1
|
Mazzoli A, Spagnuolo MS, De Palma F, Petecca N, Di Porzio A, Barrella V, Troise AD, Culurciello R, De Pascale S, Scaloni A, Mauriello G, Iossa S, Cigliano L. Limosilactobacillus reuteri DSM 17938 relieves inflammation, endoplasmic reticulum stress, and autophagy in hippocampus of western diet-fed rats by modulation of systemic inflammation. Biofactors 2024; 50:1236-1250. [PMID: 38801155 PMCID: PMC11627471 DOI: 10.1002/biof.2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis. In this study, we explored whether Limosilactobacillus reuteri DSM 17938 (L. reuteri)-based approach can counteract diet-induced neuroinflammation, endoplasmic reticulum stress (ERS), and autophagy in hippocampus, an area involved in learning and memory, in rat fed a high fat and fructose diet. The western diet induced a microbiota reshaping, but L. reuteri neither modulated this change, nor the plasma levels of short-chain fatty acids. Interestingly, pro-inflammatory signaling pathway activation (increased NFkB phosphorylation, raised amounts of toll-like receptor-4, tumor necrosis factor-alpha, interleukin-6, GFAP, and Haptoglobin), as well as activation of ERS (increased PERK and eif2α phosphorylation, higher C/EBP-homologous protein amounts) and autophagy (increased beclin, P62-sequestosome-1, and LC3 II) was revealed in hippocampus of western diet fed rats. All these hippocampal alterations were prevented by L. reuteri administration, showing for the first time a neuroprotective role of this specific probiotic strain, mainly attributable to its ability to regulate western diet-induced metabolic endotoxemia and systemic inflammation, as decreased levels of lipopolysaccharide, plasma cytokines, and adipokines were also found. Therapeutic strategies based on the use of L. reuteri DSM17938 could be beneficial in reversing metabolic syndrome-mediated brain dysfunction and cognitive decline.
Collapse
Affiliation(s)
- Arianna Mazzoli
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Francesca De Palma
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Natasha Petecca
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Angela Di Porzio
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Valentina Barrella
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Antonio Dario Troise
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Rosanna Culurciello
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
| | - Sabrina De Pascale
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean EnvironmentNational Research CouncilPorticiItaly
| | - Gianluigi Mauriello
- Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
| | - Susanna Iossa
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| | - Luisa Cigliano
- Department of BiologyUniversity of Naples Federico II, Complesso Universitario Monte S. AngeloNaplesItaly
- Task Force on Microbiome StudiesUniversity of Naples Federico IIPorticiItaly
| |
Collapse
|
2
|
Zhang Z, Lin W, Gan Q, Lei M, Gong B, Zhang C, Henrique JS, Han J, Tian H, Tao Q, Potempa LA, Stein TD, Emili A, Qiu WQ. The influences of ApoE isoforms on endothelial adherens junctions and actin cytoskeleton responding to mCRP. Angiogenesis 2024; 27:861-881. [PMID: 39276310 PMCID: PMC11564276 DOI: 10.1007/s10456-024-09946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024]
Abstract
Apolipoprotein E4 (ApoE4) plays an important role responding to monomeric C-reactive protein (mCRP) via binding to CD31 leading to cerebrovascular damage and Alzheimer's disease (AD). Using phosphor-proteomic profiling, we found altered cytoskeleton proteins in the microvasculature of AD brains, including increased levels of hyperphosphorylated tau (pTau) and the actin-related protein, LIMA1. To address the hypothesis that cytoskeletal changes serve as early pathological signatures linked with CD31 in brain endothelia in ApoE4 carriers, ApoE4 knock-in mice intraperitoneal injected with mCRP revealed that mCRP increased the expressions of phosphorylated CD31 (pCD31) and LIMA1, and facilitate the binding of pCD31 to LIMA1. mCRP combined with recombinant APOE4 protein decreased interaction of CD31 and VE-Cadherin at adherens junctions (AJs), along with altered the expression of various actin cytoskeleton proteins, causing microvasculature damage. Notably, the APOE2 protein attenuated these changes. Overall, our study demonstrates that ApoE4 responds to mCRP to disrupt the endothelial AJs which link with the actin cytoskeleton and this pathway could play a key role in the barrier dysfunction leading to AD risk.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Weiwei Lin
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Qini Gan
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Maohua Lei
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Chao Zhang
- Section of Computational Biomedicine, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Jessica Salles Henrique
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Jingyan Han
- Section of Vascular Biology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | - Hua Tian
- Department of Pharmacology, Xiaman Medical College, Xiaman, China
| | - Qiushan Tao
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA
| | | | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- VA Boston Healthcare System, Boston, MA02130, USA.
