome. In stroke, damage to hubs is associated with impaired cognitive recovery. Breakdown of optimal brain network organization in multiple sclerosis is accompanied by cognitive dysfunction. In Alzheimer's disease, hyperactive hub nodes are directly associated with amyloid-beta and tau pathology. Early and reliable detection of hub pathology and disturbed connectivity in Alzheimer's disease with imaging and neurophysiological techniques opens up opportunities to detect patients with a network hyperexcitability profile, who could benefit from treatment with anti-epileptic drugs.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Pereira HR, Diogo VS, Prata D, Ferreira HA. Detecting Amyloid Positivity Using Morphometric Magnetic Resonance Imaging. J Alzheimers Dis 2024; 101:1293-1305. [PMID: 39331101 DOI: 10.3233/jad-240366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Background Early detection of amyloid-β (Aβ) positivity is essential for an accurate diagnosis and treatment of Alzheimer's disease (AD), but it is currently costly and/or invasive. Objective We aimed to classify Aβ positivity (Aβ+) using morphometric features from magnetic resonance imaging (MRI), a more accessible and non-invasive technique, in two clinical population scenarios: one containing AD, mild cognitive impairment (MCI) and cognitively normal (CN) subjects, and another only cognitively impaired subjects (AD and MCI). Methods Demographic, cognitive (Mini-Mental State Examination [MMSE] scores), regional morphometry MRI (volumes, areas, and thicknesses), and derived morphometric graph theory (GT) features from all subjects (302 Aβ+, age: 73.3±7.2, 150 male; 246 Aβ-, age: 71.1±7.1, 131 male) were combined in different feature sets. We implemented a machine learning workflow to find the best Aβ+ classification model. Results In an AD+MCI+CN population scenario, the best-performing model selected 120 features (107 GT features, 12 regional morphometric features and the MMSE total score) and achieved a negative predictive value (NPVadj) of 68.4%, and a balanced accuracy (BAC) of 66.9%. In a AD+MCI scenario, the best model obtained NPVadj of 71.6%, and BAC of 70.7%, using 180 regional morphometric features (98 volumes, 52 areas and 29 thicknesses from temporal, parietal, and frontal brain regions). Conclusions Although with currently limited clinical applicability, regional MRI morphometric features have clinical usefulness potential for detecting Aβ status, which may be augmented by a combination with cognitive data when cognitively normal subjects make up a substantial part of the population presenting for diagnosis.
Collapse
Affiliation(s)
- Helena Rico Pereira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia e UNINOVA-CTS, Universidade Nova de Lisboa, Caparica, Portugal
| | - Vasco Sá Diogo
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Instituto Universitário de Lisboa (Iscte-IUL), CIS-Iscte, Lisbon, Portugal
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Laboratório de Instrumentação, Engenharia Biomédica e da Física das Radiações, No pólo da Universidade Nova (LIBPhys-UNL), Lisbon, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Hani Hojjati S, Butler TA, Chiang GC, Habeck C, RoyChoudhury A, Feiz F, Shteingart J, Nayak S, Ozoria S, Fernández A, Stern Y, Luchsinger JA, Devanand DP, Razlighi QR. Distinct and joint effects of low and high levels of Aβ and tau deposition on cortical thickness. Neuroimage Clin 2023; 38:103409. [PMID: 37104927 PMCID: PMC10165160 DOI: 10.1016/j.nicl.2023.103409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Alzheimer's disease (AD) is defined by the presence of Amyloid-β (Aβ),tau, and neurodegeneration (ATN framework) in the human cerebral cortex. Yet, prior studies have suggested that Aβ deposition can be associated with both cortical thinning and thickening. These contradictory results are attributed to small sample sizes, the presence versus absence of tau, and limited detectability in the earliest phase of protein deposition, which may begin in young adulthood and cannot be captured in studies enrolling only older subjects. In this study, we aimed to find the distinct and joint effects of Aβ andtau on neurodegeneration during the progression from normal to abnormal stages of pathologies that remain elusive. We used18F-MK6240 and 18F-Florbetaben/18F-Florbetapir positron emission tomography (PET) and magnetic resonance imaging (MRI) to quantify tau, Aβ, and cortical thickness in 590 participants ranging in age from 20 to 90. We performed multiple regression analyses to assess the distinct and joint effects of Aβ and tau on cortical thickness using 590 healthy control (HC) and mild cognitive impairment (MCI) participants (141 young, 394 HC elderlies, 52 MCI). We showed thatin participants with normal levels of global Aβdeposition, Aβ uptakewassignificantly associated with increasedcortical thickness regardless of tau (e.g., left entorhinal cortex with t > 3.241, p < 0.0013). The relationship between tau deposition and neurodegeneration was more complex: in participants with abnormal levels of global tau, tau uptake was associated with cortical thinning in several regions of the brain (e.g., left entorhinal with t < -2.80, p < 0.0096 and left insula with t-value < -4.284, p < 0.0001), as reported on prior neuroimaging and neuropathological studies. Surprisingly, in participants with normal levels of global tau, tau was found to be associated with cortical thickening. Moreover, in participants with abnormal levels of global Aβandtau, theresonancebetween them, defined as their correlation throughout the cortex, wasassociated strongly with cortical thinning even when controlling for a direct linear effect. We confirm prior findings of an association between Aβ deposition and cortical thickening and suggest this may also be the case in the earliest stages of deposition in normal aging. We also illustrate that resonance between high levels of Aβ and tau uptake is strongly associated with cortical thinning, emphasizing the effects of Aβ/tau synergy inAD pathogenesis.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States.
| | - Tracy A Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C Chiang
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Christian Habeck
- Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Arindam RoyChoudhury
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Farnia Feiz
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jacob Shteingart
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Siddharth Nayak
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sindy Ozoria
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Antonio Fernández
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yaakov Stern
- Departments of Neurology, Psychiatry, GH Sergievsky Center, the Taub Institute for the Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - José A Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Davangere P Devanand
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States; Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States; Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY, United States
| | - Qolamreza R Razlighi
- Quantitative Neuroimaging Laboratory, Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Vermunt L, Sutphen C, Dicks E, de Leeuw DM, Allegri R, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Day G, Ewers M, Farlow M, Fox NC, Ghetti B, Graff-Radford N, Hassenstab J, Jucker M, Karch CM, Kuhle J, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Perrin RJ, Preische O, Schofield PR, Suárez-Calvet M, Xiong C, Scheltens P, Teunissen CE, Visser PJ, Bateman RJ, Benzinger TLS, Fagan AM, Gordon BA, Tijms BM. Axonal damage and astrocytosis are biological correlates of grey matter network integrity loss: a cohort study in autosomal dominant Alzheimer disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.21.23287468. [PMID: 37016671 PMCID: PMC10071836 DOI: 10.1101/2023.03.21.23287468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Brain development and maturation leads to grey matter networks that can be measured using magnetic resonance imaging. Network integrity is an indicator of information processing capacity which declines in neurodegenerative disorders such as Alzheimer disease (AD). The biological mechanisms causing this loss of network integrity remain unknown. Cerebrospinal fluid (CSF) protein biomarkers are available for studying diverse pathological mechanisms in humans and can provide insight into decline. We investigated the relationships between 10 CSF proteins and network integrity in mutation carriers (N=219) and noncarriers (N=136) of the Dominantly Inherited Alzheimer Network Observational study. Abnormalities in Aβ, Tau, synaptic (SNAP-25, neurogranin) and neuronal calcium-sensor protein (VILIP-1) preceded grey matter network disruptions by several years, while inflammation related (YKL-40) and axonal injury (NfL) abnormalities co-occurred and correlated with network integrity. This suggests that axonal loss and inflammation play a role in structural grey matter network changes. Key points Abnormal levels of fluid markers for neuronal damage and inflammatory processes in CSF are associated with grey matter network disruptions.The strongest association was with NfL, suggesting that axonal loss may contribute to disrupted network organization as observed in AD.Tracking biomarker trajectories over the disease course, changes in CSF biomarkers generally precede changes in brain networks by several years.
