1
|
Pamplona GSP, Giussani A, Salzmann L, Staempfli P, Schneller S, Gassert R, Ionta S. Neuro-cognitive effects of degraded visibility on illusory body ownership. Neuroimage 2024; 300:120870. [PMID: 39349148 DOI: 10.1016/j.neuroimage.2024.120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024] Open
Abstract
Based on visuo-tactile stimulation, the rubber hand illusion induces a sense of ownership for a dummy hand. Manipulating the visibility of the dummy hand during the stimulation influences cognitive aspects of the illusion, suggesting that the related brain activity may be influenced too. To test this, we analyzed brain activity (fMRI), subjective ratings, and skin conductance from 45 neurotypical participants undergoing a modified rubber hand illusion protocol where we manipulated the visibility (high, medium, and low) of a virtual hand, not the brush (virtual hand illusion; VHI). To further investigate the impact of visibility manipulations on VHI-related secondary effects (i.e. vicarious somatosensation), we recorded brain activity and skin conductance during a vicarious pain protocol (observation of painful stimulations of the virtual hand) that occurred after the VHI procedure. Results showed that, during both the VHI and vicarious pain periods, the activity of distinct visual, somatosensory, and motor brain regions was modulated by (i) visibility manipulations, (ii) coherence between visual and tactile stimulation, and (iii) time of visuo-tactile stimulation. Accordingly, embodiment-related subjective ratings of the perceived illusion were specifically influenced by visibility manipulations. These findings suggest that visibility modifications can impact the neural and cognitive effects of illusory body ownership, in that when visibility decreases the illusion is perceived as weaker and the brain activity in visual, motor, and somatosensory regions is overall lower. We interpret this evidence as a sign of the weight of vision on embodiment processes, in that the cortical and subjective aspects of illusory body ownership are weakened by a degradation of visual input during the induction of the illusion.
Collapse
Affiliation(s)
- Gustavo S P Pamplona
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland; Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Amedeo Giussani
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland
| | - Lena Salzmann
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Schneller
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Silvio Ionta
- Sensory-Motor Laboratory (SeMoLa), Jules-Gonin Eye Hospital/Fondation Asile des Aveugles, Department of Ophthalmology/University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Du B, Zhang W, Chen L, Deng X, Li K, Lin F, Jia F, Su S, Tang W. Higher or lower? Interpersonal behavioral and neural synchronization of movement imitation in autistic children. Autism Res 2024; 17:1876-1901. [PMID: 39118396 DOI: 10.1002/aur.3205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
How well autistic children can imitate movements and how their brain activity synchronizes with the person they are imitating have been understudied. The current study adopted functional near-infrared spectroscopy (fNIRS) hyperscanning and employed a task involving real interactions involving meaningful and meaningless movement imitation to explore the fundamental nature of imitation as a dynamic and interactive process. Experiment 1 explored meaningful and meaningless gesture imitation. The results revealed that autistic children exhibited lower imitation accuracy and behavioral synchrony than non-autistic children when imitating both meaningful and meaningless gestures. Specifically, compared to non-autistic children, autistic children displayed significantly higher interpersonal neural synchronization (INS) in the right inferior parietal lobule (r-IPL) (channel 12) when imitating meaningful gestures but lower INS when imitating meaningless gestures. Experiment 2 further investigated the imitation of four types of meaningless movements (orofacial movements, transitive movements, limb movements, and gestures). The results revealed that across all four movement types, autistic children exhibited significantly lower imitation accuracy, behavioral synchrony, and INS in the r-IPL (channel 12) than non-autistic children. This study is the first to identify INS as a biomarker of movement imitation difficulties in autistic individuals. Furthermore, an intra- and interindividual imitation mechanism model was proposed to explain the underlying causes of movement imitation difficulties in autistic individuals.
Collapse
Affiliation(s)
- Bang Du
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wenjun Zhang
- School of Education and Psychology, University of Jinan, Jinan, China
- Department of Special Education, East China Normal University, Shanghai, China
| | - Liu Chen
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Xiaorui Deng
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Kaiyun Li
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Fengxun Lin
- School of Education and Psychology, University of Jinan, Jinan, China
- School of Education, Qingdao Huanghai University, Qingdao, China
| | - Fanlu Jia
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Shuhua Su
- School of Education and Psychology, University of Jinan, Jinan, China
| | - Wanzhi Tang
- Faculty of Arts, Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Han Y, Yan H, Shan X, Li H, Liu F, Xie G, Li P, Guo W. Enhanced interhemispheric resting-state functional connectivity of the visual network is an early treatment response of paroxetine in patients with panic disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:497-506. [PMID: 37253876 PMCID: PMC10228425 DOI: 10.1007/s00406-023-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
This study aimed to detect alterations in interhemispheric interactions in patients with panic disorder (PD), determine whether such alterations could serve as biomarkers for the diagnosis and prediction of therapeutic outcomes, and map dynamic changes in interhemispheric interactions in patients with PD after treatment. Fifty-four patients with PD and 54 healthy controls (HCs) were enrolled in this study. All participants underwent clinical assessment and a resting-state functional magnetic resonance imaging scan at (i) baseline and (ii) after paroxetine treatment for 4 weeks. A voxel-mirrored homotopic connectivity (VMHC) indicator, support vector machine (SVM), and support vector regression (SVR) were used in this study. Patients with PD showed reduced VMHC in the fusiform, middle temporal/occipital, and postcentral/precentral gyri, relative to those of HCs. After treatment, the patients exhibited enhanced VMHC in the lingual gyrus, relative to the baseline data. The VMHC of the fusiform and postcentral/precentral gyri contributed most to the classification (accuracy = 87.04%). The predicted changes were accessed from the SVR using the aberrant VMHC as features. Positive correlations (p < 0.001) were indicated between the actual and predicted changes in the severity of anxiety. These findings suggest that impaired interhemispheric coordination in the cognitive-sensory network characterized PD and that VMHC can serve as biomarkers and predictors of the efficiency of PD treatment. Enhanced VMHC in the lingual gyrus of patients with PD after treatment implied that pharmacotherapy recruited the visual network in the early stages.
Collapse
Affiliation(s)
- Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, 161006, Heilongjiang, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Moreno-Verdú M, Hamoline G, Van Caenegem EE, Waltzing BM, Forest S, Valappil AC, Khan AH, Chye S, Esselaar M, Campbell MJ, McAllister CJ, Kraeutner SN, Poliakoff E, Frank C, Eaves DL, Wakefield C, Boe SG, Holmes PS, Bruton AM, Vogt S, Wright DJ, Hardwick RM. Guidelines for reporting action simulation studies (GRASS): Proposals to improve reporting of research in motor imagery and action observation. Neuropsychologia 2024; 192:108733. [PMID: 37956956 DOI: 10.1016/j.neuropsychologia.2023.108733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Researchers from multiple disciplines have studied the simulation of actions through motor imagery, action observation, or their combination. Procedures used in these studies vary considerably between research groups, and no standardized approach to reporting experimental protocols has been proposed. This has led to under-reporting of critical details, impairing the assessment, replication, synthesis, and potential clinical translation of effects. We provide an overview of issues related to the reporting of information in action simulation studies, and discuss the benefits of standardized reporting. We propose a series of checklists that identify key details of research protocols to include when reporting action simulation studies. Each checklist comprises A) essential methodological details, B) essential details that are relevant to a specific mode of action simulation, and C) further points that may be useful on a case-by-case basis. We anticipate that the use of these guidelines will improve the understanding, reproduction, and synthesis of studies using action simulation, and enhance the translation of research using motor imagery and action observation to applied and clinical settings.
Collapse
Affiliation(s)
- Marcos Moreno-Verdú
- Brain, Action, And Skill Laboratory, Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Belgium; Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, Spain
| | - Gautier Hamoline
- Brain, Action, And Skill Laboratory, Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Belgium
| | - Elise E Van Caenegem
- Brain, Action, And Skill Laboratory, Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Belgium
| | - Baptiste M Waltzing
- Brain, Action, And Skill Laboratory, Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Belgium
| | - Sébastien Forest
- Brain, Action, And Skill Laboratory, Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Belgium
| | - Ashika C Valappil
- Simulating Movements to Improve Learning and Execution (SMILE) Research Group, School of Life and Health Sciences, University of Roehampton, UK
| | - Adam H Khan
- Simulating Movements to Improve Learning and Execution (SMILE) Research Group, School of Life and Health Sciences, University of Roehampton, UK
| | - Samantha Chye
- Simulating Movements to Improve Learning and Execution (SMILE) Research Group, School of Life and Health Sciences, University of Roehampton, UK
| | - Maaike Esselaar
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - Mark J Campbell
- Lero Esports Science Research Lab, Physical Education & Sport Sciences Department & Lero the Science Foundation Ireland Centre for Software Research, University of Limerick, Ireland
| | - Craig J McAllister
- Centre for Human Brain Health, School of Sport Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Sarah N Kraeutner
- Neuroplasticity, Imagery, And Motor Behaviour Laboratory, Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Okanagan, Canada
| | - Ellen Poliakoff
- Body Eyes and Movement (BEAM) Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Cornelia Frank
- Cognition, Imagery and Learning in Action Laboratory, Department of Sports and Movement Science, School of Educational and Cultural Studies, Osnabrueck University, Germany
| | - Daniel L Eaves
- Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, UK
| | | | - Shaun G Boe
- Laboratory for Brain Recovery and Function, School of Physiotherapy and Department of Psychology and Neuroscience, Dalhousie University, Canada
| | - Paul S Holmes
- Research Centre for Health, Psychology and Communities, Department of Psychology, Faculty of Health and Education, Manchester Metropolitan University, UK
| | - Adam M Bruton
- Simulating Movements to Improve Learning and Execution (SMILE) Research Group, School of Life and Health Sciences, University of Roehampton, UK; : Centre for Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University London, UK
| | - Stefan Vogt
- Perception and Action Group, Department of Psychology, Lancaster University, UK
| | - David J Wright
- Research Centre for Health, Psychology and Communities, Department of Psychology, Faculty of Health and Education, Manchester Metropolitan University, UK
| | - Robert M Hardwick
- Brain, Action, And Skill Laboratory, Institute of Neuroscience (Cognition and Systems Division), UC Louvain, Belgium.
| |
Collapse
|
5
|
Hiromitsu Y, Ishikura T. Effects of Different Observational Angles in Learner-Chosen Video Self-Modeling on Task Acquisition and Retention. J Mot Behav 2023; 56:184-194. [PMID: 37964620 DOI: 10.1080/00222895.2023.2282069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
This study aimed to examine the influence of different observational angles in video self-modeling on task acquisition and retention. We randomly assigned 42 Japanese university students to three camera-angle groups, i.e., a front-angle, a rear-angle, and a control group. The participants performed a 3 × 6 × 3 cup-stacking task with three sequential laps. The front- and rear-angle groups viewed video self-modeling created from previously self-chosen videos. The retention phase was conducted 1 week after the acquisition phase. The rear-angle group demonstrated the fastest movement times in the acquisition phase. Our findings indicate that viewing learner-chosen video self-modeling from a rear angle enhances motor skill acquisition but does not contribute to motor skill learning.
