1
|
Akbar F, Taj I, Usman SM, Imran AS, Khalid S, Ihsan I, Ali A, Yasin A. Unlocking the potential of EEG in Alzheimer's disease research: Current status and pathways to precision detection. Brain Res Bull 2025; 223:111281. [PMID: 40058654 DOI: 10.1016/j.brainresbull.2025.111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Alzheimer's disease (AD) affects millions of individuals worldwide and is considered a serious global health issue due to its gradual neuro-degenerative effects on cognitive abilities such as memory, thinking, and behavior. There is no cure for this disease but early detection along with a supportive care plan may aid in improving the quality of life for patients. Automated detection of AD is challenging because its symptoms vary in patients due to genetic, environmental, or other co-existing health conditions. In recent years, multiple researchers have proposed automated detection methods for AD using MRI and fMRI. These approaches are expensive, have poor temporal resolution, do not offer real-time insights, and have not proven to be very accurate. In contrast, only a limited number of studies have explored the potential of Electroencephalogram (EEG) signals for AD detection. In contrast, Electroencephalogram (EEG) signals present a cost-effective, non-invasive, and high-temporal-resolution alternative for AD detection. Despite their potential, the application of EEG signals in AD research remains under-explored. This study reviews publicly available EEG datasets, the variety of machine learning models developed for automated AD detection, and the performance metrics achieved by these methods. It provides a critical analysis of existing approaches, highlights challenges, and identifies key areas requiring further investigation. Key findings include a detailed evaluation of current methodologies, prevailing trends, and potential gaps in the field. What sets this work apart is its in-depth analysis of EEG signals for Alzheimer's Disease detection, providing a stronger and more reliable foundation for understanding the potential role of EEG in this area.
Collapse
Affiliation(s)
- Frnaz Akbar
- Department of Creative Technology, Faculty of Computing and AI, Air University, Islamabad 44000, Pakistan.
| | - Imran Taj
- College of Interdisciplinary Studies, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates.
| | - Syed Muhammad Usman
- Department of Computer Science, Bahria School of Engineering and Applied Science, Islamabad, Pakistan.
| | - Ali Shariq Imran
- Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway.
| | - Shehzad Khalid
- Department of Computer Engineering, Bahria University, Islamabad, Pakistan.
| | - Imran Ihsan
- Department of Creative Technology, Faculty of Computing and AI, Air University, Islamabad 44000, Pakistan.
| | - Ammara Ali
- Department of Medicine, Sykehuset Innlandet, Gjøvik, Norway.
| | - Amanullah Yasin
- Department of Computer Science, Bahria School of Engineering and Applied Science, Islamabad, Pakistan.
| |
Collapse
|
2
|
Babiloni C, Arakaki X, Baez S, Barry RJ, Benussi A, Blinowska K, Bonanni L, Borroni B, Bayard JB, Bruno G, Cacciotti A, Carducci F, Carino J, Carpi M, Conte A, Cruzat J, D'Antonio F, Della Penna S, Del Percio C, De Sanctis P, Escudero J, Fabbrini G, Farina FR, Fraga FJ, Fuhr P, Gschwandtner U, Güntekin B, Guo Y, Hajos M, Hallett M, Hampel H, Hanoğlu L, Haraldsen I, Hassan M, Hatlestad-Hall C, Horváth AA, Ibanez A, Infarinato F, Jaramillo-Jimenez A, Jeong J, Jiang Y, Kamiński M, Koch G, Kumar S, Leodori G, Li G, Lizio R, Lopez S, Ferri R, Maestú F, Marra C, Marzetti L, McGeown W, Miraglia F, Moguilner S, Moretti DV, Mushtaq F, Noce G, Nucci L, Ochoa J, Onorati P, Padovani A, Pappalettera C, Parra MA, Pardini M, Pascual-Marqui R, Paulus W, Pizzella V, Prado P, Rauchs G, Ritter P, Salvatore M, Santamaria-García H, Schirner M, Soricelli A, Taylor JP, Tankisi H, Tecchio F, Teipel S, Kodamullil AT, Triggiani AI, Valdes-Sosa M, Valdes-Sosa P, Vecchio F, Vossel K, Yao D, Yener G, Ziemann U, Kamondi A. Alpha rhythm and Alzheimer's disease: Has Hans Berger's dream come true? Clin Neurophysiol 2025; 172:33-50. [PMID: 39978053 DOI: 10.1016/j.clinph.2025.02.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
In this "centenary" paper, an expert panel revisited Hans Berger's groundbreaking discovery of human restingstate electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) in 1924, his foresight of substantial clinical applications in patients with "senile dementia," and new developments in the field, focusing on Alzheimer's disease (AD), the most prevalent cause of dementia in pathological aging. Clinical guidelines issued in 2024 by the US National Institute on Aging-Alzheimer's Association (NIA-AA) and the European Neuroscience Societies did not endorse routine use of rsEEG biomarkers in the clinical workup of older adults with cognitive impairment. Nevertheless, the expert panel highlighted decades of research from independent workgroups and different techniques showing consistent evidence that abnormalities in rsEEG delta, theta, and alpha rhythms (< 30 Hz) observed in AD patients correlate with wellestablished AD biomarkers of neuropathology, neurodegeneration, and cognitive decline. We posit that these abnormalities may reflect alterations in oscillatory synchronization within subcortical and cortical circuits, inducing cortical inhibitory-excitatory imbalance (in some cases leading to epileptiform activity) and vigilance dysfunctions (e.g., mental fatigue and drowsiness), which may impact AD patients' quality of life. Berger's vision of using EEG to understand and manage dementia in pathological aging is still actual.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; San Raffaele of Cassino, Cassino, (FR), Italy.
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, USA; Trinity College Dublin, Dublin, Ireland
| | - Robert J Barry
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong 2522, Australia
| | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Katarzyna Blinowska
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Laura Bonanni
- Department of Medicine, Aging Sciences University G. d'Annunzio of Chieti-Pescara Chieti 66100 Chieti, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25125, Italy
| | | | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Filippo Carducci
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - John Carino
- Clinical Neurophysiology, Royal Melbourne Hospital, Parkville, Melbourne, Australia
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Fabrizia D'Antonio
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Javier Escudero
- Institute for Imaging, Data and Communications, School of Engineering, University of Edinburgh, UK
| | - Giovanni Fabbrini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Francesca R Farina
- The University of Chicago Division of the Biological Sciences 5841 S Maryland Avenue Chicago, IL 60637, USA; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland
| | - Francisco J Fraga
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo André, Brazil
| | - Peter Fuhr
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Ute Gschwandtner
- Department of Neurology, Hospitals of the University of Basel, Basel, Switzerland
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital and The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China; Shenzhen Bay Laboratory, Shenzhen, China; Tianjin Huanhu Hospital, Tianjin, China
| | - Mihaly Hajos
- Cognito Therapeutics, Cambridge, MA, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D37, 10 Center Drive, Bethesda, MD 20892-1428, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, F-75013 Paris, France
| | - Lutfu Hanoğlu
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ira Haraldsen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mahmoud Hassan
- MINDIG, F-35000 Rennes, France; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - András Attila Horváth
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Research Centre for Natural Sciences, HUN-REN, Budapest, Hungary
| | - Agustin Ibanez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Global Brain Health Institute (GBHI), Trinity College Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina
| | | | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Yang Jiang
- Aging Brain and Cognition Laboratory, Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Maciej Kamiński
- Department of Biomedical Physics, Faculty of Physics, University of Warsaw, Poland
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sanjeev Kumar
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Gang Li
- Real World Evidence & Medical Value, Global Medical Affairs, Neurology, Eisai Inc., New Jersey, USA
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy; Oasi Research Institute - IRCCS, Troina, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | | | - Fernando Maestú
- Center For Cognitive and Computational Neuroscience, Complutense University of Madrid, Spain
| | - Camillo Marra
- Department of Psychology, Catholic University of Sacred Heart, Milan, Italy; Memory Clinic, Foundation Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Marzetti
- Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Department of Engineering and Geology, "G. d'Annunzio" University of Chieti and Pescara, Pescara, Italy
| | - William McGeown
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Sebastian Moguilner
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Victoria, Buenos Aires, Argentina; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Davide V Moretti
- Alzheimer's Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Faisal Mushtaq
- School of Psychology, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds, UK
| | | | - Lorenzo Nucci
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - John Ochoa
- Neurophysiology Laboratory GNA-GRUNECO. Universidad de Antioquia, Antioquia, Colombia
| | - Paolo Onorati
- Department of Physiology and Pharmacology "Vittorio Erspamer," Sapienza University of Rome, Rome, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Department of Continuity of Care and Frailty, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia, ASST Spedali Civili Hospital, Brescia, Italy; Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy; Brain Health Center, University of Brescia, Brescia, Italy
| | - Chiara Pappalettera
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy; Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Mario Alfredo Parra
- Department of Psychological Sciences & Health, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow, UK
| | - Matteo Pardini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Roberto Pascual-Marqui
- The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians University Munich, Munich, Germany; University Medical Center Göttingen, Göttingen, Germany
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti and Pescara, Chieti, Italy
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Géraldine Rauchs
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, GIP Cyceron, 14000 Caen, France
| | - Petra Ritter
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | | | - Hernando Santamaria-García
- Pontificia Universidad Javeriana (PhD Program in Neuroscience), Bogotá, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Michael Schirner
- Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Berlin, Germany; Einstein Center Digital Future, Berlin, Germany
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Franca Tecchio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze e Tecnologie della Cognizione (ISTC), Roma, Italy
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Antonio Ivano Triggiani
- Neurophysiology of Epilepsy Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Pedro Valdes-Sosa
- Cuban Center for Neuroscience, Havana, Cuba; The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fabrizio Vecchio
- Universidad de los Andes, Bogota, Colombia; Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anita Kamondi
- Neurocognitive Research Centre, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary; Department of Neurosurgery and Neurointervention and Department of Neurology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Prat-Ortega G, Ensel S, Donadio S, Borda L, Boos A, Yadav P, Verma N, Ho J, Carranza E, Frazier-Kim S, Fields DP, Fisher LE, Weber DJ, Balzer J, Duong T, Weinstein SD, Eliasson MJL, Montes J, Chen KS, Clemens PR, Gerszten P, Mentis GZ, Pirondini E, Friedlander RM, Capogrosso M. First-in-human study of epidural spinal cord stimulation in individuals with spinal muscular atrophy. Nat Med 2025; 31:1246-1256. [PMID: 39910271 DOI: 10.1038/s41591-024-03484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative disease causing motoneuron dysfunction, muscle weakness, fatigue and early mortality. Three new therapies can slow disease progression, enabling people to survive albeit with lingering motor impairments. Indeed, weakness and fatigue are still among patients' main concerns. Here we show that epidural spinal cord stimulation (SCS) improved motoneuron function, thereby increasing strength, endurance and gait quality, in three adults with type 3 SMA. Preclinical works demonstrated that SMA motoneurons show low firing rates because of a loss of excitatory input from primary sensory afferents. In the present study, we hypothesized that correcting this loss with electrical stimulation of the sensory afferents could improve motoneuron function. To test this hypothesis, we implanted three adults with SMA with epidural electrodes over the lumbosacral spinal cord, targeting sensory axons of the legs. We delivered SCS for 4 weeks, 2 h per day during motor tasks. Our intervention led to improvements in strength (up to +180%), gait quality (mean step length: +40%) and endurance (mean change in 6-minute walk test: +26 m), paralleled by increased motoneuron firing rates. These changes persisted even when SCS was turned OFF. Notably, no adverse events related to the stimulation were reported. ClinicalTrials.gov identifier: NCT05430113 .
Collapse
Affiliation(s)
- Genís Prat-Ortega
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott Ensel
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Serena Donadio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luigi Borda
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Amy Boos
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prakarsh Yadav
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Nikhil Verma
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan Ho
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Carranza
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Frazier-Kim
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daryl P Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lee E Fisher
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Doug J Weber
- Department of Mechanical engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- The Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jeffrey Balzer
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina Duong
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, USA
| | | | | | - Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, USA
| | - Karen S Chen
- Spinal Muscular Atrophy Foundation New York, New York, NY, USA
| | - Paula R Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Gerszten
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Elvira Pirondini
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute (CTSI), University of Pittsburgh, Pittsburgh, PA, USA.