Collapse
|
8
|
Habich A, Oltra J, Schwarz CG, Przybelski SA, Oppedal K, Inguanzo A, Blanc F, Lemstra AW, Hort J, Westman E, Lowe VJ, Boeve BF, Dierks T, Aarsland D, Kantarci K, Ferreira D. Sex differences in grey matter networks in dementia with Lewy bodies. RESEARCH SQUARE 2023:rs.3.rs-2519935. [PMID: 36778448 PMCID: PMC9915801 DOI: 10.21203/rs.3.rs-2519935/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objectives Sex differences permeate many aspects of dementia with Lewy bodies (DLB), including epidemiology, pathogenesis, disease progression, and symptom manifestation. However, less is known about potential sex differences in patterns of neurodegeneration in DLB. Here, we test whether grey matter networks also differ between female and male DLB patients. To assess the specificity of these sex differences to DLB, we additionally investigate sex differences in healthy controls (HCs). Methods A total of 119 (68.7 ± 8.4 years) male and 45 female (69.9 ± 9.1 years) DLB patients from three European centres and the Mayo Clinic were included in this study. Additionally, we included 119 male and 45 female age-matched HCs from the Mayo Clinic. Grey matter volumes of 58 cortical, subcortical, cerebellar, and pontine brain regions derived from structural magnetic resonance images were corrected for age, intracranial volume, and centre. Sex-specific grey matter networks for DLB patients and HCs were constructed by correlating each pair of brain regions. Network properties of the correlation matrices were compared between sexes and groups. Additional analyses were conducted on W-scored data to identify DLB-specific findings. Results Networks of male HCs and male DLB patients were characterised by a lower nodal strength compared to their respective female counterparts. In comparison to female HCs, the grey matter networks of male HCs showed a higher global efficiency, modularity, and a lower number of modules. None of the global and nodal network measures showed significant sex differences in DLB. Conclusions The disappearance of sex differences in the structural grey matter networks of DLB patients compared to HCs may indicate a sex-dependent network vulnerability to the alpha-synuclein pathology in DLB. Future studies might investigate whether the differences in structural network measures are associated with differences in cognitive scores and clinical symptoms between the sexes.
Collapse
Affiliation(s)
- Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | - Ketil Oppedal
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Anna Inguanzo
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Frédéric Blanc
- Day Hospital of Geriatrics, Memory Resource and Research Centre (CM2R) of Strasbourg, Department of Geriatrics, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Afina W Lemstra
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Jakub Hort
- Motol University Hospital, Prague, Czech Republic
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, USA
| | | | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy Bern, University of Bern, Bern, Switzerland
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Gazzina S, Grassi M, Premi E, Alberici A, Benussi A, Archetti S, Gasparotti R, Bocchetta M, Cash DM, Todd EG, Peakman G, Convery RS, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Butler CR, Santana I, Gerhard A, Ber IL, Pasquier F, Ducharme S, Levin J, Danek A, Sorbi S, Otto M, Rohrer JD, Borroni B. Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiol Aging 2022; 114:94-104. [PMID: 35339292 DOI: 10.1016/j.neurobiolaging.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal dementia associated with granulin (GRN) mutations presents asymmetric brain atrophy. We applied a Minimum Spanning Tree plus an Efficiency Cost Optimization approach to cortical thickness data in order to test whether graph theory measures could identify global or local impairment of connectivity in the presymptomatic phase of pathology, where other techniques failed in demonstrating changes. We included 52 symptomatic GRN mutation carriers (SC), 161 presymptomatic GRN mutation carriers (PSC) and 341 non-carriers relatives from the Genetic Frontotemporal dementia research Initiative cohort. Group differences of global, nodal and edge connectivity in (Minimum Spanning Tree plus an Efficiency Cost Optimization) graph were tested via Structural Equation Models. Global graph perturbation was selectively impaired in SC compared to non-carriers, with no changes in PSC. At the local level, only SC exhibited perturbation of frontotemporal nodes, but edge connectivity revealed a characteristic pattern of interhemispheric disconnection, involving homologous parietal regions, in PSC. Our results suggest that GRN-related frontotemporal dementia resembles a disconnection syndrome, with interhemispheric disconnection between parietal regions in presymptomatic phases that progresses to frontotemporal areas as symptoms emerge.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurophysiology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Enrico Premi
- Stroke Unit, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | - Alberto Benussi
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | | | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, Tubingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Chris R Butler
- Nueld Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, Essen University Hospital, Essen, Germany
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | | | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jonathan D Rohrer
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Barbara Borroni
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
| | | |
Collapse
|
10
|
Pelkmans W, Vromen EM, Dicks E, Scheltens P, Teunissen CE, Barkhof F, van der Flier WM, Tijms BM. Grey matter network markers identify individuals with prodromal Alzheimer's disease who will show rapid clinical decline. Brain Commun 2022; 4:fcac026. [PMID: 35310828 PMCID: PMC8924646 DOI: 10.1093/braincomms/fcac026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/25/2022] Open
Abstract
Individuals with prodromal Alzheimer's disease show considerable variability in rates of cognitive decline, which hampers the ability to detect potential treatment effects in clinical trials. Prognostic markers to select those individuals who will decline rapidly within a trial time frame are needed. Brain network measures based on grey matter covariance patterns have been associated with future cognitive decline in Alzheimer's disease. In this longitudinal cohort study, we investigated whether cut-offs for grey matter networks could be derived to detect fast disease progression at an individual level. We further tested whether detection was improved by adding other biomarkers known to be associated with future cognitive decline [i.e. CSF tau phosphorylated at threonine 181 (p-tau181) levels and hippocampal volume]. We selected individuals with mild cognitive impairment and abnormal CSF amyloid β1-42 levels from the Amsterdam Dementia Cohort and the Alzheimer's Disease Neuroimaging Initiative, when they had available baseline structural MRI and clinical follow-up. The outcome was progression to dementia within 2 years. We determined prognostic cut-offs for grey matter network properties (gamma, lambda and small-world coefficient) using time-dependent receiver operating characteristic analysis in the Amsterdam Dementia Cohort. We tested the generalization of cut-offs in the Alzheimer's Disease Neuroimaging Initiative, using logistic regression analysis and classification statistics. We further tested whether combining these with CSF p-tau181 and hippocampal volume improved the detection of fast decliners. We observed that within 2 years, 24.6% (Amsterdam Dementia Cohort, n = 244) and 34.0% (Alzheimer's Disease Neuroimaging Initiative, n = 247) of prodromal Alzheimer's disease patients progressed to dementia. Using the grey matter network cut-offs for progression, we could detect fast progressors with 65% accuracy in the Alzheimer's Disease Neuroimaging Initiative. Combining grey matter network measures with CSF p-tau and hippocampal volume resulted in the best model fit for classification of rapid decliners, increasing detecting accuracy to 72%. These data suggest that single-subject grey matter connectivity networks indicative of a more random network organization can contribute to identifying prodromal Alzheimer's disease individuals who will show rapid disease progression. Moreover, we found that combined with p-tau and hippocampal volume this resulted in the highest accuracy. This could facilitate clinical trials by increasing chances to detect effects on clinical outcome measures.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen M. Vromen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, UCL, London, UK
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Canal-Garcia A, Gómez-Ruiz E, Mijalkov M, Chang YW, Volpe G, Pereira JB. Multiplex Connectome Changes across the Alzheimer’s Disease Spectrum Using Gray Matter and Amyloid Data. Cereb Cortex 2022; 32:3501-3515. [PMID: 35059722 PMCID: PMC9376877 DOI: 10.1093/cercor/bhab429] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
The organization of the Alzheimer’s disease (AD) connectome has been studied using graph theory using single neuroimaging modalities such as positron emission tomography (PET) or structural magnetic resonance imaging (MRI). Although these modalities measure distinct pathological processes that occur in different stages in AD, there is evidence that they are not independent from each other. Therefore, to capture their interaction, in this study we integrated amyloid PET and gray matter MRI data into a multiplex connectome and assessed the changes across different AD stages. We included 135 cognitively normal (CN) individuals without amyloid-β pathology (Aβ−) in addition to 67 CN, 179 patients with mild cognitive impairment (MCI) and 132 patients with AD dementia who all had Aβ pathology (Aβ+) from the Alzheimer’s Disease Neuroimaging Initiative. We found widespread changes in the overlapping connectivity strength and the overlapping connections across Aβ-positive groups. Moreover, there was a reorganization of the multiplex communities in MCI Aβ + patients and changes in multiplex brain hubs in both MCI Aβ + and AD Aβ + groups. These findings offer a new insight into the interplay between amyloid-β pathology and brain atrophy over the course of AD that moves beyond traditional graph theory analyses based on single brain networks.
