1
|
Appiah D, Wellons MF, Schreiner PJ, Puterman E, Hou L, Kim C. The prospective association of cellular markers of biological aging with menopause in the Coronary Artery Risk Development in Young Adults Study. Menopause 2025; 32:91-94. [PMID: 39626174 DOI: 10.1097/gme.0000000000002457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Evidence from cross-sectional studies mainly among postmenopausal women suggests that biological aging is associated with reproductive senescence. We evaluated the prospective association of cellular markers of biological aging measured during the premenopausal period, and changes in these markers, with age at menopause. METHODS We studied 583 premenopausal women (39% Black) from the Coronary Artery Risk Development in Young Adults Study who had data on biological aging markers in 2000-2001 and reached menopause by 2020-2021. Linear regression models were used to evaluate the association of telomere length, mitochondrial DNA copy number, intrinsic or extrinsic epigenetic age acceleration, and PhenoAge or GrimAge acceleration with age at menopause. RESULTS The mean age at baseline was 41.2 ± 3.3 years, with the mean age at menopause being 49.1 (median, 50) years. About one in five women had surgical menopause. In chronological age-adjusted models, only baseline GrimAge acceleration was associated with age at menopause; women whose epigenetic age was older than their chronological age reached menopause at 0.12 years (~6 weeks) earlier compared with women with equal epigenetic and chronological age ( β = -0.123; 95% CI, -0.224 to -0.022; P = 0.018). However, this association was not statistically significant after adjustment for sociodemographic, behavior/lifestyle, and metabolic factors. Similar results were observed when changes in these biological aging markers were evaluated. The same associations were observed in analyses limited to women who reached natural menopause. CONCLUSIONS Sociodemographic, behavior/lifestyle, and metabolic factors remain comparable, if not more robust predictors of the age at menopause compared with cellular measures of biological age.
Collapse
Affiliation(s)
- Duke Appiah
- From the Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Melissa F Wellons
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Eli Puterman
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL
| | - Catherine Kim
- Departments of Medicine and Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
2
|
Dai R, Xu W, Zhu X, Sun R, Cheng L, Cui L, Qiu X, Wang Y, Sun Y. Acupuncture improves neuroendocrine defects in a preclinical rat model of reproductive aging. Life Sci 2024; 357:123102. [PMID: 39366551 DOI: 10.1016/j.lfs.2024.123102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
AIMS Clinical data supports electroacupuncture (EA) as an effective treatment for female reproductive disorders especially gonadotropin abnormalities. This study aims to detect the mechanism of EA that improves the neuroendocrine defects particularly the luteinizing hormone (LH) surge failure in early reproductive aging females. MATERIALS AND METHODS Middle-aged ovariectomized rats primed with hormone were treated by EA at acupoints CV4 and SP6 and undergone LH assay. Morphological experiments detected the activation of Kiss1 cells in the anteroventral periventricular nucleus (AVPV). Using targeted liquid chromatography with tandem mass spectrometry (LC-MS/MS) and RNA-sequencing, we determined the concentrations of neurotransmitter metabolites and transcriptomics in AVPV. KEY FINDINGS EA significantly increased c-Fos and c-Fos-positive Kiss1 cells in the middle-aged AVPV as well as the total and peak LH release. Targeted LC-MS/MS and RNA-sequencing of AVPV identified differential neurotransmitters in the middle-aged females including Acetylcholine chloride, 5-Hydroxyindole-3-aceticacid, Kynurenine, Histamine, L-Histidine and L-Glycine, while EA decreased the concentration of Acetylcholine chloride. Totally 1255 differentially expressed genes modulated by EA were strongly implicated in neurotransmitter transport and KEGG pathways involved neuroactive ligand-receptor interaction, glutamatergic and gamma-aminobutyric acid-mediated synapse. Specifically, the mRNAs associated with the LH surge such as hormone receptor Pgr, adrenoceptor Adra1a, neurotransmitter transporters Slc17a6 and Slc32a1, glutamate decarboxylase Gad2 and Kiss1 were markedly altered by EA. SIGNIFICANCE These findings showed that the age-related reduction of LH surge occurred via differential neurotransmitter metabolisms and altered transcriptions in AVPV, which proposed EA-based therapy for improving responsiveness of the hypothalamus to hormone in women with advanced age.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Wen Xu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xiaojuan Zhu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Lin Cheng
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Liyuan Cui
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China
| | - Yan Sun
- Hospital & Institute of Obstetrics and Gynecology, Fudan University, Shanghai 200081, China; The Academy of Integrative Medicine, Fudan University, Shanghai 200081, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Disease, Shanghai 200081, China.
| |
Collapse
|
3
|
Mani S, Srivastava V, Shandilya C, Kaushik A, Singh KK. Mitochondria: the epigenetic regulators of ovarian aging and longevity. Front Endocrinol (Lausanne) 2024; 15:1424826. [PMID: 39605943 PMCID: PMC11598335 DOI: 10.3389/fendo.2024.1424826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Ovarian aging is a major health concern for women. Ovarian aging is associated with reduced health span and longevity. Mitochondrial dysfunction is one of the hallmarks of ovarian aging. In addition to providing oocytes with optimal energy, the mitochondria provide a co-substrate that drives epigenetic processes. Studies show epigenetic alterations, both nuclear and mitochondrial contribute to ovarian aging. Both, nuclear and mitochondrial genomes cross-talk with each other, resulting in two ways orchestrated anterograde and retrograde response that involves epigenetic changes in nuclear and mitochondrial compartments. Epigenetic alterations causing changes in metabolism impact ovarian function. Key mitochondrial co-substrate includes acetyl CoA, NAD+, ATP, and α-KG. Thus, enhancing mitochondrial function in aging ovaries may preserve ovarian function and can lead to ovarian longevity and reproductive and better health outcomes in women. This article describes the role of mitochondria-led epigenetics involved in ovarian aging and discusses strategies to restore epigenetic reprogramming in oocytes by preserving, protecting, or promoting mitochondrial function.
