1
|
Yuan R, Peng Y, Ji R, Zheng Y. Comparison of the activation level in the sensorimotor cortex between motor point and proximal nerve bundle electrical stimulation. J Neural Eng 2024; 21:026029. [PMID: 38537271 DOI: 10.1088/1741-2552/ad3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Objective.Neuromuscular electrical stimulation (NMES) is widely used for motor function rehabilitation in stroke survivors. Compared with the conventional motor point (MP) stimulation, the stimulation at the proximal segment of the peripheral nerve (PN) bundles has been demonstrated to have multiple advantages. However, it is not known yet whether the PN stimulation can increase the cortical activation level, which is crucial for motor function rehabilitation.Approach.The current stimuli were delivered transcutaneously at the muscle belly of the finger flexors and the proximal segment of the median and ulnar nerves, respectively for the MP and PN stimulation. The stimulation intensity was determined to elicit the same contraction levels between the two stimulation methods in 18 healthy individuals and a stroke patient. The functional near-infrared spectroscopy and the electromyogram were recorded to compare the activation pattern of the sensorimotor regions and the target muscles.Main Results.For the healthy subjects, the PN stimulation induced significantly increased concentration of the oxygenated hemoglobin in the contralateral sensorimotor areas, and enhanced the functional connectivity between brain regions compared with the MP stimulation. Meanwhile, the compound action potentials had a smaller amplitude and the H-reflex became stronger under the PN stimulation, indicating that more sensory axons were activated in the PN stimulation. For the stroke patient, the PN stimulation can elicit finger forces and induce activation of both the contralateral and ipsilateral motor cortex.Conclusions. Compared with the MP stimulation, the PN stimulation can induce more cortical activation in the contralateral sensorimotor areas possibly via involving more activities in the central pathway.Significance.This study demonstrated the potential of the PN stimulation to facilitate functional recovery via increasing the cortical activation level, which may help to improve the outcome of the NMES-based rehabilitation for motor function recovery after stroke.
Collapse
Affiliation(s)
- Rui Yuan
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu Peng
- Department of Rehabilitation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Run Ji
- National Research Center for Rehabilitation Technical Aids and the Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, Beijing, People's Republic of China
| | - Yang Zheng
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Ang N, Brucker B, Rosenbaum D, Lachmair M, Dresler T, Ehlis AC, Gerjets P. Exploring the neural basis and modulating factors of implicit altercentric spatial perspective-taking with fNIRS. Sci Rep 2023; 13:20627. [PMID: 37996437 PMCID: PMC10667356 DOI: 10.1038/s41598-023-46205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Humans spontaneously take the perspective of others when encoding spatial information in a scene, especially with agentive action cues present. This functional near-infrared spectroscopy (fNIRS) study explored how action observation influences implicit spatial perspective-taking (SPT) by adapting a left-right spatial judgment task to investigate whether transformation strategies underlying altercentric SPT can be predicted on the basis of cortical activation. Strategies associated with two opposing neurocognitive accounts (embodied versus disembodied) and their proposed neural correlates (human mirror neuron system; hMNS versus cognitive control network; CCN) are hypothesized. Exploratory analyses with 117 subjects uncover an interplay between perspective-taking and post-hoc factor, consistency of selection, in regions alluding to involvement of the CCN. Descriptively, inconsistent altercentric SPT elicited greater activation than consistent altercentric SPT and/or inconsistent egocentric SPT in the left inferior frontal gyrus (IFG), left dorsolateral prefrontal cortex (DLPFC) and left motor cortex (MC), but not the inferior parietal lobules (IPL). Despite the presence of grasping cues, spontaneous embodied strategies were not evident during implicit altercentric SPT. Instead, neural trends in the inconsistent subgroups (22 subjects; 13 altercentric; 9 egocentric) suggest that inconsistency in selection modulates the decision-making process and plausibly taps on deliberate and effortful disembodied strategies driven by the CCN. Implications for future research are discussed.
Collapse
Affiliation(s)
- Natania Ang
- LEAD Graduate School & Research Network, University of Tübingen, Walter-Simon-Straße 12, 72072, Tübingen, Germany.
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany.
| | - Birgit Brucker
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tübingen, Germany
| | - David Rosenbaum
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
| | - Martin Lachmair
- Duale Hochschule Baden-Württemberg Villingen-Schwenningen, Karlstraße 29, 78054, Villingen-Schwenningen, Germany
| | - Thomas Dresler
- LEAD Graduate School & Research Network, University of Tübingen, Walter-Simon-Straße 12, 72072, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- LEAD Graduate School & Research Network, University of Tübingen, Walter-Simon-Straße 12, 72072, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Hospital Tübingen, Calwerstraße 14, 72076, Tübingen, Germany
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Peter Gerjets
- LEAD Graduate School & Research Network, University of Tübingen, Walter-Simon-Straße 12, 72072, Tübingen, Germany
- Leibniz-Institut für Wissensmedien, Schleichstraße 6, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Li C, Wong Y, Langhammer B, Huang F, Du X, Wang Y, Zhang H, Zhang T. A study of dynamic hand orthosis combined with unilateral task-oriented training in subacute stroke: A functional near-infrared spectroscopy case series. Front Neurol 2022; 13:907186. [PMID: 36034313 PMCID: PMC9410701 DOI: 10.3389/fneur.2022.907186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Motor dysfunction in the upper extremities after stroke prohibits people with stroke from being independent in daily living. The application of fNIRS to explore brain activity under rehabilitation intervention is a research focus on neurorehabilitation. Objective The purpose of this study was to explore, using a grip-release ring motor task, the activated changes of regions of interest and changes in motor function utilizing fNIRS technology and test scales on persons with stroke who received unilateral task-oriented therapy with a hand orthosis in the early subacute stroke period before and after intervention. The study aimed to find a sensitive motor task and region of interest first, then to evaluate the feasibility and mechanism of this rehabilitation method by utilizing fNIRS technology in the next randomized controlled trial. Methods In this case series, eight right-handed, right hemiplegia subacute stroke persons (6 males,2 females from age 47 to 72) were enrolled. They received 30 min of unilateral task-oriented therapy without orthosis and 30 min of unilateral task-oriented therapy with orthosis (5 days/week) for 4 weeks. Activated channel numbers and beta values based on oxygenated hemoglobin concentration change using a grip-release ring motor task were estimated with fNIRS. Clinical outcome measures, including grip strength evaluation, action research arm test, and Fugl-Meyer assessment of the arm, were evaluated at the same time. Results Individual activation analysis showed that, after intervention, Subjects 1, 2, 6, 7, and 8 had the maximum mean beta value located in the left premotor cortex, while Subjects 4 and 5 had the maximum mean beta value located in the left sensorimotor cortex. The activation analysis of Subject 3 showed the maximum mean beta value located in the right premotor cortex. Deactivations of left sensorimotor cortex, left premotor cortex, and bilateral prefrontal cortex were observed after intervention which were different from other cases. Group activation analysis showed that bilateral cerebral hemispheres were activated in all eight participants, with right hemisphere and right supplementary motor cortex activated dominantly. After the intervention, the activation of bilateral hemispheres decreased but in different brain regions; there was a trend that the activation intensity of left sensorimotor cortex, right premotor cortex, and right prefrontal cortex decreased while activation intensity of left premotor cortex and left prefrontal cortex increased. Each participant demonstrated improvements in all the clinical test scales after intervention. Conclusions Left premotor cortex, left sensorimotor cortex, and right supplementary motor cortex may be the primary regions of interest. Grasp-release ring task was not appropriate to achieve our fNIRS research objective and a more sensitive motor task or more sensitive evaluating indicator should be used in further studies.