Collapse
Affiliation(s)
- Anna Canal-Garcia
- Address correspondence to Department of NVS, Division of Clinical Geriatrics, NEO seventh floor, Blickagången 16, 141 52 Huddinge, Sweden. ; Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | | | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Joana B Pereira
- Address correspondence to Department of NVS, Division of Clinical Geriatrics, NEO seventh floor, Blickagången 16, 141 52 Huddinge, Sweden. ; Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | | |
Collapse
|
12
|
Ota M, Numata Y, Kitabatake A, Tsukada E, Kaneta T, Asada T, Meno K, Uchida K, Suzuki H, Korenaga T, Arai T. Structural brain network correlations with amyloid burden in elderly individuals at risk of Alzheimer's disease. Psychiatry Res Neuroimaging 2022; 319:111415. [PMID: 34839208 DOI: 10.1016/j.pscychresns.2021.111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/10/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) has a long preclinical phase during which beta-amyloid accumulates in the brain without cognitive impairment. However, the pattern of brain network alterations in this early stage of the disease remains to be clarified. In this study we examined the relationships between regional brain network indices and beta-amyloid deposits. Twenty-four elderly subjects with the APOE4 allele underwent both a 1.5-Tesla magnetic resonance imaging (MRI) scan and a positron emission tomography (PET) scan using [18F]Florbetapir. We computed network metrics such as the degree, betweenness centrality, and clustering coefficient, and examined the relationships between the beta-amyloid accumulation and these regional brain network connectivity metrics. We found a significant positive correlation between the global standardized uptake value ratio (SUVR) of [18F]Florbetapir and the betweenness centrality in the left parietal region. However, there were no significant correlations between the SUVR score and other network indices or the regional gray matter volume. Our data suggest a relationship between the beta-amyloid accumulation and the regional brain network connectivity in subjects at risk of AD. The brain connectome may provide an adjunct biomarker for the early detection of AD.
Collapse
Affiliation(s)
- Miho Ota
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Yuriko Numata
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Ayako Kitabatake
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Eriko Tsukada
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tomohiro Kaneta
- Department of Advanced Molecular Imaging, Faculty of Medicine, University of Tsukuba, Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Takashi Asada
- Department of Neuropsychiatry, Tokyo Medical And Dental University, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kohji Meno
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kazuhiko Uchida
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Hideaki Suzuki
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tatsumi Korenaga
- Tsukuba Industrial Liaison and Cooperative Research Center, University of Tsukuba, Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8576, Japan
| |
Collapse
|
13
|
Li B, Jang I, Riphagen J, Almaktoum R, Yochim KM, Ances BM, Bookheimer SY, Salat DH. Identifying individuals with Alzheimer's disease-like brains based on structural imaging in the Human Connectome Project Aging cohort. Hum Brain Mapp 2021; 42:5535-5546. [PMID: 34582057 PMCID: PMC8559490 DOI: 10.1002/hbm.25626] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
Given the difficulty in factoring out typical age effects from subtle Alzheimer's disease (AD) effects on brain structure, identification of very early, as well as younger preclinical “at‐risk” individuals has unique challenges. We examined whether age‐correction procedures could be used to better identify individuals at very early potential risk from adults who did not have any existing cognitive diagnosis. First, we obtained cross‐sectional age effects for each structural feature using data from a selected portion of the Human Connectome Project Aging (HCP‐A) cohort. After age detrending, we weighted AD structural deterioration with patterns quantified from data of the Alzheimer's Disease Neuroimaging Initiative. Support vector machine was then used to classify individuals with brains that most resembled atrophy in AD across the entire HCP‐A sample. Additionally, we iteratively adjusted the pipeline by removing individuals classified as AD‐like from the HCP‐A cohort to minimize atypical brain structural contributions to the age detrending. The classifier had a mean cross‐validation accuracy of 94.0% for AD recognition. It also could identify mild cognitive impairment with more severe AD‐specific biomarkers and worse cognition. In an independent HCP‐A cohort, 8.8% were identified as AD‐like, and they trended toward worse cognition. An “AD risk” score derived from the machine learning models also significantly correlated with cognition. This work provides a proof of concept for the potential to use structural brain imaging to identify asymptomatic individuals at young ages who show structural brain patterns similar to AD and are potentially at risk for a future clinical disorder.
Collapse
Affiliation(s)
- Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ikbeom Jang
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joost Riphagen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Randa Almaktoum
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kathryn Morrison Yochim
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Beau M Ances
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - David H Salat
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Relationship between Amyloid-β Deposition and the Coupling between Structural and Functional Brain Networks in Patients with Mild Cognitive Impairment and Alzheimer's Disease. Brain Sci 2021; 11:brainsci11111535. [PMID: 34827535 PMCID: PMC8615711 DOI: 10.3390/brainsci11111535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Previous studies have demonstrated that the accumulation of amyloid-β (Aβ) pathologies has distinctive stage-specific effects on the structural and functional brain networks along the Alzheimer's disease (AD) continuum. A more comprehensive account of both types of brain network may provide a better characterization of the stage-specific effects of Aβ pathologies. A potential candidate for this joint characterization is the coupling between the structural and functional brain networks (SC-FC coupling). We therefore investigated the effect of Aβ accumulation on global SC-FC coupling in patients with mild cognitive impairment (MCI), AD, and healthy controls. Patients with MCI were dichotomized according to their level of Aβ pathology seen in 18F-flutemetamol PET-CT scans-namely, Aβ-negative and Aβ-positive. Our results show that there was no difference in global SC-FC coupling between different cohorts. During the prodromal AD stage, there was a significant negative correlation between the level of Aβ pathology and the global SC-FC coupling of MCI patients with positive Aβ, but no significant correlation for MCI patients with negative Aβ. During the AD dementia stage, the correlation between Aβ pathology and global SC-FC coupling in patients with AD was positive. Our results suggest that Aβ pathology has distinctive stage-specific effects on global coupling between the structural and functional brain networks along the AD continuum.