Collapse
Affiliation(s)
- Shalini Mani
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Vidushi Srivastava
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Chesta Shandilya
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Aditi Kaushik
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Women’s Reproductive Health, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
4
|
Pertynska-Marczewska M, Pertynski T. Non-hormonal pharmacological interventions for managing vasomotor symptoms-how can we help: 2024 landscape. Eur J Obstet Gynecol Reprod Biol 2024; 302:141-148. [PMID: 39270577 DOI: 10.1016/j.ejogrb.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Vasomotor symptoms (VMS) affect 70% of menopausal women and are considered as hallmark symptoms of the menopausal transition experienced by over three quarters of women and severely by 25% of women. Estrogen withdrawal alone is not fully responsible for the onset of the menopausal vasomotor symptoms and the mechanism of altered thermoregulation appears to be centrally mediated with alterations in hypothalamic neurotransmitters playing a key part. The loss of thermoregulatory control coexists with the altered Kisspeptin- Neurokinin B-Dynorphin-expressing (KNDy) neurons of the arcuate nucleus signaling triggered by menopause. OBJECTIVE Aim of the review was to explore evidence-based non-hormonal pharmacological interventions for treating vasomotor symptoms. METHODS Comprehensive overview of relevant literature. CONCLUSIONS In the population where, hormonal options are contraindicated or not preferred by the patient, it is essential to explore evidence-based non-hormonal pharmacological interventions for treating vasomotor symptoms. The 2024 landscape of available treatments has expanded yet again, arming the providers with an even wider range of possibilities to help their patients. Fezolinetant, is the first NK3R antagonist developed for the purpose of treating hot flashes in menopausal women. NK3R antagonists provide a safe and effective treatment option for managing menopausal women with VMS.
Collapse
|
5
|
Wang J, Gu J, Ma F, Wei Y, Wang P, Yang S, Yan X, Xiao Y, Xing K, Lou A, Zheng L, Cao T, Zhu D, Li J, Zhang L, Li Y, Chen T. Melatonin Induces Analgesic Effects through MT 2 Receptor-Mediated Neuroimmune Modulation in the Mice Anterior Cingulate Cortex. RESEARCH (WASHINGTON, D.C.) 2024; 7:0493. [PMID: 39381792 PMCID: PMC11458856 DOI: 10.34133/research.0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024]
Abstract
Neuropathic pain (NP) represents a considerable clinical challenge, profoundly impacting patients' quality of life. Presently, pharmacotherapy serves as a primary approach for NP alleviation, yet its efficacy often remains suboptimal. Melatonin (MLT), a biologically active compound secreted by the pineal gland, has long been associated with promoting and maintaining sleep. Although recent studies suggest analgesic effects of MLT, the underlying mechanism remains largely unknown, particularly its impact on the cortex. In this study, we induced an NP model in mice through spared nerve injury (SNI) and observed a considerable, dose-dependent alleviation in NP symptoms following intraperitoneal or anterior cingulate cortex (ACC) administration of MLT. Our findings further indicated that the NP management of MLT is selectively mediated by MLT-related receptor 2 (MT2R), rather than MT1R, on neurons and microglia within the ACC. Transcriptome sequencing, complemented by bioinformatics analysis, implicated MLT in the modulation of Gα(i) and immune-inflammatory signals. Specifically, MLT inhibited the excitability level of pyramidal cells in the ACC by activating the Gα(i) signaling pathway. Simultaneously, MLT attenuated M1 polarization and promoted M2 polarization of microglia, thereby mitigating the inflammatory response and type II interferon response within the ACC. These findings unveil a hitherto unrecognized molecular mechanism: an MLT-mediated neuroimmune modulation pathway in the ACC mediated by MT2R. This elucidation sheds light on the regulatory character of MLT in chronic nociceptive pain conditions, offering a prospective therapeutic strategy for NP management.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
- Department of Neurosurgery, Tangdu Hospital,
Fourth Military Medical University, Xi’an 710038, China
| | - Junxiang Gu
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
- Department of Neurosurgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Fujuan Ma
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Yi Wei
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Pan Wang
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Shanming Yang
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Xianxia Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Yifan Xiao
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Keke Xing
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Anxin Lou
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Liru Zheng
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Tingting Cao
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Dayu Zhu
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Jinlian Li
- School of Medicine, Northwest University, Xi’an 710069, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunqing Li
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre,
Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
6
|
Wang L, Xu S, Chen R, Ding Y, Liu M, Hou C, Wu Z, Men X, Bao M, He B, Li S. Exploring the causal association between epigenetic clocks and menopause age: insights from a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1429514. [PMID: 39247918 PMCID: PMC11377254 DOI: 10.3389/fendo.2024.1429514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Evidence suggests a connection between DNA methylation (DNAm) aging and reproductive aging. However, the causal relationship between DNAm and age at menopause remains uncertain. Methods Employing established DNAm epigenetic clocks, such as DNAm Hannum age acceleration (Hannum), Intrinsic epigenetic age acceleration (IEAA), DNAm-estimated granulocyte proportions (Gran), DNAm GrimAge acceleration (GrimAgeAccel), DNAm PhenoAge acceleration (PhenoAgeAccel), and DNAm-estimated plasminogen activator inhibitor-1 levels (DNAmPAIadjAge), a bidirectional Mendelian randomization (MR) study was carried out to explore the potential causality between DNAm and menopausal age. The primary analytical method used was the inverse variance weighted (IVW) estimation model, supplemented by various other estimation techniques. Results DNAm aging acceleration or deceleration, as indicated by Hannum, IEAA, Gran, GrimAgeAccel, PhenoAgeAccel, and DNAmPAIadjAge, did not exhibit a statistically significant causal effect on menopausal age according to forward MR analysis. However, there was a suggestive positive causal association between age at menopause and Gran (Beta = 0.0010; 95% confidence interval (CI): 0.0004, 0.0020) in reverse MR analysis. Conclusion The observed increase in granulocyte DNAm levels in relation to menopausal age could potentially serve as a valuable indicator for evaluating the physiological status at the onset of menopause.
