1
|
Fang C, Li A, Li Y. COPD, PRISm and lung function reduction affect the brain cortical structure: a Mendelian randomization study. BMC Pulm Med 2024; 24:341. [PMID: 39010041 PMCID: PMC11251327 DOI: 10.1186/s12890-024-03150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been associated with alterations in the brain cortical structure. Nonetheless, the causality between COPD and brain cortical structure has not been determined. In the present study, we used Mendelian randomization (MR) analysis to explore the causal effects of genetic predicated COPD on brain cortical structure, namely cortical surface area (SA) and cortical thickness (TH). Genetic association summary data for COPD were obtained from the FinnGen consortium (N = 358,369; Ncase = 20,066). PRISm summary genetic data were retrieved from a case-control GWAS conducted in the UK Biobank (N = 296,282). Lung function indices, including forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC, were extracted from a meta-analysis of the UK Biobank and SpiroMeta consortium (N = 400,102). Brain cortical structure data were obtained from the ENIGMA consortium (N = 51,665). Inverse-variance weighted (IVW) method was used as the primary analysis, and a series of sensitivity tests were exploited to evaluate the heterogeneity and pleiotropy of our results. The results identified potential causal effects of COPD on several brain cortical specifications, including pars orbitalis, cuneus and inferior parietal gyrus. Furthermore, genetic predicated lung function index (FEV1, FVC and FEV1/FVC), as well as PRISm, also has causal effects on brain cortical structure. According to our results, a total of 15 functional specifications were influenced by lung function index and PRISm. These findings contribute to understanding the causal effects of COPD and lung function to brain cortical structure.
Collapse
Affiliation(s)
- Chuangsen Fang
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ao Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanming Li
- Peking University Fifth School of Clinical Medicine, Beijing, 100730, China.
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Nisbet K, Kostiw A, Huynh TKT, Saggu SK, Patel D, Cummine J. A volumetric asymmetry study of gray matter in individuals with and without dyslexia. J Neurosci Res 2024; 102:e25305. [PMID: 38361418 DOI: 10.1002/jnr.25305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
Brain imaging work aimed at increased classification of dyslexia has underscored an important relationship between anterior (i.e., the inferior frontal gyrus; IFG) and posterior (i.e., superior temporal gyrus and supramarginal gyrus) brain regions. The extent to which the three components of the inferior frontal gyrus, namely the pars orbitalis, triangularis, and opercularis, are differentially related to the posterior regions, namely the superior temporal gyrus and supramarginal gyrus, needs further elucidation. Information about the nature of the anterior-posterior connections would facilitate our understanding of the neural underpinnings associated with dyslexia. Adult participants (N = 38; 16 with dyslexia) took part in an MRI study, whereby high-resolution structural scans were obtained. Volumetric asymmetry of the three regions of the IFG, the superior temporal gyrus, and the supramarginal gyrus was extracted. Significant differences were found for each of the three IFG regions, such that skilled readers had a greater leftward asymmetry of the orbitalis and triangularis, and greater rightward asymmetry of the opercularis, when compared to individuals with dyslexia. Furthermore, the pars triangularis was significantly associated with leftward asymmetry of the superior temporal gyrus for skilled but not dyslexic participants. For individuals with dyslexia, the cortical asymmetry of the IFG, and the corresponding connections with other reading-related brain regions, is inherently different from skilled readers. We discuss our findings in the context of the print-to-speech framework to further our understanding of the neural underpinnings associated with dyslexia.
Collapse
Affiliation(s)
- Kelly Nisbet
- Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Avary Kostiw
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thi Kim Truc Huynh
- Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sukhmani Kaur Saggu
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Dev Patel
- Psychology, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline Cummine
- Communication Sciences and Disorders, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Iyer KK, Bell N, Copland DA, Arnott WL, Wilson WJ, Angwin AJ. Modulations of right hemisphere connectivity in young children relates to the perception of spoken words. Neuropsychologia 2023; 183:108532. [PMID: 36906221 DOI: 10.1016/j.neuropsychologia.2023.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
The early school years shape a young brain's capability to comprehend and contextualize words within milliseconds of exposure. Parsing word sounds (phonological interpretation) and word recognition (enabling semantic interpretation) are integral to this process. Yet little is known about the causal mechanisms of cortical activity during these early developmental stages. In this study, we aimed to explore these causal mechanisms via dynamic causal modelling of event-related potentials (ERPs) acquired from 30 typically developing children (ages 6-8 years) as they completed a spoken word-picture matching task. Source reconstruction of high-density electroencephalography (128 channels) was used to ascertain differences in whole-brain cortical activity during semantically "congruent" and "incongruent" conditions. Source activations analyzed during the N400 ERP window identified significant regions-of-interest (pFWE<.05) localized primarily in the right hemisphere when contrasting congruent and incongruent word-picture stimuli. Dynamic causal models (DCMs) were tested on source activations in the fusiform gyrus (rFusi), inferior parietal lobule (rIPL), inferior temporal gyrus (rITG) and superior frontal gyrus (rSFG). DCM results indicated that a fully connected bidirectional model with self-(inhibiting) connections over rFusi, rIPL and rSFG provided the highest model evidence, based on exceedance probabilities derived from Bayesian statistical inferences. Connectivity parameters of rITG and rSFG regions from the winning DCM were negatively correlated with behavioural measures of receptive vocabulary and phonological memory (pFDR<.05), such that lower scores on these assessments corresponded with increased connectivity between temporal pole and anterior frontal regions. The findings suggest that children with lower language processing skills required increased recruitment of right hemisphere frontal/temporal areas during task performance.
