1
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
2
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
3
|
van Heusden FC, van Nifterick AM, Souza BC, França ASC, Nauta IM, Stam CJ, Scheltens P, Smit AB, Gouw AA, van Kesteren RE. Neurophysiological alterations in mice and humans carrying mutations in APP and PSEN1 genes. Alzheimers Res Ther 2023; 15:142. [PMID: 37608393 PMCID: PMC10464047 DOI: 10.1186/s13195-023-01287-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. METHODS We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. RESULTS APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. CONCLUSIONS Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.
Collapse
Affiliation(s)
- Fran C van Heusden
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Anne M van Nifterick
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Bryan C Souza
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands
| | - Arthur S C França
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 6525AJ, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| | - Ilse M Nauta
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Cornelis J Stam
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
- Clinical Neurophysiology and MEG Center, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, 1081HV, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands.
| |
Collapse
|
4
|
Chu F, Tan R, Wang X, Zhou X, Ma R, Ma X, Li Y, Liu R, Zhang C, Liu X, Yin T, Liu Z. Transcranial Magneto-Acoustic Stimulation Attenuates Synaptic Plasticity Impairment through the Activation of Piezo1 in Alzheimer's Disease Mouse Model. RESEARCH (WASHINGTON, D.C.) 2023; 6:0130. [PMID: 37223482 PMCID: PMC10202414 DOI: 10.34133/research.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
The neuropathological features of Alzheimer's disease include amyloid plaques. Rapidly emerging evidence suggests that Piezo1, a mechanosensitive cation channel, plays a critical role in transforming ultrasound-related mechanical stimuli through its trimeric propeller-like structure, but the importance of Piezo1-mediated mechanotransduction in brain functions is less appreciated. However, apart from mechanical stimulation, Piezo1 channels are strongly modulated by voltage. We assume that Piezo1 may play a role in converting mechanical and electrical signals, which could induce the phagocytosis and degradation of Aβ, and the combined effect of mechanical and electrical stimulation is superior to single mechanical stimulation. Hence, we design a transcranial magneto-acoustic stimulation (TMAS) system, based on transcranial ultrasound stimulation (TUS) within a magnetic field that combines a magneto-acoustic coupling effect electric field and the mechanical force of ultrasound, and applied it to test the above hypothesis in 5xFAD mice. Behavioral tests, in vivo electrophysiological recordings, Golgi-Cox staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, RNA sequencing, and cerebral blood flow monitoring were used to assess whether TMAS can alleviate the symptoms of AD mouse model by activating Piezo1. TMAS treatment enhanced autophagy to promote the phagocytosis and degradation of β-amyloid through the activation of microglial Piezo1 and alleviated neuroinflammation, synaptic plasticity impairment, and neural oscillation abnormalities in 5xFAD mice, showing a stronger effect than ultrasound. However, inhibition of Piezo1 with an antagonist, GsMTx-4, prevented these beneficial effects of TMAS. This research indicates that Piezo1 can transform TMAS-related mechanical and electrical stimuli into biochemical signals and identifies that the favorable effects of TMAS on synaptic plasticity in 5xFAD mice are mediated by Piezo1.
Collapse
Affiliation(s)
- Fangxuan Chu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ruxin Tan
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoqing Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ren Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaoxu Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ruixu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chunlan Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xu Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
- Neuroscience Center, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
5
|
Gutiérrez-Menéndez A, Méndez M, Arias JL. Learning and metabolic brain differences between juvenile male and female rats in the execution of different training regimes of a spatial memory task. Physiol Behav 2023; 267:114203. [PMID: 37086830 DOI: 10.1016/j.physbeh.2023.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Spatial memory is responsible for encoding spatial information to form a path, storing this mental representation, and evaluating and recovering spatial configurations to find a target location in the environment. It is mainly supported by the hippocampus and its interaction with other structures, such as the prefrontal cortex, and emerges in rodents around postnatal day (PND) 20. Sex differences in spatial tasks have been found in adults, with a supposedly better performance in males. However, few studies have examined sex differences in orientation throughout postnatal development. This study aimed to analyse the performance of juvenile (PND 23) male (n=18) and female (n=21) Wistar rats in a spatial reference memory task in the Morris water maze (MWM) with two different training regimes in the acquisition phase, and their subjacent metabolic brain activity. Based on sex, subjects were assigned to two different groups: one that performed four learning trials per day (n=9 males and n=8 females) and the other that was submitted to two trials per day (n=9 males and n=13 females). After the behavioural protocols, metabolic activity was evaluated using cytochrome c oxidase histochemistry. Results showed no metabolic brain or behavioural differences in the four-trial protocol performance, in which both sexes reached the learning criterion on the fourth day. By contrast, the two-trial protocol revealed an advantage for females, who reached the learning criterion on day four, whereas males needed more training and succeeded on day six. The female group showed lower metabolic activity than the male group in the cingulate and prelimbic cortex. These results suggest a faster consolidation process in the female group than the male group. Further research is needed to understand sex differences in spatial memory at early stages.
