1
|
Tansey R, Graff K, Rai S, Merrikh D, Godfrey KJ, Vanderwal T, Bray S. Development of human visual cortical function: A scoping review of task- and naturalistic-fMRI studies through the interactive specialization and maturational frameworks. Neurosci Biobehav Rev 2024; 162:105729. [PMID: 38763178 DOI: 10.1016/j.neubiorev.2024.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Overarching theories such as the interactive specialization and maturational frameworks have been proposed to describe human functional brain development. However, these frameworks have not yet been systematically examined across the fMRI literature. Visual processing is one of the most well-studied fields in neuroimaging, and research in this area has recently expanded to include naturalistic paradigms that facilitate study in younger age ranges, allowing for an in-depth critical appraisal of these frameworks across childhood. To this end, we conducted a scoping review of 94 developmental visual fMRI studies, including both traditional experimental task and naturalistic studies, across multiple sub-domains (early visual processing, category-specific higher order processing, naturalistic visual processing). We found that across domains, many studies reported progressive development, but few studies describe regressive or emergent changes necessary to fit the maturational or interactive specialization frameworks. Our findings suggest a need for the expansion of developmental frameworks and clearer reporting of both progressive and regressive changes, along with well-powered, longitudinal studies.
Collapse
Affiliation(s)
- Ryann Tansey
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Kirk Graff
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shefali Rai
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Daria Merrikh
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kate J Godfrey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Zhu W, Zhou X, Xia LX. Brain structures and functional connectivity associated with individual differences in trait proactive aggression. Sci Rep 2019; 9:7731. [PMID: 31118455 PMCID: PMC6531458 DOI: 10.1038/s41598-019-44115-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Although considerable efforts have been made to understand the neural underpinnings of (state) reactive aggression, which is triggered by provocation or perceived threat, little is known about the neural correlates of proactive aggression, which is driven by instrumental motivations to obtain personal gains through aggressive means and which varies dramatically across individuals in terms of tendency of appealing to such means. Here, by combining structural (grey matter density, GMD) and functional (resting-state functional connection, RSFC) fMRI, we investigated brain structures and functional networks related to trait proactive aggression. We found that individual differences in trait proactive aggression were positively associated with GMD in bilateral dorsolateral prefrontal cortex (DLPFC) and negatively correlated with GMD in posterior cingulate cortex (PCC); they were also negatively correlated with the strength of functional connectivity between left PCC and other brain regions, including right DLPFC, right IPL, right MPFC/ACC, and bilateral precuneus. These findings shed light on the differential brain bases of proactive and reactive aggressions and suggested the neural underpinnings of proactive aggression.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Research Center of Psychology and Social Development, Southwest University, 400715, Chongqing, China
| | - Xiaolin Zhou
- School of Psychological and Cognitive Sciences, Peking University, 100871, Beijing, China.
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, 100871, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
| | - Ling-Xiang Xia
- Research Center of Psychology and Social Development, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
4
|
Xia J, Zhang W, Jiang Y, Li Y, Chen Q. Neural practice effect during cross-modal selective attention: Supra-modal and modality-specific effects. Cortex 2018; 106:47-64. [PMID: 29864595 DOI: 10.1016/j.cortex.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 11/25/2022]
Abstract
Practice and experiences gradually shape the central nervous system, from the synaptic level to large-scale neural networks. In natural multisensory environment, even when inundated by streams of information from multiple sensory modalities, our brain does not give equal weight to different modalities. Rather, visual information more frequently receives preferential processing and eventually dominates consciousness and behavior, i.e., visual dominance. It remains unknown, however, the supra-modal and modality-specific practice effect during cross-modal selective attention, and moreover whether the practice effect shows similar modality preferences as the visual dominance effect in the multisensory environment. To answer the above two questions, we adopted a cross-modal selective attention paradigm in conjunction with the hybrid fMRI design. Behaviorally, visual performance significantly improved while auditory performance remained constant with practice, indicating that visual attention more flexibly adapted behavior with practice than auditory attention. At the neural level, the practice effect was associated with decreasing neural activity in the frontoparietal executive network and increasing activity in the default mode network, which occurred independently of the modality attended, i.e., the supra-modal mechanisms. On the other hand, functional decoupling between the auditory and the visual system was observed with the progress of practice, which varied as a function of the modality attended. The auditory system was functionally decoupled with both the dorsal and ventral visual stream during auditory attention while was decoupled only with the ventral visual stream during visual attention. To efficiently suppress the irrelevant visual information with practice, auditory attention needs to additionally decouple the auditory system from the dorsal visual stream. The modality-specific mechanisms, together with the behavioral effect, thus support the visual dominance model in terms of the practice effect during cross-modal selective attention.
Collapse
Affiliation(s)
- Jing Xia
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Wei Zhang
- Epilepsy Center, Shanghai Deji Hospital, No. 378 Gulang Road, Putuo District, Shanghai 200331, PR China
| | - Yizhou Jiang
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - You Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, PR China
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, PR China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
5
|
Golarai G, Liberman A, Grill-Spector K. Experience Shapes the Development of Neural Substrates of Face Processing in Human Ventral Temporal Cortex. Cereb Cortex 2018; 27:1229-1244. [PMID: 26683171 DOI: 10.1093/cercor/bhv314] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In adult humans, the ventral temporal cortex (VTC) represents faces in a reproducible topology. However, it is unknown what role visual experience plays in the development of this topology. Using functional magnetic resonance imaging in children and adults, we found a sequential development, in which the topology of face-selective activations across the VTC was matured by age 7, but the spatial extent and degree of face selectivity continued to develop past age 7 into adulthood. Importantly, own- and other-age faces were differentially represented, both in the distributed multivoxel patterns across the VTC, and also in the magnitude of responses of face-selective regions. These results provide strong evidence that experience shapes cortical representations of faces during development from childhood to adulthood. Our findings have important implications for the role of experience and age in shaping the neural substrates of face processing in the human VTC.
