1
|
Horwitz A, Mortensen EL, Osler M, Fagerlund B, Lauritzen M, Benedek K. Passive Double-Sensory Evoked Coherence Correlates with Long-Term Memory Capacity. Front Hum Neurosci 2017; 11:598. [PMID: 29311868 PMCID: PMC5735981 DOI: 10.3389/fnhum.2017.00598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/24/2017] [Indexed: 01/22/2023] Open
Abstract
HIGHLIGHTS Memory correlates with the difference between single and double-sensory evoked steady-state coherence in the gamma range (ΔC).The correlation is most pronounced for the anterior brain region (ΔCA ).The correlation is not driven by birth size, education, speed of processing, or intelligence.The sensitivity of ΔCA for detecting low memory capacity is 90%. Cerebral rhythmic activity and oscillations are important pathways of communication between cortical cell assemblies and may be key factors in memory. We asked whether memory performance is related to gamma coherence in a non-task sensory steady-state stimulation. We investigated 40 healthy males born in 1953 who were part of a Danish birth cohort study. Coherence was measured in the gamma range in response to a single-sensory visual stimulation (36 Hz) and a double-sensory combined audiovisual stimulation (auditive: 40 Hz; visual: 36 Hz). The individual difference in coherence (ΔC) between the bimodal and monomodal stimulation was calculated for each subject and used as the main explanatory variable. ΔC in total brain were significantly negatively correlated with long-term verbal recall. This correlation was pronounced for the anterior region. In addition, the correlation between ΔC and long-term memory was robust when controlling for working memory, as well as a wide range of potentially confounding factors, including intelligence, length of education, speed of processing, visual attention and executive function. Moreover, we found that the difference in anterior coherence (ΔCA ) is a better predictor of memory than power in multivariate models. The sensitivity of ΔCA for detecting low memory capacity is 92%. Finally, ΔCA was also associated with other types of memory: verbal learning, visual recognition, and spatial memory, and these additional correlations were also robust enough to control for a range of potentially confounding factors. Thus, the ΔC is a predictor of memory performance may be useful in cognitive neuropsychological testing.
Collapse
Affiliation(s)
- Anna Horwitz
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet - Glostrup, Glostrup, Denmark
| | - Erik L Mortensen
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Merete Osler
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark.,Research Center for Prevention and Health, Rigshospitalet - Glostrup, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research, Psychiatric Center Glostrup, Glostrup, Denmark.,Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Psychiatric Center Glostrup, Glostrup, Denmark
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neurophysiology, Rigshospitalet - Glostrup, Glostrup, Denmark
| | - Krisztina Benedek
- Department of Clinical Neurophysiology, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
2
|
Bočková M, Chládek J, Jurák P, Halámek J, Rapcsak SZ, Baláž M, Chrastina J, Rektor I. Oscillatory reactivity to effortful cognitive processing in the subthalamic nucleus and internal pallidum: a depth electrode EEG study. J Neural Transm (Vienna) 2017; 124:841-852. [DOI: 10.1007/s00702-017-1719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
3
|
Heinrichs-Graham E, Wilson TW. Spatiotemporal oscillatory dynamics during the encoding and maintenance phases of a visual working memory task. Cortex 2015; 69:121-30. [PMID: 26043156 DOI: 10.1016/j.cortex.2015.04.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/25/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Many electrophysiology studies have examined neural oscillatory activity during the encoding, maintenance, and/or retrieval phases of various working memory tasks. Together, these studies have helped illuminate the underlying neural dynamics, although much remains to be discovered and some findings have not replicated in subsequent work. In this study, we examined the oscillatory dynamics that serve visual working memory operations using high-density magnetoencephalography (MEG) and advanced time-frequency and beamforming methodology. Specifically, we recorded healthy adults while they performed a high-load, Sternberg-type working memory task, and focused on the encoding and maintenance phases. We found significant 9-16 Hz desynchronizations in the bilateral occipital cortices, left dorsolateral prefrontal cortex (DLPFC), and left superior temporal areas throughout the encoding phase. Our analysis of the dynamics showed that the left DLPFC and superior temporal desynchronization became stronger as a function of time during the encoding period, and was sustained throughout most of the maintenance phase until sharply decreasing in the milliseconds preceding retrieval. In contrast, desynchronization in occipital areas became weaker as a function of time during encoding and eventually evolved into a strong synchronization during the maintenance period, consistent with previous studies. These results provide clear evidence of dynamic network-level processes during the encoding and maintenance phases of working memory, and support the notion of a dynamic pattern of functionally-discrete subprocesses within each working memory phase. The presence of such dynamic oscillatory networks may be a potential source of inconsistent findings in this literature, as neural activity within these networks changes dramatically with time.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Psychology, University of Nebraska - Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA.