Collapse
Affiliation(s)
- Yuya Hiromitsu
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyoto, Japan
| | - Tadao Ishikura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
6
|
Keating J, Gerson SA, Jones CRG, Vanderwert RE, Purcell C. Possible disrupted biological movement processing in Developmental Coordination Disorder. Cortex 2023; 168:1-13. [PMID: 37634268 DOI: 10.1016/j.cortex.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/23/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
AIM There is emerging evidence that the Mirror Neuron System (MNS) might contribute to the motor learning difficulties characteristic of Developmental Coordination Disorder (DCD). This study aimed to identify whether MNS activity differed between children with and without DCD during action observation, action execution and during a non-action baseline. METHODS Electroencephalography (EEG) was used to measure mu rhythm (a proxy for MNS activation) in 8-12-year-old children either with (n = 20) or without (n = 19) a diagnosis of DCD. The mu rhythm was recorded at rest and during five experimental conditions: (1) observation of gross motor and (2) fine motor actions; (3) execution of gross motor and (4) fine motor actions; and (5) non-biological movement. To address whether potential co-occurring traits of other neurodevelopmental conditions were associated with differences in mu rhythm, parents reported their child's attention and social communication skills. Mixed and repeated measure ANOVAs were conducted to examine differences in mu desynchronization and mu power respectively. RESULTS The non-DCD group showed greater mu rhythm desynchronization than children with DCD (i.e., more MNS activity), with both groups demonstrating increasing desynchronization from observation of fine actions to execution of gross actions. However, we also found that the children with DCD had less mu power during the non-biological movement condition than the non-DCD children, although mu power did not differ between groups during the resting condition. Correlations between mu desynchronization and children's attention and motor skills showed that poorer attention and motor abilities were associated with reduced MNS activity. CONCLUSION Compared to children without DCD, the MNS in children with DCD did not distinguish between biological and non-biological movement. It is possible that the reduced specificity of the MNS in children with DCD is an underlying factor in the motor impairments observed in the disorder. The differential MNS activity could reflect broader atypical activity in perceptual networks that feed into the MNS in DCD.
Collapse
Affiliation(s)
- Jennifer Keating
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Sarah A Gerson
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Catherine R G Jones
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK
| | - Ross E Vanderwert
- Cardiff University Centre for Human Developmental Science (CUCHDS), School of Psychology, Cardiff University, Cardiff, UK; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | |
Collapse
|
7
|
Gustin SM, Bolding M, Willoughby W, Anam M, Shum C, Rumble D, Mark VW, Mitchell L, Cowan RE, Richardson E, Richards S, Trost Z. Cortical Mechanisms Underlying Immersive Interactive Virtual Walking Treatment for Amelioration of Neuropathic Pain after Spinal Cord Injury: Findings from a Preliminary Investigation of Thalamic Inhibitory Function. J Clin Med 2023; 12:5743. [PMID: 37685810 PMCID: PMC10488675 DOI: 10.3390/jcm12175743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neuropathic pain following spinal cord injury (SCI) affects approximately 60% of individuals with SCI. Effective pharmacological and non-pharmacological treatments remain elusive. We recently demonstrated that our immersive virtual reality walking intervention (VRWalk) may be effective for SCI NP. Additionally, we found that SCI NP may result from a decrease in thalamic γ-aminobutyric-acid (GABA), which disturbs central sensorimotor processing. OBJECTIVE While we identified GABAergic changes associated with SCI NP, a critical outstanding question is whether a decrease in SCI NP generated by our VRWalk intervention causes GABA content to rise. METHOD A subset of participants (n = 7) of our VRWalk trial underwent magnetic resonance spectroscopy pre- and post-VRWalk intervention to determine if the decrease in SCI NP is associated with an increase in thalamic GABA. RESULTS The findings revealed a significant increase in thalamic GABA content from pre- to post-VRWalk treatment. CONCLUSION While the current findings are preliminary and should be interpreted with caution, pre- to post-VRWalk reductions in SCI NP may be mediated by pre- to post-treatment increases in thalamic GABA by targeting and normalizing maladaptive sensorimotor cortex reorganization. Understanding the underlying mechanisms of pain recovery can serve to validate the efficacy of home-based VR walking treatment as a means of managing pain following SCI. Neuromodulatory interventions aimed at increasing thalamic inhibitory function may provide more effective pain relief than currently available treatments.
Collapse
Affiliation(s)
- Sylvia M. Gustin
- NeuroRecovery Research Hub, School of Psychology, University of New South Wales, Sydney 2052, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney 2031, Australia
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - William Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Monima Anam
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA (L.M.)
| | - Corey Shum
- Immersive Experience Laboratories LLC, Birmingham, AL 35203, USA
| | - Deanna Rumble
- Department of Psychology and Counseling, University of Central Arkansas, Conway, AR 72035, USA
| | - Victor W. Mark
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Lucie Mitchell
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA (L.M.)
| | - Rachel E. Cowan
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth Richardson
- Department of Behavioral & Social Sciences, University of Montevallo, Montevallo, AL 35115, USA
| | - Scott Richards
- Department of Physical Medicine & Rehabilitation, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zina Trost
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Allé M, Danan F, Kwok S, Davies V, Prudat C, Berna F. Differential influence of first- vs. third-person visual perspectives on segmentation and memory of complex dynamic events. Conscious Cogn 2023; 111:103508. [PMID: 37004356 DOI: 10.1016/j.concog.2023.103508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Until now, most studies investigating the relationship between event segmentation and memory have used videos filmed from a third-person perspective, although people experience their lives from a first-person perspective. The present study aimed to determine whether visual perspective impacts events segmentation and further recall. Fifty-seven participants were recruited and assigned to either first- (1PP) or third-person perspective (3PP) condition, before segmenting videos of daily life activities. Our results showed that the although the number of event boundaries was higher in the 3PP condition than in the 1PP, no differences were observed for event segmentation qualitative abilities and organization. Memory of temporal order was better for events encoded in the 3PP than in the 1PP, while memory content was similar in both conditions. Higher event segmentation rates were correlated with a better recall of small actions and temporal order.
Collapse
|
9
|
Guillot A, Daligault S, Schwartz D, Di Rienzo F. Timing-specific patterns of cerebral activations during motor imagery: A case study of the expert brain signature. Brain Cogn 2023; 167:105971. [PMID: 37011436 DOI: 10.1016/j.bandc.2023.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
Brain activations elicited during motor imagery (MI) in experts are typically reduced compared to novices, which is interpreted as a neurophysiological correlate of increased neural efficiency. However, the modulatory effects of MI speed on expertise-related differences in brain activation remains largely unknown. In the present pilot study, we compared the magnetoencephalographic (MEG) correlates of MI in an Olympic medallist and an amateur athlete under conditions of slow, real-time and fast MI. Data revealed event-related changes in the time course of alpha (8-12 Hz) power of MEG oscillations, for all timing conditions. We found that slow MI was associated with a corollary increase in neural synchronization, in both participants. Sensor-level and source-level analyses however disclosed differences between the two expertise levels. The Olympic medallist achieved greater activation of cortical sensorimotor networks than the amateur athlete, particularly during fast MI. Fast MI elicited the strongest event-related desynchronization of alpha oscillations, which was generated from cortical sensorimotor sources in the Olympic medallist, but not in the amateur athlete. Taken together, data suggest that fast MI is a particularly demanding form of motor cognition, putting a specific emphasis on cortical sensorimotor networks to achieve the formation of accurate motor representations under demanding timing constraints.
Collapse
|
10
|
The association between acute stress & empathy: A systematic literature review. Neurosci Biobehav Rev 2023; 144:105003. [PMID: 36535374 DOI: 10.1016/j.neubiorev.2022.105003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Empathy is a fundamental component of our social-emotional experience. Over the last decade, there has been increased interest in understanding the effects of acute stress on empathy. We provide a first comprehensive-and systematic-overview identifying emerging patterns and gaps in this literature. Regarding affective empathy, there is abundant evidence for stress contagion-the 'spillover' of stress from a stressed target to an unstressed perceiver. We highlight contextual factors that can facilitate and/or undermine these effects. Fewer studies have investigated the effects of acute stress on affective empathy, revealing a nuanced picture, some evidence suggests acute stress can block contagion of other's emotions; but again contextual differences need to be considered. Regarding cognitive empathy, most studies find no conclusive effects for simplistic measures of emotion recognition; however, studies using more complex empathy tasks find that acute stress might affect cognitive empathy differentially for men and women. This review provides an important first step towards understanding how acute stress can impact social-togetherness, and aims to aid future research by highlighting (in)congruencies and outstanding questions.
Collapse
|
11
|
Fujiwara K, Shimoda R, Shibata M, Awano Y, Shibayama K, Higashi T. A Method for Using Video Presentation to Increase Cortical Region Activity during Motor Imagery Tasks in Stroke Patients. Brain Sci 2022; 13:brainsci13010029. [PMID: 36672012 PMCID: PMC9855988 DOI: 10.3390/brainsci13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Previous studies have reported that stroke patients have difficulty recalling the motor imagery (MI) of a task, also known as MI vividness. Research on combining MI with action observation is gaining importance as a method to improve MI vividness. We enrolled 10 right-handed stroke patients and compared MI vividness and cortical activity under different presentation methods (no inverted image, inverted image of another individual’s hand, and an inverted image of the patient’s nonparalyzed hand) using near-infrared spectroscopy. Images of the nonparalyzed upper limb were inverted to make the paralyzed upper limb appear as if it were moving. Three tasks (non inverted image, AO + MI (other hand), AO + MI (own hand)) were randomly performed on 10 stroke patients. MI vividness was significantly higher when the inverted image of the nonparalyzed upper limb was presented compared to the other conditions (p < 0.01). The activity of the cortical regions was also significantly enhanced (p < 0.01). Our study highlights the potential application of inverted images of a stroke patient’s own nonparalyzed hand in mental practice to promote the motor recovery of stroke patients. This technique achieved higher levels of MI vividness and cortical activity when performing motor tasks.