Collapse
Affiliation(s)
- Kartik K Iyer
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, 4101, QLD, Brisbane, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Nicola Bell
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia; MultiLit Research Unit, MultiLit Pty Ltd, Macquarie Park, 2113, NSW, Sydney, Australia
| | - David A Copland
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| | - Wendy L Arnott
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| | - Wayne J Wilson
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| | - Anthony J Angwin
- School of Health & Rehabilitation Sciences, The University of Queensland, St Lucia, 4067, QLD, Brisbane, Australia
| |
Collapse
|
4
|
Wynn SC, Nyhus E. Brain activity patterns underlying memory confidence. Eur J Neurosci 2022; 55:1774-1797. [PMID: 35304774 PMCID: PMC9314063 DOI: 10.1111/ejn.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
The primary aim of this review is to examine the brain activity patterns that are related to subjectively perceived memory confidence. We focus on the main brain regions involved in episodic memory: the medial temporal lobe (MTL), prefrontal cortex (PFC), and posterior parietal cortex (PPC), and relate activity in their subregions to memory confidence. How this brain activity in both the encoding and retrieval phase is related to (subsequent) memory confidence ratings will be discussed. Specifically, encoding related activity in MTL regions and ventrolateral PFC mainly shows a positive linear increase with subsequent memory confidence, while dorsolateral and ventromedial PFC activity show mixed patterns. In addition, encoding-related PPC activity seems to only have indirect effects on memory confidence ratings. Activity during retrieval in both the hippocampus and parahippocampal cortex increases with memory confidence, especially during high-confident recognition. Retrieval-related activity in the PFC and PPC show mixed relationships with memory confidence, likely related to post-retrieval monitoring and attentional processes, respectively. In this review, these MTL, PFC, and PPC activity patterns are examined in detail and related to their functional roles in memory processes. This insight into brain activity that underlies memory confidence is important for our understanding of brain-behaviour relations and memory-guided decision making.
Collapse
Affiliation(s)
- Syanah C Wynn
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Erika Nyhus
- Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| |
Collapse
|
5
|
Egorova-Brumley N, Khlif MS, Werden E, Bird LJ, Brodtmann A. Grey and white matter atrophy one year after stroke aphasia. Brain Commun 2022; 4:fcac061. [PMID: 35368613 PMCID: PMC8971893 DOI: 10.1093/braincomms/fcac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Dynamic whole-brain changes occur following stroke, and not just in association with recovery. We tested the hypothesis that the presence of a specific behavioural deficit after stroke would be associated with structural decline (atrophy) in the brain regions supporting the affected function, by examining language deficits post-stroke. We quantified whole-brain structural volume changes longitudinally (3–12 months) in stroke participants with (N = 32) and without aphasia (N = 59) as assessed by the Token Test at 3 months post-stroke, compared with a healthy control group (N = 29). While no significant difference in language decline rates (change in Token Test scores from 3 to 12 months) was observed between groups and some participants in the aphasic group improved their scores, stroke participants with aphasia symptoms at 3 months showed significant atrophy (>2%, P = 0.0001) of the left inferior frontal gyrus not observed in either healthy control or non-aphasic groups over the 3–12 months period. We found significant group differences in the inferior frontal gyrus volume, accounting for age, sex, stroke severity at baseline, education and total intracranial volume (Bonferroni-corrected P = 0.0003). In a subset of participants (aphasic N = 14, non-aphasic N = 36, and healthy control N = 25) with available diffusion-weighted imaging data, we found significant atrophy in the corpus callosum and the left superior longitudinal fasciculus in the aphasic compared with the healthy control group. Language deficits at 3 months post-stroke are associated with accelerated structural decline specific to the left inferior frontal gyrus, highlighting that known functional brain reorganization underlying behavioural improvement may occur in parallel with atrophy of brain regions supporting the language function.
Collapse
Affiliation(s)
- Natalia Egorova-Brumley
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- The University of Melbourne, Melbourne, Australia
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Laura J. Bird
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
6
|
Fong MCM, Ma MKH, Chui JYT, Law TST, Hui NY, Au A, Wang WS. Foreign Language Learning in Older Adults: Anatomical and Cognitive Markers of Vocabulary Learning Success. Front Hum Neurosci 2022; 16:787413. [PMID: 35340542 PMCID: PMC8942782 DOI: 10.3389/fnhum.2022.787413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, foreign language learning (FLL) has been proposed as a possible cognitive intervention for older adults. However, the brain network and cognitive functions underlying FLL has remained largely unconfirmed in older adults. In particular, older and younger adults have markedly different cognitive profile—while older adults tend to exhibit decline in most cognitive domains, their semantic memory usually remains intact. As such, older adults may engage the semantic functions to a larger extent than the other cognitive functions traditionally considered the most important (e.g., working memory capacity and phonological awareness). Using anatomical measurements and a cognitive test battery, the present study examined this hypothesis in twenty cognitively normal older adults (58–69 years old), who participated in a two-month Italian learning programme. Results showed that the immediate learning success and long-term retention of Italian vocabularies were most consistently predicted by the anatomical measures of the left pars orbitalis and left caudal middle frontal cortex, which are implicated in semantic and episodic memory functions. Convergent evidence was also found based on the pattern of cognitive associations. Our results are consistent with a prominent role of semantic and episodic memory functions in vocabulary learning in older learners.
Collapse
Affiliation(s)
- Manson Cheuk-Man Fong
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Manson Cheuk-Man Fong
| | - Matthew King-Hang Ma
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jeremy Yin To Chui
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tammy Sheung Ting Law
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Nga-Yan Hui
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Alma Au
- Department of Applied Social Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - William Shiyuan Wang
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- William Shiyuan Wang
| |
Collapse
|
7
|
Ekert JO, Lorca-Puls DL, Gajardo-Vidal A, Crinion JT, Hope TMH, Green DW, Price CJ. A functional dissociation of the left frontal regions that contribute to single word production tasks. Neuroimage 2021; 245:118734. [PMID: 34793955 PMCID: PMC8752962 DOI: 10.1016/j.neuroimage.2021.118734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022] Open
Abstract
Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe.