Collapse
Affiliation(s)
- Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Menghua Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chunyan Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhu Wu
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Xiaoju Men
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
8
|
Hart DA. The Heterogeneity of Post-Menopausal Disease Risk: Could the Basis for Why Only Subsets of Females Are Affected Be Due to a Reversible Epigenetic Modification System Associated with Puberty, Menstrual Cycles, Pregnancy and Lactation, and, Ultimately, Menopause? Int J Mol Sci 2024; 25:3866. [PMID: 38612676 PMCID: PMC11011715 DOI: 10.3390/ijms25073866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Wei S, Tang W, Chen D, Xiong J, Xue L, Dai Y, Guo Y, Wu C, Dai J, Wu M, Wang S. Multiomics insights into the female reproductive aging. Ageing Res Rev 2024; 95:102245. [PMID: 38401570 DOI: 10.1016/j.arr.2024.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The human female reproductive lifespan significantly diminishes with age, leading to decreased fertility, reduced fertility quality and endocrine function disorders. While many aspects of aging in general have been extensively documented, the precise mechanisms governing programmed aging in the female reproductive system remain elusive. Recent advancements in omics technologies and computational capabilities have facilitated the emergence of multiomics deep phenotyping. Through the application and refinement of various high-throughput omics methods, a substantial volume of omics data has been generated, deepening our comprehension of the pathogenesis and molecular underpinnings of reproductive aging. This review highlights current and emerging multiomics approaches for investigating female reproductive aging, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics. We elucidate their influence on fundamental cell biology and translational research in the context of reproductive aging, address the limitations and current challenges associated with multiomics studies, and offer a glimpse into future prospects.
Collapse
Affiliation(s)
- Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China; Ministry of Education, Key Laboratory of Cancer Invasion and Metastasis, Wuhan, China.
| |
Collapse
|
10
|
Dai R, Huang J, Cui L, Sun R, Qiu X, Wang Y, Sun Y. Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat model with typical neuroendocrine aging. Front Endocrinol (Lausanne) 2023; 14:1282694. [PMID: 38161977 PMCID: PMC10755682 DOI: 10.3389/fendo.2023.1282694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Background Neuroendocrine alterations in the mid-life hypothalamus coupled with reproductive decline herald the initiation of menopausal transition. The certain feature and contribution of gut microflora and metabolites to neuroendocrine changes in the menopausal transition remain largely unknown. Methods Fecal samples of rats experiencing different reproductive stages were collected and processed for 16S rRNA and liquid chromatography-mass spectrometry sequencing. The differences of gut microbiota and metabolites between young and middle-aged rats during proestrus and diestrus were analyzed, and their relationships to neuroendocrine aging were then examined. Results At the genus level, Anaeroyorax, Rikenella, Tyzzerella_3, and Atopostipes were abundant at proestrus, while Romboutsia, Turicibacter, Clostridium_sensu_stricto_1, Ruminococcaceae_NK4A214_group, CHKCI002, Ruminococcaceae_UCG-010, Staphylococcus, Family_XII_AD3011_group, Ruminococcaceae UCG-011, and Christensenellaceae_R_7_group were enriched in the diestrus of middle-aged rats. DNF00809, Phocea, and Lachnospiraceae_UCG-006 were found abundant during proestrus instead, while Bacteroides, Lactobacillus, Erysipelatoclostridium, Anaeroplasma, Anaerofustis, Parasutterella, and Enterococcus were enriched at the diestrus of young female individuals. Discriminatory metabolites were identified involving 90 metabolic pathways among the animal sets, which were enriched for steroid hormone biosynthesis, arachidonic metabolism, primary bile acid synthesis, and ovarian steroidogenesis. A total of 21 metabolites lacking in hormone-associated changes in middle-aged female individuals presented positive or negative correlations with the circulating luteinizing hormone, bile acid, fibroblast growth factor 19, and gut hormones. Moreover, close correlations were detected between the intestinal bacteria and their metabolites. Conclusion This study documents specific gut microbial composition changes and concomitant shifting trends of metabolites during menopausal transition, which may initiate the gut-brain dysfunction in neuroendocrine aging.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jianqin Huang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Xuemin Qiu
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Yan S, Man Y, Lu J, Cui L, Niu F, Qin J. The "double-edged" role of progesterone in periodontitis among perimenopausal women undergoing or not undergoing scaling and root planing. Front Endocrinol (Lausanne) 2023; 14:1224763. [PMID: 37645411 PMCID: PMC10461080 DOI: 10.3389/fendo.2023.1224763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Objective Progesterone (PG) is an important sex steroid hormone commonly administered to protect the endometrium in perimenopausal women. The present study aimed to explore differential responses of periodontitis to PG in perimenopausal women who did or did not undergo scaling and root planing (SRP). Methods A total of 129 perimenopausal women with mild-to-moderate periodontitis were enrolled and underwent treatment as follows: SRP (n = 35); SRP + PG (n = 34); PG (n = 31); and no treatment (s) (n = 29). Pocket probing depth (PPD), clinical attachment level (CAL), sulcus bleeding index (SBI), and bleeding on probing (BOP) were measured using periodontal probes. Three inflammatory markers, including C-reactive protein (CRP), interleukin (IL)-6, and tumor necrosis factor-alpha (TNF-α) in gingival crevicular fluid (GCF) were measured using ELISA techniques. Results PPD, CAL, SBI, BOP, and levels of inflammatory factors in GCF were all significantly decreased in perimenopausal women with periodontitis after SRP. In patients who did not undergo SRP, 6 months of PG treatment significantly elevated PPD, SBI, BOP, and GCF levels of CRP, IL-6, and TNF-α. In contrast, PG exhibited inhibitory effects on periodontal inflammation in patients who underwent SRP, evidenced by significantly decreased BOP and IL-6, and slightly decreased SBI, CRP, and TNF-α. PG-induced changes dissipated 6 months after withdrawal of PG (at 12 months). Conclusions Among perimenopausal women with periodontitis, PG enhanced periodontal inflammation in the absence of SRP but inhibited periodontal inflammation in those who underwent SRP.
