1
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
2
|
Gideon A, Sauter C, Pruessner JC, Farine DR, Wirtz PH. Determinants and Mechanisms of the Renin-Aldosterone Stress Response. Psychosom Med 2022; 84:50-63. [PMID: 34611113 DOI: 10.1097/psy.0000000000001018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The renin-angiotensin-aldosterone system (RAAS) plays a relevant role in regulating blood pressure and thus maintaining cardiovascular homeostasis. Although it was recently shown that RAAS parameters are responsive to acute psychosocial stress, the psychobiological determinants of the acute stress-induced RAAS activation have not yet been investigated. In a randomized placebo-controlled design, we investigated potential psychological and physiological determinants of the RAAS response and underlying mechanisms. METHODS Fifty-seven young healthy male participants underwent either an acute standardized psychosocial stress test or a nonstress placebo task. We measured aldosterone in plasma and saliva, as well as renin, and the stress-reactive endocrine measures adrenocorticotropic hormone (ACTH), epinephrine, and norepinephrine in plasma at rest, immediately after the task and several times up to 3 hours thereafter. Moreover, we assessed stress-reactive psychological (anticipatory cognitive stress appraisal, mood, physical discomfort) and basal demographic-physiological measures (age, body mass index, blood pressure). RESULTS Acute psychosocial stress elicited changes in all assessed endocrine (p values ≤ .028, ηp2 values ≥ 0.07) and stress-reactive psychological measures (p values ≤ .003, ηp2 values ≥ 0.15). The basal parameter body mass index, the stress-reactive endocrine parameters ACTH and norepinephrine, and the psychological parameter anticipatory stress appraisal were identified as determinants of higher RAAS parameter reactivity to acute psychosocial stress. The association between anticipatory cognitive stress appraisal and plasma RAAS measures was fully mediated by ACTH increases (p values ≤ .044, ηp2 values ≥ 0.05). CONCLUSIONS Cognitive stress appraisal processes seem to modulate RAAS stress reactivity. This points to potential clinical implications for psychoeducative therapeutical interventions targeting stress appraisal processes to reduce endocrine stress reactivity.
Collapse
Affiliation(s)
- Angelina Gideon
- From the Biological Work and Health Psychology (Gideon, Sauter, Wirtz) and Clinical Neuropsychology (Pruessner), University of Konstanz; Department of Collective Behaviour (Farine), Max Planck Institute of Animal Behaviour; and Department of Biology (Farine) and Centre for the Advanced Study of Collective Behaviour (Pruessner, Farine, Wirtz), University of Konstanz, Konstanz, Germany
| | | | | | | | | |
Collapse
|
3
|
Schiller M, Ben-Shaanan TL, Rolls A. Neuronal regulation of immunity: why, how and where? Nat Rev Immunol 2021; 21:20-36. [PMID: 32811994 DOI: 10.1038/s41577-020-0387-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Neuroimmunology is one of the fastest-growing fields in the life sciences, and for good reason; it fills the gap between two principal systems of the organism, the nervous system and the immune system. Although both systems affect each other through bidirectional interactions, we focus here on one direction - the effects of the nervous system on immunity. First, we ask why is it beneficial to allow the nervous system any control over immunity? We evaluate the potential benefits to the immune system that arise by taking advantage of some of the brain's unique features, such as its capacity to integrate and synchronize physiological functions, its predictive capacity and its speed of response. Second, we explore how the brain communicates with the peripheral immune system, with a focus on the endocrine, sympathetic, parasympathetic, sensory and meningeal lymphatic systems. Finally, we examine where in the brain this immune information is processed and regulated. We chart a partial map of brain regions that may be relevant for brain-immune system communication, our goal being to introduce a conceptual framework for formulating new hypotheses to study these interactions.
