1
|
Tarbox HE, Branch A, Fried SD. Cognition-Associated Protein Structural Changes in a Rat Model of Aging are Related to Reduced Refolding Capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614172. [PMID: 39386726 PMCID: PMC11463556 DOI: 10.1101/2024.09.20.614172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cognitive decline during aging represents a major societal burden, causing both personal and economic hardship in an increasingly aging population. There are a few well-known proteins that can misfold and aggregate in an age-dependent manner, such as amyloid β and α-synuclein. However, many studies have found that the proteostasis network, which functions to keep proteins properly folded, is impaired with age, suggesting that there may be many more proteins that incur structural alterations with age. Here, we used limited-proteolysis mass spectrometry (LiP-MS), a structural proteomic method, to globally interrogate protein conformational changes in a rat model of cognitive aging. Specifically, we compared soluble hippocampal proteins from aged rats with preserved cognition to those from aged rats with impaired cognition. We identified several hundred proteins as having undergone cognition-associated structural changes (CASCs). We report that CASC proteins are substantially more likely to be nonrefoldable than non-CASC proteins, meaning they typically cannot spontaneously refold to their native conformations after being chemically denatured. The potentially cofounding variable of post-translational modifications is systematically addressed, and we find that oxidation and phosphorylation cannot significantly explain the limited proteolysis signal. These findings suggest that noncovalent, conformational alterations may be general features in cognitive decline, and more broadly, that proteins need not form amyloids for their misfolded states to be relevant to age-related deterioration in cognitive abilities.
Collapse
Affiliation(s)
- Haley E. Tarbox
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stephen D. Fried
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Vicidomini C, Goode TD, McAvoy KM, Yu R, Beveridge CH, Iyer SN, Victor MB, Leary N, Evans L, Steinbaugh MJ, Lai ZW, Lyon MC, Silvestre MRFS, Bonilla G, Sadreyev RI, Walther TC, Sui SH, Saido T, Yamamoto K, Murakami M, Tsai LH, Chopra G, Sahay A. An aging-sensitive compensatory secretory phospholipase that confers neuroprotection and cognitive resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605338. [PMID: 39211220 PMCID: PMC11361190 DOI: 10.1101/2024.07.26.605338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Breakdown of lipid homeostasis is thought to contribute to pathological aging, the largest risk factor for neurodegenerative disorders such as Alzheimer's Disease (AD). Cognitive reserve theory posits a role for compensatory mechanisms in the aging brain in preserving neuronal circuit functions, staving off cognitive decline, and mitigating risk for AD. However, the identities of such mechanisms have remained elusive. A screen for hippocampal dentate granule cell (DGC) synapse loss-induced factors identified a secreted phospholipase, Pla2g2f, whose expression increases in DGCs during aging. Pla2g2f deletion in DGCs exacerbates aging-associated pathophysiological changes including synapse loss, inflammatory microglia, reactive astrogliosis, impaired neurogenesis, lipid dysregulation and hippocampal-dependent memory loss. Conversely, boosting Pla2g2f in DGCs during aging is sufficient to preserve synapses, reduce inflammatory microglia and reactive gliosis, prevent hippocampal-dependent memory impairment and modify trajectory of cognitive decline. Ex vivo, neuronal-PLA2G2F mediates intercellular signaling to decrease lipid droplet burden in microglia. Boosting Pla2g2f expression in DGCs of an aging-sensitive AD model reduces amyloid load and improves memory. Our findings implicate PLA2G2F as a compensatory neuroprotective factor that maintains lipid homeostasis to counteract aging-associated cognitive decline.