Collapse
Affiliation(s)
- Alba Gutiérrez-Menéndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
6
|
Soula M, Maslarova A, Harvey RE, Valero M, Brandner S, Hamer H, Fernández-Ruiz A, Buzsáki G. Interictal epileptiform discharges affect memory in an Alzheimer's Disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528683. [PMID: 36824810 PMCID: PMC9949089 DOI: 10.1101/2023.02.15.528683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Interictal epileptiform discharges (IEDs) are transient abnormal electrophysiological events commonly observed in epilepsy patients but are also present in other neurological disease, such as Alzheimer's Disease (AD). Understanding the role IEDs have on the hippocampal circuit is important for our understanding of the cognitive deficits seen in epilepsy and AD. We characterize and compare the IEDs of human epilepsy patients from microwire hippocampal recording with those of AD transgenic mice with implanted multi-layer hippocampal silicon probes. Both the local field potential features and firing patterns of pyramidal cells and interneurons were similar in mouse and human. We found that as IEDs emerged from the CA3-1 circuits, they recruited pyramidal cells and silenced interneurons, followed by post-IED suppression. IEDs suppressed the incidence and altered the properties of physiological sharp-wave ripples (SPW-Rs), altered their physiological properties, and interfered with the replay of place field sequences in a maze. In addition, IEDs in AD mice inversely correlated with daily memory performance. Together, our work implicates that IEDs may present a common and epilepsy-independent phenomenon in neurodegenerative diseases that perturbs hippocampal-cortical communication and interferes with memory. Significant Statement Prevalence of neurodegenerative diseases and the number of people with dementia is increasing steadily. Therefore, novel treatment strategies for learning and memory disorders are urgently necessary. IEDs, apart from being a surrogate for epileptic brain regions, have also been linked to cognitive decline. Here we report that IEDs in human epilepsy patients and AD mouse models have similar local field potential characteristics and associated firing patterns of pyramidal cells and interneurons. Mice with more IEDs displayed fewer hippocampal SPW-Rs, poorer replay of spatial trajectories, and decreased memory performance. IED suppression is an unexplored target to treat cognitive dysfunction in neurodegenerative diseases.
Collapse
|
7
|
Neurotransmitters in Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043841. [PMID: 36835251 PMCID: PMC9966535 DOI: 10.3390/ijms24043841] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of cognitive impairment in middle-aged and older populations. There is a lack of drugs that demonstrate significant efficacy in AD, so the study of the pathogenesis of AD is of great importance. More efficacious interventions are needed, as reflected by our population's fast aging. Synaptic plasticity is the capacity of neurons to adjust their connections, and it is strongly tied to learning and memory, cognitive function, and brain injury recovery. Changes in synaptic strength, such as long-term potentiation (LTP) or inhibition (LTD), are thought to represent the biological foundation of the early stages of learning and memory. The results of numerous studies confirm that neurotransmitters and their receptors play an important role in the regulation of synaptic plasticity. However, so far, there is no definite correlation between the function of neurotransmitters in aberrant neural oscillation and AD-related cognitive impairment. We summarized the AD process to understand the impact of neurotransmitters in the progression and pathogenesis of AD, including the current status of neurotransmitter target drugs, and the latest evidence of neurotransmitters' function and changes in the AD process.
Collapse
|
8
|
Wang YL, Wang JG, Guo S, Guo FL, Liu EJ, Yang X, Feng B, Wang JZ, Vreugdenhil M, Lu CB. Oligomeric β-Amyloid Suppresses Hippocampal γ-Oscillations through Activation of the mTOR/S6K1 Pathway. Aging Dis 2023:AD.2023.0123. [PMID: 37163441 PMCID: PMC10389838 DOI: 10.14336/ad.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/23/2023] [Indexed: 05/12/2023] Open
Abstract
Neuronal synchronization at gamma frequency (30-100 Hz: γ) is impaired in early-stage Alzheimer's disease (AD) patients and AD models. Oligomeric Aβ1-42 caused a concentration-dependent reduction of γ-oscillation strength and regularity while increasing its frequency. The mTOR1 inhibitor rapamycin prevented the Aβ1-42-induced suppression of γ-oscillations, whereas the mTOR activator leucine mimicked the Aβ1-42-induced suppression. Activation of the downstream kinase S6K1, but not inhibition of eIF4E, was required for the Aβ1-42-induced suppression. The involvement of the mTOR/S6K1 signaling in the Aβ1-42-induced suppression was confirmed in Aβ-overexpressing APP/PS1 mice, where inhibiting mTOR or S6K1 restored degraded γ-oscillations. To assess the network changes that may underlie the mTOR/S6K1 mediated γ-oscillation impairment in AD, we tested the effect of Aβ1-42 on IPSCs and EPSCs recorded in pyramidal neurons. Aβ1-42 reduced EPSC amplitude and frequency and IPSC frequency, which could be prevented by inhibiting mTOR or S6K1. These experiments indicate that in early AD, oligomer Aβ1-42 impairs γ-oscillations by reducing inhibitory interneuron activity by activating the mTOR/S6K1 signaling pathway, which may contribute to early cognitive decline and provides new therapeutic targets.