Collapse
|
15
|
Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease - relationship to biomarkers and genetics. Nat Rev Neurol 2021; 17:545-563. [PMID: 34285392 PMCID: PMC8403643 DOI: 10.1038/s41582-021-00529-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The pathology of Alzheimer disease (AD) damages structural and functional brain networks, resulting in cognitive impairment. The results of recent connectomics studies have now linked changes in structural and functional network organization in AD to the patterns of amyloid-β and tau accumulation and spread, providing insights into the neurobiological mechanisms of the disease. In addition, the detection of gene-related connectome changes might aid in the early diagnosis of AD and facilitate the development of personalized therapeutic strategies that are effective at earlier stages of the disease spectrum. In this article, we review studies of the associations between connectome changes and amyloid-β and tau pathologies as well as molecular genetics in different subtypes and stages of AD. We also highlight the utility of connectome-derived computational models for replicating empirical findings and for tracking and predicting the progression of biomarker-indicated AD pathophysiology.
Collapse
Affiliation(s)
- Meichen Yu
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
| | - Olaf Sporns
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Network Science Institute, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Network Science Institute, Bloomington, IN, USA.
| |
Collapse
|
16
|
Pelkmans W, Ossenkoppele R, Dicks E, Strandberg O, Barkhof F, Tijms BM, Pereira JB, Hansson O. Tau-related grey matter network breakdown across the Alzheimer's disease continuum. Alzheimers Res Ther 2021; 13:138. [PMID: 34389066 PMCID: PMC8364121 DOI: 10.1186/s13195-021-00876-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Changes in grey matter covariance networks have been reported in preclinical and clinical stages of Alzheimer's disease (AD) and have been associated with amyloid-β (Aβ) deposition and cognitive decline. However, the role of tau pathology on grey matter networks remains unclear. Based on previously reported associations between tau pathology, synaptic density and brain structural measures, tau-related connectivity changes across different stages of AD might be expected. We aimed to assess the relationship between tau aggregation and grey matter network alterations across the AD continuum. METHODS We included 533 individuals (178 Aβ-negative cognitively unimpaired (CU) subjects, 105 Aβ-positive CU subjects, 122 Aβ-positive patients with mild cognitive impairment, and 128 patients with AD dementia) from the BioFINDER-2 study. Single-subject grey matter networks were extracted from T1-weighted images and graph theory properties including degree, clustering coefficient, path length, and small world topology were calculated. Associations between tau positron emission tomography (PET) values and global and regional network measures were examined using linear regression models adjusted for age, sex, and total intracranial volume. Finally, we tested whether the association of tau pathology with cognitive performance was mediated by grey matter network disruptions. RESULTS Across the whole sample, we found that higher tau load in the temporal meta-ROI was associated with significant changes in degree, clustering, path length, and small world values (all p < 0.001), indicative of a less optimal network organisation. Already in CU Aβ-positive individuals associations between tau burden and lower clustering and path length were observed, whereas in advanced disease stages elevated tau pathology was progressively associated with more brain network abnormalities. Moreover, the association between higher tau load and lower cognitive performance was only partly mediated (9.3 to 9.5%) through small world topology. CONCLUSIONS Our data suggest a close relationship between grey matter network disruptions and tau pathology in individuals with abnormal amyloid. This might reflect a reduced communication between neighbouring brain areas and an altered ability to integrate information from distributed brain regions with tau pathology, indicative of a more random network topology across different AD stages.
Collapse
Affiliation(s)
- Wiesje Pelkmans
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Joana B Pereira
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
17
|
Wu Z, Gao Y, Potter T, Benoit J, Shen J, Schulz PE, Zhang Y. Interactions Between Aging and Alzheimer's Disease on Structural Brain Networks. Front Aging Neurosci 2021; 13:639795. [PMID: 34177548 PMCID: PMC8222527 DOI: 10.3389/fnagi.2021.639795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Normative aging and Alzheimer's disease (AD) propagation alter anatomical connections among brain parcels. However, the interaction between the trajectories of age- and AD-linked alterations in the topology of the structural brain network is not well understood. In this study, diffusion-weighted magnetic resonance imaging (MRI) datasets of 139 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were used to document their structural brain networks. The 139 participants consist of 45 normal controls (NCs), 37 with early mild cognitive impairment (EMCI), 27 with late mild cognitive impairment (LMCI), and 30 AD patients. All subjects were further divided into three subgroups based on their age (56-65, 66-75, and 71-85 years). After the structural connectivity networks were built using anatomically-constrained deterministic tractography, their global and nodal topological properties were estimated, including network efficiency, characteristic path length, transitivity, modularity coefficient, clustering coefficient, and betweenness. Statistical analyses were then performed on these metrics using linear regression, and one- and two-way ANOVA testing to examine group differences and interactions between aging and AD propagation. No significant interactions were found between aging and AD propagation in the global topological metrics (network efficiency, characteristic path length, transitivity, and modularity coefficient). However, nodal metrics (clustering coefficient and betweenness centrality) of some cortical parcels exhibited significant interactions between aging and AD propagation, with affected parcels including left superior temporal, right pars triangularis, and right precentral. The results collectively confirm the age-related deterioration of structural networks in MCI and AD patients, providing novel insight into the cross effects of aging and AD disorder on brain structural networks. Some early symptoms of AD may also be due to age-associated anatomic vulnerability interacting with early anatomic changes associated with AD.
Collapse
Affiliation(s)
- Zhanxiong Wu
- School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Yunyuan Gao
- Department of Intelligent Control and Robotics Institute, College of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Thomas Potter
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Julia Benoit
- Texas Institute for Measurement Evaluation and Statistics, Department of Basic Vision Sciences, University of Houston, Houston, TX, United States
| | - Jian Shen
- Neurosurgery Department, The First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Paul E. Schulz
- Department of Neurology, The McGovern Medical School of UTHealth-Houston, Houston, TX, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | | |
Collapse
|
18
|
Qing Z, Chen F, Lu J, Lv P, Li W, Liang X, Wang M, Wang Z, Zhang X, Zhang B. Causal structural covariance network revealing atrophy progression in Alzheimer's disease continuum. Hum Brain Mapp 2021; 42:3950-3962. [PMID: 33978292 PMCID: PMC8288084 DOI: 10.1002/hbm.25531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 01/24/2023] Open
Abstract
The structural covariance network (SCN) has provided a perspective on the large‐scale brain organization impairment in the Alzheimer's Disease (AD) continuum. However, the successive structural impairment across brain regions, which may underlie the disrupted SCN in the AD continuum, is not well understood. In the current study, we enrolled 446 subjects with AD, mild cognitive impairment (MCI) or normal aging (NA) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The SCN as well as a casual SCN (CaSCN) based on Granger causality analysis were applied to the T1‐weighted structural magnetic resonance images of the subjects. Compared with that of the NAs, the SCN was disrupted in the MCI and AD subjects, with the hippocampus and left middle temporal lobe being the most impaired nodes, which is in line with previous studies. In contrast, according to the 194 subjects with records on CSF amyloid and Tau, the CaSCN revealed that during AD progression, the CaSCN was enhanced. Specifically, the hippocampus, thalamus, and precuneus/posterior cingulate cortex (PCC) were identified as the core regions in which atrophy originated and could predict atrophy in other brain regions. Taken together, these findings provide a comprehensive view of brain atrophy in the AD continuum and the relationships among the brain atrophy in different regions, which may provide novel insight into the progression of AD.