Collapse
Affiliation(s)
- Cinzia Vicidomini
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ruilin Yu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Conor H Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay N Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Noelle Leary
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liam Evans
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Michael J Steinbaugh
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina C Lyon
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Manuel Rico F S Silvestre
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Gracia Bonilla
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology. Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Harvard Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Shannan Ho Sui
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198 Japan
| | - Kei Yamamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-jyosanjima, Tokushima 770-8513, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Li-Huei Tsai
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- BROAD Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Chen Y, Branch A, Shuai C, Gallagher M, Knierim JJ. Object-place-context learning impairment correlates with spatial learning impairment in aged Long-Evans rats. Hippocampus 2024; 34:88-99. [PMID: 38073523 PMCID: PMC10843702 DOI: 10.1002/hipo.23591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/28/2023] [Accepted: 11/18/2023] [Indexed: 01/23/2024]
Abstract
The hippocampal formation is vulnerable to the process of normal aging. In humans, the extent of this age-related deterioration varies among individuals. Long-Evans rats replicate these individual differences as they age, and therefore they serve as a valuable model system to study aging in the absence of neurodegenerative diseases. In the Morris water maze, aged memory-unimpaired (AU) rats navigate to remembered goal locations as effectively as young rats and demonstrate minimal alterations in physiological markers of synaptic plasticity, whereas aged memory-impaired (AI) rats show impairments in both spatial navigation skills and cellular and molecular markers of plasticity. The present study investigates whether another cognitive domain is affected similarly to navigation in aged Long-Evans rats. We tested the ability of young, AU, and AI animals to recognize novel object-place-context (OPC) configurations and found that performance on the novel OPC recognition paradigm was significantly correlated with performance on the Morris water maze. In the first OPC test, young and AU rats, but not AI rats, successfully recognized and preferentially explored objects in novel OPC configurations. In a second test with new OPC configurations, all age groups showed similar OPC associative recognition memory. The results demonstrated similarities in the behavioral expression of associative, episodic-like memory between young and AU rats and revealed age-related, individual differences in functional decline in both navigation and episodic-like memory abilities.
Collapse
Affiliation(s)
- Yuxi Chen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Audrey Branch
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cecelia Shuai
- Undergraduate Studies, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - James J Knierim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Branch AE, Glover LR, Gallagher M. Individual differences in age-related neurocognitive outcomes: within-subject assessment of memory for odors. Front Aging Neurosci 2023; 15:1238444. [PMID: 37842120 PMCID: PMC10569039 DOI: 10.3389/fnagi.2023.1238444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Cognitive decline is a common feature of aging, particularly in memory domains supported by the medial temporal lobe (MTL). The ability to identify intervention strategies to treat or prevent this decline is challenging due to substantial variability between adults in terms of age of onset, rate and severity of decline, and many factors that could influence cognitive reserve. These factors can be somewhat mitigated by use of within-subject designs. Aged outbred Long-Evans rats have proven useful for identifying translationally relevant substrates contributing to age-related decline in MTL-dependent memory. In this population, some animals show reliable impairment on MTL-dependent tasks while others perform within the range of young adult rats. However, currently there are relatively few within-subject behavior protocols for assessing MTL function over time, and most require extensive training and appetitive motivation for associative learning. In the current study, we aimed to test whether water maze learning impairments in aged Long-Evans rats would be predictive of delayed recognition memory impairments and whether these odor memory impairments would be stable within subjects over multiple rounds of testing.
Collapse
Affiliation(s)
- Audrey E. Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Lucas R. Glover
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
5
|
Gray DT, Khattab S, Meltzer J, McDermott K, Schwyhart R, Sinakevitch I, Härtig W, Barnes CA. Retrosplenial cortex microglia and perineuronal net densities are associated with memory impairment in aged rhesus macaques. Cereb Cortex 2023; 33:4626-4644. [PMID: 36169578 PMCID: PMC10110451 DOI: 10.1093/cercor/bhac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Synapse loss and altered plasticity are significant contributors to memory loss in aged individuals. Microglia, the innate immune cells of the brain, play critical roles in maintaining synapse function, including through a recently identified role in regulating the brain extracellular matrix. This study sought to determine the relationship between age, microglia, and extracellular matrix structure densities in the macaque retrosplenial cortex. Twenty-nine macaques ranging in age from young adult to aged were behaviorally characterized on 3 distinct memory tasks. Microglia, parvalbumin (PV)-expressing interneurons and extracellular matrix structures, known as perineuronal nets (PNNs), were immuno- and histochemically labeled. Our results indicate that microglia densities increase in the retrosplenial cortex of aged monkeys, while the proportion of PV neurons surrounded by PNNs decreases. Aged monkeys with more microglia had fewer PNN-associated PV neurons and displayed slower learning and poorer performance on an object recognition task. Stepwise regression models using age and the total density of aggrecan, a chondroitin sulfate proteoglycan of PNNs, better predicted memory performance than did age alone. Together, these findings indicate that elevated microglial activity in aged brains negatively impacts cognition in part through mechanisms that alter PNN assembly in memory-associated brain regions.