Collapse
Affiliation(s)
- Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Department of Speech, Language and Hearing Sciences, Faculty of Medicine, Universidad de Concepcion, Concepcion, Chile
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom; Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - David W Green
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
8
|
Functional Activation and Connectivity of the Left Inferior Frontal Gyrus during Lexical and Phonological Retrieval. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Being language a paradigm of structural and functional asymmetry in cognitive processing, the left Inferior Frontal Gyrus has been consistently related to speech production. In fact, it has been considered a key node in cortical networks responsible for different components of naming. However, isolating these components (e.g., lexical, syntactic, and phonological retrieval) in neuroimaging studies is difficult due to the use of different baselines and tasks. In the present study, functional activation and connectivity of the left inferior frontal gyrus was explored using functional magnetic resonance imaging. Participants performed a covert naming task (pressing a button based on a phonological characteristic). Two conditions were compared: drawings of objects and single letters (baseline condition). Differences in activation and functional connectivity were obtained for objects and letters in different areas of the left Inferior Frontal Gyrus. The pars triangularis was involved in the retrieval of lexical-phonological information, showing a pattern of connectivity with temporal areas in the search for the name of objects and with perisylvanian areas for letters. Selection of phonological information seems to involve the pars opercularis both to letters and objects but recruiting supramarginal and superior temporal areas to letters, probably related to orthographic-phonological conversion. The results support the notion of the left Inferior Frontal Gyrus as a buffer forwarding neural information across cortical networks responsible for different components of speech production.
Collapse
|
9
|
Ring P, Keil J, Muthuraman M, Wolff S, Bergmann TO, Probst C, Neyse L, Schmidt U, van Eimeren T, Kaernbach C. Oscillatory brain activity associated with skin conductance responses in the context of risk. J Neurophysiol 2021; 126:924-933. [PMID: 34346697 DOI: 10.1152/jn.00014.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the neural correlates of risk-sensitive skin conductance responses can provide insights into their connection to emotional and cognitive processes. To provide insights into this connection, we studied the cortical correlates of risk-sensitive skin conductance peaks using electroencephalography. Fluctuations in skin conductance responses were elicited while participants played a threat-of-shock-card-game. Precise temporal information about skin conductance peaks were obtained by applying continuous decomposition analysis on raw electrodermal signals. Shortly preceding skin conductance peaks, we observed a decrease in oscillatory power in the frequency range between 3 and 17 Hz in occipitotemporal cortical areas. Atlas-based analysis indicated the left lingual gyrus as the source of the power decrease. The oscillatory power averaged across 3 to 17 Hz showed a significant negative relationship with the skin conductance peak amplitude. Our findings indicate a possible interaction between attention and threat perception.
Collapse
Affiliation(s)
- Patrick Ring
- Kiel Institute for the World Economy, Kiel, Germany
| | - Julian Keil
- Department of Psychology, Kiel University, Kiel, Germany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit and Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephan Wolff
- Department of Radiology and Neuroradiology, Kiel University, Kiel, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany.,Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Levent Neyse
- SOEP at DIW, Berlin, Germany.,WZB, Berlin, Germany.,IZA, Bonn, Germany
| | - Ulrich Schmidt
- Kiel Institute for the World Economy, Kiel, Germany.,Department of Economics and Econometrics, University of Johannesburg, South Africa.,Department of Economics, Kiel University, Kiel, Germany
| | - Thilo van Eimeren
- University of Cologne, Department of Nuclear Medicine, Cologne, Germany.,University of Cologne, Department of Neurology, Cologne, Germany
| | | |
Collapse
|
10
|
Jasińska KK, Shuai L, Lau ANL, Frost S, Landi N, Pugh KR. Functional connectivity in the developing language network in 4-year-old children predicts future reading ability. Dev Sci 2021; 24:e13041. [PMID: 33032375 PMCID: PMC8186432 DOI: 10.1111/desc.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
Understanding how pre-literate children's language abilities and neural function relate to future reading ability is important for identifying children who may be at-risk for reading problems. Pre-literate children are already proficient users of spoken language and their developing brain networks for language become highly overlapping with brain networks that emerge during literacy acquisition. In the present longitudinal study, we examined language abilities, and neural activation and connectivity within the language network in pre-literate children (mean age = 4.2 years). We tested how language abilities, brain activation, and connectivity predict children's reading abilities 1 year later (mean age = 5.2 years). At Time 1, children (n = 37) participated in a functional near infrared spectroscopy (fNIRS) experiment of speech processing (listening to words and pseudowords) and completed a standardized battery of language and cognitive assessments. At Time 2, children (n = 28) completed standardized reading assessments. Using psychophysiological interaction (PPI) analyses, we observed significant connectivity between the left IFG and right STG in pre-literate children, which was modulated by task (i.e., listening to words). Neural activation in left IFG and STG and increased task-modulated connectivity between the left IFG and right STG was predictive of multiple reading outcomes. Increased connectivity was associated later with increased reading ability.
Collapse
Affiliation(s)
- Kaja K. Jasińska
- Applied Psychology and Human Development, University of Toronto, Toronto, ON, Canada
- Haskins Laboratories, New Haven, CT, USA
| | - Lan Shuai
- Haskins Laboratories, New Haven, CT, USA
| | - Airey N. L. Lau
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
| | | | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
- Yale University, New Haven, CT, USA
| | - Kenneth R. Pugh
- Haskins Laboratories, New Haven, CT, USA
- University of Connecticut, Storrs, CT, USA
- Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
The left prefrontal cortex supports inhibitory processing during semantic memory retrieval. Cortex 2020; 134:296-306. [PMID: 33316604 DOI: 10.1016/j.cortex.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Semantic control refers to a set of neural and cognitive mechanisms that govern semantic processing and retrieval. Neuroimaging studies have indicated that controlled semantic processing engages the left prefrontal cortex (PFC), yet the functional role of the prefrontal activity in semantic control is poorly understood and was therefore addressed in the present study. We used a double-blind randomized controlled experiment, in which participants from three distinct groups received anodal transcranial direct current stimulation (tDCS) over left lateral PFC (n = 40), a control tDCS over temporoparietal cortex (n = 40), or sham stimulation (n = 41), while executing automatic and controlled semantic retrieval tasks as well as additional control tasks assessing working memory and semantic judgement. We demonstrate that anodal tDCS of the left lateral PFC improved inhibition of prepotent semantic associations but had no significant effect on retrieval of habitual associates or switching between retrieval rules. The prefrontal tDCS also enhanced working memory capacity, but this effect did not account for the improved semantic inhibition. The control temporoparietal tDCS did not affect semantic retrieval. Our findings show that semantic inhibition and switching represent distinct components of the semantic control system and indicate that the left lateral PFC is involved in a filtering process that constrains the accessible semantic representations (i.e., a proactive pre-retrieval inhibition) or suppresses already retrieved responses (i.e., a retroactive post-retrieval inhibition). The recognition of such an inhibitory process could inspire novel treatments targeting altered semantic processing.