Collapse
Affiliation(s)
- Shengjie Yan
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, China
| | - Ying Man
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, China
| | - Jun Lu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liyun Cui
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, China
| | - Feifei Niu
- Department of Gynaecology, Shengli Oilfield Central Hospital, Dongying, China
| | - Jianyong Qin
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
12
|
Cappola AR, Auchus RJ, El-Hajj Fuleihan G, Handelsman DJ, Kalyani RR, McClung M, Stuenkel CA, Thorner MO, Verbalis JG. Hormones and Aging: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2023; 108:1835-1874. [PMID: 37326526 PMCID: PMC11491666 DOI: 10.1210/clinem/dgad225] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 06/17/2023]
Abstract
Multiple changes occur across various endocrine systems as an individual ages. The understanding of the factors that cause age-related changes and how they should be managed clinically is evolving. This statement reviews the current state of research in the growth hormone, adrenal, ovarian, testicular, and thyroid axes, as well as in osteoporosis, vitamin D deficiency, type 2 diabetes, and water metabolism, with a specific focus on older individuals. Each section describes the natural history and observational data in older individuals, available therapies, clinical trial data on efficacy and safety in older individuals, key points, and scientific gaps. The goal of this statement is to inform future research that refines prevention and treatment strategies in age-associated endocrine conditions, with the goal of improving the health of older individuals.
Collapse
Affiliation(s)
- Anne R Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
- Endocrinology and Metabolism Section, Medical Service, LTC Charles S. Kettles Veteran Affairs Medical Center, Ann Arbor, MI 48015, USA
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, Division of Endocrinology, Department of Internal Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney and Andrology Department, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael McClung
- Oregon Osteoporosis Center, Portland, OR 97213, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| | - Cynthia A Stuenkel
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
13
|
Sills ES, Wood SH. Epigenetics, ovarian cell plasticity, and platelet-rich plasma: Mechanistic theories. REPRODUCTION & FERTILITY 2022; 3:C44-C51. [PMID: 36255031 PMCID: PMC9782453 DOI: 10.1530/raf-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Ovarian platelet-rich plasma (PRP) is claimed to restore the fertility potential by improving reserve, an effect perhaps mediated epigenetically by platelet-discharged regulatory elements rather than gonadotropin-activated G-protein coupled receptors, as with stimulated in vitro fertilization (IVF). The finding that fresh activated platelet releasate includes factors able to promote developmental signaling networks necessary to enable cell pluripotency tends to support this theory. The mechanistic uncertainty of intraovarian PRP notwithstanding, at least two other major challenges confront this controversial intervention. The first challenge is to clarify how perimenopausal ovarian function is reset to levels consistent with ovulation. Perhaps a less obvious secondary problem is to confine this renewal such that any induced recalibration of cellular plasticity is kept within acceptable physiologic bounds. Thus, any 'drive' to ovarian rejuvenation must incorporate both accelerator and brake. Ovarian aging may be best viewed as a safeguard against pathologic overgrowth, where senescence operates as an evolved tumor-suppression response. While most ovary cells reach the close of their metabolic life span with low risk for hypertrophy, enhanced lysosomal activity and the proinflammatory 'senescence-associated secretory phenotype' usually offsets this advantage over time. But is recovery of ovarian fitness possible, even if only briefly prior to IVF? Alterations in gap junctions, bio-conductive features, and modulation of gene regulatory networks after PRP use in other tissues are discussed here alongside early data reported from reproductive medicine.
Collapse
Affiliation(s)
- E Scott Sills
- Office for Reproductive Research, Center for Advanced Genetics/FertiGen, San Clemente, California, USA,Regenerative Biology Group, Fertility Reserve Bank San Clemente, California, USA
| | | |
Collapse
|
14
|
Butler T, Glodzik L, Wang XH, Xi K, Li Y, Pan H, Zhou L, Chiang GCY, Morim S, Wickramasuriya N, Tanzi E, Maloney T, Harvey P, Mao X, Razlighi QR, Rusinek H, Shungu DC, de Leon M, Atwood CS, Mozley PD. Positron Emission Tomography reveals age-associated hypothalamic microglial activation in women. Sci Rep 2022; 12:13351. [PMID: 35922659 PMCID: PMC9349172 DOI: 10.1038/s41598-022-17315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
In rodents, hypothalamic inflammation plays a critical role in aging and age-related diseases. Hypothalamic inflammation has not previously been assessed in vivo in humans. We used Positron Emission Tomography (PET) with a radiotracer sensitive to the translocator protein (TSPO) expressed by activated microglia, to assess correlations between age and regional brain TSPO in a group of healthy subjects (n = 43, 19 female, aged 23-78), focusing on hypothalamus. We found robust age-correlated TSPO expression in thalamus but not hypothalamus in the combined group of women and men. This pattern differs from what has been described in rodents. Prominent age-correlated TSPO expression in thalamus in humans, but in hypothalamus in rodents, could reflect evolutionary changes in size and function of thalamus versus hypothalamus, and may be relevant to the appropriateness of using rodents to model human aging. When examining TSPO PET results in women and men separately, we found that only women showed age-correlated hypothalamic TSPO expression. We suggest this novel result is relevant to understanding a stark sex difference in human aging: that only women undergo loss of fertility-menopause-at mid-life. Our finding of age-correlated hypothalamic inflammation in women could have implications for understanding and perhaps altering reproductive aging in women.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, USA.
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA.