Collapse
Affiliation(s)
| | | | - Kalanit Grill-Spector
- Department of Psychology, Stanford University.,Neuroscience Institute, Stanford University, Stanford, CA 94305-213, USA
| |
Collapse
|
6
|
Cignetti F, Fontan A, Menant J, Nazarian B, Anton JL, Vaugoyeau M, Assaiante C. Protracted Development of the Proprioceptive Brain Network During and Beyond Adolescence. Cereb Cortex 2018; 27:1285-1296. [PMID: 26733535 DOI: 10.1093/cercor/bhv323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proprioceptive processing is important for appropriate motor control, providing error-feedback and internal representation of movement for adjusting the motor command. Although proprioceptive functioning improves during childhood and adolescence, we still have few clues about how the proprioceptive brain network develops. Here, we investigated developmental changes in the functional organization of this network in early adolescents (n = 18, 12 ± 1 years), late adolescents (n = 18, 15 ± 1), and young adults (n = 18, 32 ± 4), by examining task-evoked univariate activity and patterns of functional connectivity (FC) associated with seeds placed in cortical (supramarginal gyrus) and subcortical (dorsal rostral putamen) regions. We found that although the network is already well established in early adolescence both in terms of topology and functioning principles (e.g., long-distance communication and economy in wiring cost), it is still undergoing refinement during adolescence, including a shift from diffuse to focal FC and a decreased FC strength. This developmental effect was particularly pronounced for fronto-striatal connections. Furthermore, changes in FC features continued beyond adolescence, although to a much lower extent. Altogether, these findings point to a protracted developmental time course for the proprioceptive network, which breaks with the relatively early functional maturation often associated with sensorimotor networks.
Collapse
Affiliation(s)
| | | | - Jasmine Menant
- Neuroscience Research Australia and University of New South Wales, Sydney, New South Wales, Australia
| | - Bruno Nazarian
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | - Jean-Luc Anton
- INT UMR 7289, Centre IRM Fonctionnelle Cérébrale, Aix-Marseille Université, CNRS, Marseille, France
| | | | | |
Collapse
|
7
|
Griffis JC, Elkhetali AS, Vaden RJ, Visscher KM. Distinct effects of trial-driven and task Set-related control in primary visual cortex. Neuroimage 2015; 120:285-297. [PMID: 26163806 DOI: 10.1016/j.neuroimage.2015.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 06/02/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022] Open
Abstract
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of inter-modal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors - portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas.
Collapse
Affiliation(s)
- Joseph C Griffis
- The University of Alabama at Birmingham Department of Psychology
| | | | - Ryan J Vaden
- The University of Alabama at Birmingham Department of Neurobiology
| | | |
Collapse
|
8
|
Graham AM, Pfeifer JH, Fisher PA, Lin W, Gao W, Fair DA. The potential of infant fMRI research and the study of early life stress as a promising exemplar. Dev Cogn Neurosci 2015; 12:12-39. [PMID: 25459874 PMCID: PMC4385461 DOI: 10.1016/j.dcn.2014.09.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 01/09/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) research with infants and toddlers has increased rapidly over the past decade, and provided a unique window into early brain development. In the current report, we review the state of the literature, which has established the feasibility and utility of task-based fMRI and resting state functional connectivity MRI (rs-fcMRI) during early periods of brain maturation. These methodologies have been successfully applied beginning in the neonatal period to increase understanding of how the brain both responds to environmental stimuli, and becomes organized into large-scale functional systems that support complex behaviors. We discuss the methodological challenges posed by this promising area of research. We also highlight that despite these challenges, early work indicates a strong potential for these methods to influence multiple research domains. As an example, we focus on the study of early life stress and its influence on brain development and mental health outcomes. We illustrate the promise of these methodologies for building on, and making important contributions to, the existing literature in this field.
Collapse
Affiliation(s)
- Alice M Graham
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, 1715 Franklin Boulevard, Eugene, OR 97403, United States
| | - Philip A Fisher
- Department of Psychology, University of Oregon, 1715 Franklin Boulevard, Eugene, OR 97403, United States
| | - Weili Lin
- Departments of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Wei Gao
- Departments of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Damien A Fair
- Department of Psychology, University of Oregon, 1715 Franklin Boulevard, Eugene, OR 97403, United States; Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States; Advanced Imaging Research Center, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| |
Collapse
|
9
|
Elkhetali AS, Vaden RJ, Pool SM, Visscher KM. Early visual cortex reflects initiation and maintenance of task set. Neuroimage 2014; 107:277-288. [PMID: 25485712 DOI: 10.1016/j.neuroimage.2014.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022] Open
Abstract
The human brain is able to process information flexibly, depending on a person's task. The mechanisms underlying this ability to initiate and maintain a task set are not well understood, but they are important for understanding the flexibility of human behavior and developing therapies for disorders involving attention. Here we investigate the differential roles of early visual cortical areas in initiating and maintaining a task set. Using functional Magnetic Resonance Imaging (fMRI), we characterized three different components of task set-related, but trial-independent activity in retinotopically mapped areas of early visual cortex, while human participants performed attention demanding visual or auditory tasks. These trial-independent effects reflected: (1) maintenance of attention over a long duration, (2) orienting to a cue, and (3) initiation of a task set. Participants performed tasks that differed in the modality of stimulus to be attended (auditory or visual) and in whether there was a simultaneous distractor (auditory only, visual only, or simultaneous auditory and visual). We found that patterns of trial-independent activity in early visual areas (V1, V2, V3, hV4) depend on attended modality, but not on stimuli. Further, different early visual areas play distinct roles in the initiation of a task set. In addition, activity associated with maintaining a task set tracks with a participant's behavior. These results show that trial-independent activity in early visual cortex reflects initiation and maintenance of a person's task set.