Collapse
Affiliation(s)
- Ya-Li Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Gang Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Shuling Guo
- Department of Cardiovascular Medicine, Luminghu District, Xuchang Central Hospital, Xuchang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Yang
- Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bingyan Feng
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Vreugdenhil
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Cheng-Biao Lu
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Luo Y, Sun Y, Wen H, Wang X, Zheng X, Ge H, Yin Y, Wu X, Li W, Hou W. Deep brain stimulation of the entorhinal cortex modulates CA1 theta-gamma oscillations in mouse models of preclinical Alzheimer's disease. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
FSTL1-knockdown improves neural oscillation via decreasing neuronal-inflammation regulating apoptosis in Aβ 1-42 induced AD model mice. Exp Neurol 2023; 359:114231. [PMID: 36162512 DOI: 10.1016/j.expneurol.2022.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022]
Abstract
Follistatin like protein 1 (FSTL1) is a famous growth regulatory protein. FSTL1 has been noticed in many diseases, including heart and lung ischemia, cerebral ischemia, glioma, schizophrenia, and Autism. The role of FSTL1 has been declared in the genetics and development of the central nervous system. Therefore, we designed this study to investigate the function and the role of FSTL1 in Alzheimer's disease. Firstly, we noticed upregulated expression level of FSTL1 among four to six-month-old 5XFAD AD mice. Accordingly, we hypothesized that FSTL1-Knockdown improved AD model mice's cognitive function and recover from Alzheimer's disease. Thus, AD model mice were made by single intracerebroventricular injections of Aβ1-42 peptides in FSTL1+/- and CON mice. Next, our results concluded that FSTL1-knockdown effectively improved cognitive functions. FSTL1-knockdown enhanced the pattern of neural oscillations, and synaptic plasticity in Aβ1-42 treated FSTL1-Knockdown mice compared to Aβ1-42 induced AD model mice. Next, FSTL1-Knockdown inhibited the activation of microglia and binding of TLR-4 with microglia. Further, inactivated microglia stopped the formation of MyD88. Thus, our data revealed that FSTL1-Knockdown is slowing down the caspase/BAX/Bcl-2/TLR-4 regulating apoptosis pathway, and the expression of inflammatory cytokines in the hippocampus of Aβ1-42 inserted FSTL1-Knockdown mice. Overall, all these data illuminate the clinical significance role of down-regulated FSTL1. FSTL1-Knockdown reduced the amyloid-beta by affecting microglia, neural-inflammation and apoptosis in AD-like model mice. Finally, down regulation of FSTL1 improved synaptic plasticity, neural oscillations, and cognitive behaviours in the Aβ1-42 induced AD model mice.
Collapse
|
11
|
Wang H, Shang Y, Wang E, Xu X, Zhang Q, Qian C, Yang Z, Wu S, Zhang T. MST1 mediates neuronal loss and cognitive deficits: A novel therapeutic target for Alzheimer's disease. Prog Neurobiol 2022; 214:102280. [PMID: 35525373 DOI: 10.1016/j.pneurobio.2022.102280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the old adult and characterized by progressive cognitive decline and neuronal damage. The mammalian Ste20-like kinase1/2 (MST1/2) is a core component in Hippo signaling, which regulates neural stem cell proliferation, neuronal death and neuroinflammation. However, whether MST1/2 is involved in the occurrence and development of AD remains unknown. In this study we reported that the activity of MST1 was increased with Aβ accumulation in the hippocampus of 5xFAD mice. Overexpression of MST1 induced AD-like phenotype in normal mice and accelerated cognitive decline, synaptic plasticity damage and neuronal apoptosis in 2-month-old 5xFAD mice, but did not significantly affect Aβ levels. Mechanistically, MST1 associated with p53 and promoted neuronal apoptosis by phosphorylation and activation of p53, while p53 knockout largely reversed MST1-induced AD-like cognitive deficits. Importantly, either genetic knockdown or chemical inactivation of MST1 could significantly improve cognitive deficits and neuronal apoptosis in 7-month-old 5xFAD mice. Our results support the idea that MST1-mediated neuronal apoptosis is an essential mechanism of cognitive deficits and neuronal loss for AD, and manipulating the MST1 activity as a potential strategy will shed light on clinical treatment for AD or other diseases caused by neuronal injury.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Yingchun Shang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Enlin Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Xinxin Xu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Qiyue Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Chenxi Qian
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China.