Collapse
Affiliation(s)
- ChaoJinZi Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yih Wong
- Department of Research, Sunnaas Rehabilitation Hospital, Bjornemyr, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgitta Langhammer
- Department of Research, Sunnaas Rehabilitation Hospital, Bjornemyr, Norway
- Department of Physiotherapy, Faculty of Health Science, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - FuBiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - XiaoXia Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - YunLei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - HaoJie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- *Correspondence: Tong Zhang
| |
Collapse
|
4
|
Fernandez Rojas R, Liao M, Romero J, Huang X, Ou KL. Cortical Network Response to Acupuncture and the Effect of the Hegu Point: An fNIRS Study. SENSORS 2019; 19:s19020394. [PMID: 30669377 PMCID: PMC6359459 DOI: 10.3390/s19020394] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 11/16/2022]
Abstract
Acupuncture is a practice of treatment based on influencing specific points on the body by inserting needles. According to traditional Chinese medicine, the aim of acupuncture treatment for pain management is to use specific acupoints to relieve excess, activate qi (or vital energy), and improve blood circulation. In this context, the Hegu point is one of the most widely-used acupoints for this purpose, and it has been linked to having an analgesic effect. However, there exists considerable debate as to its scientific validity. In this pilot study, we aim to identify the functional connectivity related to the three main types of acupuncture manipulations and also identify an analgesic effect based on the hemodynamic response as measured by functional near-infrared spectroscopy (fNIRS). The cortical response of eleven healthy subjects was obtained using fNIRS during an acupuncture procedure. A multiscale analysis based on wavelet transform coherence was employed to assess the functional connectivity of corresponding channel pairs within the left and right somatosensory region. The wavelet analysis was focused on the very-low frequency oscillations (VLFO, 0.01–0.08 Hz) and the low frequency oscillations (LFO, 0.08–0.15 Hz). A mixed model analysis of variance was used to appraise statistical differences in the wavelet domain for the different acupuncture stimuli. The hemodynamic response after the acupuncture manipulations exhibited strong activations and distinctive cortical networks in each stimulus. The results of the statistical analysis showed significant differences (p<0.05) between the tasks in both frequency bands. These results suggest the existence of different stimuli-specific cortical networks in both frequency bands and the anaesthetic effect of the Hegu point as measured by fNIRS.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Mingyu Liao
- Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| | - Julio Romero
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Xu Huang
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra 2617, Australia.
| | - Keng-Liang Ou
- Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan.
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan.
- School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan.
- Department of Prosthodontics, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia.
- Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Oral Hygiene Care, Ching Kuo Institute of Management and Health, Keelung 203, Taiwan.
- 3D Global Biotech Inc., New Taipei City 221, Taiwan.
| |
Collapse
|
5
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|
6
|
van de Rijt LPH, van Wanrooij MM, Snik AFM, Mylanus EAM, van Opstal AJ, Roye A. Measuring Cortical Activity During Auditory Processing with Functional Near-Infrared Spectroscopy. ACTA ACUST UNITED AC 2018; 8:9-18. [PMID: 31534793 PMCID: PMC6751080 DOI: 10.17430/1003278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an optical, non-invasive neuroimaging technique that investigates human brain activity by calculating concentrations of oxy- and deoxyhemoglobin. The aim of this publication is to review the current state of the art as to how fNIRS has been used to study auditory function. We address temporal and spatial characteristics of the hemodynamic response to auditory stimulation as well as experimental factors that affect fNIRS data such as acoustic and stimulus-driven effects. The rising importance that fNIRS is generating in auditory neuroscience underlines the strong potential of the technology, and it seems likely that fNIRS will become a useful clinical tool.
Collapse
Affiliation(s)
- Luuk P H van de Rijt
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Marc M van Wanrooij
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Ad F M Snik
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emmanuel A M Mylanus
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A John van Opstal
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anja Roye
- Department of Biophysics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Abstract
This minireview focuses on selected, noninvasive imaging techniques that have been used in the study of exercise physiology. These imaging modalities can be roughly divided into two categories: tracer based and nontracer based. Tracer-based methods use radiolabeled substrates whose location and quantity can subsequently be imaged once they are incorporated into metabolic processes. Nontracer-based imaging modalities rely on specific properties of substrates to identify metabolites and determine their concentrations. Identification and quantification of metabolites is usually based on magnetic properties or on differences in light absorption. In this review, we will highlight two tracer-based imaging modalities, positron emission tomography and single-photon-emission computed tomography, as well as two nontracer-based methods, magnetic resonance spectroscopy and near-infrared spectroscopy. Some of the recent findings that each technique has provided on cerebral and skeletal muscle metabolism during exercise, as well as the strengths and limitations of each technique, will be discussed.
Collapse
Affiliation(s)
- Thorsten Rudroff
- Integrative Neurophysiology Laboratory, Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - Nathaniel B Ketelhut
- Integrative Neurophysiology Laboratory, Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| | - John H Kindred
- Integrative Neurophysiology Laboratory, Department of Health and Exercise Science, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
8
|
Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. Neuroimage 2016; 141:120-132. [DOI: 10.1016/j.neuroimage.2016.06.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
|
9
|
Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness. NEUROIMAGE-CLINICAL 2016; 12:312-9. [PMID: 27547728 PMCID: PMC4983150 DOI: 10.1016/j.nicl.2016.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.