Collapse
Affiliation(s)
- Maya Schiller
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar L Ben-Shaanan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Asya Rolls
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Shields GS. Stress and cognition: A user's guide to designing and interpreting studies. Psychoneuroendocrinology 2020; 112:104475. [PMID: 31810538 DOI: 10.1016/j.psyneuen.2019.104475] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/14/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022]
Abstract
Fueling the rapid growth in our understanding of how stress influences cognition, the number of studies examining the effects of stress on various cognitive processes has grown substantially over the last two decades. Despite this growth, few published guidelines exist for designing these studies, and divergent paradigm designs can diminish typical effects of stress or even reverse them. The goal of this review, therefore, is to survey necessary considerations (e.g., validating a stress induction), important considerations (e.g., specifying the timing of the stressor and cognitive task), and best practices (e.g., using Bayesian analyses) when designing a study that aims at least in part to examine the effects of acute stress on some cognitive process or function. These guidelines will also serve to help readers of these studies interpret what may otherwise be very confusing, anomalous results. Designing and interpreting studies with these considerations and practices in mind will help to move the field of stress and cognition forward by clarifying how, exactly, stress influences performance on a given cognitive task in a population of interest.
Collapse
Affiliation(s)
- Grant S Shields
- Center for Mind and Brain, University of California, Davis, United States.
| |
Collapse
|
5
|
Kraynak TE, Marsland AL, Wager TD, Gianaros PJ. Functional neuroanatomy of peripheral inflammatory physiology: A meta-analysis of human neuroimaging studies. Neurosci Biobehav Rev 2018; 94:76-92. [PMID: 30067939 DOI: 10.1016/j.neubiorev.2018.07.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/18/2018] [Accepted: 07/22/2018] [Indexed: 01/18/2023]
Abstract
Communication between the brain and peripheral mediators of systemic inflammation is implicated in numerous psychological, behavioral, and physiological processes. Functional neuroimaging studies have identified brain regions that associate with peripheral inflammation in humans, yet there are open questions about the consistency, specificity, and network characteristics of these findings. The present systematic review provides a meta-analysis to address these questions. Multilevel kernel density analysis of 24 studies (37 statistical maps; 264 coordinates; 457 participants) revealed consistent effects in the amygdala, hippocampus, hypothalamus, striatum, insula, midbrain, and brainstem, as well as prefrontal and temporal cortices. Effects in some regions were specific to particular study designs and tasks. Spatial pattern analysis revealed significant overlap of reported effects with limbic, default mode, ventral attention, and corticostriatal networks, and co-activation analyses revealed functional ensembles encompassing the prefrontal cortex, insula, and midbrain/brainstem. Together, these results characterize brain regions and networks associated with peripheral inflammation in humans, and they provide a functional neuroanatomical reference point for future neuroimaging studies on brain-body interactions.
Collapse
Affiliation(s)
- Thomas E Kraynak
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA.
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, 15260, USA
| |
Collapse
|
6
|
Smith R, Thayer JF, Khalsa SS, Lane RD. The hierarchical basis of neurovisceral integration. Neurosci Biobehav Rev 2017; 75:274-296. [PMID: 28188890 DOI: 10.1016/j.neubiorev.2017.02.003] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
The neurovisceral integration (NVI) model was originally proposed to account for observed relationships between peripheral physiology, cognitive performance, and emotional/physical health. This model has also garnered a considerable amount of empirical support, largely from studies examining cardiac vagal control. However, recent advances in functional neuroanatomy, and in computational neuroscience, have yet to be incorporated into the NVI model. Here we present an updated/expanded version of the NVI model that incorporates these advances. Based on a review of studies of structural/functional anatomy, we first describe an eight-level hierarchy of nervous system structures, and the contribution that each level plausibly makes to vagal control. Second, we review recent work on a class of computational models of brain function known as "predictive coding" models. We illustrate how the computational dynamics of these models, when implemented within our proposed vagal control hierarchy, can increase understanding of the relationship between vagal control and both cognitive performance and emotional/physical health. We conclude by discussing novel implications of this updated NVI model for future research.