| |
Collapse
|
4
|
Bočková M, Chládek J, Jurák P, Halámek J, Štillová K, Baláž M, Chrastina J, Rektor I. Complex Motor–Cognitive Factors Processed in the Anterior Nucleus of the Thalamus: An Intracerebral Recording Study. Brain Topogr 2014; 28:269-78. [DOI: 10.1007/s10548-014-0373-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/27/2014] [Indexed: 11/30/2022]
|
5
|
Bočková M, Chládek J, Šímová L, Jurák P, Halámek J, Rektor I. Oscillatory changes in cognitive networks activated during a three-stimulus visual paradigm: An intracerebral study. Clin Neurophysiol 2013; 124:283-91. [DOI: 10.1016/j.clinph.2012.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/10/2012] [Accepted: 07/14/2012] [Indexed: 10/28/2022]
|
6
|
Weber P, Kozel N, Purgstaller C, Kargl R, Schwab D, Fink A. First and second language in the brain: neuronal correlates of language processing and spelling strategies. BRAIN AND LANGUAGE 2013; 124:22-33. [PMID: 23274421 DOI: 10.1016/j.bandl.2012.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 06/01/2023]
Abstract
This study explores oscillatory brain activity by means of event-related synchronization and desynchronization (%ERS/ERD) of EEG activity during the use of phonological and orthographic-morphological spelling strategies in L2 (English) and L1 (German) in native German speaking children. EEG was recorded while 33 children worked on a task requiring either phonological or orthographic-morphological spelling strategies. L2 processing elicited more theta %ERS than L1 processing (particularly at bilateral frontal and right posterior parietal sites) which might suggest a stronger involvement of semantic encoding and retrieval of the less familiar L2. The highest level of theta %ERS was revealed for the orthographic-morphological strategy in L2 which might indicate a more intense way of lexical retrieval compared to the phonological strategy in L2 and the orthographic-morphological strategy in L1. Analyses moreover revealed that phonological processing (both in L1 and L2) was associated with comparatively strong left-hemispheric %ERD in the upper alpha frequency band.
Collapse
|
7
|
Pang EW, MacDonald MJ. An MEG study of the spatiotemporal dynamics of bilingual verb generation. Brain Res 2012; 1467:56-66. [PMID: 22683360 DOI: 10.1016/j.brainres.2012.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 11/13/2022]
Abstract
Studies of first (L1) and second (L2) language representation in the brain have not identified the timing and locations of neural regions involved in L1 and L2 processing. Magnetoencephalography offers high spatial and temporal resolution and can be employed to disentangle subtle timing and neural control differences between L1 and L2 use. We tested bilingual adults in the MEG as they completed a picture verb generation task in L1 and L2. We found the expected progression of activation from occipital to temporal to inferior frontal areas. We also observed the following differences. A sustained insula and early cingulate event-related desynchrony was observed only with L2; the fMRI literature suggests that the former reflects an activation, and the latter an inhibition, sub-process for language selection. L2 processes exhibited a lag and were bilateral compared to L1 processes. Finally, L1 and L2 activated adjacent language control in dorsolateral pre-frontal cortex.