| | - Shian Wu
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
12
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
13
|
Toward noninvasive brain stimulation 2.0 in Alzheimer's disease. Ageing Res Rev 2022; 75:101555. [PMID: 34973457 PMCID: PMC8858588 DOI: 10.1016/j.arr.2021.101555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Noninvasive brain stimulation techniques (NiBS) have gathered substantial interest in the study of dementia, considered their possible role in help defining diagnostic biomarkers of altered neural activity for early disease detection and monitoring of its pathophysiological course, as well as for their therapeutic potential of boosting residual cognitive functions. Nevertheless, current approaches suffer from some limitations. In this study, we review and discuss experimental NiBS applications that might help improve the efficacy of future NiBS uses in Alzheimer's Disease (AD), including perturbation-based biomarkers for early diagnosis and disease tracking, solutions to enhance synchronization of oscillatory electroencephalographic activity across brain networks, enhancement of sleep-related memory consolidation, image-guided stimulation for connectome control, protocols targeting interneuron pathology and protein clearance, and finally hybrid-brain models for in-silico modeling of AD pathology and personalized target selection. The present work aims to stress the importance of multidisciplinary, translational, model-driven interventions for precision medicine approaches in AD.
Collapse
|
14
|
Behavior of olfactory-related frontal lobe oscillations in Alzheimer's disease and MCI: A pilot study. Int J Psychophysiol 2022; 175:43-53. [PMID: 35217110 DOI: 10.1016/j.ijpsycho.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022]
Abstract
Slow-gamma (35-45 Hz) phase synchronization and the coupling between slow-gamma and low-frequency theta oscillations (4-8 Hz) are closely related to memory retrieval and cognitive functions. In this pilot study, we assess the Phase Amplitude Coupling (PAC) between theta and slow-gamma oscillatory bands and the quality of synchronization in slow-gamma oscillations using Phase Locking Value (PLV) on EEG data from healthy individuals and patients diagnosed with amnestic Mild Cognitive Impairment (aMCI) and Alzheimer's Disease (AD) during an oddball olfactory task. Our study indicates noticeable differences between the PLV and PAC values corresponding to olfactory stimulation in the three groups of participants. These differences can help explain the underlying processes involved in these cognitive disorders and the differences between aMCI and AD patients in performing cognitive tasks. Our study also proposes a diagnosis method for aMCI through comparing the brain's response characteristics during olfactory stimulation and rest. Early diagnosis of aMCI can potentially lead to its timely treatment and prevention from progression to AD.
Collapse
|
15
|
Dynamic analysis of disease progression in Alzheimer’s disease under the influence of hybrid synapse and spatially correlated noise. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.05.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
17
|
Chen R, Zhang Q, Yan Y, Zhang Y, Zhang T. Legumain Knockout Protects Against Aβ 1-42-Induced AD-like Cognitive Deficits and Synaptic Plasticity Dysfunction Via Inhibiting Neuroinflammation Without Cleaving APP. Mol Neurobiol 2021; 58:1607-1620. [PMID: 33219900 DOI: 10.1007/s12035-020-02219-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is the important pathological feature of Alzheimer's disease (AD). Legumain, a lysosomal cysteine protease, plays an important role in neuroinflammation during ischemic stroke and depressive disorder. Legumain is involved in AD process through cleaving APP; however, it is unclear if legumain can possibly modulate neuroinflammation without cleaving APP in AD. Thus, we established a mouse model of AD by single intracerebroventricular injections of Aβ1-42 in legumain knockout (KO) mice. The behavioral tests showed that legumain-KO effectively ameliorated cognitive impairment induced by Aβ1-42. Moreover, legumain deprivation significantly improves the synaptic plasticity damages in Aβ1-42-treated mice. Moreover, legumain-KO considerably inhibited the activation of microglia and reduced the expression of inflammatory cytokines in the hippocampus of Aβ1-42-treated mice. Interestingly, we found that legumain-KO inhibited TLR4/MyD88/NF-κB pathway, which was activated by Aβ1-42 in the hippocampus. In conclusion, our results suggested that legumain-KO reduced the level of neuroinflammation that was associated with inhibiting TLR4/MyD88/NF-κB pathways, thereby improving the hippocampal synaptic plasticity and reducing the cognitive impairments in Aβ1-42-treated mice. Legumain knockout blocked microglia activation by inhibiting TLR4/MyD88/NF-κB signaling pathways, and further reduced inflammatory cytokine expression. As a result, legumain knockout alleviated synaptic damage and cognitive impairment induced by Aβ1--42.
Collapse
Affiliation(s)
- Runwen Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Qiyue Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yuxing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yuying Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|