Collapse
Affiliation(s)
- Kengo Fujiwara
- Medical Corporation Zeshinkai Nagasaki Rehabilitation Hospital, Ginya, Nagasaki 850-0854, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki 852-8520, Japan
- Correspondence: ; Tel.: +81-958-819-7994
| | - Rikako Shimoda
- Medical Corporation Zeshinkai Home Rehabilitation Center Ginya, Ginya, Nagasaki 850-0854, Japan
| | - Masatomo Shibata
- Medical Corporation Zeshinkai Nagasaki Rehabilitation Hospital, Ginya, Nagasaki 850-0854, Japan
| | - Yoshinaga Awano
- Medical Corporation Zeshinkai Nagasaki Rehabilitation Hospital, Ginya, Nagasaki 850-0854, Japan
| | - Koji Shibayama
- Medical Corporation Zeshinkai Nagasaki Rehabilitation Hospital, Ginya, Nagasaki 850-0854, Japan
| | - Toshio Higashi
- Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki 852-8520, Japan
| |
Collapse
|
12
|
Watanabe R, Kim Y, Kuruma H, Takahashi H. Imitation encourages empathic capacity toward other individuals with physical disabilities. Neuroimage 2022; 264:119710. [PMID: 36283544 DOI: 10.1016/j.neuroimage.2022.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Many people have difficulty empathizing with others who have dissimilar characteristics, such as physical disabilities. We hypothesized that people with no disabilities imitating the movements of individuals with disabilities could improve the empathic capacity toward their difficulties. To evaluate this hypothesis, we used functional magnetic resonance imaging to measure the neural activity patterns of 26 healthy participants while they felt the difficulties of individuals with hemiplegia by adopting their perspective. The participants initially either imitated or observed hemiplegic hand movements shown in video clips. Subsequently, the videos were rewatched and their difficulties were rated. Analysis of the subjective rating scores indicated that after imitating the hemiplegic movements, the participants felt into the difficulties of hemiplegia better than if they simply observed them. The cross-validation approach of multivoxel pattern analyses demonstrated that the information regarding the effect of imitation on empathizing with the difficulties was represented in specific activation patterns of brain regions involved in the mirror neuron system and cognitive empathy by comparing to other conditions that did not contain the information. The cross-classification approach detected distinct activation patterns in the brain regions involved in affective and cognitive empathy, commonly while imitating the hemiplegic movements and subsequently feeling them. This indicated that the common representation related to these two types of empathy existed between imitating and feeling the hemiplegic movements. Furthermore, representational similarity analysis revealed that activity patterns in the anterior cingulate cortex linked to affective empathy tuned to the subjective assessment of hemiplegic movements. Our findings indicate that imitating the movements of individuals with hemiplegia triggered the affective empathic response and improved the cognitive empathic response toward them. The affective empathic response also linked the subjective assessment to the difficulties of hemiplegia, which was especially modulated by the experience of imitation. Imitating the movements of individuals with disabilities likely encourages empathic capacity from both affective and cognitive aspects, resulting in people with no disabilities precisely feeling what they are feeling.
Collapse
Affiliation(s)
- Rui Watanabe
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yusima, Bunkyo-ku, Tokyo 113-8549, Japan; Department of Physical Therapy Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan.
| | - Yuri Kim
- Department of Diagnistics and Theraputics for brain Diseases, Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga 520-2121 Japan
| | - Hironobu Kuruma
- Department of Physical Therapy Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yusima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
13
|
Asakage S, Nakano T. The salience network is activated during self-recognition from both first-person and third-person perspectives. Hum Brain Mapp 2022; 44:559-570. [PMID: 36129447 PMCID: PMC9842878 DOI: 10.1002/hbm.26084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
We usually observe ourselves from two perspectives. One is the first-person perspective, which we perceive directly with our own eyes, and the other is the third-person perspective, which we observe ourselves in a mirror or a picture. However, whether the self-recognition associated with these two perspectives has a common or separate neural basis remains unclear. To address this, we used functional magnetic resonance imaging to examine brain activity while participants viewed pretaped video clips of themselves and others engaged in meal preparation taken from first-person and third-person perspectives. We found that the first-person behavioral videos of the participants and others induced greater activation in the premotor-intraparietal region. In contrast, the third-person behavioral videos induced greater activation in the default mode network compared with the first-person videos. Regardless of the perspective, the videos of the participants induced greater activation in the salience network than the videos of others. On the other hand, the videos of others induced greater activation in the precuneus and lingual gyrus than the videos of the participants. These results suggest that the salience network is commonly involved in self-recognition from both perspectives, even though the brain regions involved in action observation for the two perspectives are distinct.
Collapse
Affiliation(s)
- Shoko Asakage
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan
| | - Tamami Nakano
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan,Graduate School of MedicineOsaka UniversityOsakaJapan,Center for Information and Neural Networks (CiNet)OsakaJapan
| |
Collapse
|
14
|
Koning BBD, Mok K, Marcus N, Ayres P. Investigating the role of hand perspective in learning from procedural animations. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2022. [PMID: 36047932 DOI: 10.1111/bjep.12542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Research indicates that animations presenting procedural instructions lead to better learning if the animation displays the procedural task from a first-person perspective (over-the-shoulder) compared to a third-person perspective (face-to-face). AIMS This study extends view-perspective research by investigating whether the observation of human hands completing manipulative tasks in an animation are necessary or not. SAMPLE Sixty university students participated in the study. METHOD Participants studied two knot-tying animations from a first-person perspective showing hands, or a third-person perspective showing hands, or a first-person perspective without showing hands. RESULTS Results showed that studying first-person perspective animations resulted in higher performance on a knot-tying task and recognition task (but not transfer task) than studying the third-person perspective animations. The strongest effects were gained from the first-person perspective animations showing hands, although comparable learning outcomes were often found with the no-hands perspective animations. In addition, spatial ability was found to influence knot-tying and recognition performance, while gender minimally interacted with performance in the different viewing perspective conditions. CONCLUSIONS Hand-manipulative task are learned most optimally from animations when presented from a first-person perspective, while it is not necessary to show the hands.
Collapse
Affiliation(s)
| | - Katrina Mok
- University of New South Wales, Sydney, New South Wales, Australia
| | - Nadine Marcus
- University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Ayres
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Bek J, Humphries S, Poliakoff E, Brady N. Mental rotation of hands and objects in ageing and Parkinson's disease: differentiating motor imagery and visuospatial ability. Exp Brain Res 2022; 240:1991-2004. [PMID: 35680657 PMCID: PMC9288383 DOI: 10.1007/s00221-022-06389-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
Motor imagery supports motor learning and performance and has the potential to be a useful strategy for neurorehabilitation. However, motor imagery ability may be impacted by ageing and neurodegeneration, which could limit its therapeutic effectiveness. Motor imagery can be assessed implicitly using a hand laterality task (HLT), whereby laterality judgements are slower for stimuli corresponding to physically more difficult postures, as indicated by a “biomechanical constraint” effect. Performance is also found to differ between back and palm views of the hand, which may differentially recruit visual and sensorimotor processes. Older adults and individuals with Parkinson’s disease (PD) have shown altered performance on the HLT; however, the effects of both ageing and PD on laterality judgements for the different hand views (back and palm) have not been directly examined. The present study compared healthy younger, healthy older, and PD groups on the HLT, an object-based mental rotation task, and an explicit motor imagery measure. The older and PD groups were slower than the younger group on the HLT, particularly when judging laterality from the back view, and exhibited increased biomechanical constraint effects for the palm. While response times were generally similar between older and PD groups, the PD group showed reduced accuracy for the back view. Letter rotation was slower and less accurate only in the PD group, while explicit motor imagery ratings did not differ significantly between groups. These results suggest that motor imagery may be slowed but relatively preserved in both typical ageing and neurodegeneration, while a PD-specific impairment in visuospatial processing may influence task performance. The findings have implications for the use of motor imagery in rehabilitation protocols.
Collapse
Affiliation(s)
- Judith Bek
- School of Psychology, University College Dublin, Belfield, Dublin 4, Ireland. .,Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK.
| | - Stacey Humphries
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Ellen Poliakoff
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Nuala Brady
- School of Psychology, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Chen G, Ye Z, Liu Y. Cognitive mechanisms of observing others touching products increases purchasing intention: An eye-tracking study. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Yu J, Park J. The effect of first-person perspective action observation training on upper extremity function and activity of daily living of chronic stroke patients. Brain Behav 2022; 12:e2565. [PMID: 35398981 PMCID: PMC9120717 DOI: 10.1002/brb3.2565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to investigate the effects of First-Person Perspective Action Observation training and Third-Person Perspective Action Observation training on upper extremity function and activities of daily living of patients with stroke-induced hemiplegia. This was a single-blind randomized study of 20 stroke patients (more than 6 months after the incident stroke) with upper extremity disabilities. The subjects who satisfied the inclusion and exclusion criteria were randomly divided into two groups: First-Person Perspective Action Observation training group and Third-Person Perspective Action Observation training group. The measurements were performed using Action Research Arm Test (ARAT) and Korean Modified Barthel Index (K-MBI) and Motor Activity Log (MAL). The results of this study showed statistically significant differences (p < .05) in the upper extremity function and activity of daily living after the intervention in all two groups. Upon comparison of the amount of change between the experimental group and the control group, there was significant difference in upper extremity function and activity of daily living (p < .05). Action Observation training was found to have an effect on the upper extremity function and activity of daily living on chronic stroke patients. First-Person Perspective Action Observation training was more effective in improving upper limb function and activity of daily living than the Third-Person Perspective Action Observation training.
Collapse
Affiliation(s)
- Ji‐Ae Yu
- Department of Occupational TherapyCheongju Mary's HospitalCheongjuKorea
| | - JuHyung Park
- Department of Occupational TherapyCollege of Health and Medical SciencesCheongju UniversityCheongjuKorea
| |
Collapse
|
18
|
Skyberg AM, Beeler-Duden S, Goldstein AM, Gancayco CA, Lillard AS, Connelly JJ, Morris JP. Neuroepigenetic impact on mentalizing in childhood. Dev Cogn Neurosci 2022; 54:101080. [PMID: 35158164 PMCID: PMC8844842 DOI: 10.1016/j.dcn.2022.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/02/2022] Open
Abstract
Mentalizing, or the ability to understand the mental states and intentions of others, is an essential social cognitive function that children learn and continue to cultivate into adolescence. While most typically developing children acquire sufficient mentalizing skills, individual differences in mentalizing persist throughout childhood and are likely influenced by a combination of cognitive functioning, the social environment, and biological factors. DNA methylation of the oxytocin receptor gene (OXTRm) impacts gene expression and is associated with increased brain activity in mentalizing regions during displays of animacy in healthy young adults. The establishment, fine-tuning, and implications of such associations in the context of broader social functioning remain unclear. Using a developmental neuroimaging epigenetic approach, we investigated the contributions of OXTRm to individual variability in brain function during animate motion perception in middle childhood. We find that higher levels of OXTRm are associated with increased neural responses in the left temporo-parietal junction and inferior frontal gyrus. We also find a positive association between neural activity in LTPJ and social skills. These findings provide evidence of epigenetic influence on the developing child brain and demonstrate that variability in neural social perception in childhood is multifaceted with contributions from individual social experience and the endogenous oxytocin system.