Collapse
Affiliation(s)
- Zhao Qing
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | - Feng Chen
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pin Lv
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiping Li
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xue Liang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Maoxue Wang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengge Wang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Institute of Brain Science, Nanjing University, Nanjing, China
| | | |
Collapse
|
19
|
Acitretin reverses early functional network degradation in a mouse model of familial Alzheimer's disease. Sci Rep 2021; 11:6649. [PMID: 33758244 PMCID: PMC7988040 DOI: 10.1038/s41598-021-85912-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/03/2021] [Indexed: 01/21/2023] Open
Abstract
Aberrant activity of local functional networks underlies memory and cognition deficits in Alzheimer's disease (AD). Hyperactivity was observed in microcircuits of mice AD-models showing plaques, and also recently in early stage AD mutants prior to amyloid deposition. However, early functional effects of AD on cortical microcircuits remain unresolved. Using two-photon calcium imaging, we found altered temporal distributions (burstiness) in the spontaneous activity of layer II/III visual cortex neurons, in a mouse model of familial Alzheimer's disease (5xFAD), before plaque formation. Graph theory (GT) measures revealed a distinct network topology of 5xFAD microcircuits, as compared to healthy controls, suggesting degradation of parameters related to network robustness. After treatment with acitretin, we observed a re-balancing of those network measures in 5xFAD mice; particularly in the mean degree distribution, related to network development and resilience, and post-treatment values resembled those of age-matched controls. Further, behavioral deficits, and the increase of excitatory synapse numbers in layer II/III were reversed after treatment. GT is widely applied for whole-brain network analysis in human neuroimaging, we here demonstrate the translational value of GT as a multi-level tool, to probe networks at different levels in order to assess treatments, explore mechanisms, and contribute to early diagnosis.
Collapse
|
20
|
Skillbäck T, Blennow K, Zetterberg H, Shams S, Machado A, Pereira J, Lindberg O, Mielke MM, Zettergren A, Ryden L, Westman E, Wahlund L, Skoog I, Kern S. Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12141. [PMID: 33748393 PMCID: PMC7968119 DOI: 10.1002/dad2.12141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/21/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION As cerebrospinal fluid (CSF) neurofilament light protein (NfL) and the CSF/serum albumin ratio (QAlb) are used in the clinical routine, the impact of demographic factors on these biomarkers is important to understand. METHODS Participants were derived from two Swedish samples: the population-based H70 Study (n = 308, age 70) and a clinical routine cohort (CSF NfL, n = 8995, QAlb, n = 39252, age 0 to 95). In the population-based study, QAlb and NfL were examined in relation to sex, cardiovascular risk factors, and cerebral white matter lesions (WMLs). In the clinical cohort, QAlb and NfL sex differences were tested in relation to age. RESULTS Men had higher QAlb and NfL concentrations and had higher QAlb and NfL concentrations from adolescence throughout life. NfL was not related to WML, but QAlb correlated positively with WMLs. DISCUSSION The CSF NfL sex difference could not be explained by vascular pathology. Future studies should consider using different reference limits for men and women.
Collapse
Affiliation(s)
- Tobias Skillbäck
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Sara Shams
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Alejandra Machado
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Joana Pereira
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Olof Lindberg
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Michelle M. Mielke
- Department of Health Sciences ResearchDivision of Epidemiology and Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | - Anna Zettergren
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Lina Ryden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Eric Westman
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
- Department of NeuroimagingCentre for Neuroimaging SciencesInstitute of PsychiatryPsychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Lars‐Olof Wahlund
- Department of NeurobiologyCare Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Ingmar Skoog
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| | - Silke Kern
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Neuropsychiatric Epidemiology UnitDepartment of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologySahlgrenska AcademyCentre for Ageing and Health (AgeCap) at the University of GothenburgSweden
| |
Collapse
|
21
|
Lee S, Kim D, Youn H, Hyung WSW, Suh S, Kaiser M, Han CE, Jeong HG. Brain network analysis reveals that amyloidopathy affects comorbid cognitive dysfunction in older adults with depression. Sci Rep 2021; 11:4299. [PMID: 33619307 PMCID: PMC7900108 DOI: 10.1038/s41598-021-83739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Late-life depression (LLD) may increase the risk of Alzheimer's dementia (AD). While amyloidopathy accelerates AD progression, its role in such patients has not yet been elucidated. We hypothesized that cerebral amyloidopathy distinctly affects the alteration of brain network topology and may be associated with distinct cognitive symptoms. We recruited 26 and 27 depressed mild cognitive impairment (MCI) patients with (LLD-MCI-A(+)) and without amyloid accumulation (LLD-MCI-A(-)), respectively, and 21 normal controls. We extracted structural brain networks using their diffusion-weighted images. We aimed to compare the distinct network deterioration in LLD-MCI with and without amyloid accumulation and the relationship with their distinct cognitive decline. Thus, we performed a group comparison of the network topological measures and investigated any correlations with neurocognitive testing scores. Topological features of brain networks were different according to the presence of amyloid accumulation. Disrupted network connectivity was highly associated with impaired recall and recognition in LLD-MCI-A(+) patients. Inattention and dysexecutive function were more influenced by the altered networks involved in fronto-limbic circuitry dysfunction in LLD-MCI-A(-) patients. Our results show that alterations in brain network topology may reflect different cognitive dysfunction depending on amyloid accumulation in depressed older adults with MCI.
Collapse
Affiliation(s)
- Suji Lee
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea
| | - Daegyeom Kim
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - HyunChul Youn
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Won Seok William Hyung
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sangil Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, NE4 5TG, UK
- Institute of Neuroscience, Newcastle University, The Henry Wellcome Building, Newcastle upon Tyne, NE2 4HH, UK
- Department of Functional Neurosurgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Precision Imaging Beacon, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea.
| | - Hyun-Ghang Jeong
- Department of Biomedical Sciences, Korea University Graduate School, Seoul, Republic of Korea.
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Leocadi M, Canu E, Calderaro D, Corbetta D, Filippi M, Agosta F. An update on magnetic resonance imaging markers in AD. Ther Adv Neurol Disord 2020; 13:1756286420947986. [PMID: 33747128 PMCID: PMC7903819 DOI: 10.1177/1756286420947986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present review is to provide an update of the available recent scientific literature on the use of magnetic resonance imaging (MRI) in Alzheimer's disease (AD). MRI is playing an increasingly important role in the characterization of the AD signatures, which can be useful in both the diagnostic process and monitoring of disease progression. Furthermore, this technique is unique in assessing brain structure and function and provides a deep understanding of in vivo evolution of cerebral pathology. In the reviewing process, we established a priori criteria and we thoroughly searched the very recent scientific literature (January 2018-March 2020) for relevant articles on this topic. In summary, we selected 73 articles out of 1654 publications retrieved from PubMed. Based on this selection, this review summarizes the recent application of MRI in clinical trials, defining the predementia stages of AD, the clinical utility of MRI, proposal of novel biomarkers and brain regions of interest, and assessing the relationship between MRI and cognitive features, risk and protective factors of AD. Finally, the value of a multiparametric approach in clinical and preclinical stages of AD is discussed.
