1
|
Deng F, Dounavi ME, Plini ERG, Ritchie K, Muniz-Terrera G, Hutchinson S, Malhotra P, Ritchie CW, Lawlor B, Naci L. Cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals. Neurobiol Aging 2024; 144:78-92. [PMID: 39293163 DOI: 10.1016/j.neurobiolaging.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's Disease (AD) neuropathology start decades before clinical manifestations, but whether risk factors are associated with early cognitive and brain changes in midlife remains poorly understood. We examined whether AD risk factors were associated with cognition and functional connectivity (FC) between the Locus Coeruleus (LC) and hippocampus - two key brain structures in AD neuropathology - cross-sectionally and longitudinally in cognitively healthy midlife individuals. Neuropsychological assessments and functional Magnetic Resonance Imaging were obtained at baseline (N=210), and two-years follow-up (N=188). Associations of cognition and FC with apolipoprotein ε4 (APOE ε4) genotype, family history of dementia, and the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) score were investigated. Cross-sectionally, higher CAIDE scores were associated with worse cognition. Menopausal status interacted with the CAIDE risk on cognition. Furthermore, the CAIDE score significantly moderated the relationship between cognition and LC-Hippocampus FC. Longitudinally, the LC-Hippocampus FC decreased significantly over 2 years. These results suggest that cardiovascular risk of dementia is associated with brain-behaviour changes in cognitively healthy, middle-aged individuals.
Collapse
Affiliation(s)
- Feng Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
| | - Emanuele R G Plini
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Karen Ritchie
- U1061 Neuropsychiatry, INSERM, University of Montpellier, Montpellier, France
| | - Graciela Muniz-Terrera
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK; Department of Social medicine, Ohio University, USA
| | | | - Paresh Malhotra
- Department of Brain Science, Imperial College Healthcare NHS Trust, UK
| | - Craig W Ritchie
- Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Ludwig M, Yi YJ, Lüsebrink F, Callaghan MF, Betts MJ, Yakupov R, Weiskopf N, Dolan RJ, Düzel E, Hämmerer D. Functional locus coeruleus imaging to investigate an ageing noradrenergic system. Commun Biol 2024; 7:777. [PMID: 38937535 PMCID: PMC11211439 DOI: 10.1038/s42003-024-06446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
The locus coeruleus (LC), our main source of norepinephrine (NE) in the brain, declines with age and is a potential epicentre of protein pathologies in neurodegenerative diseases (ND). In vivo measurements of LC integrity and function are potentially important biomarkers for healthy ageing and early ND onset. In the present study, high-resolution functional MRI (fMRI), a reversal reinforcement learning task, and dedicated post-processing approaches were used to visualise age differences in LC function (N = 50). Increased LC responses were observed during emotionally and task-related salient events, with subsequent accelerations and decelerations in reaction times, respectively, indicating context-specific adaptive engagement of the LC. Moreover, older adults exhibited increased LC activation compared to younger adults, indicating possible compensatory overactivation of a structurally declining LC in ageing. Our study shows that assessment of LC function is a promising biomarker of cognitive aging.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto-von-Guericke University, Magdeburg, Germany
- NMR Methods Development Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square, Institute of Neurology, University College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Liebe T, Danyeli LV, Sen ZD, Li M, Kaufmann J, Walter M. Subanesthetic Ketamine Suppresses Locus Coeruleus-Mediated Alertness Effects: A 7T fMRI Study. Int J Neuropsychopharmacol 2024; 27:pyae022. [PMID: 38833581 PMCID: PMC11187989 DOI: 10.1093/ijnp/pyae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The NMDA antagonist S-ketamine is gaining increasing use as a rapid-acting antidepressant, although its exact mechanisms of action are still unknown. In this study, we investigated ketamine in respect to its properties toward central noradrenergic mechanisms and how they influence alertness behavior. METHODS We investigated the influence of S-ketamine on the locus coeruleus (LC) brain network in a placebo-controlled, cross-over, 7T functional, pharmacological MRI study in 35 healthy male participants (25.1 ± 4.2 years) in conjunction with the attention network task to measure LC-related alertness behavioral changes. RESULTS We could show that acute disruption of the LC alertness network to the thalamus by ketamine is related to a behavioral alertness reduction. CONCLUSION The results shed new light on the neural correlates of ketamine beyond the glutamatergic system and underpin a new concept of how it may unfold its antidepressant effects.
Collapse
Affiliation(s)
- Thomas Liebe
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- University Clinic for Dermatology, Magdeburg, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner site Halle-Jena-Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Jörn Kaufmann
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner site Halle-Jena-Magdeburg, Germany
| |
Collapse
|
4
|
Riley E, Turker H, Wang D, Swallow KM, Anderson AK, De Rosa E. Nonlinear changes in pupillary attentional orienting responses across the lifespan. GeroScience 2024; 46:1017-1033. [PMID: 37318717 PMCID: PMC10828243 DOI: 10.1007/s11357-023-00834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
The cognitive aging process is not necessarily linear. Central task-evoked pupillary responses, representing a brainstem-pupil relationship, may vary across the lifespan. Thus we examined, in 75 adults ranging in age from 19 to 86, whether task-evoked pupillary responses to an attention task may serve in as an index of cognitive aging. This is because the locus coeruleus (LC), located in the brainstem, is not only among the earliest sites of degeneration in pathological aging, but also supports both attentional and pupillary behaviors. We assessed brief, task-evoked phasic attentional orienting to behaviorally relevant and irrelevant auditory tones, stimuli known specifically to recruit the LC in the brainstem and evoke pupillary responses. Due to potential nonlinear changes across the lifespan, we used a novel data-driven analysis on 6 dynamic pupillary behaviors on 10% of the data to reveal cut off points that best characterized the three age bands: young (19-41 years old), middle aged (42-68 years old), and older adults (69 + years old). Follow-up analyses on independent data, the remaining 90%, revealed age-related changes such as monotonic decreases in tonic pupillary diameter and dynamic range, along with curvilinear phasic pupillary responses to the behaviorally relevant target events, increasing in the middle-aged group and then decreasing in the older group. Additionally, the older group showed decreased differentiation of pupillary responses between target and distractor events. This pattern is consistent with potential compensatory LC activity in midlife that is diminished in old age, resulting in decreased adaptive gain. Beyond regulating responses to light, pupillary dynamics reveal a nonlinear capacity for neurally mediated gain across the lifespan, thus providing evidence in support of the LC adaptive gain hypothesis.