Collapse
Affiliation(s)
- Amalia M Skyberg
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - Stefen Beeler-Duden
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - Alison M Goldstein
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | | | - Angeline S Lillard
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - Jessica J Connelly
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA
| | - James P Morris
- University of Virginia, Department of Psychology, 102 Gilmer Hall, P.O. Box 400400, Charlottesville, VA 22904, USA.
| |
Collapse
|
19
|
Giannakopoulos I, Karanika P, Papaxanthis C, Tsaklis P. The Effects of Action Observation Therapy as a Rehabilitation Tool in Parkinson’s Disease Patients: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063311. [PMID: 35329000 PMCID: PMC8949895 DOI: 10.3390/ijerph19063311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
During Action Observation (AO), patients observe human movements that they then try to imitate physically. Until now, few studies have investigated the effectiveness of it in Parkinson’s disease (PD). However, due to the diversity of interventions, it is unclear how the dose and characteristics can affect its efficiency. We investigated the AO protocols used in PD, by discussing the intervention features and the outcome measures in relation to their efficacy. A search was conducted through MEDLINE, Scopus, Cochrane, and WoS until November 2021, for RCTs with AO interventions. Participant’s characteristics, treatment features, outcome measures, and main results were extracted from each study. Results were gathered into a quantitative synthesis (MD and 95% CI) for each time point. Seven studies were included in the review, with 227 participants and a mean PEDro score of 6.7. These studies reported positive effects of AO in PD patients, mainly on walking ability and typical motor signs of PD like freezing of gait. However, disagreements among authors exist, mainly due to the heterogeneity of the intervention features. In overall, AO improves functional abilities and motor control in PD patients, with the intervention dose and the characteristics of the stimulus playing a decisive role in its efficacy.
Collapse
Affiliation(s)
- Ioannis Giannakopoulos
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
| | - Panagiota Karanika
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
| | - Charalambos Papaxanthis
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
- L’Unité Mixte de Recherche (UMR) INSERM 1093 CAPS (Cognition, Action et Plasticité Sensorimotrice), Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, F-21000 Dijon, France
| | - Panagiotis Tsaklis
- Biomechanics and Ergonomics Laboratory, Department of Physical Education and Sports Science (DPESS), University of Thessaly, 42100 Trikala, Greece; (I.G.); (P.K.); (C.P.)
- Department of Molecular Medicine and Surgery, Growth and Metabolism, Karolinska Institute, 17164 Solna, Sweden
- Correspondence: ; Tel.: +30-24310-47006
| |
Collapse
|
20
|
Ransom A, LaGrant B, Spiteri A, Kushnir T, Anderson AK, De Rosa E. Face-to-face learning enhances the social transmission of information. PLoS One 2022; 17:e0264250. [PMID: 35213587 PMCID: PMC8880930 DOI: 10.1371/journal.pone.0264250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Learning from others provides the foundation for culture and the advancement of knowledge. Learning a new visuospatial skill from others represents a specific challenge-overcoming differences in perspective so that we understand what someone is doing and why they are doing it. The "what" of visuospatial learning is thought to be easiest from a shared 0° first-person perspective and most difficult from a 180° third-person perspective. However, the visual disparity at 180° promotes face-to-face interaction, which may enhance learning by scaffolding social perspective taking, the "why" of visuospatial learning. We tested these potentially conflicting hypotheses in child and young adult learners. Thirty-six children (4-6 years) and 57 young adults (18-27 years) observed a live model open a puzzle box from a first-person (0°) or third-person (90° or 180°) perspective. The puzzle box had multiple solutions, only one of which was modelled, which allowed for the assessment of imitation and goal emulation. Participants had three attempts to open the puzzle box from the model's perspective. While first-person (0°) observation increased imitation relative to a 180° third-person perspective, the 180° observers opened the puzzle box most readily (i.e., fastest). Although both age groups were excellent imitators and able to take the model's perspective, adults were more faithful imitators, and children were more likely to innovate a new solution. A shared visual perspective increased imitation, but a shared mental perspective promoted goal achievement and the social transmission of innovation. "Perfection of means and confusion of goals-in my opinion-seem to characterize our age" Einstein (1973) pg 337, Ideas and Opinions.
Collapse
Affiliation(s)
- Ashley Ransom
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Brian LaGrant
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Anthony Spiteri
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Tamar Kushnir
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Adam K. Anderson
- Department of Psychology, Human Neuroscience Institute, Cornell University, Ithaca, New York, United States of America
| | - Eve De Rosa
- Department of Psychology, Human Neuroscience Institute, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
21
|
Garofalo G, Gawryszewski LL, Riggio L. Seeing through the cat's eyes: evidence of a spontaneous perspective taking process using a non-human avatar. Cogn Process 2022; 23:269-283. [PMID: 35201537 DOI: 10.1007/s10339-022-01082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022]
Abstract
In many daily face-to-face interactions, people are able to take the perspective of others, for example, coding right and left based on point-of-view of others. In the present study, we investigated whether observers are able to take the perspective of a non-human figure such as a cat, observing the same effects obtained with human or robot avatars. In both experiments, we used a centrally presented stimulus (i.e. a cat), with its tail lateralized to the left or to the right. Participants had to respond to the side of the tail with a lateralized keypress. In Experiment 1 (spatial perspective taking task), participants were required to explicitly adopt the cat's perspective to respond, whereas in Experiment 2 (SR compatibility task), this was not explicitly required. In both experiments, faster RTs are obtained when the cat is presented back, with a greater difference between front and back views when the tail is on the right; furthermore, there is no temporal modulation of the back-front effect. These common results between the two experiments are interpreted on the basis of the spatial perspective taking processes, elicited voluntarily (Experiment 1) or spontaneously (Experiment 2).
Collapse
Affiliation(s)
- Gioacchino Garofalo
- Department of Medicine & Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | | | - Lucia Riggio
- Department of Medicine & Surgery, Unit of Neuroscience, University of Parma, Parma, Italy.
| |
Collapse
|
22
|
Olivo G, Lövdén M, Manzouri A, Terlau L, Jenner B, Jafari A, Petersson S, Li TQ, Fischer H, Månsson KNT. Estimated Gray Matter Volume Rapidly Changes after a Short Motor Task. Cereb Cortex 2022; 32:4356-4369. [PMID: 35136959 PMCID: PMC9528898 DOI: 10.1093/cercor/bhab488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/14/2022] Open
Abstract
Skill learning induces changes in estimates of gray matter volume (GMV) in the human brain, commonly detectable with magnetic resonance imaging (MRI). Rapid changes in GMV estimates while executing tasks may however confound between- and within-subject differences. Fluctuations in arterial blood flow are proposed to underlie this apparent task-related tissue plasticity. To test this hypothesis, we acquired multiple repetitions of structural T1-weighted and functional blood-oxygen level-dependent (BOLD) MRI measurements from 51 subjects performing a finger-tapping task (FTT; á 2 min) repeatedly for 30-60 min. Estimated GMV was decreased in motor regions during FTT compared with rest. Motor-related BOLD signal changes did not overlap nor correlate with GMV changes. Nearly simultaneous BOLD signals cannot fully explain task-induced changes in T1-weighted images. These sensitive and behavior-related GMV changes pose serious questions to reproducibility across studies, and morphological investigations during skill learning can also open new avenues on how to study rapid brain plasticity.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Psychology, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Martin Lövdén
- Department of Psychology, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Amirhossein Manzouri
- Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden
| | - Laura Terlau
- Center for Lifespan Psychology, Max Planck Institute for Human Development, D-14195, Berlin, Germany.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, D-14195, Berlin, London
| | - Bo Jenner
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden
| | - Arian Jafari
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden
| | - Sven Petersson
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Huddinge S-14186, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14152, Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, Huddinge S-14186, Stockholm, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14152, Stockholm, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.,Stockholm University Brain Imaging Centre, SE-10691, Stockholm, Sweden
| | - Kristoffer N T Månsson
- Department of Psychology, Stockholm University, SE-10691, Stockholm, Sweden.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, SE-11364, Stockholm, Sweden.,Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, US-03755, USA
| |
Collapse
|
23
|
Fan H, Luo Z. Functional Integration of Mirror Neuron System and Sensorimotor Cortex under Virtual Self-Actions Visual Perception. Behav Brain Res 2022; 423:113784. [PMID: 35122793 DOI: 10.1016/j.bbr.2022.113784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/19/2022]
Abstract
Virtual reality (VR) technology, with the advantage of immersive visual experience, has been increasingly applied in the rehabilitation therapy of motor deficits. The functional integration of the mirror neuron system and the sensorimotor cortex under the visual perception of actions is one of the theoretical bases for the application of action observation in the neurorehabilitation of motor deficits. Whether the visual experience changes brought by VR technology can further promote this functional integration to be further confirmed. Using the exact low-resolution brain electromagnetic tomography (eLORETA) source localization method, we calculated and statistically tested the whole brain cortical voxel current density estimation under the Electroencephalogram (EEG) signals collected during action observation under the first-person and third-person perspectives in the VR scene for twenty healthy adults. Furthermore, the functional connectivity between the mirror neuron system and the sensorimotor cortex was analyzed using the lagged phase synchronization method. Under the first-person perspective in the VR scene, the current density changes of the core cortices of the mirror neuron system lead to a larger average event-related potential, more significant suppression in the α1 and α2 frequency bands of EEG signals, and a significant enhancement of functional connectivity between the core cortices of the mirror neuron system and the sensorimotor cortex. These findings indicate that compared with the traditional action observation, the visual reappearance of self-actions in the VR scene further stimulates the activity of the core cortices of the mirror neuron system, and promotes the functional integration of the core cortices of the mirror neuron system and the sensorimotor cortex.