Collapse
Affiliation(s)
- Elizabeth W Pang
- Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|
8
|
Shin YW, O'Donnell BF, Youn S, Kwon JS. Gamma oscillation in schizophrenia. Psychiatry Investig 2011; 8:288-96. [PMID: 22216037 PMCID: PMC3246135 DOI: 10.4306/pi.2011.8.4.288] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/08/2011] [Accepted: 09/19/2011] [Indexed: 12/21/2022] Open
Abstract
Dysfunctional neural circuitry has been found to be involved in abnormalities of perception and cognition in patients with schizophrenia. Gamma oscillations are essential for integrating information within neural circuits and have therefore been associated with many perceptual and cognitive processes in healthy human subjects and animals. This review presents an overview of the neural basis of gamma oscillations and the abnormalities in the GABAergic interneuronal system thought to be responsible for gamma-range deficits in schizophrenia. We also review studies of gamma activity in sensory and cognitive processes, including auditory steady state response, attention, object representation, and working memory, in animals, healthy humans and patients with schizophrenia.
Collapse
Affiliation(s)
- Yong-Wook Shin
- Department of Psychiatry, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Brian F. O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Soyoung Youn
- Department of Psychiatry, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Reiterer S, Pereda E, Bhattacharya J. On a Possible Relationship between Linguistic Expertise and EEG Gamma Band Phase Synchrony. Front Psychol 2011; 2:334. [PMID: 22125542 PMCID: PMC3222221 DOI: 10.3389/fpsyg.2011.00334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 10/29/2011] [Indexed: 12/02/2022] Open
Abstract
Recent research has shown that extensive training in and exposure to a second language can modify the language organization in the brain by causing both structural and functional changes. However it is not yet known how these changes are manifested by the dynamic brain oscillations and synchronization patterns subserving the language networks. In search for synchronization correlates of proficiency and expertise in second language acquisition, multivariate EEG signals were recorded from 44 high and low proficiency bilinguals during processing of natural language in their first and second languages. Gamma band (30-45 Hz) phase synchronization (PS) was calculated mainly by two recently developed methods: coarse-graining of Markov chains (estimating global phase synchrony, measuring the degree of PS between one electrode and all other electrodes), and phase lag index (PLI; estimating bivariate phase synchrony, measuring the degree of PS between a pair of electrodes). On comparing second versus first language processing, global PS by coarse-graining Markov chains indicated that processing of the second language needs significantly higher synchronization strength than first language. On comparing the proficiency groups, bivariate PS measure (i.e., PLI) revealed that during second language processing the low proficiency group showed stronger and broader network patterns than the high proficiency group, with interconnectivities between a left fronto-parietal network. Mean phase coherence analysis also indicated that the network activity was globally stronger in the low proficiency group during second language processing.
Collapse
Affiliation(s)
- Susanne Reiterer
- Department for English Linguistics, Center for Linguistics, University of TübingenGermany
- Department of English Studies, University of ViennaVienna, Austria
| | - Ernesto Pereda
- Department of Basic Physics, University of La LagunaTenerife, Spain
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths College, University of LondonLondon, UK
- Commission for Scientific Visualization, Austrian Academy of SciencesVienna, Austria
| |
Collapse
|
10
|
Ihara A, Wei Q, Matani A, Fujimaki N, Yagura H, Nogai T, Umehara H, Murata T. Language comprehension dependent on emotional context: a magnetoencephalography study. Neurosci Res 2011; 72:50-8. [PMID: 22001763 DOI: 10.1016/j.neures.2011.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/12/2011] [Accepted: 09/28/2011] [Indexed: 11/15/2022]
Abstract
In communication, language can be interpreted differently depending upon the emotional context. To clarify the effect of emotional context on language processing, we performed experiments using a cross-modal priming paradigm with an auditorily presented prime and a visually presented target. The primes were the names of people that were spoken with a happy, sad, or neutral intonation; the targets were interrogative one-word sentences with emotionally neutral content. Using magnetoencephalography, we measured neural activities during silent reading of the targets presented in a happy, sad, or neutral context. We identified two conditional differences: the happy and sad conditions produced less activity than the neutral condition in the right posterior inferior and middle frontal cortices in the latency window from 300 to 400 ms; the happy and neutral conditions produced greater activity than the sad condition in the left posterior inferior frontal cortex in the latency window from 400 to 500 ms. These results suggest that the use of emotional context stored in the right frontal cortex starts at ∼300 ms, that integration of linguistic information with emotional context starts at ∼400 ms in the left frontal cortex, and that language comprehension dependent on emotional context is achieved by ∼500 ms.