Collapse
Key Words
- (Prolonged) disorders of consciousness
- Brain function assessment in disorders of consciousness
- Functional near infrared spectroscopy
- M1, primary motor cortex
- MCS, minimally conscious state
- MI, motor imagery
- MM, motor movement
- SMA, supplementary motor area
- SMART, Sensory Modality Assessment for Rehabilitation Technique
- UWS, unresponsive wakefulness state
- VS, vegetative state
- fNIRS, functional near infrared spectroscopy
- pDOC, prolonged disorders of consciousness
Collapse
|
10
|
Verriotis M, Fabrizi L, Lee A, Cooper RJ, Fitzgerald M, Meek J. Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording. eNeuro 2016; 3:ENEURO.0026-16.2016. [PMID: 27200413 PMCID: PMC4867026 DOI: 10.1523/eneuro.0026-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/14/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in the study of touch and pain processing in the newborn. To address this, we have recorded NIRS and EEG responses simultaneously for the first time in the human infant following noxious (time-locked clinically required heel lances) and innocuous tactile cutaneous stimulation in 30 newborn infants. The results show that both techniques can be used to record quantifiable and distinct innocuous and noxious evoked activity at a group level in the newborn cortex. Noxious stimulation elicits a peak hemodynamic response that is 10-fold larger than that elicited by an innocuous stimulus (HbO2: 2.0 vs 0.3 µM) and a distinct nociceptive-specific N3P3 waveform in electrophysiological recordings. However, a novel single-trial analysis revealed that hemodynamic and electrophysiological responses do not always co-occur at an individual level, although when they do (64% of noxious test occasions), they are significantly correlated in magnitude. These data show that, while hemodynamic and electrophysiological touch and pain brain activity in newborn infants are comparable in group analyses, important individual differences remain. These data indicate that integrated and multimodal brain monitoring is required to understand central touch and pain processing in the newborn.
Collapse
Affiliation(s)
- Madeleine Verriotis
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Amy Lee
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Robert J. Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College Hospital, University College London Hospitals, London, WC1E 6DB, United Kingdom
| |
Collapse
|
11
|
Hofmann MJ, Dambacher M, Jacobs AM, Kliegl R, Radach R, Kuchinke L, Plichta MM, Fallgatter AJ, Herrmann MJ. Occipital and orbitofrontal hemodynamics during naturally paced reading: An fNIRS study. Neuroimage 2014; 94:193-202. [DOI: 10.1016/j.neuroimage.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 11/30/2022] Open
|
12
|
Hallacoglu B, Sassaroli A, Fantini S. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. PLoS One 2013; 8:e64095. [PMID: 23724023 PMCID: PMC3660388 DOI: 10.1371/journal.pone.0064095] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
We introduce a multi-distance, frequency-domain, near-infrared spectroscopy (NIRS) method to measure the optical coefficients of two-layered media and the thickness of the top layer from diffuse reflectance measurements. This method features a direct solution based on diffusion theory and an inversion procedure based on the Levenberg-Marquardt algorithm. We have validated our method through Monte Carlo simulations, experiments on tissue-like phantoms, and measurements on the forehead of three human subjects. The Monte Carlo simulations and phantom measurements have shown that, in ideal two-layered samples, our method accurately recovers the top layer thickness (L), the absorption coefficient (µ a ) and the reduced scattering coefficient (µ' s ) of both layers with deviations that are typically less than 10% for all parameters. Our method is aimed at absolute measurements of hemoglobin concentration and saturation in cerebral and extracerebral tissue of adult human subjects, where the top layer (layer 1) represents extracerebral tissue (scalp, skull, dura mater, subarachnoid space, etc.) and the bottom layer (layer 2) represents cerebral tissue. Human subject measurements have shown a significantly greater total hemoglobin concentration in cerebral tissue (82±14 µM) with respect to extracerebral tissue (30±7 µM). By contrast, there was no significant difference between the hemoglobin saturation measured in cerebral tissue (56%±10%) and extracerebral tissue (62%±6%). To our knowledge, this is the first time that an inversion procedure in the frequency domain with six unknown parameters with no other prior knowledge is used for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and oxygenation assessment both in the research arena and clinical practice.
Collapse
Affiliation(s)
- Bertan Hallacoglu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA.
| | | | | |
Collapse
|
13
|
Yamada T, Umeyama S, Matsuda K. Separation of fNIRS signals into functional and systemic components based on differences in hemodynamic modalities. PLoS One 2012. [PMID: 23185590 PMCID: PMC3501470 DOI: 10.1371/journal.pone.0050271] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In conventional functional near-infrared spectroscopy (fNIRS), systemic physiological fluctuations evoked by a body's motion and psychophysiological changes often contaminate fNIRS signals. We propose a novel method for separating functional and systemic signals based on their hemodynamic differences. Considering their physiological origins, we assumed a negative and positive linear relationship between oxy- and deoxyhemoglobin changes of functional and systemic signals, respectively. Their coefficients are determined by an empirical procedure. The proposed method was compared to conventional and multi-distance NIRS. The results were as follows: (1) Nonfunctional tasks evoked substantial oxyhemoglobin changes, and comparatively smaller deoxyhemoglobin changes, in the same direction by conventional NIRS. The systemic components estimated by the proposed method were similar to the above finding. The estimated functional components were very small. (2) During finger-tapping tasks, laterality in the functional component was more distinctive using our proposed method than that by conventional fNIRS. The systemic component indicated task-evoked changes, regardless of the finger used to perform the task. (3) For all tasks, the functional components were highly coincident with signals estimated by multi-distance NIRS. These results strongly suggest that the functional component obtained by the proposed method originates in the cerebral cortical layer. We believe that the proposed method could improve the reliability of fNIRS measurements without any modification in commercially available instruments.
Collapse
Affiliation(s)
- Toru Yamada
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
14
|
Coutts LV, Cooper CE, Elwell CE, Wilkins AJ. Time course of the haemodynamic response to visual stimulation in migraine, measured using near-infrared spectroscopy. Cephalalgia 2012; 32:621-9. [DOI: 10.1177/0333102412444474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: In patients with migraine, an abnormally large haemodynamic response to epileptogenic visual stimulation has previously been observed, consistent with the hypothesis of a cortical hyperexcitability. Ophthalmic filters have been used in the treatment of migraine, and they reduce the haemodynamic response. Methods: The present study used near-infrared spectroscopy (NIRS) to characterise the haemodynamic response to a range of visual stimuli in 20 patients with migraine (15 with aura and 5 without) and paired controls in order to assess the effect of ophthalmic treatment. In an initial study, the response to three stimuli (chequerboard, and two gratings of different spatial frequency) was measured. In a second study, using the mid-spatial frequency grating as stimulus, the response was compared when precision spectral filters (PSF), grey filters or filters of control colour were worn as ophthalmic lenses. Results: In the first study the time course of the response differed between the groups. The difference was most distinct for the grating with mid-spatial frequency. In the second study the PSF broadened (normalised) the haemodynamic response in migraineurs relative to controls, consistent with fMRI BOLD findings and suggesting a physiological mechanism for their reported efficacy. In neither study were there differences in the amplitude of the response between migraine and control groups or indeed between filters. Conclusion: The time course of the functional response as measured by NIRS may be an effective tool to track therapy with PSF and explore the mechanisms of visual stress in migraine.