Collapse
|
12
|
Differential effects of working memory load on priming and recognition of real images. Mem Cognit 2020; 48:1460-1471. [DOI: 10.3758/s13421-020-01064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Wu T, Chen C, Spagna A, Wu X, Mackie M, Russell‐Giller S, Xu P, Luo Y, Liu X, Hof PR, Fan J. The functional anatomy of cognitive control: A domain‐general brain network for uncertainty processing. J Comp Neurol 2020; 528:1265-1292. [DOI: 10.1002/cne.24804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tingting Wu
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Caiqi Chen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of PsychologySouth China Normal University Guangzhou China
| | - Alfredo Spagna
- Department of PsychologyColumbia University in the City of New York New York New York
| | - Xia Wu
- Faculty of PsychologyTianjin Normal University Tianjin China
| | - Melissa‐Ann Mackie
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shira Russell‐Giller
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| | - Pengfei Xu
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Yue‐jia Luo
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive NeuroscienceShenzhen University Shenzhen China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount Sinai New York New York
| | - Jin Fan
- Department of Psychology, Queens CollegeThe City University of New York Queens New York
| |
Collapse
|
14
|
Mitchell BL, Cuéllar-Partida G, Grasby KL, Campos AI, Strike LT, Hwang LD, Okbay A, Thompson PM, Medland SE, Martin NG, Wright MJ, Rentería ME. Educational attainment polygenic scores are associated with cortical total surface area and regions important for language and memory. Neuroimage 2020; 212:116691. [PMID: 32126298 DOI: 10.1016/j.neuroimage.2020.116691] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 02/01/2023] Open
Abstract
It is well established that higher cognitive ability is associated with larger brain size. However, individual variation in intelligence exists despite brain size and recent studies have shown that a simple unifactorial view of the neurobiology underpinning cognitive ability is probably unrealistic. Educational attainment (EA) is often used as a proxy for cognitive ability since it is easily measured, resulting in large sample sizes and, consequently, sufficient statistical power to detect small associations. This study investigates the association between three global (total surface area (TSA), intra-cranial volume (ICV) and average cortical thickness) and 34 regional cortical measures with educational attainment using a polygenic scoring (PGS) approach. Analyses were conducted on two independent target samples of young twin adults with neuroimaging data, from Australia (N = 1097) and the USA (N = 723), and found that higher EA-PGS were significantly associated with larger global brain size measures, ICV and TSA (R2 = 0.006 and 0.016 respectively, p < 0.001) but not average thickness. At the regional level, we identified seven cortical regions-in the frontal and temporal lobes-that showed variation in surface area and average cortical thickness over-and-above the global effect. These regions have been robustly implicated in language, memory, visual recognition and cognitive processing. Additionally, we demonstrate that these identified brain regions partly mediate the association between EA-PGS and cognitive test performance. Altogether, these findings advance our understanding of the neurobiology that underpins educational attainment and cognitive ability, providing focus points for future research.
Collapse
Affiliation(s)
- Brittany L Mitchell
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Gabriel Cuéllar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Katrina L Grasby
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Adrian I Campos
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Liang-Dar Hwang
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aysu Okbay
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicholas G Martin
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia; Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Bilingual language processing: A meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 2020; 108:834-853. [DOI: 10.1016/j.neubiorev.2019.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023]
|
16
|
Semantic and perceptual priming activate partially overlapping brain networks as revealed by direct cortical recordings in humans. Neuroimage 2019; 203:116204. [DOI: 10.1016/j.neuroimage.2019.116204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
|
17
|
Tsai CG, Li CW. Is It Speech or Song? Effect of Melody Priming on Pitch Perception of Modified Mandarin Speech. Brain Sci 2019; 9:brainsci9100286. [PMID: 31652522 PMCID: PMC6826721 DOI: 10.3390/brainsci9100286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
Tonal languages make use of pitch variation for distinguishing lexical semantics, and their melodic richness seems comparable to that of music. The present study investigated a novel priming effect of melody on the pitch processing of Mandarin speech. When a spoken Mandarin utterance is preceded by a musical melody, which mimics the melody of the utterance, the listener is likely to perceive this utterance as song. We used functional magnetic resonance imaging to examine the neural substrates of this speech-to-song transformation. Pitch contours of spoken utterances were modified so that these utterances can be perceived as either speech or song. When modified speech (target) was preceded by a musical melody (prime) that mimics the speech melody, a task of judging the melodic similarity between the target and prime was associated with increased activity in the inferior frontal gyrus (IFG) and superior/middle temporal gyrus (STG/MTG) during target perception. We suggest that the pars triangularis of the right IFG may allocate attentional resources to the multi-modal processing of speech melody, and the STG/MTG may integrate the phonological and musical (melodic) information of this stimulus. These results are discussed in relation to subvocal rehearsal, a speech-to-song illusion, and song perception.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei 106, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 106, Taiwan.