Collapse
Affiliation(s)
- Hao Fan
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, Zhejiang, China.
| | - Zhizeng Luo
- Institute of Intelligent Control and Robotics, Hangzhou Dianzi University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Barhorst-Cates EM, Isaacs MW, Buxbaum LJ, Wong AL. Does spatial perspective in virtual reality affect imitation accuracy in stroke patients? FRONTIERS IN VIRTUAL REALITY 2022; 3:934642. [PMID: 37063476 PMCID: PMC10104493 DOI: 10.3389/frvir.2022.934642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Imitation is an important daily activity involved in social interactions, motor learning, and is commonly used for rehabilitation after stroke. Moreover, deficits in imitation of novel movements commonly occur after left hemisphere stroke (LCVA) in the syndrome of limb apraxia. In the current study, we used a novel virtual reality (VR) imitation paradigm to assess two factors that have remained underexplored in novel movement imitation: the imitation of complex, dynamic full-arm movements, and the effect of spatial perspective. VR holds promise as a tool for a number of clinical assessments and treatments, but has very rarely been studied in the context of imitation or diagnosis of apraxia. Thirty participants (18 with LCVA and 12 age- and education-matched controls) wore a VR headset and observed and imitated an instructor avatar demonstrating arm movements. Three spatial perspectives were examined within-subjects: first-person, third-person mirror, and third-person anatomical. Movements of the ipsilesional (left) arm were recorded and qualitatively coded for accuracy compared to the instructor avatar. Participants also completed embodiment questionnaires, a measure of limb apraxia (imitation of video-recorded meaningless movements), and three computerized background tasks that were hypothesized to evoke some of the same processing requirements of each of the three perspective conditions: a block-matching task, a block-mirroring task, and a mental rotation task. Imitation accuracy was highest in the first-person perspective, consistent with predictions, but did not differ between third-person mirror and anatomical. Surprisingly, patients and controls performed similarly on the imitation task for all spatial perspectives, with overall modest accuracy in both groups, and both patients and controls felt a moderate level of embodiment of their own avatar. Higher imitation accuracy related to quicker block-matching reaction times and higher mental rotation accuracy, regardless of perspective, but was unrelated to imitation of video-recorded meaningless movements. In sum, virtual reality provides advantages in terms of experimental manipulation and control but may present challenges in detecting clinical imitation deficits (limb apraxia).
Collapse
|
25
|
Fujiwara K, Shibata M, Awano Y, Shibayama K, Iso N, Matsuo M, Nakashima A, Moriuchi T, Mitsunaga W, Higashi T. A method for using video presentation to increase the vividness and activity of cortical regions during motor imagery tasks. Neural Regen Res 2021; 16:2431-2437. [PMID: 33907031 PMCID: PMC8374587 DOI: 10.4103/1673-5374.313058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 11/07/2022] Open
Abstract
In recent years, mental practice (MP) using laterally inverted video of a subject's non-paralyzed upper limb to improve the vividness of presented motor imagery (MI) has been shown to be effective for improving the function of a paralyzed upper limb. However, no studies have yet assessed the activity of cortical regions engaged during MI task performance using inverse video presentations and neurophysiological indicators. This study sought to investigate changes in MI vividness and hemodynamic changes in the cerebral cortex during MI performance under the following three conditions in near-infrared spectroscopy: MI-only without inverse video presentation (MI-only), MI with action observation (AO) of an inverse video presentation of another person's hand (AO + MI (other hand)), and MI with AO of an inverse video presentation of a participant's own hand (AO + MI (own hand)). Participants included 66 healthy right-handed adults (41 men and 25 women; mean age: 26.3 ± 4.3 years). There were 23 patients in the MI-only group (mean age: 26.4 ± 4.1 years), 20 in the AO + MI (other hand) group (mean age: 25.9 ± 5.0 years), and 23 in the AO + MI (own hand) group (mean age: 26.9 ± 4.1 years). The MI task involved transferring 1 cm × 1 cm blocks from one plate to another, once per second, using chopsticks held in the non-dominant hand. Based on a visual analog scale (VAS), MI vividness was significantly higher in the AO + MI (own hand) group than in the MI-only group and the AO + MI (other hand) group. A main effect of condition was revealed in terms of MI vividness, as well as regions of interest (ROIs) in certain brain areas associated with motor processing. The data suggest that inverse video presentation of a person's own hand enhances the MI vividness and increases the activity of motor-related cortical areas during MI. This study was approved by the Institutional Ethics Committee of Nagasaki University Graduate School of Biomedical and Health Sciences (approval No. 18121303) on January 18, 2019.
Collapse
Affiliation(s)
- Kengo Fujiwara
- Department of Clinical Services, Nagasaki Rehabilitation Hospital, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masatomo Shibata
- Department of Clinical Services, Nagasaki Rehabilitation Hospital, Nagasaki, Japan
| | - Yoshinaga Awano
- Department of Clinical Services, Nagasaki Rehabilitation Hospital, Nagasaki, Japan
| | - Koji Shibayama
- Department of Clinical Services, Nagasaki Rehabilitation Hospital, Nagasaki, Japan
| | - Naoki Iso
- Department of Rehabilitation, Faculty of Health Sciences, Tokyo Kasei University, Tokyo, Japan
| | - Moemi Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akira Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takefumi Moriuchi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Wataru Mitsunaga
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshio Higashi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
26
|
Osiurak F, Reynaud E, Baumard J, Rossetti Y, Bartolo A, Lesourd M. Pantomime of tool use: looking beyond apraxia. Brain Commun 2021; 3:fcab263. [PMID: 35350708 PMCID: PMC8936430 DOI: 10.1093/braincomms/fcab263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pantomime has a long tradition in clinical neuropsychology of apraxia. It has been much more used by researchers and clinicians to assess tool-use disorders than real tool use. Nevertheless, it remains incompletely understood and has given rise to controversies, such as the involvement of the left inferior parietal lobe or the nature of the underlying cognitive processes. The present article offers a comprehensive framework, with the aim of specifying the neural and cognitive bases of pantomime. To do so, we conducted a series of meta-analyses of brain-lesion, neuroimaging and behavioural studies about pantomime and other related tasks (i.e. real tool use, imitation of meaningless postures and semantic knowledge). The first key finding is that the area PF (Area PF complex) within the left inferior parietal lobe is crucially involved in both pantomime and real tool use as well as in the kinematics component of pantomime. The second key finding is the absence of a well-defined neural substrate for the posture component of pantomime (both grip errors and body-part-as-tool responses). The third key finding is the role played by the intraparietal sulcus in both pantomime and imitation of meaningless postures. The fourth key finding is that the left angular gyrus seems to be critical in the production of motor actions directed towards the body. The fifth key finding is that performance on pantomime is strongly correlated with the severity of semantic deficits. Taken together, these findings invite us to offer a neurocognitive model of pantomime, which provides an integrated alternative to the two hypotheses that dominate the field: The gesture-engram hypothesis and the communicative hypothesis. More specifically, this model assumes that technical reasoning (notably the left area PF), the motor-control system (notably the intraparietal sulcus), body structural description (notably the left angular gyrus), semantic knowledge (notably the polar temporal lobes) and potentially theory of mind (notably the middle prefrontal cortex) work in concert to produce pantomime. The original features of this model open new avenues for understanding the neurocognitive bases of pantomime, emphasizing that pantomime is a communicative task that nevertheless originates in specific tool-use (not motor-related) cognitive processes. .
Collapse
Affiliation(s)
- François Osiurak
- Laboratoire d’Etude des Mécanismes Cognitifs (EA3082), Université Lyon 2, 69676 Bron, France
- Institut Universitaire de France, 75231 Paris, France
| | - Emanuelle Reynaud
- Laboratoire d’Etude des Mécanismes Cognitifs (EA3082), Université Lyon 2, 69676 Bron, France
| | - Josselin Baumard
- Normandie University, UNIROUEN, CRFDP (EA7475), 76821 Mont Saint Aignan, France
| | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon, Trajectoires Team, CNRS U5292, Inserm U1028, Université de Lyon, 69676 Bron, France
- Mouvement, Handicap, et Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, 69230 Saint-Genis-Laval, France
| | - Angela Bartolo
- Institut Universitaire de France, 75231 Paris, France
- Univ. Lille, CNRS, UMR9193, SCALab—Sciences Cognitives et Sciences Affectives, 59653 Villeneuve d'Ascq, France
| | - Mathieu Lesourd
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive (UR481), Université de Bourgogne Franche-Comté, 25030 Besançon, France
- MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
27
|
Cortical Activation in Mental Rotation and the Role of the Corpus Callosum: Observations in Healthy Subjects and Split-Brain Patients. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mental rotation (MR) is an abstract mental operation thanks to which a person imagines rotating an object or a body part to place it in an other position. The ability to perform MR was belived to belong to the right hemisphere for objects, and to the left for one’s ownbody images. Mental rotation is considered to be basic for imitation with the anatomical perspective, which in turn is needed for social interactions and learning. Altered imitative performances have been reported in patients with resections or microstructure alterations of the corpus callosum (CC). These patients also display a reduced MR ability compared to control subjects, as shown in a recent behavioral study. The difference was statistically significant, leading us to hypothesize a role of the CC to integrate the two hemispheres’ asymmetric functions. The present study was designed to detect, by means of a functional MRI, the cortical activation evoked during an MR task in healthy control subjects and callosotomized patients. The results suggest that performing MR requires activation of opercular cortex and inferior parietal lobule in either hemispheres, and likely the integrity of the CC, thus confirming that the main brain commissure is involved in cognitive functions.
Collapse
|
28
|
Lara F, Rueda J. Virtual Reality Not for "Being Someone" but for "Being in Someone Else's Shoes": Avoiding Misconceptions in Empathy Enhancement. Front Psychol 2021; 12:741516. [PMID: 34504468 PMCID: PMC8421598 DOI: 10.3389/fpsyg.2021.741516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francisco Lara
- Department of Philosophy, University of Granada, Granada, Spain
| | - Jon Rueda
- Department of Philosophy, University of Granada, Granada, Spain
| |
Collapse
|
29
|
Matheson H, Kenett YN. A novel coding scheme for assessing responses in divergent thinking: An embodied approach. PSYCHOLOGY OF AESTHETICS, CREATIVITY, AND THE ARTS 2021; 15:412-425. [PMID: 34567335 PMCID: PMC8456992 DOI: 10.1037/aca0000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study we devised a novel coding scheme for responses generated in a divergent thinking task. Based on considerations from behavioural and neurocognitive research from an embodied perspective, our scheme aims to capture dimensions of simulations of action or the body. In an exploratory investigation, we applied our novel coding scheme to analyze responses from a previously published dataset of divergent thinking responses. We show that a) these dimensions are reliably coded by naïve raters, and that b) individual differences in creativity influences the way in which different dimensions are used over time. Overall, our results provide new hypotheses about the generation of creative response in the divergent thinking task and should serve to characterize the cognitive strategies used in creative endeavors.