Collapse
|
15
|
Shoyama M, Nishioka T, Okumura M, Kose A, Tsuji T, Ukai S, Shinosaki K. Brain activity during the Clock-Drawing Test: multichannel near-infrared spectroscopy study. ACTA ACUST UNITED AC 2012; 18:243-51. [PMID: 22074062 DOI: 10.1080/09084282.2011.595450] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The Clock-Drawing Test (CDT) is widely used in clinical practice for the screening of dementia. However, neural activity during real clock drawing has not been investigated due to motion artifacts. In the present study, we examined brain activity during real clock drawing using multichannel near-infrared spectroscopy (NIRS). We measured hemoglobin concentration changes in the prefrontal and temporal surface areas during clock drawing using 52-channel NIRS. Data obtained from 37 right-handed healthy volunteers were analyzed. We found significant increases in oxy-Hb in more than 96.2% of the channels (false-discovery rate corrected, p < .025). The time required for CDT performance showed a negative correlation with changes in oxy-Hb in the prefrontal region (r = -.529, p = .002). The mean value for oxy-Hb changes was higher in the left hemisphere in 20 subjects (54%) and in the right hemisphere in 17 subjects (46%). The NIRS/CDT combination is acceptable as a clinical tool, as the method has the advantages of direct measurement of cortical activation with high temporal resolution. Our results confirm the aspects of the CDT involving the frontal-lobe battery.
Collapse
|
16
|
Deep and surface hemodynamic signal from functional time resolved transcranial near infrared spectroscopy compared to skin flowmotion. Comput Biol Med 2012; 42:282-9. [DOI: 10.1016/j.compbiomed.2011.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 04/18/2011] [Accepted: 06/01/2011] [Indexed: 11/20/2022]
|
17
|
Sato H, Aoki R, Katura T, Matsuda R, Koizumi H. Correlation of within-individual fluctuation of depressed mood with prefrontal cortex activity during verbal working memory task: optical topography study. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:126007. [PMID: 22191924 DOI: 10.1117/1.3662448] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previous studies showed that interindividual variations in mood state are associated with prefrontal cortex (PFC) activity. In this study, we focused on the depressed-mood state under natural circumstances and examined the relationship between within-individual changes over time in this mood state and PFC activity. We used optical topography (OT), a functional imaging technique based on near-infrared spectroscopy, to measure PFC activity for each participant in three experimental sessions repeated at 2-week intervals. In each session, the participants completed a self-report questionnaire of mood state and underwent OT measurement while performing verbal and spatial working memory (WM) tasks. The results showed that changes in the depressed-mood score between successive sessions were negatively correlated with those in the left PFC activation for the verbal WM task (ρ = -0.56, p < 0.05). In contrast, the PFC activation for the spatial WM task did not co-vary with participants' mood changes. We thus demonstrated that PFC activity during a verbal WM task varies depending on the participant's depressed mood state, independent of trait factors. This suggests that using optical topography to measure PFC activity during a verbal WM task can be used as a potential state marker for an individual's depressed mood state.
Collapse
Affiliation(s)
- Hiroki Sato
- Hitachi, Ltd., Central Research Laboratory, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan.
| | | | | | | | | |
Collapse
|
18
|
Bedside optical imaging of occipital resting-state functional connectivity in neonates. Neuroimage 2011; 59:2529-38. [PMID: 21925609 DOI: 10.1016/j.neuroimage.2011.08.094] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/07/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022] Open
Abstract
Resting-state networks derived from temporal correlations of spontaneous hemodynamic fluctuations have been extensively used to elucidate the functional organization of the brain in adults and infants. We have previously developed functional connectivity diffuse optical tomography methods in adults, and we now apply these techniques to study functional connectivity in newborn infants at the bedside. We present functional connectivity maps in the occipital cortices obtained from healthy term-born infants and premature infants, including one infant with an occipital stroke. Our results suggest that functional connectivity diffuse optical tomography has potential as a valuable clinical tool for the early detection of functional deficits and for providing prognostic information on future development.
Collapse
|
19
|
Näsi T, Mäki H, Kotilahti K, Nissilä I, Haapalahti P, Ilmoniemi RJ. Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals. PLoS One 2011; 6:e24002. [PMID: 21887362 PMCID: PMC3162598 DOI: 10.1371/journal.pone.0024002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/28/2011] [Indexed: 12/26/2022] Open
Abstract
Hemodynamic responses evoked by transcranial magnetic stimulation (TMS) can be measured with near-infrared spectroscopy (NIRS). This study demonstrates that cerebral neuronal activity is not their sole contributor. We compared bilateral NIRS responses following brain stimulation to those from the shoulders evoked by shoulder stimulation and contrasted them with changes in circulatory parameters. The left primary motor cortex of ten subjects was stimulated with 8-s repetitive TMS trains at 0.5, 1, and 2 Hz at an intensity of 75% of the resting motor threshold. Hemoglobin concentration changes were measured with NIRS on the stimulated and contralateral hemispheres. The photoplethysmograph (PPG) amplitude and heart rate were recorded as well. The left shoulder of ten other subjects was stimulated with the same protocol while the hemoglobin concentration changes in both shoulders were measured. In addition to PPG amplitude and heart rate, the pulse transit time was recorded. The brain stimulation reduced the total hemoglobin concentration (HbT) on the stimulated and contralateral hemispheres. The shoulder stimulation reduced HbT on the stimulated shoulder but increased it contralaterally. The waveforms of the HbT responses on the stimulated hemisphere and shoulder correlated strongly with each other (r = 0.65–0.87). All circulatory parameters were also affected. The results suggest that the TMS-evoked NIRS signal includes components that do not result directly from cerebral neuronal activity. These components arise from local effects of TMS on the vasculature. Also global circulatory effects due to arousal may affect the responses. Thus, studies involving TMS-evoked NIRS responses should be carefully controlled for physiological artifacts and effective artifact removal methods are needed to draw inferences about TMS-evoked brain activity.