Collapse
Affiliation(s)
- Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY, USA.
| | - Hamid Turker
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Dongliang Wang
- Department of Public Health and Preventative Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Khena M Swallow
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Adam K Anderson
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Eve De Rosa
- Department of Psychology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Bachman SL, Cole S, Yoo HJ, Nashiro K, Min J, Mercer N, Nasseri P, Thayer JF, Lehrer P, Mather M. Daily heart rate variability biofeedback training decreases locus coeruleus MRI contrast in younger adults in a randomized clinical trial. Int J Psychophysiol 2023; 193:112241. [PMID: 37647944 PMCID: PMC10591988 DOI: 10.1016/j.ijpsycho.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
As an arousal hub region in the brain, the locus coeruleus (LC) has bidirectional connections with the autonomic nervous system. Magnetic resonance imaging (MRI)-based measures of LC structural integrity have been linked to cognition and arousal, but less is known about factors that influence LC structure and function across time. Here, we tested the effects of heart rate variability (HRV) biofeedback, an intervention targeting the autonomic nervous system, on LC MRI contrast and sympathetic activity. Younger and older participants completed daily HRV biofeedback training for five weeks. Those assigned to an experimental condition performed biofeedback involving slow, paced breathing designed to increase heart rate oscillations, whereas those assigned to a control condition performed biofeedback to decrease heart rate oscillations. At the pre- and post-training timepoints, LC contrast was assessed using turbo spin echo MRI scans, and RNA sequencing was used to assess cAMP-responsive element binding protein (CREB)-regulated gene expression in circulating blood cells, an index of sympathetic nervous system signaling. We found that left LC contrast decreased in younger participants in the experimental group, and across younger participants, decreases in left LC contrast were related to the extent to which participants increased their heart rate oscillations during training. Furthermore, decreases in left LC contrast were associated with decreased expression of CREB-associated gene transcripts. On the contrary, there were no effects of biofeedback on LC contrast among older participants in the experimental group. These findings provide novel evidence that in younger adults, HRV biofeedback involving slow, paced breathing can decrease both LC contrast and sympathetic nervous system signaling.
Collapse
Affiliation(s)
- Shelby L Bachman
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Steve Cole
- University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Noah Mercer
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Padideh Nasseri
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Julian F Thayer
- University of California Irvine, Irvine, CA 92697, United States of America
| | - Paul Lehrer
- Rutgers University, Piscataway, NJ 08852, United States of America
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
6
|
Cicero NG, Riley E, Swallow KM, De Rosa E, Anderson A. Attention-dependent coupling with forebrain and brainstem neuromodulatory nuclei changes across the lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560190. [PMID: 37808626 PMCID: PMC10557698 DOI: 10.1101/2023.09.29.560190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Attentional states continuously reflect the predictability and uncertainty in one's environment having important consequences for learning and memory. Beyond well known cortical contributions, rapid shifts in attention are hypothesized to also originate from deep nuclei, such as the basal forebrain (BF) and locus coeruleus (LC) neuromodulatory systems. These systems are also the first to change with aging. Here we characterized the interplay between these systems and their regulation of afferent targets - the hippocampus (HPC) and posterior cingulate cortex (PCC) - across the lifespan. To examine the role of attentional salience on task-dependent functional connectivity, we used a target-distractor go/no go task presented during functional MRI. In younger adults, BF coupling with the HPC, and LC coupling with the PCC, increased with behavioral relevance (targets vs distractors). Although the strength and presence of significant regional coupling changed in middle age, the most striking change in network connectivity was in old age, such that in older adults BF and LC coupling with their cortical afferents was largely absent and replaced by stronger interconnectivity between LC-BF nuclei. Overall rapid changes in attention related to behavioral relevance revealed distinct roles of subcortical neuromodulatory systems. The pronounced changes in functional network architecture across the lifespan suggest a decrease in these distinct roles, with deafferentation of cholinergic and noradrenergic systems associated with a shift towards mutual support during attention guided to external stimuli.
Collapse
Affiliation(s)
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY 14853
| | - Khena M Swallow
- Department of Psychology, Cornell University, Ithaca, NY 14853
| | - Eve De Rosa
- Department of Psychology, Cornell University, Ithaca, NY 14853
| | - Adam Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
8
|
Berger A, Koshmanova E, Beckers E, Sharifpour R, Paparella I, Campbell I, Mortazavi N, Balda F, Yi YJ, Lamalle L, Dricot L, Phillips C, Jacobs HIL, Talwar P, El Tahry R, Sherif S, Vandewalle G. Structural and functional characterization of the locus coeruleus in young and late middle-aged individuals. FRONTIERS IN NEUROIMAGING 2023; 2:1207844. [PMID: 37554637 PMCID: PMC10406214 DOI: 10.3389/fnimg.2023.1207844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION The brainstem locus coeruleus (LC) influences a broad range of brain processes, including cognition. The so-called LC contrast is an accepted marker of the integrity of the LC that consists of a local hyperintensity on specific Magnetic Resonance Imaging (MRI) structural images. The small size of the LC has, however, rendered its functional characterization difficult in humans, including in aging. A full characterization of the structural and functional characteristics of the LC in healthy young and late middle-aged individuals is needed to determine the potential roles of the LC in different medical conditions. Here, we wanted to determine whether the activation of the LC in a mismatch negativity task changes in aging and whether the LC functional response was associated to the LC contrast. METHODS We used Ultra-High Field (UHF) 7-Tesla functional MRI (fMRI) to record brain response during an auditory oddball task in 53 healthy volunteers, including 34 younger (age: 22.15y ± 3.27; 29 women) and 19 late middle-aged (age: 61.05y ± 5.3; 14 women) individuals. RESULTS Whole-brain analyses confirmed brain responses in the typical cortical and subcortical regions previously associated with mismatch negativity. When focusing on the brainstem, we found a significant response in the rostral part of the LC probability mask generated based on individual LC images. Although bilateral, the activation was more extensive in the left LC. Individual LC activity was not significantly different between young and late middle-aged individuals. Importantly, while the LC contrast was higher in older individuals, the functional response of the LC was not significantly associated with its contrast. DISCUSSION These findings may suggest that the age-related alterations of the LC structural integrity may not be related to changes in its functional response. The results further suggest that LC responses may remain stable in healthy individuals aged 20 to 70.
Collapse
Affiliation(s)
- Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Alzheimer Centre Limburg, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Department of Natural Sciences, Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Laurence Dricot
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Heidi I. L. Jacobs
- Alzheimer Centre Limburg, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Catholic University of Louvain, Brussels, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Miyawaki EK, Bhattacharyya S, Torre M. Revisiting a Telencephalic Extent of the Ascending Reticular Activating System. Cell Mol Neurobiol 2023:10.1007/s10571-023-01339-3. [PMID: 36964874 DOI: 10.1007/s10571-023-01339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
Is the cerebrum involved in its own activation to states of attention or arousal? "Telencephalon" is a term borrowed from embryology to identify not only the cerebral hemispheres of the forebrain, but also the basal forebrain. We review a generally undercited literature that describes nucleus basalis of Meynert, located within the substantia innominata of the ventrobasal forebrain, as a telencephalic extension of the ascending reticular activating formation. Although that formation's precise anatomical definition and localization have proven elusive over more than 70 years, a careful reading of sources reveals that there are histological features common to certain brainstem neurons and those of the nucleus basalis, and that a largely common dendritic architecture may be a morphological aspect that helps to define non-telencephalic structures of the ascending reticular activating formation (e.g., in brainstem) as well as those parts of the formation that are telencephalic and themselves responsible for cortical activation. We draw attention to a pattern of dendritic arborization described as "isodendritic," a uniform (isos-) branching in which distal dendrite branches are significantly longer than proximal ones. Isodendritic neurons also differ from other morphological types based on their heterogeneous, rather than specific afferentation. References reviewed here are consistent in their descriptions of histology, particularly in studies of locales rich in cholinergic neurons. We discuss the therapeutic implications of a basal forebrain site that may activate cortex. Interventions that specifically target nucleus basalis and, especially, the survival of its constituent neurons may benefit afflictions in which higher cortical function is compromised due to disturbed arousal or attentiveness, including not only coma and related syndromes, but also conditions colloquially described as states of cognitive "fog" or of "long-haul" mental compromise.