Collapse
Affiliation(s)
- Michela Leocadi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Calderaro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Davide Corbetta
- Laboratory of Movement Analysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Neurology and Neurophysiology Units, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, and Vita-Salute San Raffaele University, Via Olgettina 60, Milan 20132, Italy
| |
Collapse
|
23
|
Dicks E, Vermunt L, van der Flier WM, Barkhof F, Scheltens P, Tijms BM. Grey matter network trajectories across the Alzheimer's disease continuum and relation to cognition. Brain Commun 2020; 2:fcaa177. [PMID: 33376987 PMCID: PMC7751002 DOI: 10.1093/braincomms/fcaa177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Biomarkers are needed to monitor disease progression in Alzheimer's disease. Grey matter network measures have such potential, as they are related to amyloid aggregation in cognitively unimpaired individuals and to future cognitive decline in predementia Alzheimer's disease. Here, we investigated how grey matter network measures evolve over time within individuals across the entire Alzheimer's disease cognitive continuum and whether such changes relate to concurrent decline in cognition. We included 190 cognitively unimpaired, amyloid normal (controls) and 523 individuals with abnormal amyloid across the cognitive continuum (preclinical, prodromal, Alzheimer's disease dementia) from the Alzheimer's Disease Neuroimaging Initiative and calculated single-subject grey matter network measures (median of five networks per individual over 2 years). We fitted linear mixed models to investigate how network measures changed over time and whether such changes were associated with concurrent changes in memory, language, attention/executive functioning and on the Mini-Mental State Examination. We further assessed whether associations were modified by baseline disease stage. We found that both cognitive functioning and network measures declined over time, with steeper rates of decline in more advanced disease stages. In all cognitive stages, decline in network measures was associated with concurrent decline on the Mini-Mental State Examination, with stronger effects for individuals closer to Alzheimer's disease dementia. Decline in network measures was associated with concurrent cognitive decline in different cognitive domains depending on disease stage: In controls, decline in networks was associated with decline in memory and language functioning; preclinical Alzheimer's disease showed associations of decline in networks with memory and attention/executive functioning; prodromal Alzheimer's disease showed associations of decline in networks with cognitive decline in all domains; Alzheimer's disease dementia showed associations of decline in networks with attention/executive functioning. Decline in grey matter network measures over time accelerated for more advanced disease stages and was related to concurrent cognitive decline across the entire Alzheimer's disease cognitive continuum. These associations were disease stage dependent for the different cognitive domains, which reflected the respective cognitive stage. Our findings therefore suggest that grey matter measures are helpful to track disease progression in Alzheimer's disease.
Collapse
Affiliation(s)
- Ellen Dicks
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; Institutes of Neurology & Healthcare Engineering, UCL London, London WC1E, UK
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
24
|
Vermunt L, Dicks E, Wang G, Dincer A, Flores S, Keefe SJ, Berman SB, Cash DM, Chhatwal JP, Cruchaga C, Fox NC, Ghetti B, Graff-Radford NR, Hassenstab J, Karch CM, Laske C, Levin J, Masters CL, McDade E, Mori H, Morris JC, Noble JM, Perrin RJ, Schofield PR, Xiong C, Scheltens P, Visser PJ, Bateman RJ, Benzinger TLS, Tijms BM, Gordon BA. Single-subject grey matter network trajectories over the disease course of autosomal dominant Alzheimer's disease. Brain Commun 2020; 2:fcaa102. [PMID: 32954344 PMCID: PMC7475695 DOI: 10.1093/braincomms/fcaa102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Structural grey matter covariance networks provide an individual quantification of morphological patterns in the brain. The network integrity is disrupted in sporadic Alzheimer's disease, and network properties show associations with the level of amyloid pathology and cognitive decline. Therefore, these network properties might be disease progression markers. However, it remains unclear when and how grey matter network integrity changes with disease progression. We investigated these questions in autosomal dominant Alzheimer's disease mutation carriers, whose conserved age at dementia onset allows individual staging based upon their estimated years to symptom onset. From the Dominantly Inherited Alzheimer Network observational cohort, we selected T1-weighted MRI scans from 269 mutation carriers and 170 non-carriers (mean age 38 ± 15 years, mean estimated years to symptom onset -9 ± 11), of whom 237 had longitudinal scans with a mean follow-up of 3.0 years. Single-subject grey matter networks were extracted, and we calculated for each individual the network properties which describe the network topology, including the size, clustering, path length and small worldness. We determined at which time point mutation carriers and non-carriers diverged for global and regional grey matter network metrics, both cross-sectionally and for rate of change over time. Based on cross-sectional data, the earliest difference was observed in normalized path length, which was decreased for mutation carriers in the precuneus area at 13 years and on a global level 12 years before estimated symptom onset. Based on longitudinal data, we found the earliest difference between groups on a global level 6 years before symptom onset, with a greater rate of decline of network size for mutation carriers. We further compared grey matter network small worldness with established biomarkers for Alzheimer disease (i.e. amyloid accumulation, cortical thickness, brain metabolism and cognitive function). We found that greater amyloid accumulation at baseline was associated with faster decline of small worldness over time, and decline in grey matter network measures over time was accompanied by decline in brain metabolism, cortical thinning and cognitive decline. In summary, network measures decline in autosomal dominant Alzheimer's disease, which is alike sporadic Alzheimer's disease, and the properties show decline over time prior to estimated symptom onset. These data suggest that single-subject networks properties obtained from structural MRI scans form an additional non-invasive tool for understanding the substrate of cognitive decline and measuring progression from preclinical to severe clinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Lisa Vermunt
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam, UMC, VU University, Netherlands
| | - Ellen Dicks
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam, UMC, VU University, Netherlands
| | - Guoqiao Wang
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - Aylin Dincer
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Shaney Flores
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Sarah J Keefe
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
| | - Sarah B Berman
- Department of Neurology, Alzheimer’s Disease Research Center, Pittsburgh, PA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA
| | - David M Cash
- UCL Queen Square Institute of Neurology, London, UK
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, MO, USA
- Hope Center for Neurological Disorders, . Washington University in St. Louis, MO, USA
- NeuroGenomics and Informatics, Washington University in St. Louis, St. Louis, MO, USA
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UK
- Dementia Research Institute at UCL, UCL Institute of Neurology, London, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University, IN, USA
| | | | - Jason Hassenstab
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, MO, USA
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | | | - Colin L Masters
- Florey Institute, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
| | - Eric McDade
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical School, Japan
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center, Columbia University Medical Center, NY, USA
| | - Richard J Perrin
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis MO, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Chengjie Xiong
- Division of Biostatistics, Washington University in St. Louis, MO, USA
| | - Philip Scheltens
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam, UMC, VU University, Netherlands