- VA Bedford Healthcare System, Bedford, MA01730, USA.
| | - Andrew Emili
- Department of Biochemistry, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
| | - Wei Qiao Qiu
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA02118, USA.
| |
Collapse
|
3
|
Zhang Y, Mu BR, Ran Z, Zhu T, Huang X, Yang X, Wang DM, Ma QH, Lu MH. Pericytes in Alzheimer's disease: Key players and therapeutic targets. Exp Neurol 2024; 379:114825. [PMID: 38777251 DOI: 10.1016/j.expneurol.2024.114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that leads to progressive cognitive decline and neuropathological changes. Pericytes, which are vessel mural cells on the basement membrane of capillaries, play a crucial role in regulating cerebrovascular functions and maintaining neurovascular unit integrity. Emerging research substantiates the involvement of pericytes in AD. This review provides a comprehensive overview of pericytes, including their structure, origin, and markers and various functions within the central nervous system. Emphatically, the review explores the intricate mechanisms through which pericytes contribute to AD, including their interactions with amyloid beta and apolipoprotein E, as well as various signaling pathways. The review also highlights potential for targeted pericyte therapy for AD, with a focus on stem cell therapy and drug treatments. Future research directions include the classification of pericyte subtypes, studies related to aging, and the role of pericytes in exosome-related mechanisms in AD pathology. In conclusion, this review consolidates current knowledge on the pivotal roles of pericytes in AD and their potential as therapeutic targets, providing valuable insights for future research and clinical interventions aimed at addressing the impact of AD on patients' lives.
Collapse
Affiliation(s)
- Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China
| | - Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Pastorello Y, Russo AP, Bănescu C, Caprio V, Gáll Z, Potempa L, Cordoș B, Di Napoli M, Slevin M. Brain Vascular Expression of Monomeric C-Reactive Protein Is Blocked by C10M Following Intraperitoneal Injection in an ApoE-/- Murine Model of Dyslipidemia: An Immunohistochemical Analysis. Cureus 2024; 16:e60682. [PMID: 38899254 PMCID: PMC11186519 DOI: 10.7759/cureus.60682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction The neurovascular unit (NVU), comprising vascular and glial cells along with neurons, is vital for maintaining the blood-brain barrier (BBB) and cerebral homeostasis. Dysfunction of the NVU is implicated in key neurodegenerative disorders such as Alzheimer's disease (AD). Monomeric C-reactive protein (mCRP), the dissociated form of native, pentameric C-reactive protein (pCRP), is associated with enhanced pro-inflammatory responses in the vascular system, leading to increased permeability and potential NVU disruption. Methods This study utilized ApoE-/- mice receiving a high-fat diet which were injected intraperitoneally with either mCRP or mCRP together with a small molecule inhibitor (C10M) and investigated the deposition of mCRP and CD105 expression in the brain parenchyma and its localization within the microvasculature. Results Histological analysis revealed significant mCRP deposition in brain microvessels and neurons, indicating potential disruption of the BBB and neuronal damage. Moreover, co-administration of C10M effectively blocked mCRP accumulation in the brain parenchyma, suggesting its potential as a therapeutic agent for effectively inhibiting inflammation-associated degenerative changes. Immunohistochemical staining demonstrated co-localization of mCRP with CD105, indicating potential angiogenic activation and increased susceptibility to inflammatory insult. Discussion These findings provide evidence supporting the potential role of mCRP as a contributor to neuroinflammation in individuals with chronic systemic inflammation. Conclusion Further studies in human subjects should help validate the efficacy of C10M in preventing or halting neurodegeneration in conditions such as AD and stroke-associated dementia.
Collapse
Affiliation(s)
- Ylenia Pastorello
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Aurelio Pio Russo
- Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Claudia Bănescu
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Vittorio Caprio
- Department of Life Sciences, Manchester Metropolitan University, Manchester, GBR
| | - Zsolt Gáll
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Lawrence Potempa
- Department of Life Sciences, College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, USA
| | - Bogdan Cordoș
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Veterinary Experimental Base, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
| | - Mario Di Napoli
- Department of Neurological Service, SS. Annunziata Hospital, Sulmona, ITA
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, ROU
- Department of Life Sciences, Manchester Metropolitan University, Manchester, GBR
| |
Collapse
|
5
|
Abu-Elfotuh K, Hamdan AME, Mohamed SA, Bakr RO, Ahmed AH, Atwa AM, Hamdan AM, Alanzai AG, Alnahhas RK, Gowifel AMH, Salem MA. The potential anti-Alzheimer's activity of Oxalis corniculata Linn. Methanolic extract in experimental rats: Role of APOE4/LRP1, TLR4/NF-κβ/NLRP3, Wnt 3/β-catenin/GSK-3β, autophagy and apoptotic cues. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117731. [PMID: 38218505 DOI: 10.1016/j.jep.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κβ/NLRP3, along with dampening apoptosis, Aβ generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/β-catenin/GSK3β cue. CONCLUSIONS It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κβ/NLRP3, APOE4/LRP1, Wnt 3/β-catenin/GSK-3β and PERK axes.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq.
| | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 74191, Saudi Arabia.