Collapse
Affiliation(s)
- Edison K Miyawaki
- Department of Neurology, Brigham and Women's Hospital, Mass General Brigham, 60 Fenwood Rd., Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Shamik Bhattacharyya
- Department of Neurology, Brigham and Women's Hospital, Mass General Brigham, 60 Fenwood Rd., Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew Torre
- Department of Pathology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of Neuromelanin MR Imaging in Parkinson Disease. J Magn Reson Imaging 2023; 57:337-352. [PMID: 36017746 PMCID: PMC10086789 DOI: 10.1002/jmri.28414] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/20/2023] Open
Abstract
MRI has been used to develop biomarkers for movement disorders such as Parkinson disease (PD) and other neurodegenerative disorders with parkinsonism such as progressive supranuclear palsy and multiple system atrophy. One of these imaging biomarkers is neuromelanin (NM), whose integrity can be assessed from its contrast and volume. NM is found mainly in certain brain stem structures, namely, the substantia nigra pars compacta (SNpc), the ventral tegmental area, and the locus coeruleus. Another major biomarker is brain iron, which often increases in concert with NM degeneration. These biomarkers have the potential to improve diagnostic certainty in differentiating between PD and other neurodegenerative disorders similar to PD, as well as provide a better understanding of pathophysiology. Mapping NM in vivo has clinical importance for gauging the premotor phase of PD when there is a greater than 50% loss of dopaminergic SNpc melanized neurons. As a metal ion chelator, NM can absorb iron. When NM is released from neurons, it deposits iron into the intracellular tissues of the SNpc; the result is iron that can be imaged and measured using quantitative susceptibility mapping. An increase of iron also leads to the disappearance of the nigrosome-1 sign, another neuroimage biomarker for PD. Therefore, mapping NM and iron changes in the SNpc are a practical means for improving early diagnosis of PD and in monitoring disease progression. In this review, we discuss the functions and location of NM, how NM-MRI is performed, the automatic mapping of NM and iron content, how NM-related imaging biomarkers can be used to enhance PD diagnosis and differentiate it from other neurodegenerative disorders, and potential advances in NM imaging methods. With major advances currently evolving for rapid imaging and artificial intelligence, NM-related biomarkers are likely to have increasingly important roles for enhancing diagnostic capabilities in PD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Peter A LeWitt
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Henry Ford Hospital, Parkinson's Disease and Movement Disorders Program, Detroit, Michigan, USA
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - E Mark Haacke
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China.,Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA.,SpinTech, Inc, Bingham Farms, Michigan, USA
| |
Collapse
|
11
|
Engels-Domínguez N, Koops EA, Prokopiou PC, Van Egroo M, Schneider C, Riphagen JM, Singhal T, Jacobs HIL. State-of-the-art imaging of neuromodulatory subcortical systems in aging and Alzheimer's disease: Challenges and opportunities. Neurosci Biobehav Rev 2023; 144:104998. [PMID: 36526031 PMCID: PMC9805533 DOI: 10.1016/j.neubiorev.2022.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Primary prevention trials have shifted their focus to the earliest stages of Alzheimer's disease (AD). Autopsy data indicates that the neuromodulatory subcortical systems' (NSS) nuclei are specifically vulnerable to initial tau pathology, indicating that these nuclei hold great promise for early detection of AD in the context of the aging brain. The increasing availability of new imaging methods, ultra-high field scanners, new radioligands, and routine deep brain stimulation implants has led to a growing number of NSS neuroimaging studies on aging and neurodegeneration. Here, we review findings of current state-of-the-art imaging studies assessing the structure, function, and molecular changes of these nuclei during aging and AD. Furthermore, we identify the challenges associated with these imaging methods, important pathophysiologic gaps to fill for the AD NSS neuroimaging field, and provide future directions to improve our assessment, understanding, and clinical use of in vivo imaging of the NSS.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Elouise A Koops
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Prokopis C Prokopiou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost M Riphagen
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tarun Singhal
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
12
|
Liebe T, Dordevic M, Kaufmann J, Avetisyan A, Skalej M, Müller N. Investigation of the functional pathogenesis of mild cognitive impairment by localisation-based locus coeruleus resting-state fMRI. Hum Brain Mapp 2022; 43:5630-5642. [PMID: 36441846 PMCID: PMC9704796 DOI: 10.1002/hbm.26039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 01/15/2023] Open
Abstract
Dementia as one of the most prevalent diseases urges for a better understanding of the central mechanisms responsible for clinical symptoms, and necessitates improvement of actual diagnostic capabilities. The brainstem nucleus locus coeruleus (LC) is a promising target for early diagnosis because of its early structural alterations and its relationship to the functional disturbances in the patients. In this study, we applied our improved method of localisation-based LC resting-state fMRI to investigate the differences in central sensory signal processing when comparing functional connectivity (fc) of a patient group with mild cognitive impairment (MCI, n = 28) and an age-matched healthy control group (n = 29). MCI and control participants could be differentiated in their Mini-Mental-State-Examination (MMSE) scores (p < .001) and LC intensity ratio (p = .010). In the fMRI, LC fc to anterior cingulate cortex (FDR p < .001) and left anterior insula (FDR p = .012) was elevated, and LC fc to right temporoparietal junction (rTPJ, FDR p = .012) and posterior cingulate cortex (PCC, FDR p = .021) was decreased in the patient group. Importantly, LC to rTPJ connectivity was also positively correlated to MMSE scores in MCI patients (p = .017). Furthermore, we found a hyperactivation of the left-insula salience network in the MCI patients. Our results and our proposed disease model shed new light on the functional pathogenesis of MCI by directing to attentional network disturbances, which could aid new therapeutic strategies and provide a marker for diagnosis and prediction of disease progression.