| | - Pieter Jelle Visser
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam, UMC, VU University, Netherlands
- Department of Psychiatry and Neuropsychology, Maastricht University, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Netherlands
| | - Randall J Bateman
- Department of Psychiatry, Washington University in St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, MO, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
| | - Betty M Tijms
- Department of Neurology, Amsterdam Neuroscience, Alzheimer Center Amsterdam, Amsterdam, UMC, VU University, Netherlands
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University in St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, MO, USA
| |
Collapse
|
25
|
Jonkman LE, Steenwijk MD, Boesen N, Rozemuller AJM, Barkhof F, Geurts JJG, Douw L, van de Berg WDJ. Relationship between β-amyloid and structural network topology in decedents without dementia. Neurology 2020; 95:e532-e544. [PMID: 32661099 PMCID: PMC7455348 DOI: 10.1212/wnl.0000000000009910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/14/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the association between β-amyloid (Aβ) load and postmortem structural network topology in decedents without dementia. METHODS Fourteen decedents (mean age at death 72.6 ± 7.2 years) without known clinical diagnosis of neurodegenerative disease and meeting pathology criteria only for no or low Alzheimer disease (AD) pathologic change were selected from the Normal Aging Brain Collection Amsterdam database. In situ brain MRI included 3D T1-weighted images for anatomical registration and diffusion tensor imaging for probabilistic tractography with subsequent structural network construction. Network topologic measures of centrality (degree), integration (global efficiency), and segregation (clustering and local efficiency) were calculated. Tissue sections from 12 cortical regions were sampled and immunostained for Aβ and hyperphosphorylated tau (p-tau), and histopathologic burden was determined. Linear mixed effect models were used to assess the relationship between Aβ and p-tau load and network topologic measures. RESULTS Aβ was present in 79% of cases and predominantly consisted of diffuse plaques; p-tau was sparsely present. Linear mixed effect models showed independent negative associations between Aβ load and global efficiency (β = -0.83 × 10-3, p = 0.014), degree (β = -0.47, p = 0.034), and clustering (β = -0.55 × 10-2, p = 0.043). A positive association was present between Aβ load and local efficiency (β = 3.16 × 10-3, p = 0.035). Regionally, these results were significant in the posterior cingulate cortex (PCC) for degree (β = -2.22, p < 0.001) and local efficiency (β = 1.01 × 10-2, p = 0.014) and precuneus for clustering (β = -0.91 × 10-2, p = 0.017). There was no relationship between p-tau and network topology. CONCLUSION This study in deceased adults with AD-related pathologic change provides evidence for a relationship among early Aβ accumulation, predominantly of the diffuse type, and structural network topology, specifically of the PCC and precuneus.
Collapse
Affiliation(s)
- Laura E Jonkman
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK.
| | - Martijn D Steenwijk
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Nicky Boesen
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Annemieke J M Rozemuller
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Frederik Barkhof
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Jeroen J G Geurts
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Linda Douw
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| | - Wilma D J van de Berg
- From the Departments of Anatomy and Neurosciences (L.E.J., M.D.S., N.B., J.J.G.G., L.D., W.D.J.v.d.B.), Pathology (A.J.M.R.), and Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; and Institutes of Neurology and Healthcare Engineering (F.B.), University College London, UK
| |
Collapse
|
26
|
Dicks E, van der Flier WM, Scheltens P, Barkhof F, Tijms BM. Single-subject gray matter networks predict future cortical atrophy in preclinical Alzheimer's disease. Neurobiol Aging 2020; 94:71-80. [PMID: 32585492 DOI: 10.1016/j.neurobiolaging.2020.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
The development of preventive strategies in early-stage Alzheimer's disease (AD) requires measures that can predict future brain atrophy. Gray matter network measures are related to amyloid burden in cognitively normal older individuals and predict clinical progression in preclinical AD. Here, we show that within individuals with preclinical AD, gray matter network measures predict hippocampal atrophy rates, whereas other AD biomarkers (total gray matter volume, cerebrospinal fluid total tau, and Mini-Mental State Examination) do not. Furthermore, in brain areas where amyloid is known to start aggregating (i.e. anterior cingulate and precuneus), disrupted network measures predict faster atrophy in other distant areas, mostly involving temporal regions, which are associated with AD. When repeating analyses in age-matched, cognitively unimpaired individuals without amyloid or tau pathology, we did not find any associations between network measures and hippocampal atrophy, suggesting that the associations are specific for preclinical AD. Our findings suggest that disrupted gray matter networks may indicate a treatment opportunity in preclinical AD individuals but before the onset of irreversible atrophy and cognitive impairment.
Collapse
Affiliation(s)
- Ellen Dicks
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Centre for Medical Image Computing, Medical Physics and Biomedical Engineering, UCL, London, United Kingdom
| | - Betty M Tijms
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | |
Collapse
|
27
|
Dyrba M, Mohammadi R, Grothe MJ, Kirste T, Teipel SJ. Gaussian Graphical Models Reveal Inter-Modal and Inter-Regional Conditional Dependencies of Brain Alterations in Alzheimer's Disease. Front Aging Neurosci 2020; 12:99. [PMID: 32372944 PMCID: PMC7186311 DOI: 10.3389/fnagi.2020.00099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by a sequence of pathological changes, which are commonly assessed in vivo using various brain imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET). Currently, the most approaches to analyze statistical associations between regions and imaging modalities rely on Pearson correlation or linear regression models. However, these models are prone to spurious correlations arising from uninformative shared variance and multicollinearity. Notably, there are no appropriate multivariate statistical models available that can easily integrate dozens of multicollinear variables derived from such data, being able to utilize the additional information provided from the combination of data sources. Gaussian graphical models (GGMs) can estimate the conditional dependency from given data, which is conceptually expected to closely reflect the underlying causal relationships between various variables. Hence, we applied GGMs to assess multimodal regional brain alterations in AD. We obtained data from N = 972 subjects from the Alzheimer's Disease Neuroimaging Initiative. The mean amyloid load (AV45-PET), glucose metabolism (FDG-PET), and gray matter volume (MRI) were calculated for each of the 108 cortical and subcortical brain regions. GGMs were estimated using a Bayesian framework for the combined multimodal data and the resulted conditional dependency networks were compared to classical covariance networks based on Pearson correlation. Additionally, graph-theoretical network statistics were calculated to determine network alterations associated with disease status. The resulting conditional dependency matrices were much sparser (≈10% density) than Pearson correlation matrices (≈50% density). Within imaging modalities, conditional dependency networks yielded clusters connecting anatomically adjacent regions. For the associations between different modalities, only few region-specific connections were detected. Network measures such as small-world coefficient were significantly altered across diagnostic groups, with a biphasic u-shape trajectory, i.e., increased small-world coefficient in early mild cognitive impairment (MCI), similar values in late MCI, and decreased values in AD dementia patients compared to cognitively normal controls. In conclusion, GGMs removed commonly shared variance among multimodal measures of regional brain alterations in MCI and AD, and yielded sparser matrices compared to correlation networks based on the Pearson coefficient. Therefore, GGMs may be used as alternative to thresholding-approaches typically applied to correlation networks to obtain the most informative relations between variables.