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, Giza 11787, Egypt.
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | | | | | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
6
|
Hornick MG, Potempa LA. Monomeric C-reactive protein as a biomarker for major depressive disorder. Front Psychiatry 2024; 14:1325220. [PMID: 38250276 PMCID: PMC10797126 DOI: 10.3389/fpsyt.2023.1325220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Neuroinflammation has been postulated to be a key factor in the pathogenesis of major depressive disorder (MDD). With this is mind, there has been a wave of research looking into pro-inflammatory mediators as potential biomarkers for MDD. One such mediator is the acute phase protein, C-reactive protein (CRP). While several studies have investigated the potential of CRP as a biomarker for MDD, the results have been inconsistent. One explanation for the lack of consistent findings may be that the high-sensitivity CRP tests utilized in these studies only measure the pentameric isoform of CRP (pCRP). Recent research, however, has indicated that the monomeric isoform of CRP (mCRP) is responsible for the pro-inflammatory function of CRP, while pCRP is weakly anti-inflammatory. The objective of this minireview is to re-examine the evidence of CRP involvement in MDD with a view of mCRP as a potential biomarker.
Collapse
Affiliation(s)
- Mary G. Hornick
- College of Science, Health and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | | |
Collapse
|
7
|
Tao Q, Zhang C, Mercier G, Lunetta K, Ang TFA, Akhter‐Khan S, Zhang Z, Taylor A, Killiany RJ, Alosco M, Mez J, Au R, Zhang X, Farrer LA, Qiu WWQ. Identification of an APOE ε4-specific blood-based molecular pathway for Alzheimer's disease risk. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12490. [PMID: 37854772 PMCID: PMC10579631 DOI: 10.1002/dad2.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION The precise apolipoprotein E (APOE) ε4-specific molecular pathway(s) for Alzheimer's disease (AD) risk are unclear. METHODS Plasma protein modules/cascades were analyzed using weighted gene co-expression network analysis (WGCNA) in the Alzheimer's Disease Neuroimaging Initiative study. Multivariable regression analyses were used to examine the associations among protein modules, AD diagnoses, cerebrospinal fluid (CSF) phosphorylated tau (p-tau), and brain glucose metabolism, stratified by APOE genotype. RESULTS The Green Module was associated with AD diagnosis in APOE ε4 homozygotes. Three proteins from this module, C-reactive protein (CRP), complement C3, and complement factor H (CFH), had dose-dependent associations with CSF p-tau and cognitive impairment only in APOE ε4 homozygotes. The link among these three proteins and glucose hypometabolism was observed in brain regions of the default mode network (DMN) in APOE ε4 homozygotes. A Framingham Heart Study validation study supported the findings for AD. DISCUSSION The study identifies the APOE ε4-specific CRP-C3-CFH inflammation pathway for AD, suggesting potential drug targets for the disease.Highlights: Identification of an APOE ε4 specific molecular pathway involving blood CRP, C3, and CFH for the risk of AD.CRP, C3, and CFH had dose-dependent associations with CSF p-Tau and brain glucose hypometabolism as well as with cognitive impairment only in APOE ε4 homozygotes.Targeting CRP, C3, and CFH may be protective and therapeutic for AD onset in APOE ε4 carriers.
Collapse
Affiliation(s)
- Qiushan Tao
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
| | - Chao Zhang
- Section of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Gustavo Mercier
- Section of Molecular Imaging and Nuclear MedicineDepartment of RadiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Kathryn Lunetta
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Ting Fang Alvin Ang
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Samia Akhter‐Khan
- Department of Health Service & Population ResearchKing's College London, LondonDavid Goldberg CentreLondonUK
| | - Zhengrong Zhang
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew Taylor
- Department of OphthalmologyBoston University School of MedicineBostonMassachusettsUSA
| | - Ronald J. Killiany
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Michael Alosco
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Jesse Mez
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
| | - Rhoda Au
- Slone Epidemiology CenterSchool of Public HealthBoston University Medical Campus (BUMC)BostonMassachusettsUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Xiaoling Zhang
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Lindsay A. Farrer
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
- Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Wendy Wei Qiao Qiu
- Department of Pharmacology, Physiology & BiophysicsBoston University School of MedicineBostonMassachusettsUSA
- Alzheimer's Disease and CTE CentersBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | | |
Collapse
|