Collapse
Affiliation(s)
- Thomas Liebe
- Department of PsychiatryMedical University of ViennaViennaAustria
- Department of RadiologyUniversity Hospital JenaJenaGermany
- Department of PsychiatryUniversity Hospital JenaJenaGermany
- Clinical Affective Neuroimaging LaboratoryLeibniz Institute for NeurobiologyMagdeburgGermany
| | - Milos Dordevic
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| | - Jörn Kaufmann
- Department of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
| | - Araks Avetisyan
- Neuroprotection LabGerman Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin Skalej
- Department of Neuroradiology, Clinic and Policlinic of RadiologyUniversity Hospital HalleHalleGermany
| | - Notger Müller
- Department of Degenerative and Chronic DiseasesUniversity PotsdamPotsdamGermany
| |
Collapse
|
13
|
Wang Y, Zhan M, Roebroeck A, De Weerd P, Kashyap S, Roberts MJ. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 2022; 259:119421. [PMID: 35779763 DOI: 10.1016/j.neuroimage.2022.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
The nucleus basalis of Meynert (nbM) is the major source of cortical acetylcholine (ACh) and has been related to cognitive processes and to neurological disorders. However, spatially delineating the human nbM in MRI studies remains challenging. Due to the absence of a functional localiser for the human nbM, studies to date have localised it using nearby neuroanatomical landmarks or using probabilistic atlases. To understand the feasibility of MRI of the nbM we set our four goals; our first goal was to review current human nbM region-of-interest (ROI) selection protocols used in MRI studies, which we found have reported highly variable nbM volume estimates. Our next goal was to quantify and discuss the limitations of existing atlas-based volumetry of nbM. We found that the identified ROI volume depends heavily on the atlas used and on the probabilistic threshold set. In addition, we found large disparities even for data/studies using the same atlas and threshold. To test whether spatial resolution contributes to volume variability, as our third goal, we developed a novel nbM mask based on the normalized BigBrain dataset. We found that as long as the spatial resolution of the target data was 1.3 mm isotropic or above, our novel nbM mask offered realistic and stable volume estimates. Finally, as our last goal we tried to discern nbM using publicly available and novel high resolution structural MRI ex vivo MRI datasets. We find that, using an optimised 9.4T quantitative T2⁎ ex vivo dataset, the nbM can be visualised using MRI. We conclude caution is needed when applying the current methods of mapping nbM, especially for high resolution MRI data. Direct imaging of the nbM appears feasible and would eliminate the problems we identify, although further development is required to allow such imaging using standard (f)MRI scanning.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, Gif sur Yvette, France
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Techna Institute, University Health Network, Toronto, ON, Canada
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
14
|
Elman JA, Puckett OK, Hagler DJ, Pearce RC, Fennema-Notestine C, Hatton SN, Lyons MJ, McEvoy LK, Panizzon MS, Reas ET, Dale AM, Franz CE, Kremen WS. Associations between MRI-assessed locus coeruleus integrity and cortical gray matter microstructure. Cereb Cortex 2022; 32:4191-4203. [PMID: 34969072 PMCID: PMC9528780 DOI: 10.1093/cercor/bhab475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/27/2023] Open
Abstract
The locus coeruleus (LC) is one of the earliest sites of tau pathology, making it a key structure in early Alzheimer's disease (AD) progression. As the primary source of norepinephrine for the brain, reduced LC integrity may have negative consequences for brain health, yet macrostructural brain measures (e.g. cortical thickness) may not be sensitive to early stages of neurodegeneration. We therefore examined whether LC integrity was associated with differences in cortical gray matter microstructure among 435 men (mean age = 67.5; range = 62-71.7). LC structural integrity was indexed by contrast-to-noise ratio (LCCNR) from a neuromelanin-sensitive MRI scan. Restriction spectrum imaging (RSI), an advanced multi-shell diffusion technique, was used to characterize cortical microstructure, modeling total diffusion in restricted, hindered, and free water compartments. Higher LCCNR (greater integrity) was associated with higher hindered and lower free water diffusion in multiple cortical regions. In contrast, no associations between LCCNR and cortical thickness survived correction. Results suggest lower LC integrity is associated with patterns of cortical microstructure that may reflect a reduction in cytoarchitectural barriers due to broader neurodegenerative processes. These findings highlight the potential utility for LC imaging and advanced diffusion measures of cortical microstructure in assessing brain health and early identification of neurodegenerative processes.
Collapse
Affiliation(s)
- Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rahul C Pearce
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sean N Hatton
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Health Care System, La Jolla, CA 92161, USA
| |
Collapse
|
15
|
Zareba MR, Furman W, Binder M. Influence of age and cognitive performance on resting-state functional connectivity of dopaminergic and noradrenergic centers. Brain Res 2022; 1796:148082. [PMID: 36115586 DOI: 10.1016/j.brainres.2022.148082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Aging is associated with structural and functional changes in the brain, with a decline in cognitive functions observed as its inevitable concomitant. The body of literature suggests dopamine and noradrenaline as prominent candidate neuromodulators to mediate these effects; however, knowledge regarding the underlying mechanisms is scarce. To fill this gap, we compared resting-state functional connectivity (FC) patterns of ventral tegmental area (VTA), substantia nigra pars compacta (SNc) and locus coeruleus (LC) in healthy young (20-35 years; N = 37) and older adults (55-80 years; N = 27). Additionally, we sought FC patterns of these structures associated with performance in tasks probing executive, attentional and reward functioning, and we compared the functional coupling of the bilateral SNc. The results showed that individual SNc had stronger coupling with ipsilateral cortical and subcortical areas along with the contralateral cerebellum in the whole sample, and that the strength of connections of this structure with angular gyrus and lateral orbitofrontal cortex predicted visuomotor search abilities. In turn, older age was associated with greater local synchronization within VTA, its lower FC with caudate, mediodorsal thalamus, and SNc, as well as higher FC of both midbrain dopaminergic seeds with red nuclei. LC functional coupling showed no differences between the groups and was not associated with any of the behavioral functions. To the best of our knowledge, this work is the first to report the age-related effects on VTA local synchronization and its connectivity with key recipients of dopaminergic innervation, such as striatum and mediodorsal thalamus.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland
| | - Wiktoria Furman
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland.
| | - Marek Binder
- Institute of Psychology, Faculty of Philosophy, Jagiellonian University, Krakow, Poland
| |
Collapse
|
16
|
David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer's disease. Ann Clin Transl Neurol 2022; 9:582-596. [PMID: 35293158 PMCID: PMC8994981 DOI: 10.1002/acn3.51539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
There is clear, early noradrenergic dysfunction in Alzheimer's disease. This is likely secondary to pathological tau deposition in the locus coeruleus, the pontine nucleus that produces and releases noradrenaline, prior to involvement of cortical brain regions. Disruption of noradrenergic pathways affects cognition, especially attention, impacting memory and broader functioning. Additionally, it leads to autonomic and neuropsychiatric symptoms. Despite the strong evidence of noradrenergic involvement in Alzheimer's, there are no clear trial data supporting the clinical use of any noradrenergic treatments. Several approaches have been tried, including proof-of-principle studies and (mostly small scale) randomised controlled trials. Treatments have included pharmacotherapies as well as stimulation. The lack of clear positive findings is likely secondary to limitations in gauging locus coeruleus integrity and dysfunction at an individual level. However, the recent development of several novel biomarkers holds potential and should allow quantification of dysfunction. This may then inform inclusion criteria and stratification for future trials. Imaging approaches have improved greatly following the development of neuromelanin-sensitive sequences, enabling the use of structural MRI to estimate locus coeruleus integrity. Additionally, functional MRI scanning has the potential to quantify network dysfunction. As well as neuroimaging, EEG, fluid biomarkers and pupillometry techniques may prove useful in assessing noradrenergic tone. Here, we review the development of these biomarkers and how they might augment clinical studies, particularly randomised trials, through identification of patients most likely to benefit from treatment. We outline the biomarkers with most potential, and how they may transform symptomatic therapy for people living with Alzheimer's disease.