Collapse
Affiliation(s)
- Tiina Näsi
- Department of Biomedical Engineering and Computational Science, Aalto University School of Science, Espoo, Finland.
| | | | | | | | | | | |
Collapse
|
20
|
Patil AV, Safaie J, Moghaddam HA, Wallois F, Grebe R. Experimental investigation of NIRS spatial sensitivity. BIOMEDICAL OPTICS EXPRESS 2011; 2:1478-93. [PMID: 21698012 PMCID: PMC3114217 DOI: 10.1364/boe.2.001478] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 04/28/2011] [Indexed: 05/09/2023]
Abstract
Near infrared spectroscopy (NIRS) is regarded as a potential medical diagnostic technique for investigation of hemodynamic changes. However, uncertainties pertaining to the origin of NIRS signals have hampered its clinical interpretation. The uncertainities in NIRS measurements especially in case of living tissues are due to lack of rigorous combined theoretical-experimental studies resulting in clear understanding of the origin of NIRS signals. For their reliable interpretation it is important to understand the relationship between spatial changes in optical properties and corresponding changes in the NIRS signal. We investigated spatial sensitivity of near infrared optical measurements using an experimental approach. It uses a liquid optical phantom as tissue equivalent, which is explored under robot-control by a small, approximately point like perturbation of desired optical properties, and a NIRS instrument for trans-illumination/reflection measurements. The experimentally obtained sensitivity has been analyzed and compared with numerical simulations. In preliminary experiments we investigated the influence of various optical properties of the medium and of source/detector distances on the spatial sensitivity distribution. The acquired sensitivity maps can be used to define characteristic parameters. As an example, we used a 25% threshold to define a penetration depth measure which provides values in good accordance with published ones. To the best of our knowledge this is the first experimental study of NIRS spatial sensitivity. The presented method will allow in depth experimental investigation of the influence of various conditions pertaining to medium such as optical properties of tissue (scattering and absorption) and of the source/detector configuration.
Collapse
Affiliation(s)
- Amol V. Patil
- GRAMFC EA 4293, Fac. Medicine, University of Picardie Jules Verne, Amiens,
France
- Indian Institute of Technology, Bombay,
India
| | - Javad Safaie
- GRAMFC EA 4293, Fac. Medicine, University of Picardie Jules Verne, Amiens,
France
| | - Hamid Abrishami Moghaddam
- GRAMFC EA 4293, Fac. Medicine, University of Picardie Jules Verne, Amiens,
France
- Electrical Engineering Department, K. N. Toosi University of Technology, Teheran,
Iran
| | - Fabrice Wallois
- GRAMFC EA 4293, Fac. Medicine, University of Picardie Jules Verne, Amiens,
France
- GRAMFC EA 4293, EFSN Pediatrique, North Hospital, Amiens,
France
| | - Reinhard Grebe
- GRAMFC EA 4293, Fac. Medicine, University of Picardie Jules Verne, Amiens,
France
| |
Collapse
|
21
|
Telkemeyer S, Rossi S, Nierhaus T, Steinbrink J, Obrig H, Wartenburger I. Acoustic processing of temporally modulated sounds in infants: evidence from a combined near-infrared spectroscopy and EEG study. Front Psychol 2011; 1:62. [PMID: 21716574 PMCID: PMC3110620 DOI: 10.3389/fpsyg.2011.00062] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/25/2011] [Indexed: 11/15/2022] Open
Abstract
Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory-evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language acquisition.
Collapse
Affiliation(s)
- Silke Telkemeyer
- Languages of Emotion Cluster of Excellence, Freie Universität BerlinBerlin, Germany
- Department of Cognitive Psychology, Humboldt-Universität BerlinBerlin, Germany
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Linguistics, University of PotsdamPotsdam, Germany
| | - Sonja Rossi
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University HospitalLeipzig, Germany
| | - Till Nierhaus
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Cognitive Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, University HospitalLeipzig, Germany
| | - Jens Steinbrink
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
| | - Hellmuth Obrig
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
| | - Isabell Wartenburger
- Languages of Emotion Cluster of Excellence, Freie Universität BerlinBerlin, Germany
- Berlin NeuroImaging Center, Department of Neurology, Charité University MedicineBerlin, Germany
- Department of Linguistics, University of PotsdamPotsdam, Germany
| |
Collapse
|
22
|
Sugiura L, Ojima S, Matsuba-Kurita H, Dan I, Tsuzuki D, Katura T, Hagiwara H. Sound to language: different cortical processing for first and second languages in elementary school children as revealed by a large-scale study using fNIRS. ACTA ACUST UNITED AC 2011; 21:2374-93. [PMID: 21350046 PMCID: PMC3169662 DOI: 10.1093/cercor/bhr023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A large-scale study of 484 elementary school children (6-10 years) performing word repetition tasks in their native language (L1-Japanese) and a second language (L2-English) was conducted using functional near-infrared spectroscopy. Three factors presumably associated with cortical activation, language (L1/L2), word frequency (high/low), and hemisphere (left/right), were investigated. L1 words elicited significantly greater brain activation than L2 words, regardless of semantic knowledge, particularly in the superior/middle temporal and inferior parietal regions (angular/supramarginal gyri). The greater L1-elicited activation in these regions suggests that they are phonological loci, reflecting processes tuned to the phonology of the native language, while phonologically unfamiliar L2 words were processed like nonword auditory stimuli. The activation was bilateral in the auditory and superior/middle temporal regions. Hemispheric asymmetry was observed in the inferior frontal region (right dominant), and in the inferior parietal region with interactions: low-frequency words elicited more right-hemispheric activation (particularly in the supramarginal gyrus), while high-frequency words elicited more left-hemispheric activation (particularly in the angular gyrus). The present results reveal the strong involvement of a bilateral language network in children's brains depending more on right-hemispheric processing while acquiring unfamiliar/low-frequency words. A right-to-left shift in laterality should occur in the inferior parietal region, as lexical knowledge increases irrespective of language.
Collapse
Affiliation(s)
- Lisa Sugiura
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Leff DR, Orihuela-Espina F, Elwell CE, Athanasiou T, Delpy DT, Darzi AW, Yang GZ. Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 2011; 54:2922-36. [PMID: 21029781 DOI: 10.1016/j.neuroimage.2010.10.058] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022] Open
|
24
|
Gervain J, Mehler J, Werker JF, Nelson CA, Csibra G, Lloyd-Fox S, Shukla M, Aslin RN. Near-infrared spectroscopy: a report from the McDonnell infant methodology consortium. Dev Cogn Neurosci 2011; 1:22-46. [PMID: 22436417 PMCID: PMC6987576 DOI: 10.1016/j.dcn.2010.07.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/15/2010] [Accepted: 07/16/2010] [Indexed: 11/27/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) is a new and increasingly widespread brain imaging technique, particularly suitable for young infants. The laboratories of the McDonnell Consortium have contributed to the technological development and research applications of this technique for nearly a decade. The present paper provides a general introduction to the technique as well as a detailed report of the methodological innovations developed by the Consortium. The basic principles of NIRS and some of the existing developmental studies are reviewed. Issues concerning technological improvements, parameter optimization, possible experimental designs and data analysis techniques are discussed and illustrated by novel empirical data.