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Madadi Asl M, Valizadeh A. Entrainment by transcranial alternating current stimulation: Insights from models of cortical oscillations and dynamical systems theory. Phys Life Rev 2025; 53:147-176. [PMID: 40106964 DOI: 10.1016/j.plrev.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Signature of neuronal oscillations can be found in nearly every brain function. However, abnormal oscillatory activity is linked with several brain disorders. Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that can potentially modulate neuronal oscillations and influence behavior both in health and disease. Yet, a complete understanding of how interacting networks of neurons are affected by tACS remains elusive. Entrainment effects by which tACS synchronizes neuronal oscillations is one of the main hypothesized mechanisms, as evidenced in animals and humans. Computational models of cortical oscillations may shed light on the entrainment effects of tACS, but current modeling studies lack specific guidelines to inform experimental investigations. This study addresses the existing gap in understanding the mechanisms of tACS effects on rhythmogenesis within the brain by providing a comprehensive overview of both theoretical and experimental perspectives. We explore the intricate interactions between oscillators and periodic stimulation through the lens of dynamical systems theory. Subsequently, we present a synthesis of experimental findings that demonstrate the effects of tACS on both individual neurons and collective oscillatory patterns in animal models and humans. Our review extends to computational investigations that elucidate the interplay between tACS and neuronal dynamics across diverse cortical network models. To illustrate these concepts, we conclude with a simple oscillatory neuron model, showcasing how fundamental theories of oscillatory behavior derived from dynamical systems, such as phase response of neurons to external perturbation, can account for the entrainment effects observed with tACS. Studies reviewed here render the necessity of integrated experimental and computational approaches for effective neuromodulation by tACS in health and disease.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| | - Alireza Valizadeh
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran; Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran; The Zapata-Briceño Institute of Neuroscience, Madrid, Spain
| |
Collapse
|
5
|
Salamone EM, Carpi M, Noce G, Del Percio C, Lopez S, Lizio R, Jakhar D, Eldellaa A, Isaza VH, Bölükbaş B, Soricelli A, Salvatore M, Güntekin B, Yener G, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Salemi M, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Yılmaz NH, Kıyı İ, Kula H, Frisoni GB, Cuoco S, Barone P, D'Anselmo A, Bonanni L, Biundo R, D'Antonio F, Bruno G, Giubilei F, Antonini A, Babiloni C. Abnormal electroencephalographic rhythms from quiet wakefulness to light sleep in Alzheimer's disease patients with mild cognitive impairment. Clin Neurophysiol 2025; 171:164-181. [PMID: 39914158 DOI: 10.1016/j.clinph.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 03/04/2025]
Abstract
OBJECTIVES Alzheimer's disease patients with mild cognitive impairment (ADMCI) show abnormal resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) and may suffer from daytime sleepiness. Our exploratory study tested the hypothesis that they may present characteristic EEG rhythms from quiet wakefulness to light sleep during diurnal recordings. METHODS Datasets of 34 ADMCI and 22 matched healthy elderly (Nold) subjects were obtained from international archives. EEG recordings lasted approximately 30 min. Transitions of EEG activity from quiet wakefulness (alpha-dominant) to light sleep (theta-dominant ripples) were scored according to Hori's vigilance stages. Cortical source activities were computed using the eLORETA software. RESULTS ADMCI (t-ADMCI, N = 18) over Nold (t-Nold, N = 11) participants were characterized by greater frontal EEG delta source activities and a lesser reduction (reactivity) in the posterior alpha source activities from quiet wakefulness to ripples. Notably, EEG delta source activities during quiet wakefulness were also greater in the ADMCI group transitioning to light sleep as compared to patients without said vigilance reduction. CONCLUSIONS These results suggest that ADMCI patients with a greater susceptibility to daytime sleepiness may show characteristic EEG delta and alpha rhythms in the transition from quiet vigilance to daytime sleep. SIGNIFICANCE Our study showed a derangement of EEG rhythms during the transition to sleep possibly specific to AD.
Collapse
Affiliation(s)
- Enrico Michele Salamone
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Matteo Carpi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Roberta Lizio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Ali Eldellaa
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Veronica Henao Isaza
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Burcu Bölükbaş
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | - Marco Salvatore
- Department of Medical, Movement and Well-being Sciences, University of Naples Parthenope, Naples, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye; IBG: International Biomedicine and Genome Center, Izmir, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | | | | | | | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Nesrin Helvacı Yılmaz
- Medipol University Istanbul Parkinson's Disease and Movement Disorders Center (PARMER), Istanbul, Turkey
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Hilal Kula
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Sofia Cuoco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Baronissi, Italy
| | - Anita D'Anselmo
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Roberta Biundo
- Department of Neuroscience, University of Padua, Padua (PD), Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Angelo Antonini
- Department of Neuroscience, University of Padua, Padua (PD), Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| |
Collapse
|
6
|
Gonzalez-Montealegre RA, González-Hernández A, Bonilla-Santos J, Cala-Martínez DY, Parra MA. Electrophysiological correlates of visual short-term memory binding deficits in community-dwelling seniors at risk of dementia. Clin Neurophysiol 2025; 171:227-239. [PMID: 39946839 DOI: 10.1016/j.clinph.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 03/11/2025]
Abstract
BACKGROUND Visual Short-Term Memory Binding (VSTMB) is a preclinical marker of Alzheimer's disease (AD). Reduced early event-related potentials (ERPs) (100-250 ms) over fronto-central (FC) and parieto-occipital (PO) regions have been reported in patients with Mild Cognitive Impairment (MCI) seen in the clinic. We investigated such ERPs in a larger sample of community-dwelling older adults who had not sought medical advice. METHODS Participants (n = 215) were assessed with a neuropsychological battery and the VSTMB Task. The latter assessed the ability to detect changes between two consecutive arrays of shapes or colored shapes (the Binding condition). Time-locked EEG signals were collected during the task. RESULTS Those who met the MCI criteria (n = 108) showed binding impairment. ERP analyses revealed significant Group x Time Windows interactions. Early ERP showed reduced neural recruitment (MCI < healthy controls (HC)) over the right FC regions, left PO, and right centro-parietal (CP) regions during Binding encoding, and over PO regions bilaterally and left FC during retrieval. Late ERP showed increased neural recruitment (MCI > HC) on left FC and PO regions during retrieval. CONCLUSIONS Hyper-recruitment may reflect functional reorganization aimed at behavioral compensation in the early stages of MCI. The role of such amplitude shifts as pointers of transition points in the AD continuum needs further investigation.
Collapse
Affiliation(s)
| | - Alfredis González-Hernández
- Neurocognition and Psychophysiology Laboratory, Universidad Surcolombiana, Neiva, Colombia; Department of Psychology, Master Programme of Clinical Neuropsychology, Universidad Surcolombiana, Neiva, Colombia.
| | - Jasmin Bonilla-Santos
- Department of Psychology, Master Programme of Clinical Neuropsychology, Universidad Surcolombiana, Neiva, Colombia; Department of Psychology, Universidad Cooperativa de Colombia, Neiva, Colombia
| | - Dorian Yisela Cala-Martínez
- Department of Psychology, Master Programme of Clinical Neuropsychology, Universidad Surcolombiana, Neiva, Colombia; Department of Psychology, Universidad Cooperativa de Colombia, Neiva, Colombia
| | - Mario Alfredo Parra
- Department of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK; Associate Researcher, Latin American Brain Health Institute, University Adolfo Ibañez, Chile.
| |
Collapse
|
7
|
Javed E, Suárez-Méndez I, Susi G, Román JV, Palva JM, Maestú F, Palva S. A Shift Toward Supercritical Brain Dynamics Predicts Alzheimer's Disease Progression. J Neurosci 2025; 45:e0688242024. [PMID: 40011070 DOI: 10.1523/jneurosci.0688-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 02/28/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia with continuum of disease progression of increasing severity from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and lastly to AD. The transition from MCI to AD has been linked to brain hypersynchronization, but the underlying mechanisms leading to this are unknown. Here, we hypothesized that excessive excitation in AD disease progression would shift brain dynamics toward supercriticality across an extended regime of critical-like dynamics. In this framework, healthy brain activity during aging preserves operation at near the critical phase transition at balanced excitation-inhibition (E/I). To test this hypothesis, we used source-reconstructed resting-state MEG data from a cross-sectional cohort (N = 343) of individuals with SCD, MCI, and healthy controls (HC) as well as from a longitudinal cohort (N = 45) of MCI patients. We then assessed brain criticality by quantifying long-range temporal correlations (LRTCs) and functional EI (fE/I) of neuronal oscillations. LRTCs were attenuated in SCD in spectrally and anatomically constrained regions while this breakdown was progressively more widespread in MC. In parallel, fE/I was increased in the MCI but not in the SC cohort. Both observations also predicted the disease progression in the longitudinal cohort. Finally, using machine learning trained on functional (LRTCs, fE/I) and structural (MTL volumes) features, we show that LRTCs and f/EI are the most informative features for accurate classification of individuals with SCD while structural changes accurate classify the individuals with MCI. These findings establish that a shift toward supercritical brain dynamics reflects early AD disease progression.
Collapse
Affiliation(s)
- Ehtasham Javed
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Isabel Suárez-Méndez
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28015, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid 28040, Spain
| | - Gianluca Susi
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28015, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid 28040, Spain
| | - Juan Verdejo Román
- Department of Personality, Evaluation and Psychological Treatment, University of Granada 18071, Spain
| | - J Matias Palva
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid 28015, Spain
- Department of Experimental Psychology, Cognitive Processes and Logopedy, Complutense University of Madrid, Pozuelo de Alarcón 28223, Spain
| | - Satu Palva
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki FI-00014, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB
| |
Collapse
|
8
|
Vergani AA, Mazzeo S, Moschini V, Burali R, Lassi M, Amato LG, Carpaneto J, Salvestrini G, Fabbiani C, Giacomucci G, Morinelli C, Emiliani F, Scarpino M, Bagnoli S, Ingannato A, Nacmias B, Padiglioni S, Sorbi S, Bessi V, Grippo A, Mazzoni A. Event-related potential markers of subjective cognitive decline and mild cognitive impairment during a sustained visuo-attentive task. Neuroimage Clin 2025; 45:103760. [PMID: 40023055 PMCID: PMC11919406 DOI: 10.1016/j.nicl.2025.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
Subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease stages lack well-defined electrophysiological correlates, creating a critical gap in the identification of robust biomarkers for early diagnosis and intervention. In this study, we analysed event-related potentials (ERPs) recorded during a sustained visual attention task in a cohort of 178 individuals (119 SCD, 40 MCI, and 19 healthy subjects, HS) to investigate sensory and cognitive processing alterations associated with these conditions. SCD patients exhibited significant attenuation in both sensory (P1, N1, P2) and cognitive (P300, P600, P900) components compared to HS, with cognitive components showing performance-related gains. In contrast, MCI patients did not show a further decrease in any ERP component compared to SCD. Instead, they exhibited compensatory enhancements, reversing the downward trend observed in SCD. This compensation resulted in a non-monotonic pattern of ERP alterations across clinical conditions, suggesting that MCI patients engage neural mechanisms to counterbalance sensory and cognitive deficits. These findings support the use of electrophysiological markers in support of medical decision-making, enhancing personalized prognosis and guiding targeted interventions in cognitive decline.
Collapse
Affiliation(s)
- A A Vergani
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - S Mazzeo
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milano, Italy; IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, 20097 San Donato Milanese, Italy
| | - V Moschini
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - R Burali
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - M Lassi
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - L G Amato
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - J Carpaneto
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| | - G Salvestrini
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - C Fabbiani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - G Giacomucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - C Morinelli
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - F Emiliani
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - M Scarpino
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - A Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - B Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - S Padiglioni
- Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy
| | - S Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - V Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy; Research and Innovation Centre for Dementia-CRIDEM, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, Florence 50134, Italy.
| | - A Grippo
- IRCCS Fondazione Don Carlo Gnocchi, via di Scandicci, 269, 50143 Florence, Italy
| | - A Mazzoni
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy; Department of Excellence in Robotics and AI, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera-Pisa, Italy
| |
Collapse
|
9
|
Paitel ER, Otteman CBD, Polking MC, Licht HJ, Nielson KA. Functional and effective EEG connectivity patterns in Alzheimer's disease and mild cognitive impairment: a systematic review. Front Aging Neurosci 2025; 17:1496235. [PMID: 40013094 PMCID: PMC11861106 DOI: 10.3389/fnagi.2025.1496235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Background Alzheimer's disease (AD) might be best conceptualized as a disconnection syndrome, such that symptoms may be largely attributable to disrupted communication between brain regions, rather than to deterioration within discrete systems. EEG is uniquely capable of directly and non-invasively measuring neural activity with precise temporal resolution; connectivity quantifies the relationships between such signals in different brain regions. EEG research on connectivity in AD and mild cognitive impairment (MCI), often considered a prodromal phase of AD, has produced mixed results and has yet to be synthesized for comprehensive review. Thus, we performed a systematic review of EEG connectivity in MCI and AD participants compared with cognitively healthy older adult controls. Methods We searched PsycINFO, PubMed, and Web of Science for peer-reviewed studies in English on EEG, connectivity, and MCI/AD relative to controls. Of 1,344 initial matches, 124 articles were ultimately included in the systematic review. Results The included studies primarily analyzed coherence, phase-locked, and graph theory metrics. The influence of factors such as demographics, design, and approach was integrated and discussed. An overarching pattern emerged of lower connectivity in both MCI and AD compared to healthy controls, which was most prominent in the alpha band, and most consistent in AD. In the minority of studies reporting greater connectivity, theta band was most commonly implicated in both AD and MCI, followed by alpha. The overall prevalence of alpha effects may indicate its potential to provide insight into nuanced changes associated with AD-related networks, with the caveat that most studies were during the resting state where alpha is the dominant frequency. When greater connectivity was reported in MCI, it was primarily during task engagement, suggesting compensatory resources may be employed. In AD, greater connectivity was most common during rest, suggesting compensatory resources during task engagement may already be exhausted. Conclusion The review highlighted EEG connectivity as a powerful tool to advance understanding of AD-related changes in brain communication. We address the need for including demographic and methodological details, using source space connectivity, and extending this work to cognitively healthy older adults with AD risk toward advancing early AD detection and intervention.