Collapse
Affiliation(s)
- Heath Matheson
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yoed N Kenett
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Kemmerer D. What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Prog Neurobiol 2021; 205:102128. [PMID: 34343630 DOI: 10.1016/j.pneurobio.2021.102128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Seeing an agent perform an action typically triggers a motor simulation of that action in the observer's Mirror Neuron System (MNS). Over the past few years, it has become increasingly clear that during action observation the patterns and strengths of responses in the MNS are modulated by multiple factors. The first aim of this paper is therefore to provide the most comprehensive survey to date of these factors. To that end, 22 distinct factors are described, broken down into the following sets: six involving the action; two involving the actor; nine involving the observer; four involving the relationship between actor and observer; and one involving the context. The second aim is to consider the implications of these findings for four prominent theoretical models of the MNS: the Direct Matching Model; the Predictive Coding Model; the Value-Driven Model; and the Associative Model. These assessments suggest that although each model is supported by a wide range of findings, each one is also challenged by other findings and relatively unaffected by still others. Hence, there is now a pressing need for a richer, more inclusive model that is better able to account for all of the modulatory factors that have been identified so far.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Psychological Sciences, Department of Speech, Language, and Hearing Sciences, Lyles-Porter Hall, Purdue University, 715 Clinic Drive, United States.
| |
Collapse
|
31
|
Angelini M, Del Vecchio M, Lopomo NF, Gobbo M, Avanzini P. Perspective-dependent activation of frontoparietal circuits during the observation of a static body effector. Brain Res 2021; 1769:147604. [PMID: 34332965 DOI: 10.1016/j.brainres.2021.147604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/16/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
The perspective from which body-related stimuli are observed plays a fundamental role in modulating cerebral activity during the processing of others' bodies and actions. Previous research has shown perspective-dependent cerebral responses during the observation of both ongoing actions and static images of an acting body with implied motion information, with an advantage for the egocentric viewpoint. The present high-density EEG study assessed event-related potentials triggered by the presentation of a forearm at rest before reach-to-grasp actions, shown from four different viewpoints. Through a spatiotemporal analysis of the scalp electric field and the localization of cortical generators, our study revealed overall different processing for the third-person perspective relative to other viewpoints, mainly due to a later activation of motor-premotor regions. Since observing a static body effector often precedes action observation, our results integrate previous evidence of perspective-dependent encoding, with cascade implications on the design of neurorehabilitative or motor learning interventions based on action observation.
Collapse
Affiliation(s)
- Monica Angelini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Parma, Italy; Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, Italy.
| | - Maria Del Vecchio
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Parma, Italy
| | - Nicola Francesco Lopomo
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Brescia, Italy
| | - Massimiliano Gobbo
- Dipartimento di Scienze Cliniche e Sperimentali, Università degli Studi di Brescia, Brescia, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Parma, Italy.
| |
Collapse
|
32
|
Action Imagery and Observation in Neurorehabilitation for Parkinson's Disease (ACTION-PD): Development of a User-Informed Home Training Intervention to Improve Functional Hand Movements. PARKINSONS DISEASE 2021; 2021:4559519. [PMID: 34336183 PMCID: PMC8324342 DOI: 10.1155/2021/4559519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023]
Abstract
Background Parkinson's disease (PD) causes difficulties with hand movements, which few studies have addressed therapeutically. Training with action observation (AO) and motor imagery (MI) improves performance in healthy individuals, particularly when the techniques are applied simultaneously (AO + MI). Both AO and MI have shown promising effects in people with PD, but previous studies have only used these separately. Objective This article describes the development and pilot testing of an intervention combining AO + MI and physical practice to improve functional manual actions in people with PD. Methods The home-based intervention, delivered using a tablet computer app, was iteratively designed by an interdisciplinary team, including people with PD, and further developed through focus groups and initial field testing. Preliminary data on feasibility were obtained via a six-week pilot randomised controlled trial (ISRCTN 11184024) of 10 participants with mild to moderate PD (6 intervention; 4 treatment as usual). Usage and adherence data were recorded during training, and semistructured interviews were conducted with participants. Exploratory outcome measures included dexterity and timed action performance. Results Usage and qualitative data provided preliminary evidence of acceptability and usability. Exploratory outcomes also suggested that subjective and objective performance of manual actions should be tested in a larger trial. The importance of personalisation, choice, and motivation was highlighted, as well as the need to facilitate engagement in motor imagery. Conclusions The results indicate that a larger RCT is warranted, and the findings also have broader relevance for the feasibility and development of AO + MI interventions for PD and other conditions.
Collapse
|
33
|
Krause D, Richert B, Weigelt M. Neurophysiology of embodied mental rotation: Event-related potentials in a mental rotation task with human bodies as compared to alphanumeric stimuli. Eur J Neurosci 2021; 54:5384-5403. [PMID: 34241932 DOI: 10.1111/ejn.15383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022]
Abstract
The present study examines if the neural signature of information processing in mental rotation tasks is moderated by stimulus characteristics (e.g., body-related vs. non-body-related stimuli). In the present experiment, stimulus sets of human figures (back view; left vs. right arm abduction) and alphanumeric characters ('R'; normal vs. mirrored view) were scrutinized with event-related potentials (ERPs) in the electroencephalography (EEG). Participants had to judge parity between an upright (0° orientation) and a comparison stimulus (stimulus disparity; 0°, 45°, 90°, 135° or 180°). There was a main effect of stimulus disparity for the behavioural (response time and error rates), as well as for the neural data (rotation-related negativity, RRN). The interaction of stimulus disparity and stimulus type was significant for the RRN, but not for the response time. Lower RRN amplitudes for letters indicate a more pronounced use of alternative processes (e.g., memory retrieval), which seems to be reflected in higher N350 amplitudes. Moreover, the increase of the RRN amplitude and the increase in response time as a function of disparity were positively correlated. Task differences were evident for several ERP components (i.e., N150, P150 and N250), being independent of disparity, which might reflect differences in early and late object cognition prior to the mental rotation process itself. This might be associated with the task-dependent activation of embodied cognition processes in mental rotation tasks.
Collapse
Affiliation(s)
- Daniel Krause
- Psychology and Movement Science, Department of Sport and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Benjamin Richert
- Psychology and Movement Science, Department of Sport and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| | - Matthias Weigelt
- Psychology and Movement Science, Department of Sport and Health, Faculty of Science, Paderborn University, Paderborn, Germany
| |
Collapse
|
34
|
Era V, Aglioti SM, Candidi M. Inhibitory Theta Burst Stimulation Highlights the Role of Left aIPS and Right TPJ during Complementary and Imitative Human-Avatar Interactions in Cooperative and Competitive Scenarios. Cereb Cortex 2021; 30:1677-1687. [PMID: 31667496 DOI: 10.1093/cercor/bhz195] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/14/2022] Open
Abstract
Competitive and cooperative interactions are based on anticipation or synchronization with the partner's actions. Both forms of interaction may either require performing imitative or complementary movements with respect to those performed by our partner. We explored how parietal regions involved in the control of imitative behavior (temporo-parietal junction, TPJ), goal coding and visuo-motor integration (anterior intraparietal sulcus, aIPS) contribute to the execution of imitative and complementary movements during cooperative and competitive interactions. To this aim, we delivered off-line non-invasive inhibitory brain stimulation to healthy individuals' left aIPS and right TPJ before they were asked to reach and grasp an object together with a virtual partner by either performing imitative or complementary interactions. In different blocks, participants were asked to compete or cooperate with the virtual partner that varied its behavior according to cooperative or competitive contexts. Left aIPS and right TPJ inhibition impaired individuals' performance (i.e., synchrony in cooperative task and anticipation in competition) during complementary and imitative interactions, respectively, in both cooperative and competitive contexts, indicating that aIPS and TPJ inhibition affects own-other action integration and action imitation (that are different in complementary vs imitative interactions) more than action synchronization or anticipation (that are different in cooperative vs competitive contexts).
Collapse
Affiliation(s)
- Vanessa Era
- SCNLab Department of Psychology, "Sapienza" University of Rome, 00185, Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00185, Rome, Italy
| | - Salvatore Maria Aglioti
- SCNLab Department of Psychology, "Sapienza" University of Rome, 00185, Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00185, Rome, Italy
| | - Matteo Candidi
- SCNLab Department of Psychology, "Sapienza" University of Rome, 00185, Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00185, Rome, Italy
| |
Collapse
|
35
|
Scott MW, Wood G, Holmes PS, Williams J, Marshall B, Wright DJ. Combined action observation and motor imagery: An intervention to combat the neural and behavioural deficits associated with developmental coordination disorder. Neurosci Biobehav Rev 2021; 127:638-646. [PMID: 34022280 DOI: 10.1016/j.neubiorev.2021.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023]
Abstract
Action observation (AO) and motor imagery (MI) have been used separately across different populations to alleviate movement impairment. Recently these two forms of covert motor simulation have been combined (combined action observation and motor imagery; AOMI), resulting in greater neurophysiological activity in the motor system, and more favourable behavioural outcomes when compared to independent AO and MI. This review aims to outline how some of the neural deficits associated with developmental coordination disorder (DCD) are evident during AO and MI, and highlight how these motor simulation techniques have been used independently to improve motor skill learning in children in this population. The growing body of evidence indicating that AOMI is superior to the independent use of either AO and MI is then synthesised and discussed in the context of children with DCD. To conclude, recommendations to optimise the delivery of AOMI for children with DCD are provided and future avenues for research are highlighted.
Collapse
Affiliation(s)
- Matthew W Scott
- Research Centre for Health, Psychology and Communities, Department of Psychology, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK.
| | - Greg Wood
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Paul S Holmes
- Research Centre for Health, Psychology and Communities, Department of Psychology, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Victoria, Australia
| | - Ben Marshall
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - David J Wright
- Research Centre for Health, Psychology and Communities, Department of Psychology, Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
36
|
Rizzolatti G, Fabbri-Destro M, Nuara A, Gatti R, Avanzini P. The role of mirror mechanism in the recovery, maintenance, and acquisition of motor abilities. Neurosci Biobehav Rev 2021; 127:404-423. [PMID: 33910057 DOI: 10.1016/j.neubiorev.2021.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/12/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
While it is well documented that the motor system is more than a mere implementer of motor actions, the possible applications of its cognitive side are still under-exploited, often remaining as poorly organized evidence. Here, we will collect evidence showing the value of action observation treatment (AOT) in the recovery of impaired motor abilities for a vast number of clinical conditions, spanning from traumatological patients to brain injuries and neurodegenerative diseases. Alongside, we will discuss the use of AOT in the maintenance of appropriate motor behavior in subjects at risk for events with dramatic physical consequences, like fall prevention in elderly people or injury prevention in sports. Finally, we will report that AOT can help to tune existing motor competencies in fields requiring precise motor control. We will connect all these diverse dots into the neurophysiological scenario offered by decades of research on the human mirror mechanism, discussing the potentialities for individualization. Empowered by modern technologies, AOT can impact individuals' safety and quality of life across the whole lifespan.