Collapse
Affiliation(s)
- Abdurahman S Elkhetali
- Neurobiology Department, University of Alabama at Birmingham, CIRC 111D, 1530 3(RD) Avenue South, Birmingham, AL 35294, USA.
| | - Ryan J Vaden
- Neurobiology Department, University of Alabama at Birmingham, CIRC 111D, 1530 3(RD) Avenue South, Birmingham, AL 35294, USA.
| | - Sean M Pool
- Biomedical Engineering, University of Alabama at Birmingham, 1530 3(RD) Avenue South, Birmingham, AL 35294, USA.
| | - Kristina M Visscher
- Neurobiology Department, University of Alabama at Birmingham, CIRC 111D, 1530 3(RD) Avenue South, Birmingham, AL 35294, USA; Biomedical Engineering, University of Alabama at Birmingham, 1530 3(RD) Avenue South, Birmingham, AL 35294, USA; Psychology Department, University of Alabama at Birmingham, 1530 3(RD) Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
10
|
Krishnan S, Leech R, Mercure E, Lloyd-Fox S, Dick F. Convergent and Divergent fMRI Responses in Children and Adults to Increasing Language Production Demands. Cereb Cortex 2014; 25:3261-77. [PMID: 24907249 PMCID: PMC4585486 DOI: 10.1093/cercor/bhu120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In adults, patterns of neural activation associated with perhaps the most basic language skill—overt object naming—are extensively modulated by the psycholinguistic and visual complexity of the stimuli. Do children's brains react similarly when confronted with increasing processing demands, or they solve this problem in a different way? Here we scanned 37 children aged 7–13 and 19 young adults who performed a well-normed picture-naming task with 3 levels of difficulty. While neural organization for naming was largely similar in childhood and adulthood, adults had greater activation in all naming conditions over inferior temporal gyri and superior temporal gyri/supramarginal gyri. Manipulating naming complexity affected adults and children quite differently: neural activation, especially over the dorsolateral prefrontal cortex, showed complexity-dependent increases in adults, but complexity-dependent decreases in children. These represent fundamentally different responses to the linguistic and conceptual challenges of a simple naming task that makes no demands on literacy or metalinguistics. We discuss how these neural differences might result from different cognitive strategies used by adults and children during lexical retrieval/production as well as developmental changes in brain structure and functional connectivity.
Collapse
Affiliation(s)
- Saloni Krishnan
- Birkbeck-UCL Centre for NeuroImaging, London, UK Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Robert Leech
- Department of Neurosciences and Mental Health, Imperial College London, London, UK
| | | | - Sarah Lloyd-Fox
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Frederic Dick
- Birkbeck-UCL Centre for NeuroImaging, London, UK Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| |
Collapse
|
11
|
Moses P, Hernandez LM, Orient E. Age-related differences in cerebral blood flow underlie the BOLD fMRI signal in childhood. Front Psychol 2014; 5:300. [PMID: 24795666 PMCID: PMC3997021 DOI: 10.3389/fpsyg.2014.00300] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/23/2014] [Indexed: 01/19/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) has become a premiere technique for studying the development and neural mediation of a wide range of typical and atypical behaviors in children. While the mechanism of the blood oxygen level-dependent (BOLD) fMRI signal has been a focus of investigation in the mature brain, it has been largely unexamined in the developing brain. One critical component of the BOLD signal that has been noted to change with age is cerebral blood flow (CBF). Reports of CBF in children based on clinical radioactive tracing methods have found elevated CBF in childhood relative to adulthood, which could affect the BOLD response. This study used non-invasive arterial spin labeling magnetic resonance imaging to study resting state and activity-driven CBF in conjunction with the functional BOLD response in healthy children 8 and 12 years of age and in adults. Participants performed a finger-tapping task to generate robust activation measured in the motor cortex. Quantification of resting state CBF demonstrated higher CBF in 8 year olds and in 12 year olds relative to adults. The absolute increase in CBF between baseline rest and peak response during the motor task was also higher in both child groups compared to adults. In contrast, the relative increase of CBF above baseline, expressed as percent of CBF change, was comparable across groups. The percent of BOLD signal change was also stable across age groups. This set of findings suggests that along with elevated CBF in childhood, other component processes of the BOLD response are also in an elevated state such that together they yield a net BOLD effect that resembles adults. These findings coincide with our previous examination of hemodynamics in primary sensory cortex. Although the magnitude of the BOLD response appears consistent between childhood and adulthood, the underlying physiology and cerebrovascular dynamics that give rise to the BOLD effect differ between immature and mature neural systems.
Collapse
Affiliation(s)
- Pamela Moses
- Department of Psychology, San Diego State University San Diego, CA, USA
| | | | - Elizabeth Orient
- Department of Psychology, San Diego State University San Diego, CA, USA
| |
Collapse
|
12
|
Alahyane N, Brien DC, Coe BC, Stroman PW, Munoz DP. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network? Neuroimage 2014; 98:103-17. [PMID: 24642280 DOI: 10.1016/j.neuroimage.2014.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/10/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022] Open
Abstract
The ability to prepare for an action improves the speed and accuracy of its performance. While many studies indicate that behavior performance continues to improve throughout childhood and adolescence, it remains unclear whether or how preparatory processes change with development. Here, we used a rapid event-related fMRI design in three age groups (8-12, 13-17, 18-25years) who were instructed to execute either a prosaccade (look toward peripheral target) or an antisaccade (look away from target) task. We compared brain activity within the core fronto-parietal network involved in saccade control at two epochs of saccade generation: saccade preparation related to task instruction versus saccade execution related to target appearance. The inclusion of catch trials containing only task instruction and no target or saccade response allowed us to isolate saccade preparation from saccade execution. Five regions of interest were selected: the frontal, supplementary, parietal eye fields which are consistently recruited during saccade generation, and two regions involved in top down executive control: the dorsolateral prefrontal and anterior cingulate cortices. Our results showed strong evidence that developmental improvements in saccade performance were related to better saccade preparation rather than saccade execution. These developmental differences were mostly attributable to children who showed reduced fronto-parietal activity during prosaccade and antisaccade preparation, along with longer saccade reaction times and more incorrect responses, compared to adolescents and adults. The dorsolateral prefrontal cortex was engaged similarly across age groups, suggesting a general role in maintaining task instructions through the whole experiment. Overall, these findings suggest that developmental improvements in behavioral control are supported by improvements in effectively presetting goal-appropriate brain systems.