Collapse
Affiliation(s)
- Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Reza Mohammadi
- Department of Operation Management, Amsterdam Business School, University of Amsterdam, Amsterdam, Netherlands
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Thomas Kirste
- Mobile Multimedia Information Systems Group (MMIS), University of Rostock, Rostock, Germany
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Clinic for Psychosomatics and Psychotherapeutic Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
28
|
Yun JY, Kim YK. Phenotype Network and Brain Structural Covariance Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:21-34. [PMID: 32002920 DOI: 10.1007/978-981-32-9705-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Network-based approach for psychological phenotypes assumes the dynamical interactions among the psychiatric symptoms, psychological characteristics, and neurocognitive performances arise, as they coexist, propagate, and inhibit other components within the network of mental phenomena. For differential types of dataset from which the phenotype network is to be estimated, a Gaussian graphical model, an Ising model, a directed acyclic graph, or an intraindividual covariance network could be used. Accordingly, these network-based approaches for anxiety-related psychological phenomena have been helpful in quantitative and pictorial understanding of qualitative dynamics among the diverse psychological phenomena as well as mind-environment interactions. Brain structural covariance refers to the correlative patterns of diverse brain morphological features among differential brain regions comprising the brain, as calculated per participant or across the participants. These covarying patterns of brain morphology partly overlap with longitudinal patterns of brain cortical maturation and also with propagating pattern of brain morphological changes such as cortical thinning and brain volume reduction in patients diagnosed with neurologic or psychiatric disorders along the trajectory of disease progression. Previous studies that used the brain structural covariance network could show neural correlates of specific anxiety disorder such as panic disorder and also elucidate the neural underpinning of anxiety symptom severity in diverse psychiatric and neurologic disorder patients.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, South Korea. .,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, South Korea.
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
29
|
Jacob S, Davies G, De Bock M, Hermans B, Wintmolders C, Bottelbergs A, Borgers M, Theunis C, Van Broeck B, Manyakov NV, Balschun D, Drinkenburg WHIM. Neural oscillations during cognitive processes in an App knock-in mouse model of Alzheimer's disease pathology. Sci Rep 2019; 9:16363. [PMID: 31705038 PMCID: PMC6841667 DOI: 10.1038/s41598-019-51928-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid β plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations. Therefore, we investigated in the present study the AppNL-G-Fmodel, an App knock-in (App-KI) mouse model that develops amyloidosis in the absence of APP-overexpression. Our findings at the behavioral, electrophysiological, and histopathological level confirmed an age-dependent increase in Aβ1-42 levels and plaque deposition in these mice in accordance with previous reports. This had apparently no consequences on cognitive performance in a visual discrimination (VD) task, which was largely unaffected in AppNL-G-F mice at the ages tested. Additionally, we investigated neurophysiological functioning of several brain areas by phase-amplitude coupling (PAC) analysis, a measure associated with adequate cognitive functioning, during the VD task (starting at 4.5 months) and the exploration of home environment (at 5 and 8 months of age). While we did not detect age-dependent changes in PAC during home environment exploration for both the wild-type and the AppNL-G-F mice, we did observe subtle changes in PAC in the wild-type mice that were not present in the AppNL-G-F mice.
Collapse
Affiliation(s)
- Sofia Jacob
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
- Brain & Cognition, KU Leuven, Leuven, Belgium
| | - Gethin Davies
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marijke De Bock
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bart Hermans
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Cindy Wintmolders
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Astrid Bottelbergs
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Marianne Borgers
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Clara Theunis
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Bianca Van Broeck
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nikolay V Manyakov
- Digital Phenotyping, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Wilhelmus H I M Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Ferreira D, Pereira JB, Volpe G, Westman E. Subtypes of Alzheimer's Disease Display Distinct Network Abnormalities Extending Beyond Their Pattern of Brain Atrophy. Front Neurol 2019; 10:524. [PMID: 31191430 PMCID: PMC6547836 DOI: 10.3389/fneur.2019.00524] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023] Open
Abstract
Different subtypes of Alzheimer's disease (AD) with characteristic distributions of neurofibrillary tangles and corresponding brain atrophy patterns have been identified using structural magnetic resonance imaging (MRI). However, the underlying biological mechanisms that determine this differential expression of neurofibrillary tangles are still unknown. Here, we applied graph theoretical analysis to structural MRI data to test the hypothesis that differential network disruption is at the basis of the emergence of these AD subtypes. We studied a total of 175 AD patients and 81 controls. Subtyping was done using the Scheltens' scale for medial temporal lobe atrophy, the Koedam's scale for posterior atrophy, and the Pasquier's global cortical atrophy scale for frontal atrophy. A total of 89 AD patients showed a brain atrophy pattern consistent with typical AD; 30 patients showed a limbic-predominant pattern; 29 patients showed a hippocampal-sparing pattern; and 27 showed minimal atrophy. We built brain structural networks from 68 cortical regions and 14 subcortical gray matter structures for each AD subtype and for the controls, and we compared between-group measures of integration, segregation, and modular organization. At the global level, modularity was increased and differential modular reorganization was detected in the four subtypes. We also found a decrease of transitivity in the typical and hippocampal-sparing subtypes, as well as an increase of average local efficiency in the minimal atrophy and hippocampal-sparing subtypes. We conclude that the AD subtypes have a distinct signature of network disruption associated with their atrophy patterns and further extending to other brain regions, presumably reflecting the differential spread of neurofibrillary tangles. We discuss the hypothetical emergence of these subtypes and possible clinical implications.
Collapse
Affiliation(s)
- Daniel Ferreira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Joana B Pereira
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Mårtensson G, Pereira JB, Mecocci P, Vellas B, Tsolaki M, Kłoszewska I, Soininen H, Lovestone S, Simmons A, Volpe G, Westman E. Stability of graph theoretical measures in structural brain networks in Alzheimer's disease. Sci Rep 2018; 8:11592. [PMID: 30072774 PMCID: PMC6072788 DOI: 10.1038/s41598-018-29927-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/20/2018] [Indexed: 01/22/2023] Open
Abstract
Graph analysis has become a popular approach to study structural brain networks in neurodegenerative disorders such as Alzheimer's disease (AD). However, reported results across similar studies are often not consistent. In this paper we investigated the stability of the graph analysis measures clustering, path length, global efficiency and transitivity in a cohort of AD (N = 293) and control subjects (N = 293). More specifically, we studied the effect that group size and composition, choice of neuroanatomical atlas, and choice of cortical measure (thickness or volume) have on binary and weighted network properties and relate them to the magnitude of the differences between groups of AD and control subjects. Our results showed that specific group composition heavily influenced the network properties, particularly for groups with less than 150 subjects. Weighted measures generally required fewer subjects to stabilize and all assessed measures showed robust significant differences, consistent across atlases and cortical measures. However, all these measures were driven by the average correlation strength, which implies a limitation of capturing more complex features in weighted networks. In binary graphs, significant differences were only found in the global efficiency and transitivity measures when using cortical thickness measures to define edges. The findings were consistent across the two atlases, but no differences were found when using cortical volumes. Our findings merits future investigations of weighted brain networks and suggest that cortical thickness measures should be preferred in future AD studies if using binary networks. Further, studying cortical networks in small cohorts should be complemented by analyzing smaller, subsampled groups to reduce the risk that findings are spurious.
Collapse
Affiliation(s)
- Gustav Mårtensson
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Joana B Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Magda Tsolaki
- 3rd Department of Neurology, Memory and Dementia Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Andrew Simmons
- NIHR Biomedical Research Centre for Mental Health, London, UK
- NIHR Biomedical Research Unit for Dementia, London, UK
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|