Collapse
Affiliation(s)
- Ryan Smith
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724-5002, United States.
| | - Julian F Thayer
- Department of Psychology, Ohio State University, Columbus, OH, United States
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, United States; University of Tulsa, Oxley College of Health Sciences, Tulsa, OK, United States
| | - Richard D Lane
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724-5002, United States
| |
Collapse
|
7
|
Urra X, Laredo C, Zhao Y, Amaro S, Rudilosso S, Renú A, Prats-Galino A, Planas AM, Oleaga L, Chamorro Á. Neuroanatomical correlates of stroke-associated infection and stroke-induced immunodepression. Brain Behav Immun 2017; 60:142-150. [PMID: 27742582 DOI: 10.1016/j.bbi.2016.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/06/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Infections represent the most frequent medical complications in stroke patients. Their main determinants are dysphagia and a transient state of immunodepression. We analyzed whether distinct anatomical brain regions were associated with the occurrence of stroke-associated infections or immunodepression. MATERIALS AND METHODS In 106 patients with acute ischemic stroke, we evaluated the incidence of pneumonia, urinary tract infection, or other infections together with the characterization of biomarkers of immunodepression. Twenty control subjects served to provide reference values. Using voxel-based lesion-symptom mapping, the involvement of gray and white matter structures was correlated with clinical and laboratory findings in crude analyses and in volume adjusted models to rule out associations reflecting differences in the size of the infarction. RESULTS Stroke-associated infection occurred in 22 (21%) patients and prevailed in patients with larger infarcts. Volume adjusted voxel-based lesion-symptom mapping revealed the involvement of the superior and middle temporal gyri, the orbitofrontal cortex, the superior longitudinal fasciculus and the inferior fronto-occipital fasciculus amongst infected patients. These associations were similar for pneumonia but not for urinary tract infections. Lymphopenia was associated with lesions of the superior and middle temporal gyri. Laterality did not influence stroke-associated infections or the presence of immunodepressive traits after volume control. The greatest overlap in the neuroanatomical correlates occurred between pneumonia and dysphagia. CONCLUSION Infarct volume plays a relevant role in the occurrence of stroke-associated infections, but lesions in specific brain locations such as the superior and lateral temporal lobe and the orbitofrontal cortex are also associated with increased infectious risk, especially pneumonia.
Collapse
Affiliation(s)
- Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| | - Carlos Laredo
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain
| | - Yashu Zhao
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain
| | - Sergio Amaro
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Salvatore Rudilosso
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain
| | - Arturo Renú
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain
| | - Alberto Prats-Galino
- Laboratory of Surgical NeuroAnatomy, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Anna M Planas
- Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Laura Oleaga
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ángel Chamorro
- Functional Unit of Cerebrovascular Diseases, Hospital Clinic, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Medicine Department, School of Medicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Shields GS, Moons WG, Slavich GM. Better executive function under stress mitigates the effects of recent life stress exposure on health in young adults. Stress 2017; 20:75-85. [PMID: 28114849 PMCID: PMC5517019 DOI: 10.1080/10253890.2017.1286322] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Executive function is a neuropsychological construct that enables controlled cognitive processing, which has been hypothesized to enhance individuals' resilience to stress. However, little empirical work has directly examined how executive function under different conditions mitigates the negative effects of stress exposure on health. To address this issue, we recruited 110 healthy young adults and assessed their recent life stress exposure, executive function in either a stressful or non-stressful context, and current health complaints. Based on existing research, we hypothesized that individuals exhibiting better executive function following a laboratory-based stressor (but not a control task) would demonstrate weaker associations between recent stress exposure and health because they perceived recent life stressors as being less severe. Consistent with this hypothesis, better executive function during acute stress, but not in the absence of stress, was associated with an attenuated link between participants' recent life stress exposure and their current health complaints. Moreover, this attenuating effect was mediated by lesser perceptions of stressor severity. Based on these data, we conclude that better executive function under stress is associated with fewer health complaints and that these effects may occur by reducing individuals' perceptions of stressor severity. The data thus suggest the possibility of reducing stress-related health problems by enhancing executive function.
Collapse
Affiliation(s)
- Grant S. Shields
- Department of Psychology, University of California, Davis, CA, USA
| | | | - George M. Slavich
- Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc Natl Acad Sci U S A 2016; 113:9922-7. [PMID: 27528671 DOI: 10.1073/pnas.1605044113] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Modern medicine has generally viewed the concept of "psychosomatic" disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.
Collapse
|
10
|
The Role of Odor-Evoked Memory in Psychological and Physiological Health. Brain Sci 2016; 6:brainsci6030022. [PMID: 27447673 PMCID: PMC5039451 DOI: 10.3390/brainsci6030022] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/05/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.