Collapse
Affiliation(s)
- Nadia Alahyane
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Patrick W Stroman
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
13
|
Moses P, DiNino M, Hernandez L, Liu TT. Developmental changes in resting and functional cerebral blood flow and their relationship to the BOLD response. Hum Brain Mapp 2013; 35:3188-98. [PMID: 24142547 DOI: 10.1002/hbm.22394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/30/2013] [Accepted: 08/02/2013] [Indexed: 11/08/2022] Open
Abstract
Our understanding of cerebral blood flow (CBF) in the healthy developing brain has been limited due to the invasiveness of methods historically available for CBF measurement. Clinically based studies using radioactive tracers with children have focused on resting state CBF. Yet potential age-related changes in flow during stimulation may affect the blood oxygenation level dependent (BOLD) response used to investigate cognitive neurodevelopment. This study used noninvasive arterial spin labeling magnetic resonance imaging to compare resting state and stimulus-driven CBF between typically developing children 8 years of age, 12 years of age, and adults. Further, we acquired functional CBF and BOLD images simultaneously to examine their relationship during sensory stimulation. Analyses revealed age-related CBF differences during rest; the youngest group showed greater CBF than 12-year-olds or adults. During stimulation of the auditory cortex, younger children also showed a greater absolute increase in CBF than adults. However, the magnitude of CBF response above baseline was comparable between groups. Similarly, the amplitude of the BOLD response was stable across age. The combination of the 8 year olds' elevated CBF, both at rest and in response to stimulation, without elevation in the BOLD response suggests that additional physiological factors that also play a role in the BOLD effect, such as metabolic processes that are also elevated in this period, may offset the increased CBF in these children. Thus, CBF measurements reveal maturational differences in the hemodynamics underlying the BOLD effect in children despite the resemblance of the BOLD response between children and adults.
Collapse
Affiliation(s)
- Pamela Moses
- Department of Psychology, San Diego State University, San Diego, California
| | | | | | | |
Collapse
|
14
|
Differential face-network adaptation in children, adolescents and adults. Neuroimage 2013; 69:11-20. [DOI: 10.1016/j.neuroimage.2012.11.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023] Open
|
15
|
Petersen SE, Dubis JW. The mixed block/event-related design. Neuroimage 2012; 62:1177-84. [PMID: 22008373 PMCID: PMC3288695 DOI: 10.1016/j.neuroimage.2011.09.084] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022] Open
Abstract
Neuroimaging studies began using block design and event-related design experiments. While providing many insights into brain functions, these fMRI design types ignore components of the BOLD signal that can teach us additional elements. The development of the mixed block/event-related fMRI design allowed for a fuller characterization of nonlinear and time-sensitive neuronal responses: for example, the interaction between block and event related factors and the simultaneous extraction of transient activity related to trials and block transitions and sustained activity related to task-level processing. This review traces the origins of the mixed block/event-related design from conceptual precursors to a seminal paper and on to subsequent studies using the method. The review also comments on aspects of the experimental design that must be considered when attempting to use the mixed block/event-related design. When taking into account these considerations, the mixed block/event-related design allows fuller utilization of the BOLD signal allowing deeper interpretation of how regions of the brain function on multiple timescales.
Collapse
Affiliation(s)
- Steven E. Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychology, Washington University, St. Louis, MO 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph W. Dubis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Motor learning-induced changes in functional brain connectivity as revealed by means of graph-theoretical network analysis. Neuroimage 2012; 61:633-50. [PMID: 22503778 DOI: 10.1016/j.neuroimage.2012.03.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 11/21/2022] Open
|
17
|
Hagmann P, Grant PE, Fair DA. MR connectomics: a conceptual framework for studying the developing brain. Front Syst Neurosci 2012; 6:43. [PMID: 22707934 PMCID: PMC3374479 DOI: 10.3389/fnsys.2012.00043] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 05/08/2012] [Indexed: 12/25/2022] Open
Abstract
THE COMBINATION OF ADVANCED NEUROIMAGING TECHNIQUES AND MAJOR DEVELOPMENTS IN COMPLEX NETWORK SCIENCE, HAVE GIVEN BIRTH TO A NEW FRAMEWORK FOR STUDYING THE BRAIN: "connectomics." This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research.
Collapse
Affiliation(s)
- Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL)Lausanne, Switzerland
- Signal Processing Laboratory 5, Ecole Polytechnique Fédérale de Lausanne (EPFL)Lausanne, Switzerland
| | - Patricia E. Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Children's Hospital Boston, BostonMA, USA
- Division of Newborn Medicine and Department of Radiology, Children's Hospital Boston, BostonMA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, MGH-Harvard, BostonMA, USA
| | - Damien A. Fair
- Department of Psychiatry, Oregon Health and Science University, PortlandOR, USA
| |
Collapse
|
18
|
Eggebrecht AT, White BR, Ferradal SL, Chen C, Zhan Y, Snyder AZ, Dehghani H, Culver JP. A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping. Neuroimage 2012; 61:1120-8. [PMID: 22330315 DOI: 10.1016/j.neuroimage.2012.01.124] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/26/2012] [Accepted: 01/28/2012] [Indexed: 11/29/2022] Open
Abstract
Functional neuroimaging commands a dominant role in current neuroscience research. However its use in bedside clinical and certain neuro-scientific studies has been limited because the current tools lack the combination of being non-invasive, non-ionizing and portable while maintaining moderate resolution and localization accuracy. Optical neuroimaging satisfies many of these requirements, but, until recent advances in high-density diffuse optical tomography (HD-DOT), has been hampered by limited resolution. While early results of HD-DOT have been promising, a quantitative voxel-wise comparison and validation of HD-DOT against the gold standard of functional magnetic resonance imaging (fMRI) has been lacking. Herein, we provide such an analysis within the visual cortex using matched visual stimulation protocols in a single group of subjects (n=5) during separate HD-DOT and fMRI scanning sessions. To attain the needed voxel-to-voxel co-registration between HD-DOT and fMRI image spaces, we implemented subject-specific head modeling that incorporated MRI anatomy, detailed segmentation, and alignment of source and detector positions. Comparisons of the visual responses found an average localization error between HD-DOT and fMRI of 4.4+/-1mm, significantly less than the average distance between cortical gyri. This specificity demonstrates that HD-DOT has sufficient image quality to be useful as a surrogate for fMRI.