Collapse
Affiliation(s)
- Michael David
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| | - Paresh A. Malhotra
- Imperial College London and the University of SurreyUK Dementia Research Institute Care Research and Technology CentreSir Michael Uren Hub, 86 Wood LaneLondonW12 0BZUK
- Imperial College London, Brain SciencesSouth KensingtonLondonSW7 2AZUK
- Imperial College Healthcare NHS Trust, Clinical NeurosciencesCharing Cross HospitalLondonW2 1NYUK
| |
Collapse
|
17
|
Guardia T, Geerligs L, Tsvetanov KA, Ye R, Campbell KL. The role of the arousal system in age-related differences in cortical functional network architecture. Hum Brain Mapp 2022; 43:985-997. [PMID: 34713955 PMCID: PMC8764482 DOI: 10.1002/hbm.25701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/04/2021] [Accepted: 10/17/2021] [Indexed: 01/10/2023] Open
Abstract
A common finding in the aging literature is that of the brain's decreased within- and increased between-network functional connectivity. However, it remains unclear what is causing this shift in network organization with age. Given the essential role of the ascending arousal system (ARAS) in cortical activation and previous findings of disrupted ARAS functioning with age, it is possible that age differences in ARAS functioning contribute to disrupted cortical connectivity. We test this possibility here using resting state fMRI data from over 500 individuals across the lifespan from the Cambridge Center for Aging and Neuroscience (Cam-CAN) population-based cohort. Our results show that ARAS-cortical connectivity declines with age and, consistent with our expectations, significantly mediates some age-related differences in connectivity within and between association networks (specifically, within the default mode and between the default mode and salience networks). Additionally, connectivity between the ARAS and association networks predicted cognitive performance across several tasks over and above the effects of age and connectivity within the cortical networks themselves. These findings suggest that age differences in cortical connectivity may be driven, at least in part, by altered arousal signals from the brainstem and that ARAS-cortical connectivity relates to cognitive performance with age.
Collapse
Affiliation(s)
- Tiago Guardia
- Department of PsychologyBrock UniversitySt. CatharinesOntarioCanada
| | - Linda Geerligs
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | | | - Rong Ye
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
18
|
Van Egroo M, Koshmanova E, Vandewalle G, Jacobs HI. Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: implications for aging and Alzheimer’s disease. Sleep Med Rev 2022; 62:101592. [PMID: 35124476 PMCID: PMC9064973 DOI: 10.1016/j.smrv.2022.101592] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
Abstract
Five decades ago, seminal studies positioned the brainstem locus coeruleus (LC) norepinephrine (NE) system as a key substrate for the regulation of wakefulness and sleep, and this picture has recently been elaborated thanks to methodological advances in the precise investigation and experimental modulation of LC structure and functions. This review presents and discusses findings that support the major role of the LC-NE system at different levels of sleep-wake organization, ranging from its involvement in the overall architecture of the sleep-wake cycle to its associations with sleep microstructure, while accounting for the intricate neuroanatomy surrounding the LC. Given the particular position held by the LC-NE system by being at the intersection of sleep-wake dysregulation and initial pathophysiological processes of Alzheimer's disease (AD), we conclude by examining emerging opportunities to investigate LC-NE mediated relationships between sleep-wake alteration and AD in human aging. We further propose several research perspectives that could support the LC-NE system as a promising target for the identification of at-risk individuals in the preclinical stages of AD, and for the development of novel preventive interventions.
Collapse
|
19
|
Kelberman MA, Anderson CR, Chlan E, Rorabaugh JM, McCann KE, Weinshenker D. Consequences of Hyperphosphorylated Tau in the Locus Coeruleus on Behavior and Cognition in a Rat Model of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1037-1059. [PMID: 35147547 PMCID: PMC9007891 DOI: 10.3233/jad-215546] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The locus coeruleus (LC) is one of the earliest brain regions to accumulate hyperphosphorylated tau, but a lack of animal models that recapitulate this pathology has hampered our understanding of its contributions to Alzheimer's disease (AD) pathophysiology. OBJECTIVE We previously reported that TgF344-AD rats, which overexpress mutant human amyloid precursor protein and presenilin-1, accumulate early endogenous hyperphosphorylated tau in the LC. Here, we used TgF344-AD rats and a wild-type (WT) human tau virus to interrogate the effects of endogenous hyperphosphorylated rat tau and human tau in the LC on AD-related neuropathology and behavior. METHODS Two-month-old TgF344-AD and WT rats received bilateral LC infusions of full-length WT human tau or mCherry control virus driven by the noradrenergic-specific PRSx8 promoter. Rats were subsequently assessed at 6 and 12 months for arousal (sleep latency), anxiety-like behavior (open field, elevated plus maze, novelty-suppressed feeding), passive coping (forced swim task), and learning and memory (Morris water maze and fear conditioning). Hippocampal microglia, astrocyte, and AD pathology were evaluated using immunohistochemistry. RESULTS In general, the effects of age were more pronounced than genotype or treatment; older rats displayed greater hippocampal pathology, took longer to fall asleep, had reduced locomotor activity, floated more, and had impaired cognition compared to younger animals. TgF344-AD rats showed increased anxiety-like behavior and impaired learning and memory. The tau virus had negligible influence on most measures. CONCLUSION Effects of hyperphosphorylated tau on AD-like neuropathology and behavioral symptoms were subtle. Further investigation of different forms of tau is warranted.
Collapse
Affiliation(s)
- Michael A. Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA 30322
- Neuroscience Program, Laney Graduate School, Emory University, Atlanta, GA 30322
| | | | - Eli Chlan
- Neuroscience Program, Laney Graduate School, Emory University, Atlanta, GA 30322
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | | | | | | |
Collapse
|
20
|
Liebe T, Kaufmann J, Hämmerer D, Betts M, Walter M. In vivo tractography of human locus coeruleus-relation to 7T resting state fMRI, psychological measures and single subject validity. Mol Psychiatry 2022; 27:4984-4993. [PMID: 36117208 PMCID: PMC9763100 DOI: 10.1038/s41380-022-01761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 01/14/2023]
Abstract
The locus coeruleus (LC) in the brainstem as the main regulator of brain noradrenaline gains increasing attention because of its involvement in neurologic and psychiatric diseases and its relevance in general to brain function. In this study, we created a structural connectome of the LC nerve fibers based on in vivo MRI tractography to gain an understanding into LC connectivity and its impact on LC-related psychological measures. We combined our structural results with ultra-high field resting-state functional MRI to learn about the relationship between in vivo LC structural and functional connections. Importantly, we reveal that LC brain fibers are strongly associated with psychological measures of anxiety and alertness indicating that LC-noradrenergic connectivity may have an important role on brain function. Lastly, since we analyzed all our data in subject-specific space, we point out the potential of structural LC connectivity to reveal individual characteristics of LC-noradrenergic function on the single-subject level.