Collapse
Affiliation(s)
- Daniel T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Salma Khattab
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Jeri Meltzer
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Kelsey McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Rachel Schwyhart
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Irina Sinakevitch
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
6
|
Lee H, Wang Z, Tillekeratne A, Lukish N, Puliyadi V, Zeger S, Gallagher M, Knierim JJ. Loss of functional heterogeneity along the CA3 transverse axis in aging. Curr Biol 2022; 32:2681-2693.e4. [PMID: 35597233 PMCID: PMC9233142 DOI: 10.1016/j.cub.2022.04.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023]
Abstract
Age-related deficits in pattern separation have been postulated to bias the output of hippocampal memory processing toward pattern completion, which can cause deficits in accurate memory retrieval. Although the CA3 region of the hippocampus is often conceptualized as a homogeneous network involved in pattern completion, growing evidence demonstrates a functional gradient in CA3 along the transverse axis, as pattern-separated outputs (dominant in the more proximal CA3) transition to pattern-completed outputs (dominant in the more distal CA3). We examined the neural representations along the CA3 transverse axis in young (Y), aged memory-unimpaired (AU), and aged memory-impaired (AI) rats when different changes were made to the environment. Functional heterogeneity in CA3 was observed in Y and AU rats when the environmental similarity was high (altered cues or altered environment shapes in the same room), with more orthogonalized representations in proximal CA3 than in distal CA3. In contrast, AI rats showed reduced orthogonalization in proximal CA3 but showed normal (i.e., generalized) representations in distal CA3, with little evidence of a functional gradient. Under experimental conditions when the environmental similarity was low (different rooms), representations in proximal and distal CA3 remapped in all rats, showing that CA3 of AI rats is able to encode distinctive representations for inputs with greater dissimilarity. These experiments support the hypotheses that the age-related bias toward hippocampal pattern completion is due to the loss in AI rats of the normal transition from pattern separation to pattern completion along the CA3 transverse axis.
Collapse
Affiliation(s)
- Heekyung Lee
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Correspondence: ;
| | - Zitong Wang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Arjuna Tillekeratne
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - Nick Lukish
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - Vyash Puliyadi
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD
| | - Scott Zeger
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD,Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - James J. Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD,Kavli Neuroscience Discovery Institute, Johns Hopkins University,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205,Lead Contact,Correspondence: ;
| |
Collapse
|
7
|
Zhvania MG, Japaridze N, Tizabi Y, Lomidze N, Pochkhidze N, Lordkipanidze T. Age-related cognitive decline in rats is sex and context dependent. Neurosci Lett 2021; 765:136262. [PMID: 34560192 DOI: 10.1016/j.neulet.2021.136262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Previously, we had observed age-related cognitive decline in male rats compared to adolescent and adult rats. This was shown in both a multi-branched maze test (MBM), as well as in the Morris water maze test (MWM). In the present study, we compared the behavior of similar age groups in both male and female rats using the same paradigms. The results confirmed the increase in errors and time spent in MBM in aged male rats compared to other age groups. However, no such differences were observed in female rats. In the acquisition phase of MWM, aged male rats did not differ significantly from the other two groups in terms of time spent in quadrants, whereas aged female rats spent significantly more time in quadrants compared to the other 2 age groups. Aged male rats also travelled significantly more than the other 2 age groups during the acquisition phase, whereas no such differences were observed in female rats. In both short term (30 min post acquisition) and long term (24 h after acquisition) retrieval phases of MWM, significant gender-related differences were also observed in all age groups. These findings suggest gender- and context-dependent alterations in cognitive functions during aging.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K/Cholokashvili Avenue, 0162 Tbilisi, Georgia; Department of Neuron Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia.