Collapse
Affiliation(s)
- Elizabeth R. Paitel
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Christian B. D. Otteman
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Mary C. Polking
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Henry J. Licht
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
| | - Kristy A. Nielson
- Aging, Imaging, and Memory Laboratory, Department of Psychology, Marquette University, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Calvin-Dunn KN, Mcneela A, Leisgang Osse A, Bhasin G, Ridenour M, Kinney JW, Hyman JM. Electrophysiological insights into Alzheimer's disease: A review of human and animal studies. Neurosci Biobehav Rev 2025; 169:105987. [PMID: 39732222 DOI: 10.1016/j.neubiorev.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
This review highlights the crucial role of neuroelectrophysiology in illuminating the mechanisms underlying Alzheimer's disease (AD) pathogenesis and progression, emphasizing its potential to inform the development of effective treatments. Electrophysiological techniques provide unparalleled precision in exploring the intricate networks affected by AD, offering insights into the synaptic dysfunction, network alterations, and oscillatory abnormalities that characterize the disease. We discuss a range of electrophysiological methods, from non-invasive clinical techniques like electroencephalography and magnetoencephalography to invasive recordings in animal models. By drawing on findings from these studies, we demonstrate how electrophysiological research has deepened our understanding of AD-related network disruptions, paving the way for targeted therapeutic interventions. Moreover, we underscore the potential of electrophysiological modalities to play a pivotal role in evaluating treatment efficacy. Integrating electrophysiological data with clinical neuroimaging and longitudinal studies holds promise for a more comprehensive understanding of AD, enabling early detection and the development of personalized treatment strategies. This expanded research landscape offers new avenues for unraveling the complexities of AD and advancing therapeutic approaches.
Collapse
Affiliation(s)
- Kirsten N Calvin-Dunn
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Cleveland Clinic Lou Ruvo Center for Brain Health, United States.
| | - Adam Mcneela
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States
| | - A Leisgang Osse
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - G Bhasin
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| | - M Ridenour
- Department of Psychology, University of Nevada, Las Vegas, United States
| | - J W Kinney
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Brain Health, University of Nevada, Las Vegas, United States
| | - J M Hyman
- Interdisciplinary Neuroscience Program, University of Nevada, Las Vegas, United States; Department of Psychology, University of Nevada, Las Vegas, United States
| |
Collapse
|
11
|
Marvi F, Chen YH, Sawan M. Alzheimer's Disease Diagnosis in the Preclinical Stage: Normal Aging or Dementia. IEEE Rev Biomed Eng 2025; 18:74-92. [PMID: 38478432 DOI: 10.1109/rbme.2024.3376835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) progressively impairs the memory and thinking skills of patients, resulting in a significant global economic and social burden each year. However, diagnosis of this neurodegenerative disorder can be challenging, particularly in the early stages of developing cognitive decline. Current clinical techniques are expensive, laborious, and invasive, which hinders comprehensive studies on Alzheimer's biomarkers and the development of efficient devices for Point-of-Care testing (POCT) applications. To address these limitations, researchers have been investigating various biosensing techniques. Unfortunately, these methods have not been commercialized due to several drawbacks, such as low efficiency, reproducibility, and the lack of accurate identification of AD markers. In this review, we present diverse promising hallmarks of Alzheimer's disease identified in various biofluids and body behaviors. Additionally, we thoroughly discuss different biosensing mechanisms and the associated challenges in disease diagnosis. In each context, we highlight the potential of realizing new biosensors to study various features of the disease, facilitating its early diagnosis in POCT. This comprehensive study, focusing on recent efforts for different aspects of the disease and representing promising opportunities, aims to conduct the future trend toward developing a new generation of compact multipurpose devices that can address the challenges in the early detection of AD.
Collapse
|
12
|
Athari SZ, Kazmi S, Vatandoust SM, Mahmoudi J, Farajdokht F, Hajihosseinlou F, Ghaderi P, Majdi A, Sadigh-Eteghad S. Varenicline Attenuates Memory Impairment in Amyloid-Beta-Induced Rat Model of Alzheimer's Disease. Neurochem Res 2025; 50:86. [PMID: 39869225 DOI: 10.1007/s11064-025-04338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an α4β2 nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function. This study aimed to evaluate varenicline's effect on memory and hippocampal activity in rat model of AD. Forty-eight adult male Wistar rats were randomly assigned to control, sham, AD, and varenicline (0.1, 1, and 3 mg/kg/po for 14 days) groups. AD was induced by intracerebroventricular (i.c.v.) injection of 4 µl amyloid-beta (Aβ)1-42 (1 µg/µl). Spatial learning and memory, hippocampal synaptic function, and CA1 electrophysiological activity were evaluated using appropriate methods. Barnes maze and T-maze behavioral tests revealed that varenicline, particularly at 1 mg/kg, significantly improved spatial memory compared to the AD group. Western blot analysis showed varenicline's ability to upregulate synaptic proteins PSD-95, synaptophysin, and GAP-43 in the hippocampus, with the most significant effects observed at 1 mg/kg. Electrophysiological recordings demonstrated that varenicline at 1 mg/kg enhanced hippocampal long-term potentiation (LTP), indicating improved synaptic plasticity. Single-unit recordings showed an increase in spike count with varenicline administration. These findings suggest that varenicline, particularly at 1 mg/kg, ameliorates memory deficits in AD rats possibly through modulation of synaptic proteins and enhancement of hippocampal LTP and electrical activity. Further investigations are warranted to elucidate varenicline's precise mechanisms of action in alleviating AD-induced cognitive deficits and its potential as a therapeutic intervention for AD-related cognitive impairment.
Collapse
Affiliation(s)
- Seyed Zanyar Athari
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sareh Kazmi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pedram Ghaderi
- Department of Functional and Clinical Anatomy, Medical University of Innsbruck, Innsbruck, Austria
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alireza Majdi
- Research Group Experimental Oto-rhino-laryngology, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Bonzanni M, Braga A, Saito T, Saido TC, Tesco G, Haydon PG. Adenosine deficiency facilitates CA1 synaptic hyperexcitability in the presymptomatic phase of a knockin mouse model of Alzheimer disease. iScience 2025; 28:111616. [PMID: 39850358 PMCID: PMC11754081 DOI: 10.1016/j.isci.2024.111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025] Open
Abstract
The disease's trajectory of Alzheimer disease (AD) is associated with and negatively correlated to hippocampal hyperexcitability. Here, we show that during the asymptomatic stage in a knockin (KI) mouse model of Alzheimer disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma, and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer disease.
Collapse
Affiliation(s)
- Mattia Bonzanni
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Alice Braga
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Giuseppina Tesco
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
14
|
Del Percio C, Lizio R, Lopez S, Noce G, Carpi M, Jakhar D, Soricelli A, Salvatore M, Yener G, Güntekin B, Massa F, Arnaldi D, Famà F, Pardini M, Ferri R, Carducci F, Lanuzza B, Stocchi F, Vacca L, Coletti C, Marizzoni M, Taylor JP, Hanoğlu L, Yılmaz NH, Kıyı İ, Özbek-İşbitiren Y, D’Anselmo A, Bonanni L, Biundo R, D’Antonio F, Bruno G, Antonini A, Giubilei F, Farotti L, Parnetti L, Frisoni GB, Babiloni C. Resting-State EEG Alpha Rhythms Are Related to CSF Tau Biomarkers in Prodromal Alzheimer's Disease. Int J Mol Sci 2025; 26:356. [PMID: 39796211 PMCID: PMC11720070 DOI: 10.3390/ijms26010356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Patients with mild cognitive impairment due to Alzheimer's disease (ADMCI) typically show abnormally high delta (<4 Hz) and low alpha (8-12 Hz) rhythms measured from resting-state eyes-closed electroencephalographic (rsEEG) activity. Here, we hypothesized that the abnormalities in rsEEG activity may be greater in ADMCI patients than in those with MCI not due to AD (noADMCI). Furthermore, they may be associated with the diagnostic cerebrospinal fluid (CSF) amyloid-tau biomarkers in ADMCI patients. An international database provided clinical-demographic-rsEEG datasets for cognitively unimpaired older (Healthy; N = 45), ADMCI (N = 70), and noADMCI (N = 45) participants. The rsEEG rhythms spanned individual delta, theta, and alpha frequency bands. The eLORETA freeware estimated cortical rsEEG sources. Posterior rsEEG alpha source activities were reduced in the ADMCI group compared not only to the Healthy group but also to the noADMCI group (p < 0.001). Negative associations between the CSF phospho-tau and total tau levels and posterior rsEEG alpha source activities were observed in the ADMCI group (p < 0.001), whereas those with CSF amyloid beta 42 levels were marginal. These results suggest that neurophysiological brain neural oscillatory synchronization mechanisms regulating cortical arousal and vigilance through rsEEG alpha rhythms are mainly affected by brain tauopathy in ADMCI patients.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Roberta Lizio
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Susanna Lopez
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Giuseppe Noce
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
| | - Matteo Carpi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
| | - Andrea Soricelli
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
- Department of Medical, Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (G.N.); (A.S.); (M.S.)
| | - Görsev Yener
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, 35340 İzmir, Turkey;
- IBG: International Biomedicine and Genome Center, 35340 Izmir, Turkey
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Istanbul, Turkey;
- Department of Biophysics, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Clinica Neurologica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
- Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Matteo Pardini
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-Infantili (DiNOGMI), Università di Genova, 16132 Genova, Italy; (F.M.); (D.A.); (F.F.); (M.P.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Filippo Carducci
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Bartolo Lanuzza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (R.F.); (B.L.)
| | - Fabrizio Stocchi
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
- Department of Neurology, Telematic University San Raffaele, 00166 Rome, Italy
| | - Laura Vacca
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
| | - Chiara Coletti
- IRCCS San Raffaele, 00163 Rome, Italy; (F.S.); (L.V.); (C.C.)
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - John Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AE, UK;
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | - Nesrin Helvacı Yılmaz
- Department of Neurology, Medipol University Istanbul Parkinson’s Disease and Movement Disorders Center (PARMER), 34718 Istanbul, Turkey;
| | - İlayda Kıyı
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, 35330 Izmir, Turkey; (İ.K.); (Y.Ö.-İ.)
| | - Yağmur Özbek-İşbitiren
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, 35330 Izmir, Turkey; (İ.K.); (Y.Ö.-İ.)
| | - Anita D’Anselmo
- Department of Aging Medicine and Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.); (L.B.)
| | - Laura Bonanni
- Department of Aging Medicine and Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.); (L.B.)
| | - Roberta Biundo
- Department of General Psychology, University of Padua, 35128 Padova, Italy;
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Center for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
| | - Fabrizia D’Antonio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.D.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (F.D.); (G.B.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Center for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padua, 35121 Padua, Italy;
| | - Franco Giubilei
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University of Rome, 00189 Rome, Italy;
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, 06123 Perugia, Italy;
| | - Lucilla Parnetti
- Department of Medicine and Surgery, University of Perugia, 05100 Perugia, Italy;
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy; (C.D.P.); (S.L.); (M.C.); (D.J.); (F.C.); (C.B.)
- Hospital San Raffaele Cassino, 03043 Cassino, Italy
| |
Collapse
|
15
|
Palmisano A, Pezanko LR, Cappon D, Tatti E, Macone J, Koch G, Smeralda CL, Romanella SM, Ruffini G, Rivolta D, Press DZ, Pascual-Leone A, El-Fakhri G, Santarnecchi E. Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease. Int J Geriatr Psychiatry 2025; 40:e70025. [PMID: 39799469 DOI: 10.1002/gps.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype. METHODS Fourteen participants with mild to moderate dementia due to AD underwent a baseline assessment including cognitive status, peripheral neuroinflammation, and resting-state (rs)EEG. The tACS-EEG recordings included brief (6') tACS blocks of gamma (i.e., 40 Hz) stimulation administered through 4 different montages, with Pre/Post 32-Channels EEG for each block. Changes in tACS-EEG and rsEEG γ band power with respect to baseline were adopted as a metric of induction and compared with cognitive scores and neuroinflammatory biomarkers. RESULTS We found positive correlations between 40 Hz-induced γ activity in fronto-central-parietal areas and patient cognitive status and negative ones with neuroinflammatory markers. Participants with greater cognitive impairment exhibited less γ induction and higher peripheral neuroinflammation. The same analysis performed with spectral power from baseline rsEEG resulted in no significant correlations, promoting the value of tACS-based perturbation for capturing individual differences in pathology-related brain features. CONCLUSIONS Our work suggests a link between tACS-induced γ band spectral power and clinical severity, with weaker γ induction corresponding to more severe clinical/cognitive impairment. This study provides preliminary support for the development of novel physiological biomarkers and therapeutic targets based on disease severity.