Collapse
Affiliation(s)
- Judit Gervain
- Laboratoire Psychologie de la Perception (UMR 8158), CNRS-Université Paris Descartes, 45 rue des Saints-Peres, Paris 75006, France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gregg NM, White BR, Zeff BW, Berger AJ, Culver JP. Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography. FRONTIERS IN NEUROENERGETICS 2010; 2. [PMID: 20725524 PMCID: PMC2914577 DOI: 10.3389/fnene.2010.00014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Functional near infrared spectroscopy (fNIRS) is a portable monitor of cerebral hemodynamics with wide clinical potential. However, in fNIRS, the vascular signal from the brain is often obscured by vascular signals present in the scalp and skull. In this paper, we evaluate two methods for improving in vivo data from adult human subjects through the use of high-density diffuse optical tomography (DOT). First, we test whether we can extend superficial regression methods (which utilize the multiple source–detector pair separations) from sparse optode arrays to application with DOT imaging arrays. In order to accomplish this goal, we modify the method to remove physiological artifacts from deeper sampling channels using an average of shallow measurements. Second, DOT provides three-dimensional image reconstructions and should explicitly separate different tissue layers. We test whether DOT's depth-sectioning can completely remove superficial physiological artifacts. Herein, we assess improvements in signal quality and reproducibility due to these methods using a well-characterized visual paradigm and our high-density DOT system. Both approaches remove noise from the data, resulting in cleaner imaging and more consistent hemodynamic responses. Additionally, the two methods act synergistically, with greater improvements when the approaches are used together.
Collapse
Affiliation(s)
- Nicholas M Gregg
- Department of Radiology, Washington University in St. Louis, MO USA
| | | | | | | | | |
Collapse
|
26
|
Nakahachi T, Ishii R, Iwase M, Canuet L, Takahashi H, Kurimoto R, Ikezawa K, Azechi M, Kajimoto O, Takeda M. Frontal cortex activation associated with speeded processing of visuospatial working memory revealed by multichannel near-infrared spectroscopy during Advanced Trail Making Test performance. Behav Brain Res 2010; 215:21-7. [PMID: 20600348 DOI: 10.1016/j.bbr.2010.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 06/04/2010] [Accepted: 06/09/2010] [Indexed: 11/29/2022]
Abstract
Although visuospatial working memory (VSWM) is commonly used during speeded and unconscious memory processing in daily life, most neuroimaging studies on VSWM use tasks that impose motor restrictions onto the examinees to avoid movement-related artifacts. Multichannel near-infrared spectroscopy (NIRS), however, can measure cortical activation during cognitive processing without interfering with task procedure. The purpose of this study is to determine whether multichannel NIRS can detect VSWM-induced frontal cortex activation similar to that seen in VSWM performance in daily-life activity. Using NIRS, we measured relative changes in the concentration of oxygenated hemoglobin as an index of frontal activation in 52 measurement points (channels) on the frontal area during the Advanced Trail Making Test (ATMT), a tool used to assess VSWM. The ATMT consists of two tasks, R and F, with the former assessing motor factors and the latter relating to both motor and cognitive factors involved in speeded and unconscious VSWM operations. Twenty-six healthy volunteers were enrolled in this study. Channel activation during Task F performance was observed bilaterally over the dorsolateral and ventrolateral prefrontal cortex. This distribution may reflect central executive function of working memory. Channel activation during Task R was circumscribed to part of the left ventrolateral prefrontal cortex partially overlapping with areas active during Task F performance, likely representing task-related motor factor activation. Our findings suggest that multichannel NIRS during ATMT performance is an appropriate means of measuring cortical activation induced by VSWM operations during daily activity.
Collapse
Affiliation(s)
- Takayuki Nakahachi
- Department of Clinical Neuroscience and Psychiatry, Osaka University Graduate School of Medicine, D3 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Koch SP, Habermehl C, Mehnert J, Schmitz CH, Holtze S, Villringer A, Steinbrink J, Obrig H. High-resolution optical functional mapping of the human somatosensory cortex. FRONTIERS IN NEUROENERGETICS 2010; 2:12. [PMID: 20616883 PMCID: PMC2899520 DOI: 10.3389/fnene.2010.00012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022]
Abstract
Non-invasive optical imaging of brain function has been promoted in a number of fields in which functional magnetic resonance imaging (fMRI) is limited due to constraints induced by the scanning environment. Beyond physiological and psychological research, bedside monitoring and neurorehabilitation may be relevant clinical applications that are yet little explored. A major obstacle to advocate the tool in clinical research is insufficient spatial resolution. Based on a multi-distance high-density optical imaging setup, we here demonstrate a dramatic increase in sensitivity of the method. We show that optical imaging allows for the differentiation between activations of single finger representations in the primary somatosensory cortex (SI). Methodologically our findings confirm results in a pioneering study by Zeff et al. (2007) and extend them to the homuncular organization of SI. After performing a motor task, eight subjects underwent vibrotactile stimulation of the little finger and the thumb. We used a high-density diffuse-optical sensing array in conjunction with optical tomographic reconstruction. Optical imaging disclosed three discrete activation foci one for motor and two discrete foci for vibrotactile stimulation of the first and fifth finger, respectively. The results were co-registered to the individual anatomical brain anatomy (MRI) which confirmed the localization in the expected cortical gyri in four subjects. This advance in spatial resolution opens new perspectives to apply optical imaging in the research on plasticity notably in patients undergoing neurorehabilitation.
Collapse
Affiliation(s)
- Stefan P Koch
- Berlin NeuroImaging Center, Charité Universitätsmedizin Berlin Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lee S, Lee M, Koh D, Kim BM, Choi JH. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:037010. [PMID: 20615039 DOI: 10.1117/1.3365952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. gamma-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.