| | - Nadezhda Japaridze
- Department of Neuron Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia; School of Medicine, New Vision University, 1A Evgeni Mikeladze Street, 0159 Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K/Cholokashvili Avenue, 0162 Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K/Cholokashvili Avenue, 0162 Tbilisi, Georgia; Department of Neuron Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, 3/5 K/Cholokashvili Avenue, 0162 Tbilisi, Georgia; Department of Neuron Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine, 14 Gotua Street, 9160 Tbilisi, Georgia
| |
Collapse
|
8
|
Ratner MH, Downing SS, Guo O, Odamah KE, Stewart TM, Kumaresan V, Robitsek RJ, Xia W, Farb DH. Prodromal dysfunction of α5GABA-A receptor modulated hippocampal ripples occurs prior to neurodegeneration in the TgF344-AD rat model of Alzheimer's disease. Heliyon 2021; 7:e07895. [PMID: 34568591 PMCID: PMC8449175 DOI: 10.1016/j.heliyon.2021.e07895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Decades of research attempting to slow the onset of Alzheimer's disease (AD) indicates that a better understanding of memory will be key to the discovery of effective therapeutic approaches. Here, we ask whether prodromal neural network dysfunction might occur in the hippocampal trisynaptic circuit by using α5IA (an established memory enhancer and selective negative allosteric modulator of extrasynaptic tonically active α5GABA-A receptors) as a probe drug in TgF344-AD transgenic rats, a model for β-amyloid induced early onset AD. The results demonstrate that orally bioavailable α5IA increases CA1 pyramidal cell mean firing rates during foraging and peak ripple amplitude during wakeful immobility in wild type F344 rats in a familiar environment. We further demonstrate that CA1 ripples in TgF344-AD rats are nonresponsive to α5IA by 9 months of age, prior to the onset of AD-like pathology and memory dysfunction. TgF344-AD rats express human β-amyloid precursor protein (with the Swedish mutation) and human presenilin-1 (with a Δ exon 9 mutation) and we found high serum Aβ42 and Aβ40 levels by 3 months of age. When taken together, this demonstrates, to the best of our knowledge, the first evidence for prodromal α5GABA-A receptor dysfunction in the ripple-generating hippocampal trisynaptic circuit of AD-like transgenic rats. As α5GABA-A receptors are found at extrasynaptic and synaptic contacts, we posit that negative modulation of α5GABA-A receptor mediated tonic as well as phasic inhibition augments CA1 ripples and memory consolidation but that this modulatory mechanism is lost at an early stage of AD onset.
Collapse
Affiliation(s)
- Marcia H. Ratner
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Scott S. Downing
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ouyang Guo
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - KathrynAnn E. Odamah
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tara M. Stewart
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Vidhya Kumaresan
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - R. Jonathan Robitsek
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Weiming Xia
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Geriatric Research Education and Clinical Center, Bedford Veterans Administration Healthcare System, Bedford, Massachusetts, USA
| | - David H. Farb
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Corresponding author.
| |
Collapse
|
9
|
Lomidze N, Zhvania MG, Tizabi Y, Japaridze N, Pochkhidze N, Rzayev F, Lordkipanidze T. Aging affects cognition and hippocampal ultrastructure in male Wistar rats. Dev Neurobiol 2021; 81:833-846. [PMID: 34047044 DOI: 10.1002/dneu.22839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/11/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
It is now well established that aging is associated with emotional and cognitive changes. Although the basis of such changes is not fully understood, ultrastructural alterations in key brain areas are likely contributing factors. Recently, we reported that aging-related anxiety in male Wistar rats is associated with ultrastructural changes in the central nucleus of amygdala, an area that plays important role in emotional regulation. In this study, we evaluated the cognitive performance of adolescent, adult, and aged male Wistar rats in multi-branch maze (MBM) as well as in Morris water maze (MWM). We also performed ultrastructural analysis of the CA1 region of the hippocampus, an area intimately involved in cognitive function. The behavioral data indicate significant impairments in few indices of cognitive functions in both tests in aged rats compared to the other two age groups. Concomitantly, a total number of presynaptic vesicles as well as vesicles in the resting pool were significantly lower, whereas postsynaptic mitochondrial area was significantly higher in aged rats compared to the other age groups. No significant differences in presynaptic terminal area or postsynaptic mitochondrial number were detected between the three age groups. These results indicate that selective ultrastructural changes in specific hippocampal region may accompany cognitive decline in aging rats.