Collapse
Affiliation(s)
- Adam T Eggebrecht
- Department of Radiology, Washington University School of Medicine, 4525 Scott Ave, East Bldg. CB 8225, St Louis, MO, 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Church JA, Petersen SE, Schlaggar BL. Comment on "The physiology of developmental changes in BOLD functional imaging signals" by Harris, Reynell, and Attwell. Dev Cogn Neurosci 2011; 2:220-2. [PMID: 22483071 DOI: 10.1016/j.dcn.2011.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022] Open
Affiliation(s)
- Jessica A Church
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
20
|
Demos KE, Kelley WM, Heatherton TF. Dietary restraint violations influence reward responses in nucleus accumbens and amygdala. J Cogn Neurosci 2010; 23:1952-63. [PMID: 20807052 DOI: 10.1162/jocn.2010.21568] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Numerous studies have demonstrated that consuming high-calorie food leads to subsequent overeating by chronic dieters. The present study investigates the neural correlates of such self-regulatory failures using fMRI. Chronic dieters (n = 50) and non-dieters (n = 50) consumed either a 15-oz glass of cold water or a 15-oz milkshake and were subsequently imaged while viewing pictures of animals, environmental scenes, people, and appetizing food items. Results revealed a functional dissociation in nucleus accumbens and amygdala activity that paralleled well-established behavioral patterns of eating observed in dieters and non-dieters. Whereas non-dieters showed the greatest nucleus accumbens activity in response to food items after water consumption, dieters showed the greatest activity after consuming the milkshake. Activity in the left amygdala demonstrated the reverse interaction. Considered together with previously reported behavioral findings, the present results offer a suggested neural substrate for diet failure.
Collapse
|
21
|
Keulers EHH, Stiers P, Jolles J. Developmental changes between ages 13 and 21 years in the extent and magnitude of the BOLD response during decision making. Neuroimage 2010; 54:1442-54. [PMID: 20807576 DOI: 10.1016/j.neuroimage.2010.08.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/18/2010] [Accepted: 08/23/2010] [Indexed: 11/19/2022] Open
Abstract
Developmental neuroimaging results have suggested a progression in focalization in functional activations from childhood to adulthood. The mechanisms underlying this process are thought to be an age-related decrease in activation extent as well as an increased magnitude in task-related areas. The present study aimed to evaluate these notions while controlling for confounders that may bias towards focalization. We used adolescent subjects in small age ranges. In addition, head motion corrections were incorporated in statistical analyses and regions of interest were identified for each participant separately to overcome inter-individual variability in anatomy and functional organization. Activation patterns of 13-, 17- and 21-year-old males were compared during the decision phase of a challenging and complex gambling paradigm. The BOLD amplitude enhanced with increasing age, modulated by task conditions. First, response amplitude during difficult, endogenous relative to exogenous decisions increased with age. This decision difficulty effect was most pronounced in 21-year-olds, both in areas associated with task execution and default mode areas. Second, deciding to pass as opposed to gamble exerted more effort in inferior frontal and parietal areas only by 13- and 17-year-olds. There was neither an age-related decrease in activation extent, nor any qualitative shifts in activated areas as suggested by the focalization hypothesis. These results suggest that although different age groups throughout adolescence engage similar brain areas during decision making, the response magnitude in these areas increases with age particularly during difficult task conditions, providing that confounding factors are controlled.
Collapse
Affiliation(s)
- Esther H H Keulers
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|
22
|
Fair DA, Choi AH, Dosenbach YBL, Coalson RS, Miezin FM, Petersen SE, Schlaggar BL. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study. BRAIN AND LANGUAGE 2010; 114:135-46. [PMID: 19819000 PMCID: PMC2888929 DOI: 10.1016/j.bandl.2009.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/25/2009] [Accepted: 09/02/2009] [Indexed: 05/28/2023]
Abstract
Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries.
Collapse
Affiliation(s)
- Damien A Fair
- Department of Psychiatry, Oregon Health and Science University, Portland, 97239, United States.
| | | | | | | | | | | | | |
Collapse
|
23
|
Luna B, Velanova K, Geier CF. Methodological approaches in developmental neuroimaging studies. Hum Brain Mapp 2010; 31:863-71. [PMID: 20496377 PMCID: PMC2907666 DOI: 10.1002/hbm.21073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/11/2022] Open
Abstract
Pediatric neuroimaging is increasingly providing insights into the neural basis of cognitive development. Indeed, we have now arrived at a stage where we can begin to identify optimal methodological and statistical approaches to the acquisition and analysis of developmental imaging data. In this article, we describe a number of these approaches and how their selection impacts the ability to examine and interpret developmental effects. We describe preferred approaches to task selection, definition of age groups, selection of fMRI designs, definition of regions of interest (ROI), optimal baseline measures, and treatment of timecourse data. Consideration of these aspects of developmental neuroimaging reveals that unlike single-group neuroimaging studies, developmental studies pose unique challenges that impact study planning, task design, data analysis, and the interpretation of findings.