Collapse
Affiliation(s)
- Seungduk Lee
- Korea University, Department of Biomicrosystem Engineering, Anam-dong Seongbuk-gu, Seoul, Korea 136-701
| | | | | | | | | |
Collapse
|
29
|
Lloyd-Fox S, Blasi A, Elwell C. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 2010; 34:269-84. [DOI: 10.1016/j.neubiorev.2009.07.008] [Citation(s) in RCA: 586] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/24/2022]
|
30
|
Umeyama S, Yamada T. Monte Carlo study of global interference cancellation by multidistance measurement of near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:064025. [PMID: 20059263 DOI: 10.1117/1.3275466] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The performance of near-infrared spectroscopy is sometimes degraded by the systemic physiological interference in the extracerebral layer. There is some systemic interference, which is highly correlated with the functional response evoked by a task execution. This kind of interference is difficult to remove by using ordinary techniques. A multidistance measurement method is one of the possible solutions for this problem. The multidistance measurement method requires estimation parameters derived from partial pathlength values of tissue layers to calculate an absorption coefficient change from a temporal absorbance change. Because partial path lengths are difficult to obtain, experimentally, we estimated them by a Monte Carlo simulation based on a five-layered slab model of a human adult head. Model parameters such as thickness and the transport scattering coefficient of each layer depend on a subject and a measurement position; thus, we assumed that these parameters obey normal distributions around standard parameter values. We determined the estimation parameters that provide a good separation performance in average for the model parameter distribution. The obtained weighting is robust to model parameter deviation and provides smaller errors on average compared to the parameters, which are determined without considering parameter distribution.
Collapse
Affiliation(s)
- Shinji Umeyama
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | |
Collapse
|
31
|
White BR, Snyder AZ, Cohen AL, Petersen SE, Raich-le ME, Schlaggar BL, Culver JP. Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. Neuroimage 2009; 47:148-56. [PMID: 19344773 PMCID: PMC2699418 DOI: 10.1016/j.neuroimage.2009.03.058] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/12/2009] [Accepted: 03/20/2009] [Indexed: 11/21/2022] Open
Abstract
Mapping resting-state networks allows insight into the brain's functional architecture and physiology and has rapidly become important in contemporary neuroscience research. Diffuse optical tomography (DOT) is an emerging functional neuroimaging technique with the advantages, relative to functional magnetic resonance imaging (fMRI), of portability and the ability to simultaneously measure both oxy- and deoxyhemoglobin. Previous optical studies have evaluated the temporal features of spontaneous resting brain signals. Herein, we develop techniques for spatially mapping functional connectivity with DOT (fc-DOT). Simultaneous imaging over the motor and visual cortices yielded robust correlation maps reproducing the expected functional neural architecture. The localization of the maps was confirmed with task-response studies and with subject-matched fc-MRI. These fc-DOT methods provide a task-less approach to mapping brain function in populations that were previously difficult to research. Our advances may permit new studies of early childhood development and of unconscious patients. In addition, the comprehensive hemoglobin contrasts of fc-DOT enable innovative studies of the biophysical origin of the functional connectivity signal.
Collapse
Affiliation(s)
- Brian R. White
- Department of Radiology, Washington University, St. Louis, MO 63110
- Department of Physics, Washington University, St. Louis, MO 63110
| | - Abraham Z. Snyder
- Department of Radiology, Washington University, St. Louis, MO 63110
- Department of Neurology, Washington University, St. Louis, MO 63110
| | | | - Steven E. Petersen
- Department of Radiology, Washington University, St. Louis, MO 63110
- Department of Neurology, Washington University, St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
- Department of Psychology, Washington University, St. Louis, MO 63110
| | - Marcus E. Raich-le
- Department of Radiology, Washington University, St. Louis, MO 63110
- Department of Neurology, Washington University, St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110
| | - Bradley L. Schlaggar
- Department of Radiology, Washington University, St. Louis, MO 63110
- Department of Neurology, Washington University, St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
- Department of Pediatrics, Washington University, St. Louis, MO 63110
| | - Joseph P. Culver
- Department of Radiology, Washington University, St. Louis, MO 63110
- Department of Physics, Washington University, St. Louis, MO 63110
| |
Collapse
|
32
|
Chen JJ, Pike GB. Origins of the BOLD post-stimulus undershoot. Neuroimage 2009; 46:559-68. [PMID: 19303450 DOI: 10.1016/j.neuroimage.2009.03.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 02/18/2009] [Accepted: 03/04/2009] [Indexed: 11/29/2022] Open
Abstract
The interpretation of the blood-oxygenation level-dependent (BOLD) post-stimulus undershoot has been a topic of considerable interest, as the mechanisms behind this prominent BOLD transient may provide valuable clues on the neurovascular response process and energy supply routes of the brain. Biomechanical theories explain the origin of the BOLD undershoot through the passive ballooning of post-capillary vessels which leads to an increase in venous blood volume (CBV(v), comprising deoxygenated blood in capillary, venular and arteriolar compartments), resulting in susceptibility-induced signal decrease. While there has been substantial evidence supporting a role for venous ballooning, there have also been reports arguing for a prolonged post-stimulus elevation in cerebral oxygenation consumption (CMRo(2)) as the primary cause. Furthermore, a contribution of post-stimulus cerebral blood flow (CBF) undershoots has also been demonstrated. To clarify the role of the venous compartment in causing the BOLD undershoot, we performed in vivo fMRI measurements of the transient DeltaCBV(v), DeltaCBF and DeltaBOLD responses in healthy humans. We observed a slow post-stimulus return to baseline in venous CBV which supports the existence of a passive "balloon" effect, implying that previous observations of a quicker recovery of the total CBV response may be dominated by arterial CBV change. Our findings also support a significant contribution from the CBF undershoots, which, combined with a slow venous CBV response, would account for much of the BOLD undershoot.
Collapse
Affiliation(s)
- Jean J Chen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, WB325 Montreal, Quebec, H3A 2B4, Canada.
| | | |
Collapse
|
33
|
A functional near-infrared spectroscopy study to detect activation of somatosensory cortex by peripheral nerve stimulation. Neurocrit Care 2008; 9:31-6. [PMID: 17975711 DOI: 10.1007/s12028-007-9022-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Multi-channel near-infrared spectroscopy (NIRS) is a method for non-invasively monitoring of relative concentrations of oxygenated, deoxygenated, and total hemoglobin. This technique has found expanding application in brain mapping and functional imaging. The purpose of this study was to investigate whether activation of somatosensory cortex can be detected without the necessity of the patient's cooperation in performing a task. METHODS Real-time bilateral parietotemporal cerebral oxygenation was monitored in 12 healthy volunteers. The median nerve at the wrist was electrically stimulated repeatedly at an amplitude below the threshold of discomfort. Interstimulus intervals were randomized between 13 and 31 s to minimize synchronization with respiration or other natural oscillations in cerebral oxygenation. RESULTS In 8 of the 12 subjects, activation over the contralateral primary somatosensory cortex was detected, correlating significantly with the predicted hemodynamic response function. CONCLUSIONS To our knowledge, this is the first time functional NIRS has been used to detect activation of somatosensory cortex with peripheral nerve stimulation. While the sensitivity for detection of the functional hemodynamic response was inadequate for clinical diagnostics, these findings are uniquely important in critical care imaging in that the regional blood flow and oxygenation changes can be detected without the requirement of a volitional task. This advancement potentially expands the capability of this modality to be used in brain mapping and in the evaluation of patients with impaired cognitive or motor function at the bedside.