Collapse
Affiliation(s)
- Annalisa Palmisano
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Luke R Pezanko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Elisa Tatti
- CUNY School of Medicine, New York City, New York, USA
| | - Joanna Macone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Carmelo L Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | - Sara M Romanella
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Siena Brain Investigation & Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Siena, Italy
| | | | - Davide Rivolta
- Department of Education, Psychology, and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Daniel Z Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Georges El-Fakhri
- Department of Radiology & Biomedical Imaging, Department of Biomedical Informatics & Data Science, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Yang X, Fan Z, Li Z, Zhou J. Resting-state EEG microstate features for Alzheimer's disease classification. PLoS One 2024; 19:e0311958. [PMID: 39666689 PMCID: PMC11637251 DOI: 10.1371/journal.pone.0311958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/27/2024] [Indexed: 12/14/2024] Open
Abstract
Resting-state electroencephalogram (EEG) microstate analysis resolves EEG signals into topographical maps representing discrete, sequential network activations. These maps can be used to identify patterns in EEGs that may be indicative of underlying neurological conditions. One such pattern is observed in EEGs of patients with Alzheimer's disease (AD), where a global microstate disorganization is evident. We initially investigated the classification efficacy of microstate parameters as markers for AD classification. Subsequently, we compared the classification efficacy of EEG conventional features to ascertain the superiority of microstate features. We extracted raw EEG data from a public, independent database, OpenNeuro EEG. The raw EEG was subjected to preprocessing and band-pass filtering to obtain five distinct frequency bands. The SVM classifier was used to input the microstate feature set to determine the one with the best classification effect as the main band. In order to verify the advantage of the microstate features, the AD group and the healthy control group were filtered for the main frequency bands respectively. Then the microstate feature set and the regular feature set were extracted. The two feature sets were input into four different conventional machine learning classifiers, namely SVM, KNN, RF, and LR, in order to avoid the classifiers as the dependent variable. And the comparison of the classification results of simply two feature sets as the dependent variable can be obtained. The results show that in the Alpha (8-13 Hz) sub-band, the microstate feature set as model input to SVM is optimal for the recognition of AD, with a classification accuracy of 99.22%. The Alpha band, as the main frequency band, the microstate feature set as model input to the four classifiers obtains an average classification accuracy of 98.61%, and the average classification accuracy obtained by the conventional EEG feature set as model is 91.19%. Based on four different classifiers, microstate parameters can be served as markers to effectively classify the EEG of AD patients. The microstate feature set outperforms the conventional EEG feature set after excluding the effect of classifiers.
Collapse
Affiliation(s)
- Xiaoli Yang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhipeng Fan
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhenwei Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jiayi Zhou
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
17
|
Hansen LS, Carstensen MH, Henney MA, Nguyen NM, Thorning-Schmidt MW, Broeng J, Petersen PM, Andersen TS. Light-based gamma entrainment with novel invisible spectral flicker stimuli. Sci Rep 2024; 14:29747. [PMID: 39613776 DOI: 10.1038/s41598-024-75448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/04/2024] [Indexed: 12/01/2024] Open
Abstract
Light-based gamma entrainment using sensory stimuli (GENUS) shows considerable potential for the treatment of Alzheimer's disease (AD) in both animal and human models. While the clinical efficacy of GENUS for AD is paramount, its effectiveness will eventually also rely on the barrier to treatment adherence imposed by the discomfort of gazing at luminance flickering (LF) light. Currently, there have been few attempts to improve the comfort of GENUS. Here we investigate if Invisible spectral flicker (ISF), a novel type of light-based 40 Hz GENUS for which the flicker is almost imperceptible, can be used as a more comfortable option. We found that whereas ISF, LF, and chromatic flicker (CF) all produce a 40 Hz steady-state visually evoked potential (SSVEP), ISF scores significantly better on measures of comfort and perceived flicker. We also demonstrate that, while there is a trend towards a lower SSVEP response, reducing the stimulation brightness has no significant effect on the 40 Hz SSVEP or perceived flicker, though it significantly improves comfort. Finally, there is a slight decrease in the 40 Hz SSVEP response when stimulating with ISF from increasingly peripheral angles. This may ease the discomfort of GENUS treatment by freeing patients from gazing directly at the light.
Collapse
Affiliation(s)
- Luna S Hansen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark.
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark.
| | - Marcus H Carstensen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Mark A Henney
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Pl., Building 324, 2800, Kgs. Lyngby, Denmark
| | - N Mai Nguyen
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Martin W Thorning-Schmidt
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Jes Broeng
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
- Centre for Technology Entrepreneurship, Technical University of Denmark, Produktionstorvet, Building 426, 2800, Kgs. Lyngby, Denmark
| | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Building 343, Ørsteds Pl., 2800, Kgs. Lyngby, Denmark
- OptoCeutics ApS, Nørrebrogade 45C, 4. tv., 2200, Copenhagen N, Denmark
| | - Tobias S Andersen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Pl., Building 324, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Liao K, Martin LE, Fakorede S, Brooks WM, Burns JM, Devos H. Machine learning based on event-related oscillations of working memory differentiates between preclinical Alzheimer's disease and normal aging. Clin Neurophysiol 2024; 170:1-13. [PMID: 39644878 DOI: 10.1016/j.clinph.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/11/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To apply machine learning approaches on EEG event-related oscillations (ERO) to discriminate preclinical Alzheimer's disease (AD) from age- and sex-matched controls. METHODS Twenty-two cognitively normal preclinical AD participants with elevated amyloid and 21 cognitively normal controls without elevated amyloid completed n-back working memory tasks (n = 0, 1, 2). The absolute and relative power of ERO was extracted using the discrete wavelet transform in the delta, theta, alpha, and beta bands. Four machine learning methods were employed, and classification performance was assessed using three metrics. RESULTS The low-frequency bands produced higher discriminative performances compared to high-frequency bands. The 2-back task yielded the best classification capability among the three tasks. The highest area under the curve value (0.86) was achieved in the 2-back delta band nontarget condition data. The highest accuracy (80.47%) was obtained in the 2-back delta and theta bands nontarget data. The highest F1 score (0.82) was in the 2-back theta band nontarget data. The support vector machine achieved the highest performance among tested classifiers. CONCLUSION This study demonstrates the promise of using machine learning on EEG ERO from working memory tasks to detect preclinical AD. SIGNIFICANCE EEG ERO may reveal pathophysiological differences in the earliest stage of AD when no cognitive impairments are apparent.
Collapse
Affiliation(s)
- Ke Liao
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - Laura E Martin
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; Department of Population Health, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, United States
| | - William M Brooks
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeffrey M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hannes Devos
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, United States; University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States; Mobility Core, KU Center for Community Access, Rehabilitation Research, Education, and Service (KU-CARES), University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
19
|
Bennis K, Eustache F, Collette F, Vandewalle G, Hinault T. Daily Dynamics of Resting-State Electroencephalographic Theta and Gamma Fluctuations Are Associated With Cognitive Performance in Healthy Aging. J Gerontol B Psychol Sci Soc Sci 2024; 79:gbae152. [PMID: 39243136 DOI: 10.1093/geronb/gbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 09/09/2024] Open
Abstract
OBJECTIVES Healthy age-related cognitive changes are highly heterogeneous across individuals. This variability is increasingly explained through the lens of spontaneous fluctuations of brain activity, now considered a powerful index of age-related changes. However, brain activity is a biological process modulated by circadian rhythms, and how these fluctuations evolve throughout the day is under investigation. METHODS We analyzed data from 101 healthy late middle-aged participants from the Cognitive Fitness in Aging study (68 women and 33 men; aged 50-69 years). Participants completed 5 electroencephalographic (EEG) recordings of spontaneous resting-state activity on the same day. We used weighted phase-lag index (wPLI) analyses as an index of the functional synchrony between brain regions couplings, and we computed daily global PLI fluctuation rates of the 5 recordings to assess the association with cognitive performance and β-amyloid and tau/neuroinflammation pathological markers. RESULTS We found that theta and gamma daily fluctuations in the salience-control executive internetwork (SN-CEN) are associated with distinct mechanisms underlying cognitive heterogeneity in aging. Higher levels of SN-CEN theta daily fluctuations appear to be deleterious for memory performance and were associated with higher tau/neuroinflammation rates. In contrast, higher levels of gamma daily fluctuations are positively associated with executive performance and were associated with lower rate of β-amyloid deposition. DISCUSSION Thus, accounting for daily EEG fluctuations of brain activity contributes to a better understanding of subtle brain changes underlying individuals' cognitive performance in healthy aging. Results also provide arguments for considering the time of day when assessing cognition for old adults in a clinical context.
Collapse
Affiliation(s)
- Kenza Bennis
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Francis Eustache
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| | - Fabienne Collette
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-CRC-In Vivo Imaging, Université de Liège and Belgian National Fund for Scientific Research, Liège, Belgium
| | - Thomas Hinault
- Université de Caen Normandie, Inserm, EPHE-PSL, CHU de Caen, GIP Cyceron, U1077, NIMH, 14000 Caen, France
| |
Collapse
|
20
|
Gallego-Rudolf J, Wiesman AI, Pichet Binette A, Villeneuve S, Baillet S. Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults. Nat Neurosci 2024; 27:2130-2137. [PMID: 39294489 PMCID: PMC11537964 DOI: 10.1038/s41593-024-01763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/13/2024] [Indexed: 09/20/2024]
Abstract
Animal and computational models of Alzheimer's disease (AD) indicate that early amyloid-β (Aβ) deposits drive neurons into a hyperactive regime, and that subsequent tau depositions manifest an opposite, suppressive effect as behavioral deficits emerge. Here we report analogous changes in macroscopic oscillatory neurophysiology in the human brain. We used positron emission tomography and task-free magnetoencephalography to test the effects of Aβ and tau deposition on cortical neurophysiology in 104 cognitively unimpaired older adults with a family history of sporadic AD. In these asymptomatic individuals, we found that Aβ depositions colocalize with accelerated neurophysiological activity. In those also presenting medial-temporal tau pathology, linear mixed effects of Aβ and tau depositions indicate a shift toward slower neurophysiological activity, which was also linked to cognitive decline. We conclude that early Aβ and tau depositions relate synergistically to human cortical neurophysiology and subsequent cognitive decline. Our findings provide insight into the multifaceted neurophysiological mechanisms engaged in the preclinical phases of AD.
Collapse
Affiliation(s)
- Jonathan Gallego-Rudolf
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alex I Wiesman
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Alexa Pichet Binette
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Sylvia Villeneuve
- Douglas Research Centre, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Zandbagleh A, Miltiadous A, Sanei S, Azami H. Beta-to-Theta Entropy Ratio of EEG in Aging, Frontotemporal Dementia, and Alzheimer's Dementia. Am J Geriatr Psychiatry 2024; 32:1361-1382. [PMID: 39004533 DOI: 10.1016/j.jagp.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Aging, frontotemporal dementia (FTD), and Alzheimer's dementia (AD) manifest electroencephalography (EEG) alterations, particularly in the beta-to-theta power ratio derived from linear power spectral density (PSD). Given the brain's nonlinear nature, the EEG nonlinear features could provide valuable physiological indicators of aging and cognitive impairment. Multiscale dispersion entropy (MDE) serves as a sensitive nonlinear metric for assessing the information content in EEGs across biologically relevant time scales. OBJECTIVE To compare the MDE-derived beta-to-theta entropy ratio with its PSD-based counterpart to detect differences between healthy young and elderly individuals and between different dementia subtypes. METHODS Scalp EEG recordings were obtained from two datasets: 1) Aging dataset: 133 healthy young and 65 healthy older adult individuals; and 2) Dementia dataset: 29 age-matched healthy controls (HC), 23 FTD, and 36 AD participants. The beta-to-theta ratios based on MDE vs. PSD were analyzed for both datasets. Finally, the relationships between cognitive performance and the beta-to-theta ratios were explored in HC, FTD, and AD. RESULTS In the Aging dataset, older adults had significantly higher beta-to-theta entropy ratios than young individuals. In the Dementia dataset, this ratio outperformed the beta-to-theta PSD approach in distinguishing between HC, FTD, and AD. The AD participants had a significantly lower beta-to-theta entropy ratio than FTD, especially in the temporal region, unlike its corresponding PSD-based ratio. The beta-to-theta entropy ratio correlated significantly with cognitive performance. CONCLUSION Our study introduces the beta-to-theta entropy ratio using nonlinear MDE for EEG analysis, highlighting its potential as a sensitive biomarker for aging and cognitive impairment.