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Xiuyuan Hugh Wang
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Hong Pan
- Department of Psychiatry, Brigham and Women's Hospital, Boston, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | | | - Simon Morim
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Nimmi Wickramasuriya
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Patrick Harvey
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Xiangling Mao
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Qolamreza Ray Razlighi
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, New York, USA
| | - Dikoma C Shungu
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, USA
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 405 E 61st St, New York, NY, 10065, USA
| | - Craig S Atwood
- Department of Gerontology, University of Wisconsin, Madison, Madison, USA
| | - P David Mozley
- Department of Radiology, Weill Cornell Medicine, New York, USA
| |
Collapse
|
15
|
Cervera-Juanes R, Darakjian P, Ball M, Kohama SG, Urbanski HF. Effects of estradiol supplementation on the brain transcriptome of old rhesus macaques maintained on an obesogenic diet. GeroScience 2022; 44:229-252. [PMID: 34642852 PMCID: PMC8810962 DOI: 10.1007/s11357-021-00453-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity, the cessation of ovarian steroids with menopause, and age are risk factors for mood disorders, dementia, and Alzheimer's disease (AD). However, immediate hormone therapy (HT) after menopause may have beneficial effects in different brain regions involved in memory and cognition. To more closely replicate the age, endocrine, and metabolic environment of obese postmenopausal women, either on or off HT, middle-aged female rhesus macaques were ovariectomized/hysterectomized (OvH) and maintained on a high-fat, high-sugar, obesogenic Western-style diet (WSD) for 30 months; half of the animals received HT immediately after OvH and half served as placebo controls. RNAseq of the occipital (OC) and prefrontal cortex (PFC), hippocampus (HIP), and amygdala (AMG) identified 293, 379, 505, and 4993 differentially expressed genes (DEGs), respectively. Pathway enrichment analysis identified an activation of neuroinflammation in OC and HIP, but an inhibition in the AMG with HT. Synaptogenesis, circadian rhythm, mitochondrial dysfunction, mTOR, glutamate, serotonin, GABA, dopamine, epinephrine/norepinephrine, glucocorticoid receptor signaling, neuronal NOS, and amyloid processing were exclusively enriched in AMG. As compared to the placebo control group, most of these signaling pathways are downregulated after HT, suggesting a protective effect of HT in OvH females under a WSD. Overall, our results suggest that a chronic obesogenic diet may induce a wide range of alterations in multiple signaling pathways that are linked to age-associated brain pathology and dementia. In these individuals, HT seems to have a protective effect against neuroinflammation, amyloid beta depositions, and tau tangle formation.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| | - Priscila Darakjian
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Megan Ball
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
16
|
Mishra A, Wang Y, Yin F, Vitali F, Rodgers KE, Soto M, Mosconi L, Wang T, Brinton RD. A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer's prevention & treatment. Ageing Res Rev 2022; 74:101542. [PMID: 34929348 PMCID: PMC8884386 DOI: 10.1016/j.arr.2021.101542] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Neurological aging is frequently viewed as a linear process of decline, whereas in reality, it is a dynamic non-linear process. The dynamic nature of neurological aging is exemplified during midlife in the female brain. To investigate fundamental mechanisms of midlife aging that underlie risk for development of Alzheimer's disease (AD) in late life, we investigated the brain at greatest risk for the disease, the aging female brain. Outcomes of our research indicate that mid-life aging in the female is characterized by the emergence of three phases: early chronological (pre-menopause), endocrinological (peri-menopause) and late chronological (post-menopause) aging. The endocrinological aging program is sandwiched between early and late chronological aging. Throughout the three stages of midlife aging, two systems of biology, metabolic and immune, are tightly integrated through a network of signaling cascades. The network of signaling between these two systems of biology underlie an orchestrated sequence of adaptative starvation responses that shift the brain from near exclusive dependence on a single fuel, glucose, to utilization of an auxiliary fuel derived from lipids, ketone bodies. The dismantling of the estrogen control of glucose metabolism during mid-life aging is a critical contributor to the shift in fuel systems and emergence of dynamic neuroimmune phenotype. The shift in fuel reliance, puts the largest reservoir of local fatty acids, white matter, at risk for catabolism as a source of lipids to generate ketone bodies through astrocytic beta oxidation. APOE4 genotype accelerates the tipping point for emergence of the bioenergetic crisis. While outcomes derived from research conducted in the female brain are not directly translatable to the male brain, the questions addressed in a female centric program of research are directly applicable to investigation of the male brain. Like females, males with AD exhibit deficits in the bioenergetic system of the brain, activation of the immune system and hallmark Alzheimer's pathologies. The drivers and trajectory of mechanisms underlying neurodegeneration in the male brain will undoubtedly share common aspects with the female in addition to factors unique to the male. Preclinical and clinical evidence indicate that midlife endocrine aging can also be a transitional bridge to autoimmune disorders. Collectively, the data indicate that endocrinological aging is a critical period "tipping point" in midlife which can initiate emergence of the prodromal stage of late-onset-Alzheimer's disease. Interventions that target both immune and metabolic shifts that occur during midlife aging have the potential to alter the trajectory of Alzheimer's risk in late life. Further, to achieve precision medicine for AD, chromosomal sex is a critical variable to consider along with APOE genotype, other genetic risk factors and stage of disease.
Collapse
Affiliation(s)
- Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Kathleen E Rodgers
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Maira Soto
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
17
|
Zhang J, Shao S, Ye C, Jiang B. A Clinical Study of the Effect of Estradiol Valerate on Sleep Disorders, Negative Emotions, and Quality of Life in Perimenopausal Women. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8037459. [PMID: 34697549 PMCID: PMC8541855 DOI: 10.1155/2021/8037459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
In this prospective study, we randomly divided 100 patients with perimenopausal syndrome equally into the control group (n = 50) receiving conventional treatment and the study group (n = 50) receiving estradiol valerate. The indicators observed were endometrial thickness, uterine volume, and the levels of LH (luteinizing hormone), FSH (follicle-stimulating hormone), and E2 (estradiol) of the patients before and after treatment. The Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety/Depression Scale (HAMA/HAMD), Kupperman symptom score, and menopause-specific quality of life (MENQOL) were also applied to assess the sleep quality, negative emotions, severity of the condition, and quality of life of all patients, respectively. Our findings were that estradiol valerate is beneficial in improving serum sex hormone levels, sleep disturbances, negative mood, and quality of life in patients with perimenopausal syndrome and that its safety profile is high enough to warrant clinical promotion.