Collapse
Affiliation(s)
- Aya Ihara
- Brain ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Ikezawa K, Ishii R, Iwase M, Kurimoto R, Canuet L, Takahashi H, Nakahachi T, Azechi M, Ohi K, Fukumoto M, Yasuda Y, Iike N, Takaya M, Yamamori H, Kazui H, Hashimoto R, Yoshimine T, Takeda M. Decreased α event-related synchronization in the left posterior temporal cortex in schizophrenia: a magnetoencephalography-beamformer study. Neurosci Res 2011; 71:235-43. [PMID: 21801762 DOI: 10.1016/j.neures.2011.07.1819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/03/2011] [Accepted: 07/11/2011] [Indexed: 12/13/2022]
Abstract
Alpha rhythm is one of the most prominent electromagnetic changes in the brain, and electroencephalography (EEG) alpha reactivity disturbance may sometimes represent an early sign of cerebral dysfunction. Although magnetoencephalography (MEG) has a better spatial resolution than EEG, it has not extensively been used to explore alpha-power change deficits in schizophrenia as a possible neurophysiological marker of the disease. The purpose of this study was to use MEG to identify abnormalities in alpha synchronization induced by eye-closing in schizophrenia patients compared to healthy controls, and to investigate whether alpha reactivity deficits correlate with clinical features of the disorder. MEG data were recorded in 22 schizophrenia patients and 20 age- and gender-matched controls during eyes-open/eyes-closed resting states. Cortical sources of event-related synchronization (ERS) were estimated using multiple source beamformer, and BrainVoyager was used for statistic group analysis. A significant decrease in ERS in the upper alpha band (10-13 Hz) was found in the left posterior temporal region in schizophrenia patients relative to controls, and this activity showed correlation with visual memory scores. This upper alpha ERS deficit may indicate left temporal dysfunction and visual-information processing impairment in schizophrenia, and upon further confirmation it might represent a neurophysiological state marker of the disorder.
Collapse
Affiliation(s)
- Koji Ikezawa
- Department of Psychiatry, Osaka University Graduate School of Medicine, D3, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Canuet L, Ishii R, Iwase M, Ikezawa K, Kurimoto R, Takahashi H, Currais A, Azechi M, Nakahachi T, Hashimoto R, Takeda M. Working memory abnormalities in chronic interictal epileptic psychosis and schizophrenia revealed by magnetoencephalography. Epilepsy Behav 2010; 17:109-19. [PMID: 20004619 DOI: 10.1016/j.yebeh.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/31/2023]
Abstract
Working memory (WM) deficits are considered a core cognitive dysfunction in schizophrenia. To determine cognitive abnormalities in chronic interictal psychosis (CIP), and to assess whether these abnormalities are distinguishable from those seen in schizophrenia in terms of WM deficits, we used magnetoencephalography during a WM task performed by patients with CIP, nonpsychotic epilepsy, and schizophrenia and by healthy subjects. Multiple Source Beamformer and Brain-Voyager were used for analysis. In both patients with CIP and those with schizophrenia, we found dorsolateral prefrontal hyperactivation and left inferior temporal hypoactivation, as indicated by alpha event-related desynchronization and synchronization, respectively. Patients with schizophrenia also showed alpha2 event-related desynchronization in the mid-prefrontal cortex relative to healthy controls. Direct comparison of patients with CIP and schizophrenia rendered no difference in source-power changes. Our findings indicate similar functional cognitive abnormalities in CIP and schizophrenia in the prefrontal and left temporal cortex, which supports the possibility that these disorders share common underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Leonides Canuet
- Department of Psychiatry and Clinical Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kaiser J, Rahm B, Lutzenberger W. Direct contrasts between experimental conditions may yield more focal oscillatory activations than comparing pre- versus post-stimulus responses. Brain Res 2008; 1235:63-73. [PMID: 18602906 DOI: 10.1016/j.brainres.2008.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/21/2008] [Accepted: 06/10/2008] [Indexed: 11/26/2022]