Collapse
Affiliation(s)
- Thomas Liebe
- grid.9613.d0000 0001 1939 2794Department of Psychiatry and Psychotherapy, University of Jena, D-07743 Jena, Germany ,grid.9613.d0000 0001 1939 2794Department of Radiology, University of Jena, D-07743 Jena, Germany ,Clinical Affective Neuroimaging Laboratory (CANLAB), D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Leibniz Institute for Neurobiology, D-39118 Magdeburg, Germany
| | - Jörn Kaufmann
- grid.5807.a0000 0001 1018 4307Department of Neurology, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Dorothea Hämmerer
- grid.5771.40000 0001 2151 8122Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria ,grid.83440.3b0000000121901201Institute of Cognitive Neuroscience, University College London, London, UK-WC1E 6BT UK ,grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265CBBS Center for Behavioral Brain Sciences, D-39120 Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany
| | - Matthew Betts
- grid.5807.a0000 0001 1018 4307Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265CBBS Center for Behavioral Brain Sciences, D-39120 Magdeburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Jena, D-07743, Jena, Germany. .,Clinical Affective Neuroimaging Laboratory (CANLAB), D-39120, Magdeburg, Germany. .,Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany. .,Department of Psychiatry and Psychotherapy, University Tuebingen, D-72076, Tuebingen, Germany. .,Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), D-07743 Jena, Germany. .,German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, D-07743 Jena, Germany.
| |
Collapse
|
21
|
Song I, Neal J, Lee TH. Age-Related Intrinsic Functional Connectivity Changes of Locus Coeruleus from Childhood to Older Adults. Brain Sci 2021; 11:1485. [PMID: 34827484 PMCID: PMC8615904 DOI: 10.3390/brainsci11111485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
The locus coeruleus is critical for selective information processing by modulating the brain's connectivity configuration. Increasingly, studies have suggested that LC controls sensory inputs at the sensory gating stage. Furthermore, accumulating evidence has shown that young children and older adults are more prone to distraction and filter out irrelevant information less efficiently, possibly due to the unoptimized LC connectivity. However, the LC connectivity pattern across the life span is not fully examined yet, hampering our ability to understand the relationship between LC development and the distractibility. In this study, we examined the intrinsic network connectivity of the LC using a public fMRI dataset with wide-range age samples. Based on LC-seed functional connectivity maps, we examined the age-related variation in the LC connectivity with a quadratic model. The analyses revealed two connectivity patterns explicitly. The sensory-related brain regions showed a positive quadratic age effect (u-shape), and the frontal regions for the cognitive control showed a negative quadratic age effect (inverted u-shape). Our results imply that such age-related distractibility is possibly due to the impaired sensory gating by the LC and the insufficient top-down controls by the frontal regions. We discuss the underlying neural mechanisms and limitations of our study.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Joshua Neal
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA 24060, USA; (I.S.); (J.N.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
22
|
Willems T, Henke K. Imaging human engrams using 7 Tesla magnetic resonance imaging. Hippocampus 2021; 31:1257-1270. [PMID: 34739173 PMCID: PMC9298259 DOI: 10.1002/hipo.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
The investigation of the physical traces of memories (engrams) has made significant progress in the last decade due to optogenetics and fluorescent cell tagging applied in rodents. Engram cells were identified. The ablation of engram cells led to the loss of the associated memory, silent memories were reactivated, and artificial memories were implanted in the brain. Human engram research lags behind engram research in rodents due to methodological and ethical constraints. However, advances in multivariate analysis techniques of functional magnetic resonance imaging (fMRI) data and machine learning algorithms allowed the identification of stable engram patterns in humans. In addition, MRI scanners with an ultrahigh field strength of 7 Tesla (T) have left their prototype state and became more common around the world to assist human engram research. Although most engram research in humans is still being performed with a field strength of 3T, fMRI at 7T will push engram research. Here, we summarize the current state and findings of human engram research and discuss the advantages and disadvantages of applying 7 versus 3T fMRI to image human memory traces.
Collapse
Affiliation(s)
- Tom Willems
- Institute of Psychology, University of Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Holland N, Robbins TW, Rowe JB. The role of noradrenaline in cognition and cognitive disorders. Brain 2021; 144:2243-2256. [PMID: 33725122 PMCID: PMC8418349 DOI: 10.1093/brain/awab111] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/09/2023] Open
Abstract
Many aspects of cognition and behaviour are regulated by noradrenergic projections to the forebrain originating from the locus coeruleus, acting through alpha and beta adrenoreceptors. Loss of these projections is common in neurodegenerative diseases and contributes to their cognitive and behavioural deficits. We review the evidence for a noradrenergic modulation of cognition in its contribution to Alzheimer's disease, Parkinson's disease and other cognitive disorders. We discuss the advances in human imaging and computational methods that quantify the locus coeruleus and its function in humans, and highlight the potential for new noradrenergic treatment strategies.
Collapse
Affiliation(s)
- Negin Holland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
24
|
Langley J, Hussain S, Huddleston DE, Bennett IJ, Hu XP. Impact of Locus Coeruleus and Its Projections on Memory and Aging. Brain Connect 2021; 12:223-233. [PMID: 34139886 DOI: 10.1089/brain.2020.0947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: Locus coeruleus (LC) is the primary source of norepinephrine to the brain and its efferent projections innervate many brain regions, including the thalamus. The LC degrades with normal aging, but not much is known regarding whether its structural connectivity evolves with age or predicts aspects of cognition. Methods: Here, we use high-resolution diffusion tensor imaging-based tractography to examine structural connectivity between LC and the thalamus in younger and older adults. Results: We found LC projections to be bundled in a fiber tract anatomically consistent with the central tegmental tract (CTT) and branched from this tract into the thalamus. The older cohort exhibited a significant reduction in mean and radial diffusivity within CTT, as compared with the young cohort. We also observed a significant correlation between CTT mean, axial, and radial diffusivities and memory performance (delayed recall) in the older adult cohort. Discussion: These observations suggest that although LC projections degrade with age, the degree of degradation is associated with cognitive abilities in older adults.
Collapse
Affiliation(s)
- Jason Langley
- Center for Advanced Neuroimaging and University of California Riverside, Riverside, California, USA
| | - Sana Hussain
- Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Ilana J Bennett
- Department of Psychology, University of California Riverside, Riverside, California, USA
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging and University of California Riverside, Riverside, California, USA.,Department of Bioengineering, University of California Riverside, Riverside, California, USA
| |
Collapse
|
25
|
Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021; 116:108-124. [PMID: 34099360 PMCID: PMC8292227 DOI: 10.1016/j.semcdb.2021.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Many believe that engaging in novel and mentally challenging activities promotes brain health and prevents Alzheimer's disease in later life. However, mental stimulation may also have risks as well as benefits. As neurons release neurotransmitters, they often also release amyloid peptides and tau proteins into the extracellular space. These by-products of neural activity can aggregate into the tau tangle and amyloid plaque signatures of Alzheimer's disease. Over time, more active brain regions accumulate more pathology. Thus, increasing brain activity can have a cost. But the neuromodulator noradrenaline, released during novel and mentally stimulating events, may have some protective effects-as well as some negative effects. Via its inhibitory and excitatory effects on neurons and microglia, noradrenaline sometimes prevents and sometimes accelerates the production and accumulation of amyloid-β and tau in various brain regions. Both α2A- and β-adrenergic receptors influence amyloid-β production and tau hyperphosphorylation. Adrenergic activity also influences clearance of amyloid-β and tau. Furthermore, some findings suggest that Alzheimer's disease increases noradrenergic activity, at least in its early phases. Because older brains clear the by-products of synaptic activity less effectively, increased synaptic activity in the older brain risks accelerating the accumulation of Alzheimer's pathology more than it does in the younger brain.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, & Department of Biomedical Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States.