Collapse
Affiliation(s)
- Jianfu Zhang
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Shurong Shao
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Chaohui Ye
- Department of Pharmacy, Ningbo Women and Children's Hospital, Ningbo 315012, China
| | - Bengui Jiang
- Department of Gynecology, Ningbo Women and Children's Hospital, Ningbo 315012, China
| |
Collapse
|
18
|
Vitali F, Branigan GL, Brinton RD. Preventing Alzheimer's disease within reach by 2025: Targeted-risk-AD-prevention (TRAP) strategy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12190. [PMID: 34584937 PMCID: PMC8451031 DOI: 10.1002/trc2.12190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease that currently affects 6.2 million people in the United States and is projected to impact 12.7 million worldwide in 2050 with no effective disease-modifying therapeutic or cure. In 2011 as part of the National Alzheimer's Project Act, the National Plan to Address Alzheimer's Disease was signed into law which proposed to effectively prevent AD by 2025, which is rapidly approaching. The preclinical phase of AD can begin 20 years prior to diagnosis, which provides an extended window for preventive measures that would exert a transformative impact on incidence and prevalence of AD. METHODS A novel combination of text-mining and natural language processing strategies to identify (1) AD risk factors, (2) therapeutics that can target risk factor pathways, and (3) studies supporting therapeutics in the PubMed database was conducted. To classify the literature relevant to AD preventive strategies, a relevance score (RS) based on STRING (search tool for the retrieval of interacting genes/proteins) score for protein-protein interactions and a confidence score (CS) on Bayesian inference were developed. To address mechanism of action, network analysis of protein targets for effective drugs was conducted. Collectively, the analytic approach, referred to as a targeted-risk-AD-prevention (TRAP) strategy, led to a ranked list of candidate therapeutics to reduce AD risk. RESULTS Based on TRAP mining of 9625 publications, 364 AD risk factors were identified. Based on risk factor indications, 629 Food and Drug Administration-approved drugs were identified. Computation of ranking scores enabled identification of 46 relevant high confidence (RS & CS > 0.7) drugs associated with reduced AD risk. Within these candidate therapeutics, 16 had more than one clinical study supporting AD risk reduction. Top-ranked therapeutics with high confidence emerged within lipid-lowering, anti-inflammatory, hormone, and metabolic-related drug classes. DISCUSSION Outcomes of our novel bioinformatic strategy support therapeutic targeting of biological mechanisms and pathways underlying relevant AD risk factors with high confidence. Early interventions that target pathways associated with increased risk of AD have the potential to support the goal of effectively preventing AD by 2025.
Collapse
Affiliation(s)
- Francesca Vitali
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of Neurology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- Center for Biomedical Informatics and Biostatistics, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Gregory L. Branigan
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- MD‐PhD training program, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- Department of Neurology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
19
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Hägg S, Jylhävä J. Sex differences in biological aging with a focus on human studies. eLife 2021; 10:e63425. [PMID: 33982659 PMCID: PMC8118651 DOI: 10.7554/elife.63425] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex biological process characterized by hallmark features accumulating over the life course, shaping the individual's aging trajectory and subsequent disease risks. There is substantial individual variability in the aging process between men and women. In general, women live longer than men, consistent with lower biological ages as assessed by molecular biomarkers, but there is a paradox. Women are frailer and have worse health at the end of life, while men still perform better in physical function examinations. Moreover, many age-related diseases show sex-specific patterns. In this review, we aim to summarize the current knowledge on sexual dimorphism in human studies, with support from animal research, on biological aging and illnesses. We also attempt to place it in the context of the theories of aging, as well as discuss the explanations for the sex differences, for example, the sex-chromosome linked mechanisms and hormonally driven differences.
Collapse
Affiliation(s)
- Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| |
Collapse
|
21
|
Pasyukova EG, Symonenko AV, Rybina OY, Vaiserman AM. Epigenetic enzymes: A role in aging and prospects for pharmacological targeting. Ageing Res Rev 2021; 67:101312. [PMID: 33657446 DOI: 10.1016/j.arr.2021.101312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
The development of interventions aimed at improving healthspan is one of the priority tasks for the academic and public health authorities. It is also the main objective of a novel branch in biogerontological research, geroscience. According to the geroscience concept, targeting aging is an effective way to combat age-related disorders. Since aging is an exceptionally complex process, system-oriented integrated approaches seem most appropriate for such an interventional strategy. Given the high plasticity and adaptability of the epigenome, epigenome-targeted interventions appear highly promising in geroscience research. Pharmaceuticals targeted at mechanisms involved in epigenetic control of gene activity are actively developed and implemented to prevent and treat various aging-related conditions such as cardiometabolic, neurodegenerative, inflammatory disorders, and cancer. In this review, we describe the roles of epigenetic mechanisms in aging; characterize enzymes contributing to the regulation of epigenetic processes; particularly focus on epigenetic drugs, such as inhibitors of DNA methyltransferases and histone deacetylases that may potentially affect aging-associated diseases and longevity; and discuss possible caveats associated with the use of epigenetic drugs.
Collapse
Affiliation(s)
- Elena G Pasyukova
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Alexander V Symonenko
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia
| | - Olga Y Rybina
- Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Kurchatov Sq. 2, Moscow, 123182, Russia; Federal State Budgetary Educational Institution of Higher Education «Moscow Pedagogical State University», M. Pirogovskaya Str. 1/1, Moscow, 119991, Russia
| | | |
Collapse
|
22
|
Laven JSE. Genetics of Menopause and Primary Ovarian Insufficiency: Time for a Paradigm Shift? Semin Reprod Med 2021; 38:256-262. [PMID: 33648006 DOI: 10.1055/s-0040-1721796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review summarizes the existing information concerning the genetic background of menopause and primary ovarian insufficiency (POI). There is overwhelming evidence that majority of genes are involved in double-strand break repair, mismatch repair, and base excision repair. The remaining loci were involved in cell energy metabolism and immune response. Gradual (or in case of rapid POI) accumulation of unrepaired DNA damage causes (premature) cell death and cellular senescence. This in turn leads to exhaustion of cell renewal capacity and cellular dysfunction in affected organs and eventually to aging of the entire soma. Similar erosion of the genome occurs within the germ cell line and the ovaries. Subsequently, the systemic "survival" response intentionally suppresses the sex-steroid hormonal output, which in turn may contribute to the onset of menopause. The latter occurs in particular when age-dependent DNA damage accumulation does not cease. Both effects are expected to synergize to promote (premature) ovarian silencing and install (early) menopause. Consequently, aging of the soma seems to be a primary driver for the loss of ovarian function in women. This challenges the current dogma which implies that loss of ovarian function initiates aging of the soma. It is time for a paradigm shift!