Collapse
|
34
|
Katura T, Sato H, Fuchino Y, Yoshida T, Atsumori H, Kiguchi M, Maki A, Abe M, Tanaka N. Extracting task-related activation components from optical topography measurement using independent components analysis. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054008. [PMID: 19021388 DOI: 10.1117/1.2981829] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Optical topography (OT) signals measured during an experiment that used activation tasks for certain brain functions contain neuronal-activation induced blood oxygenation changes and also physiological changes. We used independent component analysis to separate the signals and extracted components related to brain activation without using any hemodynamic models. The analysis procedure had three stages: first, OT signals were separated into independent components (ICs) by using a time-delayed decorrelation algorithm; second, task-related ICs (TR-ICs) were selected from the separated ICs based on their mean intertrial cross-correlations; and third, the TR-ICs were categorized by k-means clustering into TR activation-related ICs (TR-AICs) and TR noise ICs (TR-NICs). We applied this analysis procedure to the OT signals obtained from experiments using one-handed finger-tapping tasks. In the averaged waveform of the TR-AICs, a small overshoot can be seen for a few seconds after the onset of each task and a few seconds after it ends, and the averaged waveforms of the TR-NICs have an N-shaped pattern.
Collapse
Affiliation(s)
- Takusige Katura
- Hitachi, Ltd., Advanced Research Laboratory, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hofmann MJ, Herrmann MJ, Dan I, Obrig H, Conrad M, Kuchinke L, Jacobs AM, Fallgatter AJ. Differential activation of frontal and parietal regions during visual word recognition: an optical topography study. Neuroimage 2008; 40:1340-9. [PMID: 18262438 DOI: 10.1016/j.neuroimage.2007.12.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/13/2007] [Accepted: 12/18/2007] [Indexed: 11/15/2022] Open
Abstract
The present study examined cortical oxygenation changes during lexical decision on words and pseudowords using functional Near-Infrared Spectroscopy (fNIRS). Focal hyperoxygenation as an indicator of functional activation was compared over three target areas over the left hemisphere. A 52-channel Hitachi ETG-4000 was used covering the superior frontal gyrus (SFG), the left inferior parietal gyrus (IPG) and the left inferior frontal gyrus (IFG). To allow for anatomical inference a recently developed probabilistic mapping method was used to determine the most likely anatomic locations of the changes in cortical activation [Tsuzuki, D., Jurcak, V., Singh, A.K., Okamoto, M., Watanabe, E., Dan, I., 2007. Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage 43 (4), 1506-1518. Subjects made lexical decisions on 50 low and 50 high frequency words and 100 pseudowords. With respect to the lexicality effect, words elicited a larger focal hyperoxygenation in comparison to pseudowords in two regions identified as the SFG and left IPG. The SFG activation difference was interpreted to reflect decision-related mechanisms according to the Multiple Read-Out Model [Grainger, J., Jacobs, A.M., 1996. Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review 103, 518-565]. The greater oxygenation response to words in the left IPG suggests that this region connects orthographic, phonological and semantic representations. A decrease of deoxygenated hemoglobin was observed to low frequency in comparison to high frequency words in a region identified as IFG. This region's sensitivity to word frequency suggests its involvement in grapheme-phoneme conversion, or its role during the selection of pre-activated semantic candidates.
Collapse
|
36
|
Koh PH, Glaser DE, Flandin G, Kiebel S, Butterworth B, Maki A, Delpy DT, Elwell CE. Functional optical signal analysis: a software tool for near-infrared spectroscopy data processing incorporating statistical parametric mapping. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:064010. [PMID: 18163826 DOI: 10.1117/1.2804092] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Optical topography (OT) relies on the near infrared spectroscopy (NIRS) technique to provide noninvasively a spatial map of functional brain activity. OT has advantages over conventional fMRI in terms of its simple approach to measuring the hemodynamic response, its ability to distinguish between changes in oxy- and deoxy-hemoglobin and the range of human participants that can be readily investigated. We offer a new software tool, functional optical signal analysis (fOSA), for analyzing the spatially resolved optical signals that provides statistical inference capabilities about the distribution of brain activity in space and time and by experimental condition. It does this by mapping the signal into a standard functional neuroimaging analysis software, statistical parametric mapping (SPM), and forms, in effect, a new SPM toolbox specifically designed for NIRS in an OT configuration. The validity of the program has been tested using synthetic data, and its applicability is demonstrated with experimental data.
Collapse
Affiliation(s)
- Peck H Koh
- University College London, Department of Medical Physics and Bioengineering, Biomedical Optics Research Laboratory, Gower Street, London WC1E 6BT United Kingdom. pkoha.medphys.ucl.ac.uk
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wolf M, Ferrari M, Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:062104. [PMID: 18163807 DOI: 10.1117/1.2804899] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This review celebrates the 30th anniversary of the first in vivo near-infrared (NIR) spectroscopy (NIRS) publication, which was authored by Professor Frans Jobsis. At first, NIRS was utilized to experimentally and clinically investigate cerebral oxygenation. Later it was applied to study muscle oxidative metabolism. Since 1993, the discovery that the functional activation of the human cerebral cortex can be explored by NIRS has added a new dimension to the research. To obtain simultaneous multiple and localized information, a further major step forward was achieved by introducing NIR imaging (NIRI) and tomography. This review reports on the progress of the NIRS and NIRI instrumentation for brain and muscle clinical applications 30 years after the discovery of in vivo NIRS. The review summarizes the measurable parameters in relation to the different techniques, the main characteristics of the prototypes under development, and the present commercially available NIRS and NIRI instrumentation. Moreover, it discusses strengths and limitations and gives an outlook into the "bright" future.
Collapse
Affiliation(s)
- Martin Wolf
- University Hospital Zurich, Clinic of Neonatology, Biomedical Optics Research Laboratory, 8091 Zurich, Switzerland.
| | | | | |
Collapse
|
38
|
Hillman EMC. Optical brain imaging in vivo: techniques and applications from animal to man. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:051402. [PMID: 17994863 PMCID: PMC2435254 DOI: 10.1117/1.2789693] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions.
Collapse
Affiliation(s)
- Elizabeth M C Hillman
- Columbia University, Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, 351ET, 1210 Amsterdam Avenue, New York, New York 10027, USA.
| |
Collapse
|