| |
Collapse
|
26
|
Liu J, Tao J, Xia R, Li M, Huang M, Li S, Chen X, Wilson G, Park J, Zheng G, Chen L, Kong J. Mind-Body Exercise Modulates Locus Coeruleus and Ventral Tegmental Area Functional Connectivity in Individuals With Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:646807. [PMID: 34194314 PMCID: PMC8236862 DOI: 10.3389/fnagi.2021.646807] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Mild cognitive impairment (MCI) is a common global health problem. Recently, the potential of mind-body intervention for MCI has drawn the interest of investigators. This study aims to comparatively explore the modulation effect of Baduanjin, a popular mind-body exercise, and physical exercise on the cognitive function, as well as the norepinephrine and dopamine systems using the resting state functional connectivity (rsFC) method in patients with MCI. 69 patients were randomized to the Baduanjin, brisk walking, or healthy education control group for 6 months. The Montreal Cognitive Assessment (MoCA) and magnetic resonance imaging (MRI) scans were applied at baseline and at the end of the experiment. Results showed that (1) compared to the brisk walking, the Baduanjin significantly increased MoCA scores; (2) Baduanjin significantly increased the right locus coeruleus (LC) and left ventral tegmental area (VTA) rsFC with the right insula and right amygdala compared to that of the control group; and the right anterior cingulate cortex (ACC) compared to that of the brisk walking group; (3) the increased right LC-right insula rsFC and right LC-right ACC rsFC were significantly associated with the corresponding MoCA score after 6-months of intervention; (4) both exercise groups experienced an increased effective connectivity from the right ACC to the left VTA compared to the control group; and (5) Baduanjin group experienced an increase in gray matter volume in the right ACC compared to the control group. Our results suggest that Baduanjin can significantly modulate intrinsic functional connectivity and the influence of the norepinephrine (LC) and dopamine (VTA) systems. These findings may shed light on the mechanisms of mind-body intervention and aid the development of new treatments for MCI.
Collapse
Affiliation(s)
- Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Fujian University of Traditional Chinese Medicine, Ministry of Education, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Moyi Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Maomao Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shuzhen Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiangli Chen
- Department of Rehabilitation Psychology and Special Education, University of Wisconsin, Madison, WI, United States
| | - Georgia Wilson
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Joe Park
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Guohua Zheng
- School of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
27
|
Bachman SL, Dahl MJ, Werkle-Bergner M, Düzel S, Forlim CG, Lindenberger U, Kühn S, Mather M. Locus coeruleus MRI contrast is associated with cortical thickness in older adults. Neurobiol Aging 2020; 100:72-82. [PMID: 33508564 PMCID: PMC7920995 DOI: 10.1016/j.neurobiolaging.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
There is growing evidence that neuronal integrity of the noradrenergic locus coeruleus (LC) is important for later-life cognition. Less understood is how LC integrity relates to brain correlates of cognition, such as brain structure. Here, we examined the relationship between cortical thickness and a measure reflecting LC integrity in older (n = 229) and younger adults (n = 67). Using a magnetic resonance imaging sequence which yields high signal intensity in the LC, we assessed the contrast between signal intensity of the LC and that of neighboring pontine reference tissue. The Freesurfer software suite was used to quantify cortical thickness. LC contrast was positively related to cortical thickness in older adults, and this association was prominent in parietal, frontal, and occipital regions. Brain regions where LC contrast was related to cortical thickness include portions of the frontoparietal network which have been implicated in noradrenergically modulated cognitive functions. These findings provide novel evidence for a link between LC structure and cortical brain structure in later adulthood.
Collapse
Affiliation(s)
- Shelby L Bachman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Caroline Garcia Forlim
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany; Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Sun W, Tang Y, Qiao Y, Ge X, Mather M, Ringman JM, Shi Y. A probabilistic atlas of locus coeruleus pathways to transentorhinal cortex for connectome imaging in Alzheimer's disease. Neuroimage 2020; 223:117301. [PMID: 32861791 PMCID: PMC7797167 DOI: 10.1016/j.neuroimage.2020.117301] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
According to the latest Braak staging of Alzheimer's disease (AD), tau pathology occurs earliest in the brain in the locus coeruleus (LC) of the brainstem, then propagates to the transentorhinal cortex (TEC), and later to other neocortical regions. Recent animal and in vivo human brain imaging research also support the trans-axonal propagation of tau pathology. In addition, neurochemical studies link norepinephrine to behavioral symptoms in AD. It is thus critical to examine the integrity of the LC-TEC pathway in studying the early development of the disease, but there has been limited work in this direction. By leveraging the high-resolution and multi-shell diffusion MRI data from the Human Connectome Project (HCP), in this work we develop a novel method for the reconstruction of the LC-TEC pathway in a cohort of 40 HCP subjects carefully selected based on rigorous quality control of the residual distortion artifacts in the brainstem. A probabilistic atlas of the LC-TEC pathway of both hemispheres is then developed in the MNI152 space and distributed publicly on the NITRC website. To apply our atlas on clinical imaging data, we develop an automated approach to calculate the medial core of the LC-TEC pathway for localized analysis of connectivity changes. In a cohort of 138 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we demonstrate the detection of the decreased fiber integrity in the LC-TEC pathways with increasing disease severity.
Collapse
Affiliation(s)
- Wei Sun
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave., Los Angeles 90033, CA, USA
| | - Yuchun Tang
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave., Los Angeles 90033, CA, USA
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuchuan Qiao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave., Los Angeles 90033, CA, USA
| | - Xinting Ge
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave., Los Angeles 90033, CA, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - John M. Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yonggang Shi
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave., Los Angeles 90033, CA, USA
| | | |
Collapse
|
29
|
Priovoulos N, van Boxel SCJ, Jacobs HIL, Poser BA, Uludag K, Verhey FRJ, Ivanov D. Unraveling the contributions to the neuromelanin-MRI contrast. Brain Struct Funct 2020; 225:2757-2774. [PMID: 33090274 PMCID: PMC7674382 DOI: 10.1007/s00429-020-02153-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
The Locus Coeruleus (LC) and the Substantia Nigra (SN) are small brainstem nuclei that change with aging and may be involved in the development of various neurodegenerative and psychiatric diseases. Magnetization Transfer (MT) MRI has been shown to facilitate LC and the SN visualization, and the observed contrast is assumed to be related to neuromelanin accumulation. Imaging these nuclei may have predictive value for the progression of various diseases, but interpretation of previous studies is hindered by the fact that the precise biological source of the contrast remains unclear, though several hypotheses have been put forward. To inform clinical studies on the possible biological interpretation of the LC- and SN contrast, we examined an agar-based phantom containing samples of natural Sepia melanin and synthetic Cys-Dopa-Melanin and compared this to the in vivo human LC and SN. T1 and T2* maps, MT spectra and relaxation times of the phantom, the LC and the SN were measured, and a two-pool MT model was fitted. Additionally, Bloch simulations and a transient MT experiment were conducted to confirm the findings. Overall, our results indicate that Neuromelanin-MRI contrast in the LC likely results from a lower macromolecular fraction, thus facilitating interpretation of results in clinical populations. We further demonstrate that in older individuals T1 lengthening occurs in the LC.