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| |
Collapse
|
18
|
Pereg M, Meiran N. Rapid instructed task learning (but not automatic effects of instructions) is influenced by working memory load. PLoS One 2019; 14:e0217681. [PMID: 31170202 PMCID: PMC6553735 DOI: 10.1371/journal.pone.0217681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
The ability to efficiently perform actions immediately following instructions and without prior practice has previously been termed Rapid Instructed Task Learning (RITL). In addition, it was found that instructions are so powerful that they can produce automatic effects, reflected in activation of the instructions in an inappropriate task context. RITL is hypothesized to rely on limited working memory (WM) resources for holding not-yet implemented task rules. Similarly, automatic effects of instructions presumably reflect the operation of task rules kept in WM. Therefore, both were predicted to be influenced by WM load. However, while the involvement of WM in RITL is implicated from prior studies, evidence regarding WM involvement in instructions-based automaticity is mixed. In the current study, we manipulated WM load by increasing the number of novel task rules to be held in WM towards performance in the NEXT paradigm. In this task, participants performed a series of novel tasks presented in mini-blocks, each comprising a) instructions of novel task rules; b) a NEXT phase measuring the automatic activation of these instructed rules, in which participants advance the screen using a key-press; and c) a GO phase in which the new rules are first implemented and RITL is measured. In three experiments, we show a dissociation: While RITL (rule implementation) was impaired by increased WM load, the automatic effects of instructions were not robustly influenced by WM load. Theoretical implications are discussed.
Collapse
Affiliation(s)
- Maayan Pereg
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| | - Nachshon Meiran
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
19
|
Chang HJ, Kang J, Ham BJ, Lee YM. A functional neuroimaging study of the clinical reasoning of medical students. ADVANCES IN HEALTH SCIENCES EDUCATION : THEORY AND PRACTICE 2016; 21:969-982. [PMID: 27230543 DOI: 10.1007/s10459-016-9685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
As clinical reasoning is a fundamental competence of physicians for good clinical practices, medical academics have endeavored to teach reasoning skills to undergraduate students. However, our current understanding of student-level clinical reasoning is limited, mainly because of the lack of evaluation tools for this internal cognitive process. This functional magnetic resonance imaging (fMRI) study aimed to examine the clinical reasoning processes of medical students in response to problem-solving questions. We recruited 24 2nd-year medical students who had completed their preclinical curriculum. They answered 40 clinical vignette-based multiple-choice questions during fMRI scanning. We compared the imaging data for 20 problem-solving questions (reasoning task) and 20 recall questions (recall task). Compared to the recall task, the reasoning task resulted in significantly greater activation in nine brain regions, including the dorsolateral prefrontal cortex and inferior parietal cortex, which are known to be associated with executive function and deductive reasoning. During the recall task, significant activation was observed in the brain regions that are related to memory and emotions, including the amygdala and ventromedial prefrontal cortex. Our results support that medical students mainly solve clinical questions with deductive reasoning involving prior knowledge structures and executive functions. The problem-solving questions induced the students to utilize higher cognitive functions compared with the recall questions. Interestingly, the results suggested that the students experienced some emotional distress while they were solving the recall questions. In addition, these results suggest that fMRI is a promising research tool for investigating students' cognitive processes.
Collapse
Affiliation(s)
- Hyung-Joo Chang
- Department of Medical Humanities, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, South Korea
| | - Young-Mee Lee
- Department of Medical Humanities, Korea University College of Medicine, 73 Inchon-ro, Seongbuk-gu, Seoul, 136-705, South Korea.
| |
Collapse
|
20
|
Coderre EL, Smith JF, van Heuven WJB, Horwitz B. The Functional Overlap of Executive Control and Language Processing in Bilinguals. BILINGUALISM (CAMBRIDGE, ENGLAND) 2016; 19:471-488. [PMID: 27695385 PMCID: PMC5042330 DOI: 10.1017/s1366728915000188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The need to control multiple languages is thought to require domain-general executive control (EC) in bilinguals such that the EC and language systems become interdependent. However, there has been no systematic investigation into how and where EC and language processes overlap in the bilingual brain. If the concurrent recruitment of EC during bilingual language processing is domain-general and extends to non-linguistic EC, we hypothesize that regions commonly involvement in language processing, linguistic EC, and non-linguistic EC may be selectively altered in bilinguals compared to monolinguals. A conjunction of functional magnetic resonance imaging (fMRI) data from a flanker task with linguistic and nonlinguistic distractors and a semantic categorization task showed functional overlap in the left inferior frontal gyrus (LIFG) in bilinguals, whereas no overlap occurred in monolinguals. This research therefore identifies a neural locus of functional overlap of language and EC in the bilingual brain.
Collapse
Affiliation(s)
- Emily L Coderre
- School of Psychology, University of Nottingham, Nottingham, UK; Brain Imaging and Modeling Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA; Cognitive Neurology/Neuropsychology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason F Smith
- Brain Imaging and Modeling Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA; Affective and Translational Neuroscience Laboratory, Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, MD
| | | | - Barry Horwitz
- Brain Imaging and Modeling Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Neural correlates of active vision: An fMRI comparison of natural reading and scene viewing. Neuropsychologia 2015; 75:109-18. [DOI: 10.1016/j.neuropsychologia.2015.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 04/25/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022]
|
22
|
Guidi M, Paciaroni L, Paolini S, Scarpino O, Burn DJ. Semantic profiles in mild cognitive impairment associated with Alzheimer's and Parkinson's diseases. FUNCTIONAL NEUROLOGY 2015; 30:113-8. [PMID: 26415783 PMCID: PMC4610758 DOI: 10.11138/fneur/2015.30.2.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The temporal and the prefrontal cortices have different roles in semantic information processing: the temporal lobe is where knowledge is stored (Graham and Hodges, 1997), whereas the prefrontal cortex is more specifically involved in executive aspects of semantic processing. Relatively little is known about the semantic profiles of mild cognitive impairment (MCI) in Alzheimer's disease (AD) and Parkinson's disease (PD). This observational study investigated naming and semantic questionnaire performances in three groups of subjects: 10 patients with the amnestic-type MCI prodrome of AD (aMCI), 10 patients with early-stage executive-type MCI in PD (MCI-PD), and 10 normal subjects. The MCI-PD subjects demonstrated inferior performances on a semantic questionnaire, whereas the aMCI group displayed modest difficulties in a naming task. These differences may be explained by topographical differences in pathological involvement. Since the frontal areas are more functionally impaired in PD, we hypothesize that the semantic deficit may be a consequence of a deficiency in control of semantic processing. On the other hand, the semantic deficit in aMCI may be related to a lexical-semantic storage dysfunction resulting from pathological involvement of the temporal lobe.