Collapse
Affiliation(s)
- Ahmad Zandbagleh
- School of Electrical Engineering (AZ), Iran University of Science and Technology, Tehran, Iran
| | - Andreas Miltiadous
- Department of Informatics and Telecommunications (AM), University of Ioannina, Arta, Greece
| | - Saeid Sanei
- Electrical and Electronic Engineering Department (SS), Imperial College London, London, UK
| | - Hamed Azami
- Centre for Addiction and Mental Health (HA), University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Vorobyov V, Deev A. Abnormal EEG Effects of Acute Apomorphine Injection in 5xFAD Transgenic Mice Are Partially Normalized in Those Chronically Pretreated with Apomorphine: The Time-Frequency Clustering of EEG Spectra. Biomedicines 2024; 12:2433. [PMID: 39595000 PMCID: PMC11592233 DOI: 10.3390/biomedicines12112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND In experimental and clinical studies of pharmacological treatments for Alzheimer's disease (AD), the electroencephalogram (EEG) frequency spectrum approach has demonstrated its efficacy in determining the characteristics of pathological changes in the functioning of different cerebral structures, interconnections between them, and disturbances in the brain neurotransmitter systems. The main results have been obtained in frames of traditionally used so-called "classical" EEG frequency bands: delta, theta, alpha, and beta. OBJECTIVE This unified approach simplifies comparing data from different studies but loses the dynamic peculiarities of the effects because of their time-dependent transition through the borders of the "classical" bands. METHODS In this study on non-narcotized freely moving 5xFAD transgenic mice, a model of AD, chronically pretreated with a non-selective dopamine (DA) receptor agonist, apomorphine (APO), we analyze the transitory EEG effects of acute APO injection in different brain areas by use of our "time-frequency" clustering program. The acute injection of APO was used to compare DA receptor sensitivity in 5xFAD mice pretreated with either APO or saline vs. wild-type (WT) mice pretreated with saline. RESULTS After acute APO injection, the clusters of enhanced EEG activity centered in the theta-alpha frequency range observed in WT mice disappeared in 5xFAD mice pretreated with saline and practically recovered in 5xFAD mice pretreated with APO. CONCLUSIONS In 5xFAD mice pretreated with saline, the sensitivity of DA receptors was disturbed; chronic APO pretreatment mainly recovered this characteristic in 5xFAD mice. The "clustering" of pharmacological EEG effects and their time-dependent transition between classical frequency bands is a new effective approach for analyzing cerebral neurotransmission in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Vasily Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| | - Alexander Deev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia;
| |
Collapse
|
23
|
Jiang Y, Neal J, Sompol P, Yener G, Arakaki X, Norris CM, Farina FR, Ibanez A, Lopez S, Al‐Ezzi A, Kavcic V, Güntekin B, Babiloni C, Hajós M. Parallel electrophysiological abnormalities due to COVID-19 infection and to Alzheimer's disease and related dementia. Alzheimers Dement 2024; 20:7296-7319. [PMID: 39206795 PMCID: PMC11485397 DOI: 10.1002/alz.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 09/04/2024]
Abstract
Many coronavirus disease 2019 (COVID-19) positive individuals exhibit abnormal electroencephalographic (EEG) activity reflecting "brain fog" and mild cognitive impairments even months after the acute phase of infection. Resting-state EEG abnormalities include EEG slowing (reduced alpha rhythm; increased slow waves) and epileptiform activity. An expert panel conducted a systematic review to present compelling evidence that cognitive deficits due to COVID-19 and to Alzheimer's disease and related dementia (ADRD) are driven by overlapping pathologies and neurophysiological abnormalities. EEG abnormalities seen in COVID-19 patients resemble those observed in early stages of neurodegenerative diseases, particularly ADRD. It is proposed that similar EEG abnormalities in Long COVID and ADRD are due to parallel neuroinflammation, astrocyte reactivity, hypoxia, and neurovascular injury. These neurophysiological abnormalities underpinning cognitive decline in COVID-19 can be detected by routine EEG exams. Future research will explore the value of EEG monitoring of COVID-19 patients for predicting long-term outcomes and monitoring efficacy of therapeutic interventions. HIGHLIGHTS: Abnormal intrinsic electrophysiological brain activity, such as slowing of EEG, reduced alpha wave, and epileptiform are characteristic findings in COVID-19 patients. EEG abnormalities have the potential as neural biomarkers to identify neurological complications at the early stage of the disease, to assist clinical assessment, and to assess cognitive decline risk in Long COVID patients. Similar slowing of intrinsic brain activity to that of COVID-19 patients is typically seen in patients with mild cognitive impairments, ADRD. Evidence presented supports the idea that cognitive deficits in Long COVID and ADRD are driven by overlapping neurophysiological abnormalities resulting, at least in part, from neuroinflammatory mechanisms and astrocyte reactivity. Identifying common biological mechanisms in Long COVID-19 and ADRD can highlight critical pathologies underlying brain disorders and cognitive decline. It elucidates research questions regarding cognitive EEG and mild cognitive impairment in Long COVID that have not yet been adequately investigated.
Collapse
Affiliation(s)
- Yang Jiang
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jennifer Neal
- Aging Brain and Cognition LaboratoryDepartment of Behavioral ScienceCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Görsev Yener
- Faculty of MedicineDept of Neurologyİzmir University of EconomicsİzmirTurkey
- IBG: International Biomedicine and Genome CenterİzmirTurkey
| | - Xianghong Arakaki
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesCollege of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Agustin Ibanez
- BrainLat: Latin American Brain Health InstituteUniversidad Adolfo IbañezSantiagoChile
- Cognitive Neuroscience CenterUniversidad de San AndrésVictoriaBuenos AiresArgentina
- GBHI: Global Brain Health InstituteTrinity College DublinThe University of DublinDublin 2Ireland
| | - Susanna Lopez
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
| | - Abdulhakim Al‐Ezzi
- Cognition and Brain Integration LaboratoryDepartment of NeurosciencesHuntington Medical Research InstitutesPasadenaCaliforniaUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTurkey
- Department of BiophysicsSchool of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “V. Erspamer,”Sapienza University of RomeRomeItaly
- Hospital San Raffaele CassinoCassinoFrosinoneItaly
| | - Mihály Hajós
- Cognito TherapeuticsCambridgeMassachusettsUSA
- Department of Comparative MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
24
|
Meghdadi AH, Salat D, Hamilton J, Hong Y, Boeve BF, St Louis EK, Verma A, Berka C. EEG and ERP biosignatures of mild cognitive impairment for longitudinal monitoring of early cognitive decline in Alzheimer's disease. PLoS One 2024; 19:e0308137. [PMID: 39116138 PMCID: PMC11309464 DOI: 10.1371/journal.pone.0308137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline in Alzheimer's disease is associated with electroencephalographic (EEG) biosignatures even at early stages of mild cognitive impairment (MCI). The aim of this work is to provide a unified measure of cognitive decline by aggregating biosignatures from multiple EEG modalities and to evaluate repeatability of the composite measure at an individual level. These modalities included resting state EEG (eyes-closed) and two event-related potential (ERP) tasks on visual memory and attention. We compared individuals with MCI (n = 38) to age-matched healthy controls HC (n = 44). In resting state EEG, the MCI group exhibited higher power in Theta (3-7Hz) and lower power in Beta (13-20Hz) frequency bands. In both ERP tasks, the MCI group exhibited reduced ERP late positive potential (LPP), delayed ERP early component latency, slower reaction time, and decreased response accuracy. Cluster-based permutation analysis revealed significant clusters of difference between the MCI and HC groups in the frequency-channel and time-channel spaces. Cluster-based measures and performance measures (12 biosignatures in total) were selected as predictors of MCI. We trained a support vector machine (SVM) classifier achieving AUC = 0.89, accuracy = 77% in cross-validation using all data. Split-data validation resulted in (AUC = 0.87, accuracy = 76%) and (AUC = 0.75, accuracy = 70%) on testing data at baseline and follow-up visits, respectively. Classification scores at baseline and follow-up visits were correlated (r = 0.72, p<0.001, ICC = 0.84), supporting test-retest reliability of EEG biosignature. These results support the utility of EEG/ERP for prognostic testing, repeated assessments, and tracking potential treatment outcomes in the limited duration of clinical trials.
Collapse
Affiliation(s)
- Amir H. Meghdadi
- Advanced Brain Monitoring, Inc., Carlsbad, CA, United States of America
| | - David Salat
- Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | | | - Yue Hong
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Bradley F. Boeve
- Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine, Center for Sleep Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
| | - Erik K. St Louis
- Departments of Neurology and Medicine, Division of Pulmonary and Critical Care Medicine, Center for Sleep Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States of America
- Department of Clinical and Translational Research, Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, United States of America
| | - Ajay Verma
- Formation Venture Engineering, Boston, MA, United States of America
| | - Chris Berka
- Advanced Brain Monitoring, Inc., Carlsbad, CA, United States of America
| |
Collapse
|
25
|
Li W, Varatharajah Y, Dicks E, Barnard L, Brinkmann BH, Crepeau D, Worrell G, Fan W, Kremers W, Boeve B, Botha H, Gogineni V, Jones DT. Data-driven retrieval of population-level EEG features and their role in neurodegenerative diseases. Brain Commun 2024; 6:fcae227. [PMID: 39086629 PMCID: PMC11289732 DOI: 10.1093/braincomms/fcae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Electrophysiologic disturbances due to neurodegenerative disorders such as Alzheimer's disease and Lewy Body disease are detectable by scalp EEG and can serve as a functional measure of disease severity. Traditional quantitative methods of EEG analysis often require an a-priori selection of clinically meaningful EEG features and are susceptible to bias, limiting the clinical utility of routine EEGs in the diagnosis and management of neurodegenerative disorders. We present a data-driven tensor decomposition approach to extract the top 6 spectral and spatial features representing commonly known sources of EEG activity during eyes-closed wakefulness. As part of their neurologic evaluation at Mayo Clinic, 11 001 patients underwent 12 176 routine, standard 10-20 scalp EEG studies. From these raw EEGs, we developed an algorithm based on posterior alpha activity and eye movement to automatically select awake-eyes-closed epochs and estimated average spectral power density (SPD) between 1 and 45 Hz for each channel. We then created a three-dimensional (3D) tensor (record × channel × frequency) and applied a canonical polyadic decomposition to extract the top six factors. We further identified an independent cohort of patients meeting consensus criteria for mild cognitive impairment (30) or dementia (39) due to Alzheimer's disease and dementia with Lewy Bodies (31) and similarly aged cognitively normal controls (36). We evaluated the ability of the six factors in differentiating these subgroups using a Naïve Bayes classification approach and assessed for linear associations between factor loadings and Kokmen short test of mental status scores, fluorodeoxyglucose (FDG) PET uptake ratios and CSF Alzheimer's Disease biomarker measures. Factors represented biologically meaningful brain activities including posterior alpha rhythm, anterior delta/theta rhythms and centroparietal beta, which correlated with patient age and EEG dysrhythmia grade. These factors were also able to distinguish patients from controls with a moderate to high degree of accuracy (Area Under the Curve (AUC) 0.59-0.91) and Alzheimer's disease dementia from dementia with Lewy Bodies (AUC 0.61). Furthermore, relevant EEG features correlated with cognitive test performance, PET metabolism and CSF AB42 measures in the Alzheimer's subgroup. This study demonstrates that data-driven approaches can extract biologically meaningful features from population-level clinical EEGs without artefact rejection or a-priori selection of channels or frequency bands. With continued development, such data-driven methods may improve the clinical utility of EEG in memory care by assisting in early identification of mild cognitive impairment and differentiating between different neurodegenerative causes of cognitive impairment.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Kaiser Permanente Northern California, Sacramento, CA 95758, USA
| | - Yogatheesan Varatharajah
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Bioengineering, University of Illinois, Urbana, IL 61801, USA
- Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellen Dicks
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Leland Barnard
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Daniel Crepeau
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Winnie Fan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Pascarella A, Manzo L, Ferlazzo E. Modern neurophysiological techniques indexing normal or abnormal brain aging. Seizure 2024:S1059-1311(24)00194-8. [PMID: 38972778 DOI: 10.1016/j.seizure.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Brain aging is associated with a decline in cognitive performance, motor function and sensory perception, even in the absence of neurodegeneration. The underlying pathophysiological mechanisms remain incompletely understood, though alterations in neurogenesis, neuronal senescence and synaptic plasticity are implicated. Recent years have seen advancements in neurophysiological techniques such as electroencephalography (EEG), magnetoencephalography (MEG), event-related potentials (ERP) and transcranial magnetic stimulation (TMS), offering insights into physiological and pathological brain aging. These methods provide real-time information on brain activity, connectivity and network dynamics. Integration of Artificial Intelligence (AI) techniques promise as a tool enhancing the diagnosis and prognosis of age-related cognitive decline. Our review highlights recent advances in these electrophysiological techniques (focusing on EEG, ERP, TMS and TMS-EEG methodologies) and their application in physiological and pathological brain aging. Physiological aging is characterized by changes in EEG spectral power and connectivity, ERP and TMS parameters, indicating alterations in neural activity and network function. Pathological aging, such as in Alzheimer's disease, is associated with further disruptions in EEG rhythms, ERP components and TMS measures, reflecting underlying neurodegenerative processes. Machine learning approaches show promise in classifying cognitive impairment and predicting disease progression. Standardization of neurophysiological methods and integration with other modalities are crucial for a comprehensive understanding of brain aging and neurodegenerative disorders. Advanced network analysis techniques and AI methods hold potential for enhancing diagnostic accuracy and deepening insights into age-related brain changes.
Collapse
Affiliation(s)
- Angelo Pascarella
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy.
| | - Lucia Manzo
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Italy; Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli Hospital", Reggio Calabria, Italy
| |
Collapse
|
27
|
Yang C, Liu G, Chen X, Le W. Cerebellum in Alzheimer's disease and other neurodegenerative diseases: an emerging research frontier. MedComm (Beijing) 2024; 5:e638. [PMID: 39006764 PMCID: PMC11245631 DOI: 10.1002/mco2.638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The cerebellum is crucial for both motor and nonmotor functions. Alzheimer's disease (AD), alongside other dementias such as vascular dementia (VaD), Lewy body dementia (DLB), and frontotemporal dementia (FTD), as well as other neurodegenerative diseases (NDs) like Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA), are characterized by specific and non-specific neurodegenerations in central nervous system. Previously, the cerebellum's significance in these conditions was underestimated. However, advancing research has elevated its profile as a critical node in disease pathology. We comprehensively review the existing evidence to elucidate the relationship between cerebellum and the aforementioned diseases. Our findings reveal a growing body of research unequivocally establishing a link between the cerebellum and AD, other forms of dementia, and other NDs, supported by clinical evidence, pathological and biochemical profiles, structural and functional neuroimaging data, and electrophysiological findings. By contrasting cerebellar observations with those from the cerebral cortex and hippocampus, we highlight the cerebellum's distinct role in the disease processes. Furthermore, we also explore the emerging therapeutic potential of targeting cerebellum for the treatment of these diseases. This review underscores the importance of the cerebellum in these diseases, offering new insights into the disease mechanisms and novel therapeutic strategies.