Collapse
Affiliation(s)
- Nikos Priovoulos
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands.
| | - Stan C J van Boxel
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Kamil Uludag
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon, Republic of Korea.,Techna Institute and Koerner Scientist in MR Imaging, University Health Network, 121-100 College Street, Toronto, M5G 1L5, Canada
| | - Frans R J Verhey
- School for Mental Health and Neuroscience, Alzheimer Center Limburg, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
30
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
31
|
Mather M, Huang R, Clewett D, Nielsen SE, Velasco R, Tu K, Han S, Kennedy BL. Isometric exercise facilitates attention to salient events in women via the noradrenergic system. Neuroimage 2020; 210:116560. [PMID: 31978545 PMCID: PMC7061882 DOI: 10.1016/j.neuroimage.2020.116560] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) regulates attention via the release of norepinephrine (NE), with levels of tonic LC activity constraining the intensity of phasic LC responses. In the current fMRI study, we used isometric handgrip to modulate tonic LC-NE activity in older women and in young women with different hormone statuses during the time period immediately after the handgrip. During this post-handgrip time, an oddball detection task was used to probe how changes in tonic arousal influenced functional coordination between the LC and a right frontoparietal network that supports attentional selectivity. As expected, the frontoparietal network responded more to infrequent target and novel sounds than to frequent sounds. Across participants, greater LC-frontoparietal functional connectivity, pupil dilation, and faster oddball detection were all positively associated with LC MRI structural contrast from a neuromelanin-sensitive scan. Thus, LC structure was related to LC functional dynamics and attentional performance during the oddball task. We also found that handgrip influenced pupil and attentional processing during a subsequent oddball task. Handgrip decreased subsequent tonic pupil size, increased phasic pupil responses to oddball sounds, speeded oddball detection speed, and increased frontoparietal network activation, suggesting that inducing strong LC activity benefits attentional performance in the next few minutes, potentially due to reduced tonic LC activity. In addition, older women showed a similar benefit of handgrip on frontoparietal network activation as younger women, despite showing lower frontoparietal network activation overall. Together these findings suggest that a simple exercise may improve selective attention in healthy aging, at least for several minutes afterwards.
Collapse
Affiliation(s)
- Mara Mather
- University of Southern California, Leonard Davis School of Gerontology, USA.
| | - Ringo Huang
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - David Clewett
- University of California, Los Angeles, Department of Psychology, USA
| | - Shawn E Nielsen
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Ricardo Velasco
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Kristie Tu
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Sophia Han
- University of Southern California, Leonard Davis School of Gerontology, USA
| | - Briana L Kennedy
- University of Southern California, Leonard Davis School of Gerontology, USA
| |
Collapse
|
32
|
Liebe T, Kaufmann J, Li M, Skalej M, Wagner G, Walter M. In vivo anatomical mapping of human locus coeruleus functional connectivity at 3 T MRI. Hum Brain Mapp 2020; 41:2136-2151. [PMID: 31994319 PMCID: PMC7267980 DOI: 10.1002/hbm.24935] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
The locus coeruleus (LC) is involved in numerous crucial brain functions and several disorders like depression and Alzheimer's disease. Recently, the LC resting‐state functional connectivity (rs‐fc) has been investigated in functional MRI by calculating the blood oxygen level–dependent (BOLD) response extracted using Montreal Neurological Institute (MNI) space masks. To corroborate these results, we aimed to investigate the LC rs‐fc at native space by improving the identification of the LC location using a neuromelanin sensitive sequence. Twenty‐five healthy male participants (mean age 24.8 ± 4.2) were examined in a Siemens MAGNETOM Prisma 3 T MRT applying a neuromelanin sensitive T1TSE sequence and functional MRI. We compared the rs‐fc of LC calculated by a MNI‐based approach with extraction of the BOLD signal at the exact individual location of the LC after applying CompCor and field map correction. As a measure of advance, a marked increase of regional homogeneity (ReHo) of time series within LC could be achieved with the subject‐specific approach. Furthermore, the methods differed in the rs‐fc to the right temporoparietal junction, which showed stronger connectivity to the LC in the MNI‐based method. Nevertheless, both methods comparably revealed LC rs‐fc to multiple brain regions including ACC, bilateral thalamus, and cerebellum. Our results are relevant for further research assessing and interpreting LC function, especially in patient populations examined at 3 T MRI.
Collapse
Affiliation(s)
- Thomas Liebe
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Clinic for Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany.,Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Skalej
- Clinic for Neuroradiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.,Department of Psychiatry, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
33
|
Betts MJ, Kirilina E, Otaduy MCG, Ivanov D, Acosta-Cabronero J, Callaghan MF, Lambert C, Cardenas-Blanco A, Pine K, Passamonti L, Loane C, Keuken MC, Trujillo P, Lüsebrink F, Mattern H, Liu KY, Priovoulos N, Fliessbach K, Dahl MJ, Maaß A, Madelung CF, Meder D, Ehrenberg AJ, Speck O, Weiskopf N, Dolan R, Inglis B, Tosun D, Morawski M, Zucca FA, Siebner HR, Mather M, Uludag K, Heinsen H, Poser BA, Howard R, Zecca L, Rowe JB, Grinberg LT, Jacobs HIL, Düzel E, Hämmerer D. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 2019; 142:2558-2571. [PMID: 31327002 PMCID: PMC6736046 DOI: 10.1093/brain/awz193] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Evgeniya Kirilina
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Neuroscience, Free University Berlin, Berlin, Germany
| | - Maria C G Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, Medical School of the University of São Paulo, Brazil
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | | | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Kerrin Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, UK
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milan, Italy
| | - Clare Loane
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Max C Keuken
- University of Amsterdam, Integrative Model-based Cognitive Neuroscience research unit, Amsterdam, The Netherlands
- University of Leiden, Cognitive Psychology, Leiden, The Netherlands
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Falk Lüsebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Nikos Priovoulos
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Klaus Fliessbach
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Anne Maaß
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Christopher F Madelung
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Raymond Dolan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Max Planck Centre for Computational Psychiatry and Ageing, University College London, UK
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mara Mather
- Leonard Davis School of Gerontology and Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Kamil Uludag
- Centre for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Techna Institute and Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Helmut Heinsen
- University of São Paulo Medical School, São Paulo, Brazil
- Clinic of Psychiatry, University of Würzburg, Wurzburg, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- University of São Paulo Medical School, São Paulo, Brazil
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi I L Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, MD, Maastricht, The Netherlands
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|