Collapse
Affiliation(s)
- Marco Guidi
- Neurology Unit, Department of Neuroscience, AORMN, Pesaro, Italy
| | | | - Susy Paolini
- Neurology Unit, Geriatric Hospital, INRCA, Ancona, Italy
| | | | - David J. Burn
- Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Wang Y, Holland SK. Comparison of functional network connectivity for passive-listening and active-response narrative comprehension in adolescents. Brain Connect 2014; 4:273-85. [PMID: 24689887 PMCID: PMC4028097 DOI: 10.1089/brain.2013.0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Comprehension of narrative stories plays an important role in the development of language skills. In this study, we compared brain activity elicited by a passive-listening version and an active-response (AR) version of a narrative comprehension task by using independent component (IC) analysis on functional magnetic resonance imaging data from 21 adolescents (ages 14-18 years). Furthermore, we explored differences in functional network connectivity engaged by two versions of the task and investigated the relationship between the online response time and the strength of connectivity between each pair of ICs. Despite similar brain region involvements in auditory, temporoparietal, and frontoparietal language networks for both versions, the AR version engages some additional network elements including the left dorsolateral prefrontal, anterior cingulate, and sensorimotor networks. These additional involvements are likely associated with working memory and maintenance of attention, which can be attributed to the differences in cognitive strategic aspects of the two versions. We found significant positive correlation between the online response time and the strength of connectivity between an IC in left inferior frontal region and an IC in sensorimotor region. An explanation for this finding is that longer reaction time indicates stronger connection between the frontal and sensorimotor networks caused by increased activation in adolescents who require more effort to complete the task.
Collapse
Affiliation(s)
- Yingying Wang
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital, Cincinnati, Ohio
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Scott K. Holland
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital, Cincinnati, Ohio
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
24
|
A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging. Brain Struct Funct 2013; 219:1-22. [DOI: 10.1007/s00429-013-0527-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023]
|
25
|
Kemmerer D, Rudrauf D, Manzel K, Tranel D. Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex 2012; 48:826-48. [PMID: 21159333 PMCID: PMC3965329 DOI: 10.1016/j.cortex.2010.11.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/28/2010] [Accepted: 09/24/2010] [Indexed: 11/28/2022]
Abstract
To further investigate the neural substrates of lexical and conceptual knowledge of actions, we administered a battery of six tasks to 226 brain-damaged patients with widely distributed lesions in the left and right cerebral hemispheres. The tasks probed lexical and conceptual knowledge of actions in a variety of verbal and non-verbal ways, including naming, word-picture matching, attribute judgments involving both words and pictures, and associative comparisons involving both words and pictures. Of the 226 patients who were studied, 61 failed one or more of the six tasks, with four patients being impaired on the entire battery, and varied numbers of patients being impaired on varied combinations of tasks. Overall, the 61 patients manifested a complex array of associations and dissociations across the six tasks. The lesion sites of 147 of the 226 patients were also investigated, using formal methods for lesion-deficit statistical mapping and power analysis of lesion overlap maps. Significant effects for all six tasks were found in the following left-hemisphere regions: the inferior frontal gyrus; the ventral precentral gyrus, extending superiorly into what are likely to be hand-related primary motor and premotor areas; and the anterior insula. In addition, significant effects for 4-5 tasks were found in not only the regions just mentioned, but also in several other left-hemisphere areas: the ventral postcentral gyrus; the supramarginal gyrus; and the posterior middle temporal gyrus. These results converge with previous research on the neural underpinnings of action words and concepts. However, the current study goes considerably beyond most previous investigations by providing extensive behavioral and lesion data for an unusually large and diverse sample of brain-damaged patients, and by incorporating multiple measures of verb comprehension. Regarding theoretical implications, the study provides new support for the Embodied Cognition Framework, which maintains that conceptual knowledge is grounded in sensorimotor systems.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Neurology, Division of Cognitive Neuroscience, University of Iowa College of Medicine, IA, USA.
| | | | | | | |
Collapse
|
26
|
Sachs O, Weis S, Zellagui N, Sass K, Huber W, Zvyagintsev M, Mathiak K, Kircher T. How Different Types of Conceptual Relations Modulate Brain Activation during Semantic Priming. J Cogn Neurosci 2011; 23:1263-73. [DOI: 10.1162/jocn.2010.21483] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Semantic priming, a well-established technique to study conceptual representation, has thus far produced variable fMRI results, both regarding the type of priming effects and their correlation with brain activation. The aims of the current study were (a) to investigate two types of semantic relations—categorical versus associative—under controlled processing conditions and (b) to investigate whether categorical and associative relations between words are correlated with response enhancement or response suppression. We used fMRI to examine neural correlates of semantic priming as subjects performed a lexical decision task with a long SOA (800 msec). Four experimental conditions were compared: categorically related trials (couch–bed), associatively related trials (couch–pillow), unrelated trials (couch–bridge), and nonword trials (couch–sibor). We found similar behavioral priming effects for both categorically and associatively related pairs. However, the neural priming effects differed: Categorically related pairs resulted in a neural suppression effect in the right MFG, whereas associatively related pairs resulted in response enhancement in the left IFG. A direct contrast between them revealed activation for categorically related trials in the right insular lobe. We conclude that perceptual and functional similarity of categorically related words may lead to response suppression within right-lateralized frontal regions that represent more retrieval effort and the recruitment of a broader semantic field. Associatively related pairs that require a different processing of the related target compared to the prime may lead to the response enhancement within left inferior frontal regions. Nevertheless, the differences between associative and categorical relations might be parametrical rather than absolutely distinct as both relationships recruit similar regions to a different degree.