Collapse
Affiliation(s)
- Cui Yang
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Guangdong Liu
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Xi Chen
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Weidong Le
- Institute of Neurology Sichuan Provincial People's Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| |
Collapse
|
28
|
Rogers B. Evaluating frontoparietal network topography for diagnostic markers of Alzheimer's disease. Sci Rep 2024; 14:14135. [PMID: 38898075 PMCID: PMC11187222 DOI: 10.1038/s41598-024-64699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Numerous prospective biomarkers are being studied for their ability to diagnose various stages of Alzheimer's disease (AD). High-density electroencephalogram (EEG) methods show promise as an accurate, economical, non-invasive approach to measuring the electrical potentials of brains associated with AD. Event-related potentials (ERPs) may serve as clinically useful biomarkers of AD. Through analysis of secondary data, the present study examined the performance and distribution of N4/P6 ERPs across the frontoparietal network (FPN) using EEG topographic mapping. ERP measures and memory as a function of reaction time (RT) were compared between a group of (n = 63) mild untreated AD patients and a control group of (n = 73) healthy age-matched adults. Based on the literature presented, it was expected that healthy controls would outperform patients in peak amplitude and mean component latency across three parameters of memory when measured at optimal N4 (frontal) and P6 (parietal) locations. It was also predicted that the control group would exhibit neural cohesion through FPN integration during cross-modal tasks, thus demonstrating healthy cognitive functioning consistent with older healthy adults. By targeting select frontal and parietal EEG reference channels based on N4/P6 component time windows and positivity, our findings demonstrated statistically significant group variations between controls and patients in N4/P6 peak amplitudes and latencies during cross-modal testing. Our results also support that the N4 ERP might be stronger than its P6 counterpart as a possible candidate biomarker. We conclude through topographic mapping that FPN integration occurs in healthy controls but is absent in AD patients during cross-modal memory tasks.
Collapse
Affiliation(s)
- Bayard Rogers
- Department of Psychology, University of Glasgow, School of Psychology and Neuroscience, Glasgow, Scotland, UK.
| |
Collapse
|
29
|
Yener G, Kıyı İ, Düzenli-Öztürk S, Yerlikaya D. Age-Related Aspects of Sex Differences in Event-Related Brain Oscillatory Responses: A Turkish Study. Brain Sci 2024; 14:567. [PMID: 38928567 PMCID: PMC11202018 DOI: 10.3390/brainsci14060567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Earlier research has suggested gender differences in event-related potentials/oscillations (ERPs/EROs). Yet, the alteration in event-related oscillations (EROs) in the delta and theta frequency bands have not been explored between genders across the three age groups of adulthood, i.e., 18-50, 51-65, and >65 years. Data from 155 healthy elderly participants who underwent a neurological examination, comprehensive neuropsychological assessment (including attention, memory, executive function, language, and visuospatial skills), and magnetic resonance imaging (MRI) from past studies were used. The delta and theta ERO powers across the age groups and between genders were compared and correlational analyses among the ERO power, age, and neuropsychological tests were performed. The results indicated that females displayed higher theta ERO responses than males in the frontal, central, and parietal regions but not in the occipital location between 18 and 50 years of adulthood. The declining theta power of EROs in women reached that of men after the age of 50 while the theta ERO power was more stable across the age groups in men. Our results imply that the cohorts must be recruited at specified age ranges across genders, and clinical trials using neurophysiological biomarkers as an intervention endpoint should take gender into account in the future.
Collapse
Affiliation(s)
- Görsev Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Balçova, Turkey
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| | - İlayda Kıyı
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| | - Seren Düzenli-Öztürk
- Department of Speech and Language Therapy, Faculty of Health Sciences, Izmir Bakırçay University, 35665 İzmir, Turkey;
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, 35210 İzmir, Turkey; (İ.K.); (D.Y.)
| |
Collapse
|
30
|
Moguilner SG, Berezuk C, Bender AC, Pellerin KR, Gomperts SN, Cash SS, Sarkis RA, Lam AD. Sleep functional connectivity, hyperexcitability, and cognition in Alzheimer's disease. Alzheimers Dement 2024; 20:4234-4249. [PMID: 38764252 PMCID: PMC11180941 DOI: 10.1002/alz.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Sleep disturbances are common in Alzheimer's disease (AD) and may reflect pathologic changes in brain networks. To date, no studies have examined changes in sleep functional connectivity (FC) in AD or their relationship with network hyperexcitability and cognition. METHODS We assessed electroencephalogram (EEG) sleep FC in 33 healthy controls, 36 individuals with AD without epilepsy, and 14 individuals with AD and epilepsy. RESULTS AD participants showed increased gamma connectivity in stage 2 sleep (N2), which was associated with longitudinal cognitive decline. Network hyperexcitability in AD was associated with a distinct sleep connectivity signature, characterized by decreased N2 delta connectivity and reversal of several connectivity changes associated with AD. Machine learning algorithms using sleep connectivity features accurately distinguished diagnostic groups and identified "fast cognitive decliners" among study participants who had AD. DISCUSSION Our findings reveal changes in sleep functional networks associated with cognitive decline in AD and may have implications for disease monitoring and therapeutic development. HIGHLIGHTS Brain functional connectivity (FC) in Alzheimer's disease is altered during sleep. Sleep FC measures correlate with cognitive decline in AD. Network hyperexcitability in AD has a distinct sleep connectivity signature.
Collapse
Affiliation(s)
- Sebastian G. Moguilner
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Courtney Berezuk
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Alex C. Bender
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Kyle R. Pellerin
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Stephen N. Gomperts
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Sydney S. Cash
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Rani A. Sarkis
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Alice D. Lam
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
31
|
Vitkova V, Ristori D, Cheron G, Bazan A, Cebolla AM. Long-lasting negativity in the left motoric brain structures during word memory inhibition in the Think/No-Think paradigm. Sci Rep 2024; 14:10907. [PMID: 38740808 DOI: 10.1038/s41598-024-60378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
In this study, we investigated the electrical brain responses in a high-density EEG array (64 electrodes) elicited specifically by the word memory cue in the Think/No-Think paradigm in 46 participants. In a first step, we corroborated previous findings demonstrating sustained and reduced brain electrical frontal and parietal late potentials elicited by memory cues following the No-Think (NT) instructions as compared to the Think (T) instructions. The topographical analysis revealed that such reduction was significant 1000 ms after memory cue onset and that it was long-lasting for 1000 ms. In a second step, we estimated the underlying brain generators with a distributed method (swLORETA) which does not preconceive any localization in the gray matter. This method revealed that the cognitive process related to the inhibition of memory retrieval involved classical motoric cerebral structures with the left primary motor cortex (M1, BA4), thalamus, and premotor cortex (BA6). Also, the right frontal-polar cortex was involved in the T condition which we interpreted as an indication of its role in the maintaining of a cognitive set during remembering, by the selection of one cognitive mode of processing, Think, over the other, No-Think, across extended periods of time, as it might be necessary for the successful execution of the Think/No-Think task.
Collapse
Affiliation(s)
- Viktoriya Vitkova
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- InterPsy Laboratory, Université de Lorraine, Nancy, France
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ariane Bazan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium
- InterPsy Laboratory, Université de Lorraine, Nancy, France
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
32
|
Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. Virtual brain twins: from basic neuroscience to clinical use. Natl Sci Rev 2024; 11:nwae079. [PMID: 38698901 PMCID: PMC11065363 DOI: 10.1093/nsr/nwae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
Virtual brain twins are personalized, generative and adaptive brain models based on data from an individual's brain for scientific and clinical use. After a description of the key elements of virtual brain twins, we present the standard model for personalized whole-brain network models. The personalization is accomplished using a subject's brain imaging data by three means: (1) assemble cortical and subcortical areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically using probabilistic machine learning. We present the use of personalized whole-brain network models in healthy ageing and five clinical diseases: epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key challenges and future directions.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Paul Triebkorn
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Martin Breyton
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
- Service de Pharmacologie Clinique et Pharmacosurveillance, AP–HM, Marseille, 13005, France
| | - Borana Dollomaja
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Spase Petkoski
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Pierpaolo Sorrentino
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Damien Depannemaecker
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Meysam Hashemi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Viktor K Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| |
Collapse
|
33
|
Babiloni C, Jakhar D, Tucci F, Del Percio C, Lopez S, Soricelli A, Salvatore M, Ferri R, Catania V, Massa F, Arnaldi D, Famà F, Güntekin B, Yener G, Stocchi F, Vacca L, Marizzoni M, Giubilei F, Yıldırım E, Hanoğlu L, Hünerli D, Frisoni GB, Noce G. Resting state electroencephalographic alpha rhythms are sensitive to Alzheimer's disease mild cognitive impairment progression at a 6-month follow-up. Neurobiol Aging 2024; 137:19-37. [PMID: 38402780 DOI: 10.1016/j.neurobiolaging.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Are posterior resting-state electroencephalographic (rsEEG) alpha rhythms sensitive to the Alzheimer's disease mild cognitive impairment (ADMCI) progression at a 6-month follow-up? Clinical, cerebrospinal, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy old seniors (equivalent groups for demographic features) were available from an international archive (www.pdwaves.eu). The ADMCI patients were arbitrarily divided into two groups: REACTIVE and UNREACTIVE, based on the reduction (reactivity) in the posterior rsEEG alpha eLORETA source activities from the eyes-closed to eyes-open condition at ≥ -10% and -10%, respectively. 75% of the ADMCI patients were REACTIVE. Compared to the UNREACTIVE group, the REACTIVE group showed (1) less abnormal posterior rsEEG source activity during the eyes-closed condition and (2) a decrease in that activity at the 6-month follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. Such a biomarker might reflect abnormalities in cortical arousal in quiet wakefulness to be used for clinical studies in ADMCI patients using 6-month follow-ups.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino (FR), Italy.
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Medical, Movement and Wellbeing Sciences, University of Naples Parthenope, Naples, Italy
| | | | | | | | - Federico Massa
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | | | | | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
34
|
Lopez S, Hampel H, Chiesa PA, Del Percio C, Noce G, Lizio R, Teipel SJ, Dyrba M, González-Escamilla G, Bakardjian H, Cavedo E, Lista S, Vergallo A, Lemercier P, Spinelli G, Grothe MJ, Potier MC, Stocchi F, Ferri R, Habert MO, Dubois B, Babiloni C. The association between posterior resting-state EEG alpha rhythms and functional MRI connectivity in older adults with subjective memory complaint. Neurobiol Aging 2024; 137:62-77. [PMID: 38431999 DOI: 10.1016/j.neurobiolaging.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms are dominant in posterior cortical areas in healthy adults and are abnormal in subjective memory complaint (SMC) persons with Alzheimer's disease amyloidosis. This exploratory study in 161 SMC participants tested the relationships between those rhythms and seed-based resting-state functional magnetic resonance imaging (rs-fMRI) connectivity between thalamus and visual cortical networks as a function of brain amyloid burden, revealed by positron emission tomography and cognitive reserve, measured by educational attainment. The SMC participants were divided into 4 groups according to 2 factors: Education (Edu+ and Edu-) and Amyloid burden (Amy+ and Amy-). There was a statistical interaction (p < 0.05) between the two factors, and the subgroup analysis using estimated marginal means showed a positive association between the mentioned rs-fMRI connectivity and the posterior rsEEG alpha rhythms in the SMC participants with low brain amyloidosis and high CR (Amy-/Edu+). These results suggest that in SMC persons, early Alzheimer's disease amyloidosis may contrast the beneficial effects of cognitive reserve on neurophysiological oscillatory mechanisms at alpha frequencies and connectivity between the thalamus and visual cortical networks.