Collapse
|
11
|
Sex commonalities and differences in the relationship between resilient personality and the intrinsic connectivity of the salience and default mode networks. Biol Psychol 2015; 112:107-15. [PMID: 26440126 DOI: 10.1016/j.biopsycho.2015.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/02/2015] [Accepted: 09/25/2015] [Indexed: 01/19/2023]
Abstract
Increased resilience is associated with better health outcomes and reduced morbidity in response to injury and homeostatic perturbations. Proper functioning of the salience network (SN) and modulation of the default mode network (DMN) by SN may play a role in adaptively responding to stress. Here, we demonstrate that resilient personality in healthy subjects is associated with SN and DMN connectivity patterns and that these patterns are influenced by sex. While connectivity of SN with several brain regions including right anterior insula was significantly associated with resilient personality in both men and women, results suggest that increased functional integration of anterior DMN preferentially benefits women while increased functional integration of posterior DMN preferentially benefits men in terms of resilience. These findings may relate to previous demonstrations that men and women engage different information processing and behavioral strategies to achieve resilience and highlight the importance of considering sex in resilience research.
Collapse
|
12
|
Yamakawa K, Matsunaga M, Isowa T, Ohira H. Serotonin transporter gene polymorphism modulates inflammatory cytokine responses during acute stress. Sci Rep 2015; 5:13852. [PMID: 26349674 PMCID: PMC4563370 DOI: 10.1038/srep13852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Cytokines are important mediators of various stress-related modulations of immune function. A major genetic factor determining inter-individual differences in stress reactivity is polymorphisms of the serotonin (5-hydroxytryptamine, 5HT) transporter (5HTT) gene. A short (S) variant, compared with a long (L) variant, of the promoter region of the 5HTT gene-linked polymorphic region (5HTTLPR) has been related to emotional and stress hyper-reactivity. The present study examined whether the 5HTTLPR can modulate responses of inflammatory cytokines under acute stress. Nine Japanese male participants carrying two copies of the S alleles and nine Japanese males carrying S and L alleles underwent the Trier Social Stress Test (TSST). Inflammatory cytokines, endocrine parameters, heart rate and subjective stress were measured before, during and after the task. The participants carrying the SS alleles, but not those carrying the SL alleles, showed a significant increase of IL-1β immediately after TSST. This hyper-reactivity to acute stress in individuals with the SS alleles was also observed in their heart rate and cortisol levels. These results suggest that the S allele of the 5HTTLPR is consistently associated with stress reactivity in multi-level stress-related biological systems.
Collapse
Affiliation(s)
- Kaori Yamakawa
- Department of Psychology, Graduate School of Environmental Studies, Nagoya University, Aichi, Japan.,Department of Psychology, School of Humanities, Tokaigakuen University, Aichi, Japan
| | - Masahiro Matsunaga
- Department of Health and Psychosocial Medicine, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Tokiko Isowa
- School of Nursing, Faculty of Medicine, Mie University, Mie, Japan
| | - Hideki Ohira
- Department of Psychology, Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| |
Collapse
|
13
|
Godar SC, Bortolato M, Richards SE, Li FG, Chen K, Wellman CL, Shih JC. Monoamine Oxidase A is Required for Rapid Dendritic Remodeling in Response to Stress. Int J Neuropsychopharmacol 2015; 18:pyv035. [PMID: 25857821 PMCID: PMC4576521 DOI: 10.1093/ijnp/pyv035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Acute stress triggers transient alterations in the synaptic release and metabolism of brain monoamine neurotransmitters. These rapid changes are essential to activate neuroplastic processes aimed at the appraisal of the stressor and enactment of commensurate defensive behaviors. Threat evaluation has been recently associated with the dendritic morphology of pyramidal cells in the orbitofrontal cortex (OFC) and basolateral amygdala (BLA); thus, we examined the rapid effects of restraint stress on anxiety-like behavior and dendritic morphology in the BLA and OFC of mice. Furthermore, we tested whether these processes may be affected by deficiency of monoamine oxidase A (MAO-A), the primary enzyme catalyzing monoamine metabolism. METHODS Following a short-term (1-4h) restraint schedule, MAO-A knockout (KO) and wild-type (WT) mice were sacrificed, and histological analyses of dendrites in pyramidal neurons of the BLA and OFC of the animals were performed. Anxiety-like behaviors were examined in a separate cohort of animals subjected to the same experimental conditions. RESULTS In WT mice, short-term restraint stress significantly enhanced anxiety-like responses, as well as a time-dependent proliferation of apical (but not basilar) dendrites of the OFC neurons; conversely, a retraction in BLA dendrites was observed. None of these behavioral and morphological changes were observed in MAO-A KO mice. CONCLUSIONS These findings suggest that acute stress induces anxiety-like responses by affecting rapid dendritic remodeling in the pyramidal cells of OFC and BLA; furthermore, our data show that MAO-A and monoamine metabolism are required for these phenomena.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA (Drs Godar, Chen, and Shih and Mr Li); Department of Cell and Neurobiology, University of Southern California, Los Angeles, CA (Dr Shih); Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS (Drs Godar and Bortolato); Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, (Drs Godar and Bortolato); Department of Psychological & Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN (Ms Richards and Dr Wellman)