Collapse
Affiliation(s)
- Beatriz Luna
- Laboratory of Neurocognitive Development, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
24
|
Fair DA, Bathula D, Mills KL, Dias TGC, Blythe MS, Zhang D, Snyder AZ, Raichle ME, Stevens AA, Nigg JT, Nagel BJ. Maturing thalamocortical functional connectivity across development. Front Syst Neurosci 2010; 4:10. [PMID: 20514143 PMCID: PMC2876871 DOI: 10.3389/fnsys.2010.00010] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/06/2010] [Indexed: 11/24/2022] Open
Abstract
Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al. to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the cortex with dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were also identified but were limited. These findings are consistent with known anatomical and physiological cortical–subcortical changes over development. The methods and developmental context provided here will be important for understanding how cortical–subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Damien A Fair
- Department of Psychiatry, Oregon Health and Science University Portland, OR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Masterton RA, Harvey AS, Archer JS, Lillywhite LM, Abbott DF, Scheffer IE, Jackson GD. Focal epileptiform spikes do not show a canonical BOLD response in patients with benign rolandic epilepsy (BECTS). Neuroimage 2010; 51:252-60. [PMID: 20139011 DOI: 10.1016/j.neuroimage.2010.01.109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/21/2010] [Accepted: 01/30/2010] [Indexed: 10/19/2022] Open
|
26
|
Cohen Kadosh K, Henson RNA, Cohen Kadosh R, Johnson MH, Dick F. Task-dependent Activation of Face-sensitive Cortex: An fMRI Adaptation Study. J Cogn Neurosci 2010; 22:903-17. [DOI: 10.1162/jocn.2009.21224] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Face processing in the human brain recruits a widespread cortical network based mainly in the ventral and lateral temporal and occipital lobes. However, the extent to which activity within this network is driven by different face properties versus being determined by the manner in which faces are processed (as determined by task requirements) remains unclear. We combined a functional magnetic resonance adaptation paradigm with three target detection tasks, where participants had to detect a specific identity, emotional expression, or direction of gaze, while the task-irrelevant face properties varied independently. Our analysis focused on differentiating the influence of task demands and the processing of stimulus changes within the neural network underlying face processing. Results indicated that the fusiform and inferior occipital gyrus do not respond as a function of stimulus change (such as identity), but rather their activity depends on the task demands. Specifically, we hypothesize that, whether the task encourages a configural- or a featural-processing strategy determines activation. Our results for the superior temporal sulcus were even more specific in that we only found greater responses to stimulus changes that may engage featural processing. These results contribute to our understanding of the functional anatomy of face processing and provide insights into possible compensatory mechanisms in face processing.
Collapse
|
27
|
Church JA, Wenger KK, Dosenbach NUF, Miezin FM, Petersen SE, Schlaggar BL. Task control signals in pediatric tourette syndrome show evidence of immature and anomalous functional activity. Front Hum Neurosci 2009; 3:38. [PMID: 19949483 PMCID: PMC2784679 DOI: 10.3389/neuro.09.038.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/07/2009] [Indexed: 11/13/2022] Open
Abstract
Tourette Syndrome (TS) is a pediatric movement disorder that may affect control signaling in the brain. Previous work has proposed a dual-networks architecture of control processing involving a task-maintenance network and an adaptive control network (Dosenbach et al., 2008). A prior resting-state functional connectivity MRI (rs-fcMRI) analysis in TS has revealed functional immaturity in both putative control networks, with "anomalous" correlations (i.e., correlations outside the typical developmental range) limited to the adaptive control network (Church et al., 2009). The present study used functional MRI (fMRI) to study brain activity related to adaptive control (by studying start-cues signals), and to task-maintenance (by studying signals sustained across a task set). Two hypotheses from the previous rs-fcMRI results were tested. First, adaptive control (i.e., start-cue) activity will be altered in TS, including activity inconsistent with typical development ("anomalous"). Second, group differences found in task-maintenance (i.e., sustained) activity will be consistent with functional immaturity in TS. We examined regions found through a direct comparison of adolescents with and without TS, as well as regions derived from a previous investigation that showed differences between unaffected children and adults. The TS group showed decreased start-cue signal magnitude in regions where start-cue activity is unchanged over typical development, consistent with anomalous adaptive control. The TS group also had higher magnitude sustained signals in frontal cortex regions that overlapped with regions showing differences over typical development, consistent with immature task-maintenance in TS. The results demonstrate task-related fMRI signal differences anticipated by the atypical functional connectivity found previously in adolescents with TS, strengthening the evidence for functional immaturity and anomalous signaling in control networks in adolescents with TS.
Collapse
Affiliation(s)
- Jessica A Church
- Department of Neurology, Washington University School of Medicine St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Geier CF, Terwilliger R, Teslovich T, Velanova K, Luna B. Immaturities in reward processing and its influence on inhibitory control in adolescence. ACTA ACUST UNITED AC 2009; 20:1613-29. [PMID: 19875675 PMCID: PMC2882823 DOI: 10.1093/cercor/bhp225] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of immature reward processing and the influence of rewards on basic elements of cognitive control during adolescence are currently not well understood. Here, during functional magnetic resonance imaging, healthy adolescents and adults performed a modified antisaccade task in which trial-by-trial reward contingencies were manipulated. The use of a novel fast, event-related design enabled developmental differences in brain function underlying temporally distinct stages of reward processing and response inhibition to be assessed. Reward trials compared with neutral trials resulted in faster correct inhibitory responses across ages and in fewer inhibitory errors in adolescents. During reward trials, the blood oxygen level-dependent signal was attenuated in the ventral striatum in adolescents during cue assessment, then overactive during response preparation, suggesting limitations during adolescence in reward assessment and heightened reactivity in anticipation of reward compared with adults. Importantly, heightened activity in the frontal cortex along the precentral sulcus was also observed in adolescents during reward-trial response preparation, suggesting reward modulation of oculomotor control regions supporting correct inhibitory responding. Collectively, this work characterizes specific immaturities in adolescent brain systems that support reward processing and describes the influence of reward on inhibitory control. In sum, our findings suggest mechanisms that may underlie adolescents' vulnerability to poor decision-making and risk-taking behavior.