Collapse
Affiliation(s)
- Joop S E Laven
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
24
|
Hugenschmidt CE, Duran T, Espeland MA. Interactions between estradiol, diabetes, and brain aging and the risk for cognitive impairment. Climacteric 2021; 24:359-365. [PMID: 33586564 DOI: 10.1080/13697137.2021.1877652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Women's Health Initiative Memory Study reported that older women using conjugated equine estrogens hormone therapy (HT) with or without medroxyprogesterone acetate were at increased risk for probable dementia and smaller brain volumes. These adverse effects were greatest among women who had type 2 diabetes mellitus (T2DM) at baseline or who developed the disease during follow-up. This review summarizes existing literature from randomized trials, observational studies, and preclinical studies to provide a fundamental understanding of the effects of the interaction between T2DM and HT on cognitive and metabolic health changes in brain aging.
Collapse
Affiliation(s)
- C E Hugenschmidt
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - T Duran
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - M A Espeland
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.,Department of Biostatistics & Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
25
|
Crandall CJ, Diamant AL, Maglione M, Thurston RC, Sinsheimer J. Genetic Variation and Hot Flashes: A Systematic Review. J Clin Endocrinol Metab 2020; 105:dgaa536. [PMID: 32797194 PMCID: PMC7538102 DOI: 10.1210/clinem/dgaa536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
CONTEXT Approximately 70% of women report experiencing vasomotor symptoms (VMS, hot flashes and/or night sweats). The etiology of VMS is not clearly understood but may include genetic factors. EVIDENCE ACQUISITION We searched PubMed and Embase in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. We included studies on associations between genetic variation and VMS. We excluded studies focused on medication interventions or prevention or treatment of breast cancer. EVIDENCE SYNTHESIS Of 202 unique citations, 18 citations met the inclusion criteria. Study sample sizes ranged from 51 to 17 695. Eleven of the 18 studies had fewer than 500 participants; 2 studies had 1000 or more. Overall, statistically significant associations with VMS were found for variants in 14 of the 26 genes assessed in candidate gene studies. The cytochrome P450 family 1 subfamily A member 1 (CYP1B1) gene was the focus of the largest number (n = 7) of studies, but strength and statistical significance of associations of CYP1B1 variants with VMS were inconsistent. A genome-wide association study reported statistically significant associations between 14 single-nucleotide variants in the tachykinin receptor 3 gene and VMS. Heterogeneity across trials regarding VMS measurement methods and effect measures precluded quantitative meta-analysis; there were few studies of each specific genetic variant. CONCLUSIONS Genetic variants are associated with VMS. The associations are not limited to variations in sex-steroid metabolism genes. However, studies were few and future studies are needed to confirm and extend these findings.
Collapse
Affiliation(s)
- Carolyn J Crandall
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Allison L Diamant
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | | | - Rebecca C Thurston
- University of Pittsburgh School of Medicine & Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Janet Sinsheimer
- David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| |
Collapse
|
26
|
Mishra A, Shang Y, Wang Y, Bacon ER, Yin F, Brinton RD. Dynamic Neuroimmune Profile during Mid-life Aging in the Female Brain and Implications for Alzheimer Risk. iScience 2020; 23:101829. [PMID: 33319170 PMCID: PMC7724165 DOI: 10.1016/j.isci.2020.101829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/13/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Aging and endocrine transition states can significantly impact inflammation across organ systems. Neuroinflammation is well documented in Alzheimer disease (AD). Herein, we investigated neuroinflammation that emerges during mid-life aging, chronological and endocrinological, in the female brain as an early initiating mechanism driving AD risk later in life. Analyses were conducted in a translational rodent model of mid-life chronological and endocrinological aging followed by validation in transcriptomic profiles from women versus age-matched men. In the translational model, the neuroinflammatory profile of mid-life aging in females was endocrine and chronological state specific, dynamic, anatomically distributed, and persistent. Microarray dataset analyses of aging human hippocampus indicated a sex difference in neuroinflammatory profile in which women exhibited a profile comparable to the pattern discovered in our translational rodent model, whereas age-matched men exhibited a profile consistent with low neuroimmune activation. Translationally, these findings have implications for therapeutic interventions during mid-life to decrease late-onset AD risk.
Collapse
Affiliation(s)
- Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Eliza R Bacon
- Department of Medical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
27
|
Midlife Chronological and Endocrinological Transitions in Brain Metabolism: System Biology Basis for Increased Alzheimer's Risk in Female Brain. Sci Rep 2020; 10:8528. [PMID: 32444841 PMCID: PMC7244485 DOI: 10.1038/s41598-020-65402-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Decline in brain glucose metabolism is a hallmark of late-onset Alzheimer’s disease (LOAD). Comprehensive understanding of the dynamic metabolic aging process in brain can provide insights into windows of opportunities to promote healthy brain aging. Chronological and endocrinological aging are associated with brain glucose hypometabolism and mitochondrial adaptations in female brain. Using a rat model recapitulating fundamental features of the human menopausal transition, results of transcriptomic analysis revealed stage-specific shifts in bioenergetic systems of biology that were paralleled by bioenergetic dysregulation in midlife aging female brain. Transcriptomic profiles were predictive of outcomes from unbiased, discovery-based metabolomic and lipidomic analyses, which revealed a dynamic adaptation of the aging female brain from glucose centric to utilization of auxiliary fuel sources that included amino acids, fatty acids, lipids, and ketone bodies. Coupling between brain and peripheral metabolic systems was dynamic and shifted from uncoupled to coupled under metabolic stress. Collectively, these data provide a detailed profile across transcriptomic and metabolomic systems underlying bioenergetic function in brain and its relationship to peripheral metabolic responses. Mechanistically, these data provide insights into the complex dynamics of chronological and endocrinological bioenergetic aging in female brain. Translationally, these findings are predictive of initiation of the prodromal / preclinical phase of LOAD for women in midlife and highlight therapeutic windows of opportunity to reduce the risk of late-onset Alzheimer’s disease.