Abstract
Contrasting electro- or magnetoencephalographic oscillatory responses to sensory stimuli with a pre-stimulation baseline commonly yields spectrally broad and topographically distributed activations. In contrast, comparisons between closely matched task conditions usually result in more focal differences. In the present study, we reanalyzed an existing set of MEG data recorded during stimulation with virtual Kanizsa figures and no-triangle control stimuli to contrast results yielded by the two approaches. Statistical analysis showed that visual stimulation compared to baseline gave rise to spectral amplitude reductions in lower frequencies including alpha and beta and amplitude enhancements in gamma frequencies above 55 Hz. These changes reached significance by about 100 ms post-stimulus onset, were topographically widespread over posterior cortex, and did not differ between stimuli. A second, more focal component over ventral occipital cortex peaked at about 300 ms in the gamma range at approximately 70 Hz. It was more pronounced for the Kanizsa triangle than for the no-triangle stimulus. A third gamma component over lateral occipito-temporal cortex showed an amplitude increase at around 450 ms for virtual figures and a concomitant decrease for the nongestalt-like control stimulus, and no overall task-related activity. Our findings illustrate that direct comparisons between conditions yield effects with a more focal spectral and topographical distribution than comparisons with a pre-stimulus baseline. Moreover, they exemplify that contrasts between conditions may reveal additional activations not captured by comparisons with a pre-stimulus baseline.
Collapse
Affiliation(s)
- Jochen Kaiser
- Institute of Medical Psychology, Johann Wolfgang Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
14
|
Fukuda M, Nishida M, Juhász C, Muzik O, Sood S, Chugani HT, Asano E. Short-latency median-nerve somatosensory-evoked potentials and induced gamma-oscillations in humans. ACTA ACUST UNITED AC 2008; 131:1793-805. [PMID: 18508784 DOI: 10.1093/brain/awn100] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies have suggested that cortical gamma-oscillations are tightly linked with various forms of physiological activity. In the present study, the dynamic changes of intracranially recorded median-nerve somatosensory-evoked potentials (SEPs) and somatosensory-induced gamma-oscillations were animated on a three-dimensional MR image, and the temporal and spatial characteristics of these activities were analysed in 10 children being evaluated for epilepsy surgery. Visual and quantitative assessments revealed that short-latency SEPs and somatosensory-induced gamma-oscillations predominantly involved the post-central gyrus and less intensely involved the pre-central gyrus and the anterior parietal lobule. Formation of a dipole of N20 peak with opposite polarities across the central sulcus was well delineated in animation movies. High-frequency (100-250 Hz) somatosensory-induced gamma-oscillations emerged in the post-central gyrus at 13.6-17.5 ms after median-nerve stimulation, gradually slowed down in frequency around and below 100 Hz, and progressively involved the neighbouring areas. A substantial proportion of somatosensory-induced gamma-oscillations was initially phase-locked and the proportion of a non-phase-locked component gradually increased over time. The primary motor hand areas proven by cortical stimulation frequently coincided with the sites showing the largest N20 peak and the largest somatosensory-induced gamma oscillations. In vivo animation of SEPs and somatosensory-induced gamma oscillations both may be utilized to localize the primary sensory-motor hand area in pre-surgical evaluation. The dipole on SEPs is consistent with the previously accepted notion that the cortices along the central sulcus are activated. The high-frequency somatosensory-induced gamma-oscillations in the post-central gyrus may represent the initial neural processing for external somatosensory stimuli, whereas the subsequent lower-frequency oscillations might represent the reafferent cortical activity occurring in larger cortical networks.