Collapse
Affiliation(s)
- Nino Lomidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology Howard, University College of Medicine, Washington, District of Columbia, USA
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia.,Medical School, New Vision University, Tbilisi, Georgia
| | - Nino Pochkhidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia.,Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashviloi Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Tamar Lordkipanidze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
10
|
Rao G, Lee H, Gallagher M, Knierim JJ. Decreased investigatory head scanning during exploration in learning-impaired, aged rats. Neurobiol Aging 2021; 98:1-9. [PMID: 33221571 PMCID: PMC8639103 DOI: 10.1016/j.neurobiolaging.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/23/2020] [Accepted: 10/08/2020] [Indexed: 01/04/2023]
Abstract
"Head scanning" is an investigatory behavior that has been linked to spatial exploration and the one-trial formation or strengthening of place cells in the hippocampus. Previous studies have demonstrated that a subset of aged rats with normal spatial learning performance show head scanning rates during a novel, local-global cue-mismatch manipulation that are similar to those of young rats. However, these aged rats demonstrated different patterns of expression of neural activity markers in brain regions associated with spatial learning, perhaps suggesting neural mechanisms that compensate for age-related brain changes. These prior studies did not investigate the head scanning properties of aged rats that had spatial learning impairments. The present study analyzed head scanning behavior in young, aged-unimpaired, and aged-impaired Long Evans rats. Aged-impaired rats performed the head scan behavior at a lower rate than the young rats. These results suggest that decreased attention to spatial landmarks may be a contributing factor to the spatial learning deficits shown by the aged-impaired rats.
Collapse
Affiliation(s)
- Geeta Rao
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Heekyung Lee
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Cerebrolysin enhances the expression of the synaptogenic protein LRRTM4 in the hippocampus and improves learning and memory in senescent rats. Behav Pharmacol 2021; 31:491-499. [PMID: 31850962 DOI: 10.1097/fbp.0000000000000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aging reduces the efficiency of the organs and systems, including the cognitive functions. Brain aging is related to a decrease in the vascularity, neurogenesis, and synaptic plasticity. Cerebrolysin, a peptide and amino acid preparation, has been shown to improve the cognitive performance in animal models of Alzheimer's disease. Similarly, the leucine-rich repeat transmembrane 4 protein exhibits a strong synaptogenic activity in the hippocampal synapses. The aim of this study was to evaluate the effect of the cerebrolysin treatment on the learning and memory abilities, sensorimotor functions, and the leucine-rich repeat transmembrane 4 protein expression in the brain of 15-month-old rats. Cerebrolysin (1076 mg/kg) or vehicle was administered to Wistar rats intraperitoneally for 4 weeks. After the treatments, learning and memory were tested using the Barnes maze test, and the acoustic startle response, and its pre-pulse inhibition and habituation were measured. Finally, the leucine-rich repeat transmembrane 4 expression was measured in the brainstem, striatum, and hippocampus using a Western-blot assay. The 15-month-old vehicle-treated rats showed impairments in the habituation of the acoustic startle response and in learning and memory when compared to 3-month-old rats. These impairments were attenuated by the subchronic cerebrolysin treatment. The leucine-rich repeat transmembrane 4 protein expression was lower in the old vehicle-treated rats than in the young rats; the cerebrolysin treatment attenuated that decrease in the old rats. The leucine-rich repeat transmembrane 4 protein was not expressed in striatum or brainstem. These results suggest that the subchronic cerebrolysin treatment enhances the learning and memory abilities in aging by increasing the expression of the leucine-rich repeat transmembrane 4 protein in the hippocampus.