Collapse
Affiliation(s)
- Susanna Lopez
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Patrizia Andrea Chiesa
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Del Percio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Roberta Lizio
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy
| | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Martin Dyrba
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Gabriel González-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hovagim Bakardjian
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Enrica Cavedo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France
| | - Pablo Lemercier
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris F-75013, France; Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Giuseppe Spinelli
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Greifswald, Rostock, Germany
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University, San Raffaele, Rome, Italy
| | | | - Marie-Odile Habert
- Centre pour l'Acquisition et le Traitement des Images, (CATI platform), France; Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne University, LIB, Paris F-75006, France; AP-HP, Pitié-Salpêtrière Hospital, Department of Nuclear Medicine, Paris F-75013, France
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'hôpital, Paris F-75013, France; Institut du Cerveau et de la Moelle épinière, ICM, INSERM U1127, CNRS UMR 7225, Sorbonne Université, Paris F- 75013, France
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; San Raffaele Cassino, Cassino, FR, Italy.
| |
Collapse
|
35
|
Bonzanni M, Braga A, Saito T, Saido TC, Tesco G, Haydon PG. Adenosine deficiency facilitates CA1 synaptic hyperexcitability in the presymptomatic phase of a knock in mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590882. [PMID: 38712028 PMCID: PMC11071633 DOI: 10.1101/2024.04.24.590882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The disease's trajectory of Alzheimer's disease (AD) is associated with and worsened by hippocampal hyperexcitability. Here we show that during the asymptomatic stage in a knock in mouse model of Alzheimer's disease (APPNL-G-F/NL-G-F; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion. Both pharmacologic (adenosine kinase inhibitor) and non-pharmacologic (ketogenic diet) restorations of the adenosine tone successfully normalize hippocampal neuronal activity. Our results demonstrated that neuronal hyperexcitability during the asymptomatic stage of a KI model of Alzheimer's disease originated at the synaptic compartment and is associated with adenosine deficient tone. These results extend our comprehension of the hippocampal vulnerability associated with the asymptomatic stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Mattia Bonzanni
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alice Braga
- Department of Neuroscience, Tufts University, Boston, MA, USA
- Current address: Centre for Cardiovascular and 811 Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Philip G Haydon
- Department of Neuroscience, Tufts University, Boston, MA, USA
| |
Collapse
|
36
|
Kolev V, Falkenstein M, Yordanova J. A distributed theta network of error generation and processing in aging. Cogn Neurodyn 2024; 18:447-459. [PMID: 38699606 PMCID: PMC11061062 DOI: 10.1007/s11571-023-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10018-4.
Collapse
Affiliation(s)
- Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| | | | - Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| |
Collapse
|
37
|
Hajós M, Boasso A, Hempel E, Shpokayte M, Konisky A, Seshagiri CV, Fomenko V, Kwan K, Nicodemus-Johnson J, Hendrix S, Vaughan B, Kern R, Megerian JT, Malchano Z. Safety, tolerability, and efficacy estimate of evoked gamma oscillation in mild to moderate Alzheimer's disease. Front Neurol 2024; 15:1343588. [PMID: 38515445 PMCID: PMC10957179 DOI: 10.3389/fneur.2024.1343588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background Alzheimer's Disease (AD) is a multifactorial, progressive neurodegenerative disease that disrupts synaptic and neuronal activity and network oscillations. It is characterized by neuronal loss, brain atrophy and a decline in cognitive and functional abilities. Cognito's Evoked Gamma Therapy System provides an innovative approach for AD by inducing EEG-verified gamma oscillations through sensory stimulation. Prior research has shown promising disease-modifying effects in experimental AD models. The present study (NCT03556280: OVERTURE) evaluated the feasibly, safety and efficacy of evoked gamma oscillation treatment using Cognito's medical device (CogTx-001) in participants with mild to moderate AD. Methods The present study was a randomized, double blind, sham-controlled, 6-months clinical trial in participants with mild to moderate AD. The trial enrolled 76 participants, aged 50 or older, who met the clinical criteria for AD with baseline MMSE scores between 14 and 26. Participants were randomly assigned 2:1 to receive self-administered daily, one-hour, therapy, evoking EEG-verified gamma oscillations or sham treatment. The CogTx-001 device was use at home with the help of a care partner, over 6 months. The primary outcome measures were safety, evaluated by physical and neurological exams and monthly assessments of adverse events (AEs) and MRI, and tolerability, measured by device use. Although the trial was not statistically powered to evaluate potential efficacy outcomes, primary and secondary clinical outcome measures included several cognitive and functional endpoints. Results Total AEs were similar between groups, there were no unexpected serious treatment related AEs, and no serious treatment-emergent AEs that led to study discontinuation. MRI did not show Amyloid-Related Imaging Abnormalities (ARIA) in any study participant. High adherence rates (85-90%) were observed in sham and treatment participants. There was no statistical separation between active and sham arm participants in primary outcome measure of MADCOMS or secondary outcome measure of CDR-SB or ADAS-Cog14. However, some secondary outcome measures including ADCS-ADL, MMSE, and MRI whole brain volume demonstrated reduced progression in active compared to sham treated participants, that achieved nominal significance. Conclusion Our results demonstrate that 1-h daily treatment with Cognito's Evoked Gamma Therapy System (CogTx-001) was safe and well-tolerated and demonstrated potential clinical benefits in mild to moderate AD.Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03556280.
Collapse
Affiliation(s)
- Mihály Hajós
- Cognito Therapeutics, Inc., Cambridge, MA, United States
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Alyssa Boasso
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Evan Hempel
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Alex Konisky
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | | | - Kim Kwan
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | | | - Brent Vaughan
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Ralph Kern
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Zach Malchano
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| |
Collapse
|
38
|
Manippa V, Palmisano A, Nitsche MA, Filardi M, Vilella D, Logroscino G, Rivolta D. Cognitive and Neuropathophysiological Outcomes of Gamma-tACS in Dementia: A Systematic Review. Neuropsychol Rev 2024; 34:338-361. [PMID: 36877327 PMCID: PMC10920470 DOI: 10.1007/s11065-023-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Despite the numerous pharmacological interventions targeting dementia, no disease-modifying therapy is available, and the prognosis remains unfavorable. A promising perspective involves tackling high-frequency gamma-band (> 30 Hz) oscillations involved in hippocampal-mediated memory processes, which are impaired from the early stages of typical Alzheimer's Disease (AD). Particularly, the positive effects of gamma-band entrainment on mouse models of AD have prompted researchers to translate such findings into humans using transcranial alternating current stimulation (tACS), a methodology that allows the entrainment of endogenous cortical oscillations in a frequency-specific manner. This systematic review examines the state-of-the-art on the use of gamma-tACS in Mild Cognitive Impairment (MCI) and dementia patients to shed light on its feasibility, therapeutic impact, and clinical effectiveness. A systematic search from two databases yielded 499 records resulting in 10 included studies and a total of 273 patients. The results were arranged in single-session and multi-session protocols. Most of the studies demonstrated cognitive improvement following gamma-tACS, and some studies showed promising effects of gamma-tACS on neuropathological markers, suggesting the feasibility of gamma-tACS in these patients anyhow far from the strong evidence available for mouse models. Nonetheless, the small number of studies and their wide variability in terms of aims, parameters, and measures, make it difficult to draw firm conclusions. We discuss results and methodological limitations of the studies, proposing possible solutions and future avenues to improve research on the effects of gamma-tACS on dementia.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy.
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro" at Pia Fondazione "Cardinale G. Panico", Tricase, Lecce, Italy
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
39
|
Babiloni C, Noce G, Tucci F, Jakhar D, Ferri R, Panerai S, Catania V, Soricelli A, Salvatore M, Nobili F, Arnaldi D, Famà F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Vacca L, Radicati F, Fuhr P, Gschwandtner U, Ransmayr G, Parnetti L, Marizzoni M, D'Antonio F, Bruno G, De Lena C, Güntekin B, Yıldırım E, Hanoğlu L, Yener G, Hünerli D, Taylor JP, Schumacher J, McKeith I, Frisoni GB, Antonini A, Ferreri F, Bonanni L, De Pandis MF, Del Percio C. Poor reactivity of posterior electroencephalographic alpha rhythms during the eyes open condition in patients with dementia due to Parkinson's disease. Neurobiol Aging 2024; 135:1-14. [PMID: 38142464 DOI: 10.1016/j.neurobiolaging.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Here, we hypothesized that the reactivity of posterior resting-state electroencephalographic (rsEEG) alpha rhythms during the transition from eyes-closed to -open condition might be lower in patients with Parkinson's disease dementia (PDD) than in patients with Alzheimer's disease dementia (ADD). A Eurasian database provided clinical-demographic-rsEEG datasets in 73 PDD patients, 35 ADD patients, and 25 matched cognitively unimpaired (Healthy) persons. The eLORETA freeware was used to estimate cortical rsEEG sources. Results showed substantial (greater than -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the healthy control seniors and the ADD patients. These results suggest that PDD patients show poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. That neurophysiological biomarker may provide an endpoint for (non) pharmacological interventions for improving vigilance regulation in those patients.
Collapse
Affiliation(s)
- Claudio Babiloni
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, FR, Italy.
| | | | - Federico Tucci
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Dharmendra Jakhar
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | | | | | | | - Andrea Soricelli
- IRCCS Synlab SDN, Naples, Italy; Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | | | - Flavio Nobili
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Clinica neurologica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Dario Arnaldi
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Famà
- Dipartimento di Neuroscienze, Oftalmologia, Genetica, Riabilitazione e Scienze Materno-infantili (DiNOGMI), Università di Genova, Italy; Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carla Buttinelli
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Franco Giubilei
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Onofrj
- Department of Neuroscience Imaging and Clinical Sciences, CESI, and Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fabrizio Stocchi
- IRCCS San Raffaele, Rome, Italy; Telematic University San Raffaele, Rome, Italy
| | | | | | - Peter Fuhr
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Ute Gschwandtner
- Universitätsspital Basel, Abteilung Neurophysiologie, Petersgraben 4, 4031 Basel, Switzerland; Departments of Neurology and of Clinical Research, University Hospital Basel, Switzerland
| | - Gerhard Ransmayr
- Department of Neurology 2, Med Campus III, Faculty of Medicine, Johannes Kepler University, Kepler University Hospital, Krankenhausstr. 9, A-4020 Linz., Austria
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Neuroscience Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoğlu
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Görsev Yener
- Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
| | - Duygu Hünerli
- Health Sciences Institute, Department of Neurosciences, Dokuz Eylül University, Izmir, Turkey
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Julia Schumacher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Ian McKeith
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Giovanni B Frisoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Angelo Antonini
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Florinda Ferreri
- Unit and Study Center for Neurodegenerative diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy; Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Claudio Del Percio
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Tzavellas NP, Tsamis KI, Katsenos AP, Davri AS, Simos YV, Nikas IP, Bellos S, Lekkas P, Kanellos FS, Konitsiotis S, Labrakakis C, Vezyraki P, Peschos D. Firing Alterations of Neurons in Alzheimer's Disease: Are They Merely a Consequence of Pathogenesis or a Pivotal Component of Disease Progression? Cells 2024; 13:434. [PMID: 38474398 PMCID: PMC10930991 DOI: 10.3390/cells13050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, yet its underlying causes remain elusive. The conventional perspective on disease pathogenesis attributes alterations in neuronal excitability to molecular changes resulting in synaptic dysfunction. Early hyperexcitability is succeeded by a progressive cessation of electrical activity in neurons, with amyloid beta (Aβ) oligomers and tau protein hyperphosphorylation identified as the initial events leading to hyperactivity. In addition to these key proteins, voltage-gated sodium and potassium channels play a decisive role in the altered electrical properties of neurons in AD. Impaired synaptic function and reduced neuronal plasticity contribute to a vicious cycle, resulting in a reduction in the number of synapses and synaptic proteins, impacting their transportation inside the neuron. An understanding of these neurophysiological alterations, combined with abnormalities in the morphology of brain cells, emerges as a crucial avenue for new treatment investigations. This review aims to delve into the detailed exploration of electrical neuronal alterations observed in different AD models affecting single neurons and neuronal networks.
Collapse
Affiliation(s)
- Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Athena S. Davri
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Ilias P. Nikas
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Panagiotis Lekkas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Foivos S. Kanellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Ioannina, 455 00 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 451 10 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
41
|
Arjmandi-Rad S, Vestergaard Nieland JD, Goozee KG, Vaseghi S. The effects of different acetylcholinesterase inhibitors on EEG patterns in patients with Alzheimer's disease: A systematic review. Neurol Sci 2024; 45:417-430. [PMID: 37843690 DOI: 10.1007/s10072-023-07114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The early diagnosis of AD is an important factor for the control of AD progression. Electroencephalography (EEG) can be used for early diagnosis of AD. Acetylcholinesterase inhibitors (AChEIs) are also used for the amelioration of AD symptoms. In this systematic review, we reviewed the effect of different AChEIs including donepezil, rivastigmine, tacrine, physostigmine, and galantamine on EEG patterns in patients with AD. METHODS PubMed electronic database was searched and 122 articles were found. After removal of unrelated articles, 24 articles were selected for the present study. RESULTS AChEIs can decrease beta, theta, and delta frequency bands in patients with AD. However, conflicting results were found for alpha band. Some studies have shown increased alpha frequency, while others have shown decreased alpha frequency following treatment with AChEIs. The only difference was the type of drug. CONCLUSIONS We found that studies reporting the decreased alpha frequency used donepezil and galantamine, while studies reporting the increased alpha frequency used rivastigmine and tacrine. It was suggested that future studies should focus on the effect of different AChEIs on EEG bands, especially alpha frequency in patients with AD, to compare their effects and find the reason for their different influence on EEG patterns. Also, differences between the effects of AChEIs on oligodendrocyte differentiation and myelination may be another important factor. This is the first article investigating the effect of different AChEIs on EEG patterns in patients with AD.