Collapse
Affiliation(s)
- Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | | | - Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Università di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche, e Neuroscienze, Modena, Italy
| | - Roberto Gatti
- Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy; Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
37
|
Amemiya K, Morita T, Hirose S, Ikegami T, Hirashima M, Naito E. Neurological and behavioral features of locomotor imagery in the blind. Brain Imaging Behav 2021; 15:656-676. [PMID: 32240463 PMCID: PMC8032591 DOI: 10.1007/s11682-020-00275-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In people with normal sight, mental simulation (motor imagery) of an experienced action involves a multisensory (especially kinesthetic and visual) emulation process associated with the action. Here, we examined how long-term blindness influences sensory experience during motor imagery and its neuronal correlates by comparing data obtained from blind and sighted people. We scanned brain activity with functional magnetic resonance imaging (fMRI) while 16 sighted and 14 blind male volunteers imagined either walking or jogging around a circle of 2 m radius. In the training before fMRI, they performed these actions with their eyes closed. During scanning, we explicitly instructed the blindfolded participants to generate kinesthetic motor imagery. After the experimental run, they rated the degree to which their motor imagery became kinesthetic or spatio-visual. The imagery of blind people was more kinesthetic as per instructions, while that of the sighted group became more spatio-visual. The imagery of both groups commonly activated bilateral frontoparietal cortices including supplementary motor areas (SMA). Despite the lack of group differences in degree of brain activation, we observed stronger functional connectivity between the SMA and cerebellum in the blind group compared to that in the sighted group. To conclude, long-term blindness likely changes sensory emulation during motor imagery to a more kinesthetic mode, which may be associated with stronger functional coupling in kinesthetic brain networks compared with that in sighted people. This study adds valuable knowledge on motor cognition and mental imagery processes in the blind.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Ikegami
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Lee JH, Seo KH. An Integrative Review of Hygiene Practice Studies in the Food Service Sector. J Food Prot 2020; 83:2147-2157. [PMID: 32692821 DOI: 10.4315/jfp-19-488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/20/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT This article reviews the recent literature on studies relevant to hygiene practices of food service workers. A total of 32 articles were chosen for evaluation from a systematic search of the published literature from 2014 to 2019. For the assessment of hygiene practices, hand washing as a measurement item and observation as a method were most frequently used. Factors influencing hygiene practices were categorized as internal and external variables. Internal variables included knowledge; psychological factors, such as attitude, risk perception, self-efficacy, and optimistic bias; and food handlers' sociodemographic characteristics, such as work experience and exposure to hygiene training. External variables included characteristics of food premises, such as the size of the operation and number of people served, and organizational factors, such as training. Regarding the recent training literature, attempts to bring in new methodologies and new technologies were found, such as multimedia case studies, cognitive word association, behavior-focused training, wearable technology, and simulation games. Among the theories utilized, knowledge, attitude, and practices were applied most frequently to explain hygiene practices. In particular, this review highlights the important fact that internal and external factors that affect hygiene practices should be considered to maintain good hygiene practices. HIGHLIGHTS
Collapse
Affiliation(s)
- Jee Hye Lee
- Department of Food and Nutrition, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, South Korea (ORCID: https://orcid.org/0000-0003-3750-1370)
| | - Kyung Hwa Seo
- Department of Hotel Culinary Arts Bakery, Ulsan College, 101 Bong su-ro, Dong-gu, Ulsan, 44022, South Korea
| |
Collapse
|
39
|
Fischer T, Demiris Y. Computational Modeling of Embodied Visual Perspective Taking. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2019.2949861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Watanabe R, Kim Y, Kikuchi Y. First-person perspective sharpens the understanding of distressful physical feelings associated with physical disability: A functional magnetic resonance study. Biol Psychol 2020; 157:107972. [PMID: 33091449 DOI: 10.1016/j.biopsycho.2020.107972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
We investigated whether observation of hand movements of people with hemiplegia by healthy individuals from the first-person perspective (FPP), compared to that from the third-person perspective (TPP), enables better understanding of disability-associated distress. We measured the neural activity of healthy individuals using functional magnetic resonance imaging while they observed hemiplegic movements from the FPP or TPP. Subjective assessment of the movements was determined with questionnaires. Compared to the TPP, the FPP elicited stronger activation in the inferior parietal lobule (IPL), right temporoparietal junction, and anterior cingulate cortex, which are associated with body representation, mentalization, and empathy, respectively. Enhanced IPL activity correlated positively with personal empathic traits. Observing movements of hemiplegic individuals from the FPP provided precise subjective understanding of the physically distressing aspects of their movements. These findings suggest that observing hemiplegic individuals from the FPP effectively improved observers' understanding of disability-associated distress via body representation, mentalization, and empathy systems.
Collapse
Affiliation(s)
- Rui Watanabe
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan; Department of Phycal Therapy, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan.
| | - Yuri Kim
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoshiaki Kikuchi
- Department of Frontier Health Science, Division of Human Health Science, Graduate School of Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo, 116-8551, Japan
| |
Collapse
|
41
|
Olsen LD, Gebremariam H. Disciplining empathy: Differences in empathy with U.S. medical students by college major. Health (London) 2020; 26:475-494. [PMID: 33076717 DOI: 10.1177/1363459320967055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Citing their students' low levels of empathy, medical educators have scrambled to implement curricula with the hopes of buffering against the corrosive effects of biomedical and clinical experiences in medical school. The assumption undergirding these studies by social scientists and medical educators alike is that immersion in biomedical education and clinical experience erodes students' empathic capacities, and that exposure to humanities and social sciences content will amend these losses. But we do not know if this assumption is correct. In this project, we empirically assess this assumption by utilizing a unique data set constructed from student applicant and survey data from the American Medical College Application Service (AMCAS) and the Association of American Medical Colleges (AAMC). We test whether medical school students (N = 8255) from the United States (U.S.) with different academic backgrounds represented by their college major have different levels of empathy, net of demographic control variables. We report two findings. First, we find that students who majored in humanities or interpretive social sciences disciplines have higher empathy scores than their peers who majored in the positivistic social sciences and STEM (science, technology, engineering, and mathematics) disciplines. Second, we find that the relationship between empathy and time in medical school is more nuanced than we would expect from the existing literature.
Collapse
Affiliation(s)
- Lauren D Olsen
- Department of Sociology, Temple University, Philadelphia, PA, USA
| | - Hana Gebremariam
- Department of Sociology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
42
|
Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity. Neuroimage 2020; 224:117398. [PMID: 32971263 DOI: 10.1016/j.neuroimage.2020.117398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022] Open
Abstract
Observing others performing motor acts like grasping has been shown to elicit neural responses in the observer`s parieto-frontal motor network, which typically becomes active when the observer would perform these actions him/herself. While some human studies suggested strongest motor resonance during observation of first person or egocentric perspectives compared to third person or allocentric perspectives, other research either report the opposite or did not find any viewpoint-related preferences in parieto-premotor cortices. Furthermore, it has been suggested that these motor resonance effects are lateralized in the parietal cortex depending on the viewpoint and identity of the observed effector (left vs right hand). Other studies, however, do not find such straightforward hand identity dependent motor resonance effects. In addition to these conflicting findings in human studies, to date, little is known about the modulatory role of viewing perspective and effector identity (left or right hand) on motor resonance effects in monkey parieto-premotor cortices. Here, we investigated the extent to which different viewpoints of observed conspecific hand actions yield motor resonance in rhesus monkeys using fMRI. Observing first person, lateral and third person viewpoints of conspecific hand actions yielded significant activations throughout the so-called action observation network, including STS, parietal and frontal cortices. Although region-of-interest analysis of parietal and premotor motor/mirror neuron regions AIP, PFG and F5, showed robust responses in these regions during action observation in general, a clear preference for egocentric or allocentric perspectives was not evident. Moreover, except for lateralized effects due to visual field biases, motor resonance in the monkey brain during grasping observation did not reflect hand identity dependent coding.
Collapse
|
43
|
Yoshimura M, Kurumadani H, Hirata J, Osaka H, Senoo K, Date S, Ueda A, Ishii Y, Kinoshita S, Hanayama K, Sunagawa T. Virtual reality-based action observation facilitates the acquisition of body-powered prosthetic control skills. J Neuroeng Rehabil 2020; 17:113. [PMID: 32819412 PMCID: PMC7439659 DOI: 10.1186/s12984-020-00743-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background Regular body-powered (BP) prosthesis training facilitates the acquisition of skills through repeated practice but requires adequate time and motivation. Therefore, auxiliary tools such as indirect training may improve the training experience and speed of skill acquisition. In this study, we examined the effects of action observation (AO) using virtual reality (VR) as an auxiliary tool. We used two modalities during AO: three-dimensional (3D) VR and two-dimensional (2D) computer tablet devices (Tablet). Each modality was tested from first- and third-person perspectives. Methods We studied 40 healthy right-handed participants wearing a BP prosthesis simulator on their non-dominant hands. The participants were divided into five groups based on combinations of the different modalities and perspectives: first-person perspective on VR (VR1), third-person perspective on VR (VR3), first-person perspective on a tablet (Tablet1), third-person perspective on a tablet (Tablet3), and a control group (Control). The intervention groups observed and imitated the video image of prosthesis operation for 10 min in each of two sessions. We evaluated the level of immersion during AO using the visual analogue scale. Prosthetic control skills were evaluated using the Box and Block Test (BBT) and a bowknot task (BKT). Results In the BBT, there were no significant differences in the amount of change in the skills between the five groups. In contrast, the relative changes in the BKT prosthetic control skills in VR1 (p < 0.001, d = 3.09) and VR3 (p < 0.001, d = 2.16) were significantly higher than those in the control group. Additionally, the immersion scores of VR1 (p < 0.05, d = 1.45) and VR3 (p < 0.05, d = 1.18) were higher than those of Tablet3. There was a significant negative correlation between the immersion scores and the relative change in the BKT scores (Spearman’s rs = − 0.47, p < 0.01). Conclusions Using the BKT of bilateral manual dexterity, VR-based AO significantly improved short-term prosthetic control acquisition. Additionally, it appeared that the higher the immersion score was, the shorter the execution time of the BKT task. Our findings suggest that VR-based AO training may be effective in acquiring bilateral BP prosthetic control, which requires more 3D-based operation.