| |
Collapse
|
14
|
Hanken K, Eling P, Hildebrandt H. The representation of inflammatory signals in the brain - a model for subjective fatigue in multiple sclerosis. Front Neurol 2014; 5:264. [PMID: 25566171 PMCID: PMC4263099 DOI: 10.3389/fneur.2014.00264] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 01/23/2023] Open
Abstract
In multiple sclerosis (MS) patients, fatigue is rated as one of the most common and disabling symptoms. However, the pathophysiology underlying this fatigue is not yet clear. Several lines of evidence suggest that immunological factors, such as elevated levels of pro-inflammatory cytokines, may contribute to subjective fatigue in MS patients. Pro-inflammatory cytokines represent primary mediators of immune-to-brain-communication, modulating changes in the neurophysiology of the central nervous system. Recently, we proposed a model arguing that fatigue in MS patients is a subjective feeling, which is related to inflammation. Moreover, it implies that fatigue can be measured behaviorally only by applying specific cognitive tasks related to alertness and vigilance. In the present review, we focus on the subjective feeling of MS-related fatigue. We examine the hypothesis that the subjective feeling of MS-related fatigue may be a variant of inflammation-induced sickness behavior, resulting from cytokine-mediated activity changes within brain areas involved in interoception and homeostasis including the insula, the anterior cingulate, and the hypothalamus. We first present studies demonstrating a relationship between pro-inflammatory cytokines and subjective fatigue in healthy individuals, in people with inflammatory disorders, and particularly in MS patients. Subsequently, we discuss studies analyzing the impact of anti-inflammatory treatment on fatigue. In the next part of this review, we present studies on the transmission and neural representation of inflammatory signals, with a special focus on possible neural concomitants of inflammation-induced fatigue. We also present two of our studies on the relationship between local gray and white matter atrophy and fatigue in MS patients. Finally, we discuss some implications of our findings and future perspectives.
Collapse
Affiliation(s)
- Katrin Hanken
- Department of Neurology, Klinikum Bremen-Ost , Bremen , Germany
| | - Paul Eling
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen , Nijmegen , Netherlands
| | | |
Collapse
|
15
|
An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biol Psychiatry 2014; 75:738-45. [PMID: 24267410 PMCID: PMC3989430 DOI: 10.1016/j.biopsych.2013.10.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/11/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cognitive reappraisal is a form of emotion regulation that alters emotional responding by changing the meaning of emotional stimuli. Reappraisal engages regions of the prefrontal cortex that support multiple functions, including visceral control functions implicated in regulating the immune system. Immune activity plays a role in the preclinical pathophysiology of atherosclerotic cardiovascular disease (CVD), an inflammatory condition that is highly comorbid with affective disorders characterized by problems with emotion regulation. Here, we tested whether prefrontal engagement by reappraisal would be associated with atherosclerotic CVD risk and whether this association would be mediated by inflammatory activity. METHODS Community volunteers (n = 157; 30-54 years of age; 80 women) without DSM-IV Axis-1 psychiatric diagnoses or cardiovascular or immune disorders performed a functional neuroimaging task involving the reappraisal of negative emotional stimuli. Carotid artery intima-media thickness and inter-adventitial diameter were measured by ultrasonography and used as markers of preclinical atherosclerosis. Also measured were circulating levels of interleukin-6 (IL-6), an inflammatory cytokine linked to CVD risk and prefrontal neural activity. RESULTS Greater reappraisal-related engagement of the dorsal anterior cingulate cortex was associated with greater preclinical atherosclerosis and IL-6. Moreover, IL-6 mediated the association of dorsal anterior cingulate cortex engagement with preclinical atherosclerosis. These results were independent of age, sex, race, smoking status, and other known CVD risk factors. CONCLUSIONS The cognitive regulation of emotion might relate to CVD risk through a pathway involving the functional interplay between the anterior cingulate region of the prefrontal cortex and inflammatory activity.