Collapse
Affiliation(s)
- Olga Sachs
- 1RWTH Aachen University, Aachen, Germany
- 2JARA—Translational Brain Medicine, Germany
| | | | - Nadia Zellagui
- 1RWTH Aachen University, Aachen, Germany
- 2JARA—Translational Brain Medicine, Germany
| | - Katharina Sass
- 1RWTH Aachen University, Aachen, Germany
- 2JARA—Translational Brain Medicine, Germany
| | | | - Mikhail Zvyagintsev
- 1RWTH Aachen University, Aachen, Germany
- 2JARA—Translational Brain Medicine, Germany
| | - Klaus Mathiak
- 1RWTH Aachen University, Aachen, Germany
- 2JARA—Translational Brain Medicine, Germany
| | | |
Collapse
|
27
|
Belacchi C, Benelli B, Pantaleone S. The influence of categorical organization on verbal working memory. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2011; 29:942-60. [PMID: 21995746 DOI: 10.1111/j.2044-835x.2011.02030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to show the positive effects of categorical organization on verbal working memory (WM), in a modified version of a double task, such as the Listening Span Test (LST) (Daneman & Carpenter, 1980). Two experiments were performed comparing sentences with the typical definitional format (i.e., superordinate term, copula, and specification) to sentences simply describing objects or events. The results of the two experiments, with participants from children aged 6 to adults, revealed that word recall was better in Categorical sentences than in Descriptive sentences and are interpreted in terms of retrieval facilitation, due to pre-existing organization in semantic memory, at least from the age of 8 onwards. Recall performance was also better with sentences giving True statements than those giving False statements. Furthermore, Categorical False sentences are more effective in enhancing recall than Descriptive False sentences since they violate well-established semantic expectations. Such variables were also found to act among participants with a lower WM span, by this confirming that pre-existing organized information may compensate for less efficient WM.
Collapse
|
28
|
Inoue M, Ueno T, Morita K, Shoji Y, Matsuoka T, Fujiki R, Abe T, Uchimura N. Brain activities on fMRI using the shiritori task in normal subjects. Kurume Med J 2011; 57:109-115. [PMID: 21778672 DOI: 10.2739/kurumemedj.57.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Shiritori is a popular Japanese word chain game that resembles verbal fluency tasks used in Western countries. Recently, shiritori has been used to determine the dominant hemisphere for language and as a rehabilitation tool. However, there are few reports of neuroimaging during shiritori. We used functional magnetic resonance imaging (fMRI) to conduct a detailed study of brain activities during shiritori and observed activation not only of the left inferior frontal gyrus (including the pars opecularis, the pars triangularis and the pars orbitalis), which is a language-related area, but also of the left superior and middle frontal gyri, the right pars orbitalis (inferior frontal gyrus), and the right cerebellar hemisphere. Shiritori is a useful tool for psychological study and rehabilitation.
Collapse
|
29
|
Sabb FW, van Erp TG, Hardt ME, Dapretto M, Caplan R, Cannon TD, Bearden CE. Language network dysfunction as a predictor of outcome in youth at clinical high risk for psychosis. Schizophr Res 2010; 116:173-83. [PMID: 19861234 PMCID: PMC2818263 DOI: 10.1016/j.schres.2009.09.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 09/27/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Language processing abnormalities are a hallmark feature of schizophrenia. Yet, no study to date has investigated underlying neural networks associated with discourse processing in adolescents at clinical high risk (CHR) for developing psychosis(1). METHODS Forty CHR youth and 24 demographically comparable healthy controls underwent functional magnetic resonance imaging while performing a naturalistic discourse processing paradigm. We assessed differences in blood oxygenation level-dependent (BOLD) activity between task conditions (Topic Maintenance vs. Reasoning) and between groups. Furthermore, we examined the association of regional brain activity with symptom severity and social outcome at follow-up, 6 to 24 months after the scan. RESULTS Relative to controls, CHR participants showed increased neural activity in a network of language-associated brain regions, including the medial prefrontal cortex bilaterally, left inferior frontal (LIFG; BA44/45, 47) and middle temporal gyri, and the anterior cingulate (BA24 and 32). Further, increased activity in the superior temporal gyrus (STG), caudate, and LIFG distinguished those who subsequently developed psychosis. Within the CHR sample, severity of positive formal thought disorder at follow-up was positively correlated with signal change in the LIFG, superior frontal gyrus, and inferior/middle temporal gyri, whereas social outcome was inversely correlated with signal change in the LIFG and anterior cingulate. CONCLUSIONS These findings are consistent with a neural inefficiency hypothesis in those at greatest risk for psychosis, and additionally suggest that baseline activation differences may predict symptomatic and functional outcome. These results highlight the need to further investigate the neural systems involved in conversion to psychosis, and how language disruption changes over time in at-risk adolescents.
Collapse
Affiliation(s)
- Fred W. Sabb
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Box 956968, Rm 2265, 300 Medical Plaza, Los Angeles, CA 90095-6968
| | - Theo G.M. van Erp
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563
| | - Molly E. Hardt
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Box 956968, Rm 2265, 300 Medical Plaza, Los Angeles, CA 90095-6968
| | - Rochelle Caplan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Box 956968, Rm 2265, 300 Medical Plaza, Los Angeles, CA 90095-6968
| | - Tyrone D. Cannon
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Box 956968, Rm 2265, 300 Medical Plaza, Los Angeles, CA 90095-6968, Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Box 956968, Rm 2265, 300 Medical Plaza, Los Angeles, CA 90095-6968, Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563
| |
Collapse
|
30
|
Abstract
Contextual recall in humans relies on the semantic relationships between items stored in memory. These relationships can be probed by priming experiments. Such experiments have revealed a rich phenomenology on how reaction times depend on various factors such as strength and nature of associations, time intervals between stimulus presentations, and so forth. Experimental protocols on humans present striking similarities with pair association task experiments in monkeys. Electrophysiological recordings of cortical neurons in such tasks have found two types of task-related activity, "retrospective" (related to a previously shown stimulus), and "prospective" (related to a stimulus that the monkey expects to appear, due to learned association between both stimuli). Mathematical models of cortical networks allow theorists to understand the link between the physiology of single neurons and synapses, and network behavior giving rise to retrospective and/or prospective activity. Here, we show that this type of network model can account for a large variety of priming effects. Furthermore, the model allows us to interpret semantic priming differences between the two hemispheres as depending on a single association strength parameter.