Collapse
Affiliation(s)
- Manabu Yoshimura
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan. .,Kawasaki University of Medical Welfare, Okayama, Japan, 288 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Hiroshi Kurumadani
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Junya Hirata
- Kawasaki University of Medical Welfare, Okayama, Japan, 288 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroshi Osaka
- Kawasaki University of Medical Welfare, Okayama, Japan, 288 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Katsutoshi Senoo
- Kawasaki University of Medical Welfare, Okayama, Japan, 288 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Shota Date
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Akio Ueda
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yosuke Ishii
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Seiji Kinoshita
- Kawasaki Medical School Hospital, Okayama, Japan, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Kozo Hanayama
- Kawasaki Medical School, Department of Rehabilitation Medicine, Okayama, Japan, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Toru Sunagawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
44
|
DeCasien AR, Higham JP. Relative Cerebellum Size Is Not Sexually Dimorphic across Primates. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:93-101. [PMID: 32791505 DOI: 10.1159/000509070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Substantive sex differences in behavior and cognition are found in humans and other primates. However, potential sex differences in primate neuroanatomy remain largely unexplored. Here, we investigate sex differences in the relative size of the cerebellum, a region that has played a major role in primate brain evolution and that has been associated with cognitive abilities that may be subject to sexual selection in primates. METHODS We compiled individual volumetric and sex data from published data sources and used MCMC generalized linear mixed models to test for sex effects in relative cerebellar volume while controlling for phylogenetic relationships between species. Given that the cerebellum is a functionally heterogeneous structure involved in multiple complex cognitive processes that may be under selection in males or females within certain species, and that sexual selection pressures vary so greatly across primate species, we predicted there would be no sex difference in the relative size of the cerebellum across primates. RESULTS Our results support our prediction, suggesting there is no consistent sex difference in relative cerebellum size. CONCLUSION This work suggests that the potential for sex differences in relative cerebellum size has been subject to either developmental constraint or lack of consistent selection pressures, and highlights the need for more individual-level primate neuroanatomical data to facilitate intra- and inter-specific study of brain sexual dimorphism.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, New York, USA, .,New York Consortium in Evolutionary Primatology, New York, New York, USA,
| | - James P Higham
- Department of Anthropology, New York University, New York, New York, USA.,New York Consortium in Evolutionary Primatology, New York, New York, USA
| |
Collapse
|
45
|
Temporiti F, Adamo P, Cavalli E, Gatti R. Efficacy and Characteristics of the Stimuli of Action Observation Therapy in Subjects With Parkinson's Disease: A Systematic Review. Front Neurol 2020; 11:808. [PMID: 32903559 PMCID: PMC7438447 DOI: 10.3389/fneur.2020.00808] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background: The discovery of the Mirror Neuron System has promoted the development of Action Observation Therapy (AOT) to improve motor and functional abilities in patients with Parkinson's disease (PD). This innovative approach involves observing video-clips showing motor contents, which may vary across the studies influencing AOT efficacy. To date, no studies have systematically summarized the effects of AOT in patients with PD on motor and functional outcomes, underlining the characteristics of visual stimuli in relation to their efficacy. Objectives: To describe the potential benefits of AOT in patients with PD and discuss the characteristics of visual stimuli used in clinical studies in relation to their efficacy. Methods: A systematic literature search was carried out using MEDLINE via PubMed, EMBASE, Scopus, and PEDro, from inception until March 2020. Randomized controlled trials that investigated the effects of AOT on motor and functional recovery in patients with PD were included. Two independent reviewers appraised the records for inclusion, assessed the methodological quality, and extracted the following data: number and characteristics of participants, features and posology of the treatments, outcome measures at each follow-up, and main results. Findings were aggregated into a quantitative synthesis (mean difference and 95% confidence interval) for each time point. Results: Overall, 7 studies (189 participants) with a mean PEDro score of 6.1 (range: 4–8) points were selected. Included studies revealed AOT as effective in improving walking ability and typical motor signs (i.e., freezing of gait and bradykinesia) in patients with PD. Moreover, when this approach incorporated ecological auditory stimuli, changes to functional abilities and quality of life were also induced, which persisted up to 3 months after treatment. However, included studies adopted AOT stimuli with heterogeneous posology (from a single session to 8 weeks) and characteristics of motor contents might be responsible for different motor and functional recovery (person-related and viewing perspectives, transitive or intransitive actions, healthy subjects or patients, and association or not with imitation). Conclusions: AOT leads to improvements in motor and functional abilities in patients with PD and the characteristics of visual stimuli may play a role in determining AOT effects, deserving further investigations.
Collapse
Affiliation(s)
- Federico Temporiti
- Physiotherapy Unit, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paola Adamo
- Physiotherapy Unit, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Emanuele Cavalli
- Physiotherapy Unit, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Roberto Gatti
- Physiotherapy Unit, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
46
|
Dumas G, Moreau Q, Tognoli E, Kelso JAS. The Human Dynamic Clamp Reveals the Fronto-Parietal Network Linking Real-Time Social Coordination and Cognition. Cereb Cortex 2020; 30:3271-3285. [PMID: 31867672 PMCID: PMC7197204 DOI: 10.1093/cercor/bhz308] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 01/25/2023] Open
Abstract
How does the brain allow us to interact with others? Social neuroscience has already provided some answers to these questions but has tended to treat high-level, cognitive interpretations of social behavior separately from the sensorimotor mechanisms upon which they rely. The goal here is to identify the underlying neural processes and mechanisms linking sensorimotor coordination and intention attribution. We combine the human dynamic clamp, a novel paradigm for studyingrealistic social behavior, with high-resolution electroencephalography. The collection of humanness and intention attribution reports, kinematics, and neural data affords an opportunity to relate brain activity to the ongoing social behavior. Behavioral results demonstrate that sensorimotor coordination influences the judgments of cooperativeness and humanness. Analysis of brain dynamics reveals two distinct networks related to the integration of visuo-motor information from self and other which overlap over the right parietal region. Furthermore, judgment of humanness and cooperation of others modulate the functional connectivity between this right parietal hub and the prefrontal cortex. These results reveal how distributed neural dynamics integrates information from "low-level" sensorimotor mechanisms and "high-level" social cognition to support the realistic social behaviors that play out in real time during interactive scenarios.
Collapse
Affiliation(s)
- G Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, 75015 Paris, France
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, FL, USA
| | - Q Moreau
- Department of Psychology, Sapienza University, 00185 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00100 Rome, Italy
| | - E Tognoli
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, FL, USA
| | - J A S Kelso
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, FL, USA
- Intelligent Systems Research Centre, Ulster University, Derry, BT48 7JL, UK
| |
Collapse
|
47
|
The Chieti Affective Action Videos database, a resource for the study of emotions in psychology. Sci Data 2020; 7:32. [PMID: 31964894 PMCID: PMC6972777 DOI: 10.1038/s41597-020-0366-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
The Chieti Affective Action Videos (CAAV) is a new database designed for the experimental study of emotions in psychology. The main goal of the CAAV is to provide a wide range of standardized stimuli based on two emotional dimensions: valence and arousal. The CAAV is the first database to present emotional stimuli through videos of actions filmed and developed specifically for experimental research. 444 young adults were recruited to evaluate this database, which consisted of a sub-set of 90 actions filmed in four versions, for a total of 360 videos. The four versions differ based on the gender of the main actor (male or female) and in the perspective in which each action was shot (first-person or third-person). CAAV validation procedure highlighted a distribution of different stimuli based on valence and arousal indexes. The material provided by CAAV can be used in future experimental studies investigating the role of emotions, perception, attention, and memory in addition to the study of differences between gender and perspective taking.
Collapse
|
48
|
Clarkson T, Kang E, Capriola-Hall N, Lerner MD, Jarcho J, Prinstein MJ. Meta-Analysis of the RDoC Social Processing Domain across Units of Analysis in Children and Adolescents. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY 2019; 49:297-321. [PMID: 31799882 DOI: 10.1080/15374416.2019.1678167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This meta-analysis advances a framework to understand correspondence among units of analysis of the social processing construct within Research Domain Criteria (RDoC). METHOD As requested for this special issue, eligible studies cited an RDoC-initiative paper or mentioned RDoC in the abstract, title, or keywords were empirical and peer reviewed, and described a correlation or regression analysis (r, β, or odds ratio) between two different units of analysis in the social processing domain in youth. We examined the frequency (descriptive statistics) and magnitude of correspondence between unit-pairs (random effects models), and predefined moderators (meta-regression). RESULTS Eight of the twenty-eight possible unit-by-unit pairs were identified, with subjective-by-behavior units being the most common. Of those, only subjective-by-circuit had significant correspondence between units. Moderator analysis revealed that the age and diagnosis of generalized anxiety disorder moderated correspondence between subjective-by-circuit units of analysis, and that a diagnosis of autism spectrum disorder moderated correspondence between subjective-by-gene units of analysis. Younger ages and inclusion of either diagnostic group reduced correspondence. CONCLUSIONS These findings indicate that the RDoC initiative has generated limited research within the social processing domain across units of analysis in youth to date. Moreover, National Institute of Mental Health (NIMH)-funded studies do not appear to be biased toward supporting the RDoC framework. However, the limited number of included studies precludes the generalizability of these findings and underscores the need for further research. Despite this, results suggest that the NIMH model for providing standard batteries of measurement tools may effectively reduce spurious correlations between subjective-by-behavior units of analysis.
Collapse
Affiliation(s)
| | - Erin Kang
- Department of Psychology, Stony Brook University
| | | | | | | | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
49
|
Wen SM, Min YL, Yuan Q, Li B, Lin Q, Zhu PW, Shi WQ, Shu YQ, Shao Y, Zhou Q. Altered spontaneous brain activity in retinal vein occlusion as determined by regional homogeneity: a resting-state fMRI study. Acta Radiol 2019; 60:1695-1702. [PMID: 31023069 DOI: 10.1177/0284185119845089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Si-Min Wen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Yong-Qiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi, PR China
| |
Collapse
|
50
|
Perspective in the conceptualization of categories. PSYCHOLOGICAL RESEARCH 2019; 85:697-719. [PMID: 31773254 DOI: 10.1007/s00426-019-01269-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
The ability to differently perceive and represent entities depending on their perspective is crucial for humans. We report five experiments that investigate how the different perspectives adopted while experiencing entities are reflected in conceptualizations (towards vs. away, near vs. far, beside vs. above, inside vs. outside and vision vs. audition vs. touch). Different groups of participants generated object properties while imagining the same scenario from different perspectives (e.g. entities coming toward them/going away from them while on a highway overpass). If conceptualizations have perspectives, then participants should produce features from a perspective entrenched in memory that reflects typical interactions with objects, independently of their assigned perspective (entrenched perspective). In addition, the perspective adopted in a given experiment should influence the properties generated (situated perspective). Results across the experiments indicate that conceptualizations contain both entrenched and situational perspectives. While entrenched perspectives emerge from canonical actions typically performed with objects, locations and entities, situational perspectives reflect online adaptations to current task contexts. The implications of the interplay between entrenched and situational perspectives for grounded cognition are discussed.
Collapse
|