Collapse
Affiliation(s)
- C F Geier
- Laboratory of Neurocognitive Development, Department of Psychiatry and Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Understanding how immaturities in the reward system affect decision-making can inform us on adolescent vulnerabilities to risk-taking, which is a primary contributor to mortality and substance abuse in this age group. In this paper, we review the literature characterizing the neurodevelopment of reward and cognitive control and propose a model for adolescent reward processing. While the functional neuroanatomy of the mature reward system has been well-delineated, adolescent reward processing is just beginning to be understood. Results indicate that adolescents relative to adults demonstrate decreased anticipatory processing and assessment of risk, but an increased consummatory response. Such differences could result in suboptimal representations of reward valence and value and bias adolescent decision-making. These functional differences in reward processing occur in parallel with on-going structural and pharmacological maturation in the adolescent brain. In addition to limitations in incentive processing, basic cognitive control abilities, including working memory and inhibitory control, continue to mature during adolescence. Consequently, adolescents may be limited, relative to adults, in their abilities to inhibit impulsive behaviors and reliably hold 'on-line' comparisons of potential rewards/punishments during decision-making.
Collapse
Affiliation(s)
- Charles Geier
- Department of Psychology, University of Pittsburgh, PA 15213, United States.
| | | |
Collapse
|
30
|
Functional brain networks develop from a "local to distributed" organization. PLoS Comput Biol 2009; 5:e1000381. [PMID: 19412534 PMCID: PMC2671306 DOI: 10.1371/journal.pcbi.1000381] [Citation(s) in RCA: 1099] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/01/2009] [Indexed: 12/15/2022] Open
Abstract
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways. The first two decades of life represent a period of extraordinary developmental change in sensory, motor, and cognitive abilities. One of the ultimate goals of developmental cognitive neuroscience is to link the complex behavioral milestones that occur throughout this time period with the equally intricate functional and structural changes of the underlying neural substrate. Achieving this goal would not only give us a deeper understanding of normal development but also a richer insight into the nature of developmental disorders. In this report, we use computational analyses, in combination with a recently developed MRI technique that measures spontaneous brain activity, to help us to understand the principles that guide the maturation of the human brain. We find that brain regions in children communicate with other regions more locally but that over age communication becomes more distributed. Interestingly, the efficiency of communication in children (measured as a ‘small world’ network) is comparable to that of the adult. We argue that these findings have important implications for understanding both the maturation and the function of neural systems in typical and atypical development.
Collapse
|
31
|
Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 2008; 19:640-57. [PMID: 18653667 DOI: 10.1093/cercor/bhn117] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human cerebral development is remarkably protracted. Although microstructural processes of neuronal maturation remain accessible only to morphometric post-mortem studies, neuroimaging tools permit the examination of macrostructural aspects of brain development. The analysis of resting-state functional connectivity (FC) offers novel possibilities for the investigation of cerebral development. Using seed-based FC methods, we examined the development of 5 functionally distinct cingulate-based intrinsic connectivity networks (ICNs) in children (n = 14, 10.6 +/- 1.5 years), adolescents (n = 12, 15.4 +/- 1.2) and young adults (n=14, 22.4 +/- 1.2). Children demonstrated a more diffuse pattern of correlation with voxels proximal to the seed region of interest (ROI) ("local FC"), whereas adults exhibited more focal patterns of FC, as well as a greater number of significantly correlated voxels at long distances from the seed ROI. Adolescents exhibited intermediate patterns of FC. Consistent with evidence for different maturational time courses, ICNs associated with social and emotional functions exhibited the greatest developmental effects. Our findings demonstrate the utility of FC for the study of developing functional organization. Moreover, given that ICNs are thought to have an anatomical basis in neuronal connectivity, measures of FC may provide a quantitative index of brain maturation in healthy subjects and those with neurodevelopmental disorders.
Collapse
Affiliation(s)
- A M Clare Kelly
- Phyllis Green and Randolph Cōwen Institute for Pediatric Neuroscience at the NYU Child Study Center, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Developmental neuroimaging of the human ventral visual cortex. Trends Cogn Sci 2008; 12:152-62. [PMID: 18359267 DOI: 10.1016/j.tics.2008.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 10/22/2022]
Abstract
Here, we review recent results that investigate the development of the human ventral stream from childhood, through adolescence and into adulthood. Converging evidence suggests a differential developmental trajectory across ventral stream regions, in which face-selective regions show a particularly long developmental time course, taking more than a decade to become adult-like. We discuss the implications of these recent findings, how they relate to age-dependent improvements in recognition memory performance and propose possible neural mechanisms that might underlie this development. These results have important implications regarding the role of experience in shaping the ventral stream and the nature of the underlying representations.
Collapse
|
33
|
Velanova K, Wheeler ME, Luna B. Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. ACTA ACUST UNITED AC 2008; 18:2505-22. [PMID: 18281300 DOI: 10.1093/cercor/bhn012] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Documenting the development of the functional anatomy underlying error processing is critically important for understanding age-related improvements in cognitive performance. Here we used functional magnetic resonance imaging to examine time courses of brain activity in 77 individuals aged 8-27 years during correct and incorrect performance of an oculomotor task requiring inhibitory control. Canonical eye-movement regions showed increased activity for correct versus error trials but no differences between children, adolescents and young adults, suggesting that core task processes are in place early in development. Anterior cingulate cortex (ACC) was a central focus. In rostral ACC all age groups showed significant deactivation during correct but not error trials, consistent with the proposal that such deactivation reflects suspension of a "default mode" necessary for effective controlled performance. In contrast, dorsal ACC showed increased and extended modulation for error versus correct trials in adults, which, in children and adolescents, was significantly attenuated. Further, younger age groups showed reduced activity in posterior attentional regions, relying instead on increased recruitment of regions within prefrontal cortex. This work suggests that functional changes in dorsal ACC associated with error regulation and error-feedback utilization, coupled with changes in the recruitment of "long-range" attentional networks, underlie age-related improvements in performance.