Collapse
|
31
|
Difference in gamma-band phase synchronization during semantic processing of visually presented words from primary and secondary languages. Brain Res 2009; 1291:82-91. [DOI: 10.1016/j.brainres.2009.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/20/2022]
|
32
|
Nosarti C, Mechelli A, Green DW, Price CJ. The impact of second language learning on semantic and nonsemantic first language reading. ACTA ACUST UNITED AC 2009; 20:315-27. [PMID: 19478033 PMCID: PMC2803733 DOI: 10.1093/cercor/bhp101] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The relationship between orthography (spelling) and phonology (speech sounds) varies across alphabetic languages. Consequently, learning to read a second alphabetic language, that uses the same letters as the first, increases the phonological associations that can be linked to the same orthographic units. In subjects with English as their first language, previous functional imaging studies have reported increased left ventral prefrontal activation for reading words with spellings that are inconsistent with their orthographic neighbors (e.g., PINT) compared with words that are consistent with their orthographic neighbors (e.g., SHIP). Here, using functional magnetic resonance imaging (fMRI) in 17 Italian–English and 13 English–Italian bilinguals, we demonstrate that left ventral prefrontal activation for first language reading increases with second language vocabulary knowledge. This suggests that learning a second alphabetic language changes the way that words are read in the first alphabetic language. Specifically, first language reading is more reliant on both lexical/semantic and nonlexical processing when new orthographic to phonological mappings are introduced by second language learning. Our observations were in a context that required participants to switch between languages. They motivate future fMRI studies to test whether first language reading is also altered in contexts when the second language is not in use.
Collapse
Affiliation(s)
- Chiara Nosarti
- Department of Psychiatry, Biomedical Research Centre for Mental Health, Institute of Psychiatry, King's College London, UK
| | | | | | | |
Collapse
|
33
|
Abstract
An important and unresolved question is how the human brain processes speech for meaning after initial analyses in early auditory cortical regions. A variety of left-hemispheric areas have been identified that clearly support semantic processing, although a systematic analysis of directed interactions among these areas is lacking. We applied dynamic causal modeling of functional magnetic resonance imaging responses and Bayesian model selection to investigate, for the first time, experimentally induced changes in coupling among three key multimodal regions that were activated by intelligible speech: the posterior and anterior superior temporal sulcus (pSTS and aSTS, respectively) and pars orbitalis (POrb) of the inferior frontal gyrus. We tested 216 different dynamic causal models and found that the best model was a "forward" system that was driven by auditory inputs into the pSTS, with forward connections from the pSTS to both the aSTS and the POrb that increased considerably in strength (by 76 and 150%, respectively) when subjects listened to intelligible speech. Task-related, directional effects can now be incorporated into models of speech comprehension.
Collapse
|
34
|
Kemmerer D, Castillo JG, Talavage T, Patterson S, Wiley C. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. BRAIN AND LANGUAGE 2008; 107:16-43. [PMID: 17977592 DOI: 10.1016/j.bandl.2007.09.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/23/2007] [Accepted: 09/20/2007] [Indexed: 05/25/2023]
Abstract
The Simulation Framework, also known as the Embodied Cognition Framework, maintains that conceptual knowledge is grounded in sensorimotor systems. To test several predictions that this theory makes about the neural substrates of verb meanings, we used functional magnetic resonance imaging (fMRI) to scan subjects' brains while they made semantic judgments involving five classes of verbs-specifically, Running verbs (e.g., run, jog, walk), Speaking verbs (e.g., shout, mumble, whisper), Hitting verbs (e.g., hit, poke, jab), Cutting verbs (e.g., cut, slice, hack), and Change of State verbs (e.g., shatter, smash, crack). These classes were selected because they vary with respect to the presence or absence of five distinct semantic components-specifically, ACTION, MOTION, CONTACT, CHANGE OF STATE, and TOOL USE. Based on the Simulation Framework, we hypothesized that the ACTION component depends on the primary motor and premotor cortices, that the MOTION component depends on the posterolateral temporal cortex, that the CONTACT component depends on the intraparietal sulcus and inferior parietal lobule, that the CHANGE OF STATE component depends on the ventral temporal cortex, and that the TOOL USE component depends on a distributed network of temporal, parietal, and frontal regions. Virtually all of the predictions were confirmed. Taken together, these findings support the Simulation Framework and extend our understanding of the neuroanatomical distribution of different aspects of verb meaning.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, 1353 Heavilon Hall, Purdue University, West Lafayette, IN 47907-1353, USA.
| | | | | | | | | |
Collapse
|
35
|
Kroger JK, Nystrom LE, Cohen JD, Johnson-Laird PN. Distinct neural substrates for deductive and mathematical processing. Brain Res 2008; 1243:86-103. [PMID: 18760263 DOI: 10.1016/j.brainres.2008.07.128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 07/31/2008] [Accepted: 07/31/2008] [Indexed: 11/26/2022]
Abstract
In an effort to clarify how deductive reasoning is accomplished, an fMRI study was performed to observe the neural substrates of logical reasoning and mathematical calculation. Participants viewed a problem statement and three premises, and then either a conclusion or a mathematical formula. They had to indicate whether the conclusion followed from the premises, or to solve the mathematical formula. Language areas of the brain (Broca's and Wernicke's area) responded as the premises and the conclusion were read, but solution of the problems was then carried out by non-language areas. Regions in right prefrontal cortex and inferior parietal lobe were more active for reasoning than for calculation, whereas regions in left prefrontal cortex and superior parietal lobe were more active for calculation than for reasoning. In reasoning, only those problems calling for a search for counterexamples to conclusions recruited right frontal pole. These results have important implications for understanding how higher cognition, including deduction, is implemented in the brain. Different sorts of thinking recruit separate neural substrates, and logical reasoning goes beyond linguistic regions of the brain.
Collapse
Affiliation(s)
- James K Kroger
- Department of Psychology, New Mexico State University, 220 Science Hall, Las Cruces, NM 88003, USA.
| | | | | | | |
Collapse
|