Collapse
|
28
|
Sanz-Rubio D, Sanz A, Varona L, Bolea R, Forner M, Gil AV, Cubero P, Marin-Oto M, Martin-Burriel I, Marin JM. Forkhead Box P3 Methylation and Expression in Men with Obstructive Sleep Apnea. Int J Mol Sci 2020; 21:E2233. [PMID: 32210181 PMCID: PMC7139835 DOI: 10.3390/ijms21062233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epigenetic changes in obstructive sleep apnea (OSA) have been proposed as a mechanism for end-organ vulnerability. In children with OSA, Forkhead Box P3 (FOXP3) DNA methylation were associated with inflammatory biomarkers; however, the methylation pattern and its effect in the expression of this gene have not been tested in adults with OSA. METHODS Plasma samples from subjects without comorbid conditions other than OSA were analyzed (the Epigenetics Status and Subclinical Atherosclerosis in Obstructive Sleep Apnea (EPIOSA) Study: NCT02131610). In 16 patients with severe OSA (Apnea-Hypopnea Index-AHI- > 30 events/h) and seven matched controls (AHI < 5), methylation of FOXP3 gen was evaluated by PCR of the promoter and by pyrosequencing of the intron 1 Treg-specific demethylated region (TSDR). In another 74 patients with OSA (AHI > 10) and 31 controls, we quantified FOXP3 protein expression by ELISA and gene expression by quantitative real-time PCR. C-reactive protein (CRP) and plasma Treg cells were also evaluated. RESULTS Neither the levels of the promoter nor the TSDR demethylated region were different between controls and patients with OSA, whether they were grouped by normal or high CRP. FOXP3 protein and mRNA expression did not differ between groups. CONCLUSIONS FOXP3 methylation or its expression is not altered in adults with OSA, whatever their inflammatory status.
Collapse
Affiliation(s)
- David Sanz-Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain; (D.S.-R.); (M.F.); (A.V.G.); (P.C.); (M.M.-O.)
| | - Arianne Sanz
- Biochemical Genetics Laboratory (LAGENBIO), Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria 0de Aragón (IISAragón), University of Zaragoza, 50013 Zaragoza, Spain;
| | - Luis Varona
- Departamento de Anatomía Embriología y Genética Animal, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Marta Forner
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain; (D.S.-R.); (M.F.); (A.V.G.); (P.C.); (M.M.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), 28000 Madrid, Spain
| | - Ana V. Gil
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain; (D.S.-R.); (M.F.); (A.V.G.); (P.C.); (M.M.-O.)
| | - Pablo Cubero
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain; (D.S.-R.); (M.F.); (A.V.G.); (P.C.); (M.M.-O.)
| | - Marta Marin-Oto
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain; (D.S.-R.); (M.F.); (A.V.G.); (P.C.); (M.M.-O.)
- Department of Respiratory Medicine, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Inmaculada Martin-Burriel
- Biochemical Genetics Laboratory (LAGENBIO), Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria 0de Aragón (IISAragón), University of Zaragoza, 50013 Zaragoza, Spain;
| | - Jose M. Marin
- Translational Research Unit, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISAragón), 50009 Zaragoza, Spain; (D.S.-R.); (M.F.); (A.V.G.); (P.C.); (M.M.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERes), 28000 Madrid, Spain
- Respiratory Service, Hospital Universitario Miguel Servet, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Rahman A, Jackson H, Hristov H, Isaacson RS, Saif N, Shetty T, Etingin O, Henchcliffe C, Brinton RD, Mosconi L. Sex and Gender Driven Modifiers of Alzheimer's: The Role for Estrogenic Control Across Age, Race, Medical, and Lifestyle Risks. Front Aging Neurosci 2019; 11:315. [PMID: 31803046 PMCID: PMC6872493 DOI: 10.3389/fnagi.2019.00315] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Research indicates that after advanced age, the major risk factor for late-onset Alzheimer’s disease (AD) is female sex. Out of every three AD patients, two are females with postmenopausal women contributing to over 60% of all those affected. Sex- and gender-related differences in AD have been widely researched and several emerging lines of evidence point to different vulnerabilities that contribute to dementia risk. Among those being considered, it is becoming widely accepted that gonadal steroids contribute to the gender disparity in AD, as evidenced by the “estrogen hypothesis.” This posits that sex hormones, 17β-estradiol in particular, exert a neuroprotective effect by shielding females’ brains from disease development. This theory is further supported by recent findings that the onset of menopause is associated with the emergence of AD-related brain changes in women in contrast to men of the same age. In this review, we discuss genetic, medical, societal, and lifestyle risk factors known to increase AD risk differently between the genders, with a focus on the role of hormonal changes, particularly declines in 17β-estradiol during the menopause transition (MT) as key underlying mechanisms.
Collapse
Affiliation(s)
- Aneela Rahman
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Hande Jackson
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Richard S Isaacson
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Nabeel Saif
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Teena Shetty
- Concussion Clinic, Hospital for Special Surgery, New York, NY, United States
| | - Orli Etingin
- Department of Internal Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Radiology, Weill Cornell Medicine, Cornell University, New York, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
30
|
Desai MK, Brinton RD. Autoimmune Disease in Women: Endocrine Transition and Risk Across the Lifespan. Front Endocrinol (Lausanne) 2019; 10:265. [PMID: 31110493 PMCID: PMC6501433 DOI: 10.3389/fendo.2019.00265] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Women have a higher incidence and prevalence of autoimmune diseases than men, and 85% or more patients of multiple autoimmune diseases are female. Women undergo sweeping endocrinological changes at least twice during their lifetime, puberty and menopause, with many women undergoing an additional transition: pregnancy, which may or may not be accompanied by breastfeeding. These endocrinological transitions exert significant effects on the immune system due to interactions between the hormonal milieu, innate, and adaptive immune systems as well as pro- and anti-inflammatory cytokines, and thereby modulate the susceptibility of women to autoimmune diseases. Conversely, pre-existing autoimmune diseases themselves impact endocrine transitions. Concentration-dependent effects of estrogen on the immune system; the role of progesterone, androgens, leptin, oxytocin, and prolactin; and the interplay between Th1 and Th2 immune responses together maintain a delicate balance between host defense, immunological tolerance and autoimmunity. In this review, multiple autoimmune diseases have been analyzed in the context of each of the three endocrinological transitions in women. We provide evidence from human epidemiological data and animal studies that endocrine transitions exert profound impact on the development of autoimmune diseases in women through complex mechanisms. Greater understanding of endocrine transitions and their role in autoimmune diseases could aid in prediction, prevention, and cures of these debilitating diseases in women.
Collapse
Affiliation(s)
- Maunil K. Desai
- School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
- Departments of Pharmacology and Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|