Collapse
|
12
|
Heterogeneity of Age-Related Neural Hyperactivity along the CA3 Transverse Axis. J Neurosci 2021; 41:663-673. [PMID: 33257325 DOI: 10.1523/jneurosci.2405-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related memory deficits are correlated with neural hyperactivity in the CA3 region of the hippocampus. Abnormal CA3 hyperactivity in aged rats has been proposed to contribute to an imbalance between pattern separation and pattern completion, resulting in overly rigid representations. Recent evidence of functional heterogeneity along the CA3 transverse axis suggests that proximal CA3 supports pattern separation while distal CA3 supports pattern completion. It is not known whether age-related CA3 hyperactivity is uniformly represented along the CA3 transverse axis. We examined the firing rates of CA3 neurons from young and aged, male, Long-Evans rats along the CA3 transverse axis. Consistent with prior studies, young CA3 cells showed an increasing gradient in mean firing rate from proximal to distal CA3. However, aged CA3 cells showed an opposite, decreasing trend, in that CA3 cells in aged rats were hyperactive in proximal CA3, but possibly hypoactive in distal CA3, compared with young (Y) rats. We suggest that, in combination with altered inputs from the entorhinal cortex and dentate gyrus (DG), the proximal CA3 region of aged rats may switch from its normal function that reflects the pattern separation output of the DG and instead performs a computation that reflects an abnormal bias toward pattern completion. In parallel, distal CA3 of aged rats may create weaker attractor basins that promote abnormal, bistable representations under certain conditions.SIGNIFICANCE STATEMENT Prior work suggested that age-related CA3 hyperactivity enhances pattern completion, resulting in rigid representations. Implicit in prior studies is the notion that hyperactivity is present throughout a functionally homogeneous CA3 network. However, more recent work has demonstrated functional heterogeneity along the CA3 transverse axis, in that proximal CA3 is involved in pattern separation and distal CA3 is involved in pattern completion. Here, we show that age-related hyperactivity is present only in proximal CA3, with potential hypoactivity in distal CA3. This result provides new insight in the role of CA3 in age-related memory impairments, suggesting that the rigid representations in aging result primarily from dysfunction of computational circuits involving the dentate gyrus (DG) and proximal CA3.
Collapse
|
13
|
Liang X, Hsu LM, Lu H, Ash JA, Rapp PR, Yang Y. Functional Connectivity of Hippocampal CA3 Predicts Neurocognitive Aging via CA1-Frontal Circuit. Cereb Cortex 2020; 30:4297-4305. [PMID: 32239141 DOI: 10.1093/cercor/bhaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023] Open
Abstract
The CA3 and CA1 principal cell fields of the hippocampus are vulnerable to aging, and age-related dysfunction in CA3 may be an early seed event closely linked to individual differences in memory decline. However, whether the differential vulnerability of CA3 and CA1 is associated with broader disruption in network-level functional interactions in relation to age-related memory impairment, and more specifically, whether CA3 dysconnectivity contributes to the effects of aging via CA1 network connectivity, has been difficult to test. Here, using resting-state fMRI in a group of aged rats uncontaminated by neurodegenerative disease, aged rats displayed widespread reductions in functional connectivity of CA3 and CA1 fields. Age-related memory deficits were predicted by connectivity between left CA3 and hippocampal circuitry along with connectivity between left CA1 and infralimbic prefrontal cortex. Notably, the effects of CA3 connectivity on memory performance were mediated by CA1 connectivity with prefrontal cortex. We additionally found that spatial learning and memory were associated with functional connectivity changes lateralized to the left CA3 and CA1 divisions. These results provide novel evidence that network-level dysfunction involving interactions of CA3 with CA1 is an early marker of poor cognitive outcome in aging.