Collapse
Affiliation(s)
- Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Kathryn G Goozee
- KaRa Institute of Neurological Diseases Pty Ltd, Macquarie, NSW, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
42
|
Falkenstein M. Recent Advances in Clinical Applications of P300 and MMN. NEUROMETHODS 2024:1-21. [DOI: 10.1007/978-1-0716-3545-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
Grabb MC, Brady LS. Biomarker Methodologies: A NIMH Perspective. ADVANCES IN NEUROBIOLOGY 2024; 40:3-44. [PMID: 39562439 DOI: 10.1007/978-3-031-69491-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Biomarkers are critically important in the development of drugs, biologics, medical devices, and psychosocial interventions for psychiatric disorders. As the lead federal agency charged with setting and supporting the national agenda for mental health research, the National Institute of Mental Health (NIMH) funds a broad portfolio of basic, translational, and clinical research focused on identifying, developing, and validating biomarkers for serious mental illnesses and neurodevelopmental conditions. In psychiatric research over the past 10 years, there has been an intensive effort to identify biomarkers as potential tools to improve treatment options for individuals with mental health concerns and increase success in the development of novel interventions. This chapter highlights examples of biomarker technologies that have been utilized to advance understanding of the pathophysiology of psychiatric disorders and the development of novel therapeutics.
Collapse
Affiliation(s)
- Margaret C Grabb
- National Institutes of Health, National Institute of Mental Health, Rockville, MD, USA.
| | - Linda S Brady
- National Institutes of Health, National Institute of Mental Health, Rockville, MD, USA
| |
Collapse
|
44
|
Wei G, Tian X, Yang H, Luo Y, Liu G, Sun S, Wang X, Wen H. Adjunct Methods for Alzheimer's Disease Detection: A Review of Auditory Evoked Potentials. J Alzheimers Dis 2024; 97:1503-1517. [PMID: 38277292 DOI: 10.3233/jad-230822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The auditory afferent pathway as a clinical marker of Alzheimer's disease (AD) has sparked interest in investigating the relationship between age-related hearing loss (ARHL) and AD. Given the earlier onset of ARHL compared to cognitive impairment caused by AD, there is a growing emphasis on early diagnosis and intervention to postpone or prevent the progression from ARHL to AD. In this context, auditory evoked potentials (AEPs) have emerged as a widely used objective auditory electrophysiological technique for both the clinical diagnosis and animal experimentation in ARHL due to their non-invasive and repeatable nature. This review focuses on the application of AEPs in AD detection and the auditory nerve system corresponding to different latencies of AEPs. Our objective was to establish AEPs as a systematic and non-invasive adjunct method for enhancing the diagnostic accuracy of AD. The success of AEPs in the early detection and prediction of AD in research settings underscores the need for further clinical application and study.
Collapse
Affiliation(s)
- Guoliang Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yinpei Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Guisong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuqing Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, School of Basic Medicine, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Stam CJ, de Haan W. Network Hyperexcitability in Early-Stage Alzheimer's Disease: Evaluation of Functional Connectivity Biomarkers in a Computational Disease Model. J Alzheimers Dis 2024; 99:1333-1348. [PMID: 38759000 PMCID: PMC11191539 DOI: 10.3233/jad-230825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Background There is increasing evidence from animal and clinical studies that network hyperexcitability (NH) may be an important pathophysiological process and potential target for treatment in early Alzheimer's disease (AD). Measures of functional connectivity (FC) have been proposed as promising biomarkers for NH, but it is unknown which measure has the highest sensitivity for early-stage changes in the excitation/inhibition balance. Objective We aim to test the performance of different FC measures in detecting NH at the earliest stage using a computational approach. Methods We use a whole brain computational model of activity dependent degeneration to simulate progressive AD pathology and NH. We investigate if and at what stage four measures of FC (amplitude envelope correlation corrected [AECc], phase lag index [PLI], joint permutation entropy [JPE] and a new measure: phase lag time [PLT]) can detect early-stage AD pathophysiology. Results The activity dependent degeneration model replicates spectral changes in line with clinical data and demonstrates increasing NH. Compared to relative theta power as a gold standard the AECc and PLI are shown to be less sensitive in detecting early-stage NH and AD-related neurophysiological abnormalities, while the JPE and the PLT show more sensitivity with excellent test characteristics. Conclusions Novel FC measures, which are better in detecting rapid fluctuations in neural activity and connectivity, may be superior to well-known measures such as the AECc and PLI in detecting early phase neurophysiological abnormalities and in particular NH in AD. These markers could improve early diagnosis and treatment target identification.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| | - Willem de Haan
- Department of Neurology, Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, The Netherlands
| |
Collapse
|
46
|
Paban V, Mheich A, Spieser L, Sacher M. A multidimensional model of memory complaints in older individuals and the associated hub regions. Front Aging Neurosci 2023; 15:1324309. [PMID: 38187362 PMCID: PMC10771290 DOI: 10.3389/fnagi.2023.1324309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Memory complaints are highly prevalent among middle-aged and older adults, and they are frequently reported in individuals experiencing subjective cognitive decline (SCD). SCD has received increasing attention due to its implications for the early detection of dementia. This study aims to advance our comprehension of individuals with SCD by elucidating potential cognitive/psychologic-contributing factors and characterizing cerebral hubs within the brain network. To identify these potential contributing factors, a structural equation modeling approach was employed to investigate the relationships between various factors, such as metacognitive beliefs, personality, anxiety, depression, self-esteem, and resilience, and memory complaints. Our findings revealed that self-esteem and conscientiousness significantly influenced memory complaints. At the cerebral level, analysis of delta and theta electroencephalographic frequency bands recorded during rest was conducted to identify hub regions using a local centrality metric known as betweenness centrality. Notably, our study demonstrated that certain brain regions undergo changes in their hub roles in response to the pathology of SCD. Specifically, the inferior temporal gyrus and the left orbitofrontal area transition into hubs, while the dorsolateral prefrontal cortex and the middle temporal gyrus lose their hub function in the presence of SCD. This rewiring of the neural network may be interpreted as a compensatory response employed by the brain in response to SCD, wherein functional connectivity is maintained or restored by reallocating resources to other regions.
Collapse
Affiliation(s)
- Véronique Paban
- Aix-Marseille Université, CNRS, LNC (Laboratoire de Neurosciences Cognitives–UMR 7291), Marseille, France
| | - A. Mheich
- CHUV-Centre Hospitalier Universitaire Vaudois, Service des Troubles du Spectre de l’Autisme et Apparentés, Lausanne University Hospital, Lausanne, Switzerland
| | - L. Spieser
- Aix-Marseille Université, CNRS, LNC (Laboratoire de Neurosciences Cognitives–UMR 7291), Marseille, France
| | - M. Sacher
- University of Toulouse Jean-Jaurès, CNRS, LCLLE (Laboratoire Cognition, Langues, Langage, Ergonomie–UMR 5263), Toulouse, France
| |
Collapse
|
47
|
Fide E, Yerlikaya D, Güntekin B, Babiloni C, Yener GG. Coherence in event-related EEG oscillations in patients with Alzheimer's disease dementia and amnestic mild cognitive impairment. Cogn Neurodyn 2023; 17:1621-1635. [PMID: 37974589 PMCID: PMC10640558 DOI: 10.1007/s11571-022-09920-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Working memory performances are based on brain functional connectivity, so that connectivity may be deranged in individuals with mild cognitive impairment (MCI) and patients with dementia due to Alzheimer's disease (ADD). Here we tested the hypothesis of abnormal functional connectivity as revealed by the imaginary part of coherency (ICoh) at electrode pairs from event-related electroencephalographic oscillations in ADD and MCI patients. Methods The study included 43 individuals with MCI, 43 with ADD, and 68 demographically matched healthy controls (HC). Delta, theta, alpha, beta, and gamma bands event-related ICoh was measured during an oddball paradigm. Inter-hemispheric, midline, and intra-hemispheric ICoh values were compared in ADD, MCI, and HC groups. Results The main results of the present study can be summarized as follows: (1) A significant increase of midline frontal and temporal theta coherence in the MCI group as compared to the HC group; (2) A significant decrease of theta, delta, and alpha intra-hemispheric coherence in the ADD group as compared to the HC and MCI groups; (3) A significant decrease of theta midline coherence in the ADD group as compared to the HC and MCI groups; (4) Normal inter-hemispheric coherence in the ADD and MCI groups. Conclusions Compared with the MCI and HC, the ADD group showed disrupted event-related intra-hemispheric and midline low-frequency band coherence as an estimate of brain functional dysconnectivity underlying disabilities in daily living. Brain functional connectivity during attention and short memory demands is relatively resilient in elderly subjects even with MCI (with preserved abilities in daily activities), and it shows reduced efficiency at multiple operating oscillatory frequencies only at an early stage of ADD. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09920-0.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- REMER Clinical Electrophysiology, Neuroimaging and Neuromodulation Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele of Cassino, Cassino, Italy
| | - Görsev G. Yener
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
48
|
Buzi G, Fornari C, Perinelli A, Mazza V. Functional connectivity changes in mild cognitive impairment: A meta-analysis of M/EEG studies. Clin Neurophysiol 2023; 156:183-195. [PMID: 37967512 DOI: 10.1016/j.clinph.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE Early synchrony alterations have been observed through electrophysiological techniques in Mild Cognitive Impairment (MCI), which is considered the intermediate phase between healthy aging (HC) and Alzheimer's disease (AD). However, the documented direction (hyper/hypo-synchronization), regions and frequency bands affected are inconsistent. This meta-analysis intended to elucidate existing evidence linked to potential neurophysiological biomarkers of AD. METHODS We conducted a random-effects meta-analysis that entailed the unbiased inclusion of Non-statistically Significant Unreported Effect Sizes ("MetaNSUE") of electroencephalogram (EEG) and magnetoencephalogram (MEG) studies investigating functional connectivity changes at rest along the healthy-pathological aging continuum, searched through PubMed, Scopus, Web of Science and PsycINFO databases until June 2023. RESULTS Of the 3852 articles extracted, we analyzed 12 papers, and we found an alpha synchrony decrease in MCI compared to HC, specifically between temporal-parietal (d = -0.26) and frontal-parietal areas (d = -0.25). CONCLUSIONS Alterations of alpha synchrony are present even at MCI stage. SIGNIFICANCE Synchrony measures may be promising for the detection of the first hallmarks of connectivity alterations, even at the prodromal stages of the AD, before clinical symptoms occur.
Collapse
Affiliation(s)
- Giulia Buzi
- U1077 INSERM-EPHE-UNICAEN, Caen 14000, France
| | - Chiara Fornari
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
| | - Alessio Perinelli
- Department of Physics, University of Trento, Trento, Italy; INFN-TIFPA, Trento, Italy
| | - Veronica Mazza
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.
| |
Collapse
|
49
|
Mei X, Zou C, Si Z, Xu T, Hu J, Wu X, Zheng C. Antidepressant effect of bright light therapy on patients with Alzheimer's disease and their caregivers. Front Pharmacol 2023; 14:1235406. [PMID: 38034990 PMCID: PMC10684929 DOI: 10.3389/fphar.2023.1235406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Background: As a non-pharmacologic treatment, bright light therapy (BLT) is often used to improve affective disorders and memory function. In this study, we aimed to determine the effect of BLT on depression and electrophysiological features of the brain in patients with Alzheimer's disease (AD) and their caregivers using a light-emitting diode device of 14000 lux. Methods: A 4-week case-control trial was conducted. Neuropsychiatric and electroencephalogram (EEG) examination were evaluated at baseline and after 4 weeks. EEG power in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 Hz) bands was calculated for our main analysis. Demographic and clinical variables were analyzed using Student's t test and the chi-square test. Pearson's correlation was used to determine the correlation between electrophysiological features, blood biochemical indicators, and cognitive assessment scale scores. Results: In this study, 22 in-patients with AD and 23 caregivers were recruited. After BLT, the Hamilton depression scale score decreased in the fourth week. Compared with the age-matched controls of their caregivers, a higher spectral power at the lower delta and theta frequencies was observed in the AD group. After BLT, the EEG power of the delta and theta frequencies in the AD group decreased. No change was observed in blood amyloid concentrations before and after BLT. Conclusion: In conclusion, a 4-week course of BLT significantly suppressed depression in patients with AD and their caregivers. Moreover, changes in EEG power were also significant in both groups.
Collapse
Affiliation(s)
- Xi Mei
- Key Lab, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chenjun Zou
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Zizhen Si
- Medical College, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Xu
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Hu
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiangping Wu
- Key Lab, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chengying Zheng
- Department of Geriatric, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
50
|
Ajra Z, Xu B, Dray G, Montmain J, Perrey S. Using shallow neural networks with functional connectivity from EEG signals for early diagnosis of Alzheimer's and frontotemporal dementia. Front Neurol 2023; 14:1270405. [PMID: 37900600 PMCID: PMC10602655 DOI: 10.3389/fneur.2023.1270405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Dementia is a neurological disorder associated with aging that can cause a loss of cognitive functions, impacting daily life. Alzheimer's disease (AD) is the most common cause of dementia, accounting for 50-70% of cases, while frontotemporal dementia (FTD) affects social skills and personality. Electroencephalography (EEG) provides an effective tool to study the effects of AD on the brain. Methods In this study, we propose to use shallow neural networks applied to two sets of features: spectral-temporal and functional connectivity using four methods. We compare three supervised machine learning techniques to the CNN models to classify EEG signals of AD / FTD and control cases. We also evaluate different measures of functional connectivity from common EEG frequency bands considering multiple thresholds. Results and discussion Results showed that the shallow CNN-based models achieved the highest accuracy of 94.54% with AEC in test dataset when considering all connections, outperforming conventional methods and providing potentially an additional early dementia diagnosis tool.
Collapse
Affiliation(s)
- Zaineb Ajra
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Binbin Xu
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Gérard Dray
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Jacky Montmain
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|