Collapse
Affiliation(s)
- Miho Fukuda
- Department of Pediatrics, Wayne State University, Detroit Medical Center, Detroit, MI, 48201, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bocková M, Chládek J, Jurák P, Halámek J, Rektor I. Executive functions processed in the frontal and lateral temporal cortices: intracerebral study. Clin Neurophysiol 2007; 118:2625-36. [PMID: 17911041 DOI: 10.1016/j.clinph.2007.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/14/2007] [Accepted: 07/28/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The study was designed to investigate the neurocognitive network in the frontal and lateral temporal cortices that is activated by the complex cognitive visuomotor tasks of letter writing. METHODS Eight epilepsy surgery candidates with implanted intracerebral depth electrodes performed two tasks involving the writing of single letters. The first task consisted of copying letters. In the second task, the patients were requested to write any other letter. The cognitive load of the second task was increased mainly by larger involvement of the executive functions. The task-related ERD/ERS of the alpha, beta and gamma rhythms was studied. RESULTS The alpha and beta ERD as the activational correlate of writing of single letters was found in the sensorimotor cortex, anterior cingulate, premotor, parietal cortices, SMA and the temporal pole. The alpha and beta ERD linked to the increased cognitive load was present moreover in the dorsolateral and ventrolateral prefrontal cortex, orbitofrontal cortex and surprisingly also the temporal neocortex. Gamma ERS was detected mostly in the left motor cortex. CONCLUSIONS Particularly the temporal neocortex was activated by the increased cognitive load. SIGNIFICANCE The lateral temporal cortex together with frontal areas forms a cognitive network processing executive functions.
Collapse
Affiliation(s)
- M Bocková
- First Department of Neurology, Masaryk University, St Anne's Hospital, 656 91, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
16
|
Pammer K, Hansen P, Holliday I, Cornelissen P. Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia 2006; 44:2926-36. [PMID: 16950456 DOI: 10.1016/j.neuropsychologia.2006.06.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 06/15/2006] [Accepted: 06/17/2006] [Indexed: 11/30/2022]
Abstract
A substantial amount of evidence has been collected to propose an exclusive role for the dorsal visual pathway in the control of guided visual search mechanisms, specifically in the preattentive direction of spatial selection [Vidyasagar, T. R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research and Reviews, 30, 66-76; Vidyasagar, T. R. (2001). From attentional gating in macaque primary visual cortex to dyslexia in humans. Progress in Brain Research, 134, 297-312]. Moreover, it has been suggested recently that the dorsal visual pathway is specifically involved in the spatial selection and sequencing required for orthographic processing in visual word recognition. In this experiment we manipulate the demands for spatial processing in a word recognition, lexical decision task by presenting target words in a normal spatial configuration, or where the constituent letters of each word are spatially shifted relative to each other. Accurate word recognition in the Shifted-words condition should demand higher spatial encoding requirements, thereby making greater demands on the dorsal visual stream. Magnetoencephalographic (MEG) neuroimaging revealed a high frequency (35-40Hz) right posterior parietal activation consistent with dorsal stream involvement occurring between 100 and 300ms post-stimulus onset, and then again at 200-400ms. Moreover, this signal was stronger in the shifted word condition, compared to the normal word condition. This result provides neurophysiological evidence that the dorsal visual stream may play an important role in visual word recognition and reading. These results further provide a plausible link between early stage theories of reading, and the magnocellular-deficit theory of dyslexia, which characterises many types of reading difficulty.
Collapse
Affiliation(s)
- Kristen Pammer
- The School of Psychology, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|