Collapse
Affiliation(s)
- Xia Liang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China.,Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Jessica A Ash
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, NIH, Baltimore, MD 21224, USA
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Biomedical Research Center, NIH, Baltimore, MD 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Biomedical Research Center, National Institutes of Health (NIH), Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Koh MT, Branch A, Haberman R, Gallagher M. Significance of inhibitory recruitment in aging with preserved cognition: limiting gamma-aminobutyric acid type A α5 function produces memory impairment. Neurobiol Aging 2020; 91:1-4. [PMID: 32240868 DOI: 10.1016/j.neurobiolaging.2020.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/30/2019] [Accepted: 02/22/2020] [Indexed: 01/27/2023]
Abstract
Numerous aging studies have identified a shift in the excitatory/inhibitory (E/I) balance with heightened hippocampal neural activity associated with age-related memory impairment across species, including rats, monkeys, and humans. Neurobiological investigations directed at the hippocampal formation have demonstrated that unimpaired aged rats performing on par with young adult rats in a spatial memory task exhibit gene expression profiles, mechanisms for plasticity, and altered circuit/network function, which are distinct from younger rats. Particularly striking is a convergence of observational evidence that aged unimpaired rats augment recruitment of mechanisms associated with neural inhibition, a finding that may represent an adaptive homeostatic adjustment necessary to maintain neural plasticity and memory function in aging. In this study, we test the effect of limiting inhibition via administration of TB21007, a negative allosteric modulator of the alpha 5 subtype of gamma-aminobutyric acid type A α5 receptor, on a radial arm maze assessment of memory function. Impaired memory performance produced by this intervention in otherwise high-performing aged rats supports an adaptive role for gamma-aminobutyric acid in the functional maintenance of intact cognition in aging.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Audrey Branch
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rebecca Haberman
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
15
|
Gallagher M, Okonkwo OC, Resnick SM, Jagust WJ, Benzinger TLS, Rapp PR. What are the threats to successful brain and cognitive aging? Neurobiol Aging 2019; 83:130-134. [PMID: 31732016 PMCID: PMC6859944 DOI: 10.1016/j.neurobiolaging.2019.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The structure and function of the brain change over the life span. Aged brains often accumulate pathologic lesions, such as amyloid plaques and tau tangles, which lead to diminished cognitive ability in some, but not all, individuals. The basis of this vulnerability and resilience is unclear. Age-related changes can alter neural firing patterns and ability to form new memories. Risk factors for cognitive decline include male sex and apolipoprotein E genotype. Physical activity seems to be protective against cognitive decline. Longitudinal studies have shown that, although the onset of amyloid pathology and associated cognitive decline can vary greatly, once it begins, the rate of deposition is similar among affected individuals. This session of the Cognitive Aging Summit III explored fixed and modifiable factors that can threaten cognitive function in aging adults and approaches to modulate at least some of these risks.
Collapse
Affiliation(s)
- Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ozioma C Okonkwo
- Department of Medicine and Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
16
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
17
|
Reduced cognitive performance in aged rats correlates with increased excitation/inhibition ratio in the dentate gyrus in response to lateral entorhinal input. Neurobiol Aging 2019; 82:120-127. [DOI: 10.1016/j.neurobiolaging.2019.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022]
|
18
|
Haberman RP, Monasterio A, Branch A, Gallagher M. Aged rats with intact memory show distinctive recruitment in cortical regions relative to young adults in a cue mismatch task. Behav Neurosci 2019; 133:537-544. [PMID: 31246080 DOI: 10.1037/bne0000332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Similar to elderly humans, aged Long-Evans rats exhibit individual differences in performance on tasks that critically depend on the medial temporal lobe memory system. Although reduced memory performance is common, close to half of aged rats in this outbred rodent population perform within the range of young subjects, exhibiting a stable behavioral phenotype that may signal a resilience to memory decline. Increasing evidence from research on aging in the Long-Evans study population supports the existence of adaptive neural change rather than avoidance of detrimental effects of aging on the brain, indicating a malleability of brain function over the life span that may preserve optimal function. Augmenting prior work that centered on hippocampal function, the current study extends investigation to cortical regions functionally interconnected with the hippocampal formation, including medial temporal lobe cortices and posterior components of the default mode network. In response to an environmental manipulation that creates a mismatch in the expected cue orientation, aged rats with preserved memory show greater activation across an extended network of cortical regions as measured by immediate early gene expression. In contrast, young subjects, behaviorally similar to the aged rats in this study, show a more limited cortical response. This distinctive cortical recruitment in aged unimpaired rats, set against a background of comparable activation across hippocampal subregions, may represent adaptive cortical recruitment consistent with evidence in human studies of neurocognitive aging. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|