Collapse
Affiliation(s)
- Katerina Velanova
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Sarah Durston
- Sackler Institute for Developmental Psychobiology, Weill Medical College of Cornell University, New York, USA.
| | | |
Collapse
|
35
|
Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE. A core system for the implementation of task sets. Neuron 2006; 50:799-812. [PMID: 16731517 PMCID: PMC3621133 DOI: 10.1016/j.neuron.2006.04.031] [Citation(s) in RCA: 1334] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/20/2006] [Accepted: 04/21/2006] [Indexed: 12/01/2022]
Abstract
When performing tasks, humans are thought to adopt task sets that configure moment-to-moment data processing. Recently developed mixed blocked/event-related designs allow task set-related signals to be extracted in fMRI experiments, including activity related to cues that signal the beginning of a task block, "set-maintenance" activity sustained for the duration of a task block, and event-related signals for different trial types. Data were conjointly analyzed from mixed design experiments using ten different tasks and 183 subjects. Dorsal anterior cingulate cortex/medial superior frontal cortex (dACC/msFC) and bilateral anterior insula/frontal operculum (aI/fO) showed reliable start-cue and sustained activations across all or nearly all tasks. These regions also carried the most reliable error-related signals in a subset of tasks, suggesting that the regions form a "core" task-set system. Prefrontal regions commonly related to task control carried task-set signals in a smaller subset of tasks and lacked convergence across signal types.
Collapse
Affiliation(s)
- Nico U.F. Dosenbach
- Department of Radiology, Washington University School of Medicine St. Louis, Missouri 63110
| | - Kristina M. Visscher
- Volen Center for Complex Systems Brandeis University Waltham, Massachusetts 02454
| | - Erica D. Palmer
- Department of Psychology San Diego State University San Diego, California 92120
| | - Francis M. Miezin
- Department of Radiology, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri 63110
| | - Kristin K. Wenger
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri 63110
| | - Hyunseon C. Kang
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri 63110
| | | | - Ansley L. Grimes
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri 63110
| | - Bradley L. Schlaggar
- Department of Radiology, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Neurobiology and Anatomy, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Pediatrics, Washington University School of Medicine St. Louis, Missouri 63110
| | - Steven E. Petersen
- Department of Radiology, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Neurobiology and Anatomy, Washington University School of Medicine St. Louis, Missouri 63110
- Department of Psychology, Washington University St. Louis, Missouri 63130
| |
Collapse
|
36
|
Burgund ED, Lugar HM, Miezin FM, Schlaggar BL, Petersen SE. The development of sustained and transient neural activity. Neuroimage 2005; 29:812-21. [PMID: 16236529 DOI: 10.1016/j.neuroimage.2005.08.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 07/19/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022] Open
Abstract
Sustained and transient signals were compared in a group of 7-8-year-old children and a group of adults performing the same cognitive task using functional magnetic resonance imaging (fMRI) in conjunction with a mixed blocked/event-related design. Results revealed several regions, including a region in the right lateral inferior frontal gyrus, that exhibited opposing developmental trajectories in sustained and transient signals--in particular, decreased sustained signals and increased transient signals with age. Re-analysis of the data assuming "blocked" and "event-related" designs, as opposed to a mixed design, produced different results. In combination, these results may help to explain contradictory findings in the literature regarding the direction of neural development in frontal cortex. Moreover, these results underscore the value of separating sustained and transient signals in fMRI studies of development.
Collapse
Affiliation(s)
- E Darcy Burgund
- Department of Psychology, MS-25, Rice University, PO Box 1892, Houston, TX 77251, USA.
| | | | | | | | | |
Collapse
|
37
|
Thomason ME, Burrows BE, Gabrieli JDE, Glover GH. Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 2005; 25:824-37. [PMID: 15808983 DOI: 10.1016/j.neuroimage.2004.12.026] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 11/19/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022] Open
Abstract
Application of fMRI to studies of cognitive development is of growing interest because of its sensitivity and non-invasive nature. However, interpretation of fMRI results in children is presently based on vascular dynamics that have been studied primarily in healthy adults. Comparison of the neurological basis of cognitive development is valid to the extent that the neurovascular responsiveness between children and adults is equal. The present study was designed to detect age-related vascular differences that may contribute to altered BOLD fMRI signal responsiveness. We examined BOLD signal changes in response to breath holding, a global, systemic state change in brain oxygenation. Children exhibited greater percent signal changes than adults in grey and white matter, and this was accompanied by an increase in noise. Consequently, the volume of activation exceeding statistical threshold was reduced in children. The reduced activation in children was well modeled by adding noise to adult data. These findings raise the possibility that developmental differences in fMRI findings between children and adults could, under some circumstances, reflect greater noise in the BOLD response in the brains of children than adults. BOLD responses varied across brain regions, but showed similar regional variation in children and adults.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Psychology, Neurosciences Program, Stanford University, Jordan Hall, Bldg. 420, Stanford, CA 94305-2130, USA.
| | | | | | | |
Collapse
|
38
|
Darcy Burgund E, Lugar HM, Schlaggar BL, Petersen SE. Task demands modulate sustained and transient neural activity during visual-matching tasks. Neuroimage 2005; 25:511-9. [PMID: 15784430 DOI: 10.1016/j.neuroimage.2004.12.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 12/14/2004] [Accepted: 12/17/2004] [Indexed: 11/16/2022] Open
Abstract
The extent to which a task demands verbal or non-verbal processing may influence which neural regions underlie performance. In the present study, sustained and transient responses were examined using functional magnetic resonance imaging (fMRI) in conjunction with a mixed blocked/event-related design during three visual-matching tasks that varied in the extent to which they relied on verbal processing. In a name-matching task, subjects decided whether two letters had the same or a different name (e.g., A a); in a physical-matching task, subjects decided whether two letters were exactly the same or different (e.g., A A); in a non-letter-matching task, subjects decided whether two non-letters were exactly the same or different. Results revealed several regions in which sustained activity differed across the three tasks as well as several regions in which sustained activity did not differ. Most notably, regions in the right inferior frontal gyrus exhibited greater sustained activity during the name-matching task than during the physical or non-letter-matching tasks, indicating that sustained activity in this region is sensitive to the amount of verbal processing required by a particular task. Moreover, transient activity in the right inferior frontal regions, as well as others, exhibited the opposite pattern of results. In combination, results suggest that sustained and transient activities interact to produce the context-appropriate response during visual-matching tasks.
Collapse
Affiliation(s)
- E Darcy Burgund
- Department of Psychology, MS 25, Rice University, PO Box 1892, Houston, TX 77251, USA
| | | | | | | |
Collapse
|