Collapse
|
16
|
Fiore VG, Mannella F, Mirolli M, Latagliata EC, Valzania A, Cabib S, Dolan RJ, Puglisi-Allegra S, Baldassarre G. Corticolimbic catecholamines in stress: a computational model of the appraisal of controllability. Brain Struct Funct 2014; 220:1339-53. [PMID: 24578177 PMCID: PMC4409646 DOI: 10.1007/s00429-014-0727-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/04/2014] [Indexed: 01/20/2023]
Abstract
Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition. The model provides a causal explanation of the shift from active to passive coping strategies, i.e. from a condition characterised by high motivational arousal, required to deal with a situation appraised as stressful, to a condition characterised by emotional and motivational withdrawal, required when the stressful situation is appraised as uncontrollable/unavoidable. The model is motivated by results acquired via microdialysis recordings in rats and highlights the presence of two competing circuits dominated by different areas of the ventromedial prefrontal cortex: these are shown having opposite effects on several subcortical areas, affecting dopamine outflow in the striatum, and therefore controlling motivation. We start by reviewing published data supporting structure and functioning of the neural model and present the computational model itself with its essential neural mechanisms. Finally, we show the results of a new experiment, involving the condition of repeated inescapable stress, which validate most of the model's predictions.
Collapse
Affiliation(s)
- Vincenzo G. Fiore
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3BG UK
| | - Francesco Mannella
- Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Marco Mirolli
- Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emanuele Claudio Latagliata
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Alessandro Valzania
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Simona Cabib
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Raymond J. Dolan
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London, WC1N 3BG UK
| | - Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro Daniel Bovet, Sapienza Università di Roma, Via dei Marsi 78, 00183 Rome, Italy
- Fondazione Santa Lucia, IRCCS, Via Ardeatina 306, 00142 Rome, Italy
| | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (LOCEN-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| |
Collapse
|
17
|
Matsunaga M, Bai Y, Yamakawa K, Toyama A, Kashiwagi M, Fukuda K, Oshida A, Sanada K, Fukuyama S, Shinoda J, Yamada J, Sadato N, Ohira H. Brain-immune interaction accompanying odor-evoked autobiographic memory. PLoS One 2013; 8:e72523. [PMID: 23977312 PMCID: PMC3748042 DOI: 10.1371/journal.pone.0072523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022] Open
Abstract
The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.
Collapse
Affiliation(s)
- Masahiro Matsunaga
- Department of Health and Psychosocial Medicine, Aichi Medical University School of Medicine, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vagal nerve activity as a moderator of brain–immune relationships. J Neuroimmunol 2013; 260:28-36. [DOI: 10.1016/j.jneuroim.2013.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/23/2022]
|
19
|
Ohira H, Matsunaga M, Murakami H, Osumi T, Fukuyama S, Shinoda J, Yamada J. Neural mechanisms mediating association of sympathetic activity and exploration in decision-making. Neuroscience 2013; 246:362-74. [PMID: 23643977 DOI: 10.1016/j.neuroscience.2013.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
The somatic marker hypothesis asserts that decision-making can be guided by feedback of bodily states to the brain. In line with this hypothesis, the present study tested whether sympathetic activity shows an association with a tonic dimension of decision-making, exploratory tendency represented by entropy in information theory, and further examined the neural mechanisms of the association. Twenty participants performed a stochastic reversal learning task that required decision-making in an unstable and uncertain situation. Regional cerebral blood flow was evaluated using (15)O-water positron emission tomography (PET), and cardiovascular indices and concentrations of catecholamine in peripheral blood were also measured, during the task. In reversal learning, increased epinephrine during the task positively correlated with larger entropy, indicating a greater tendency for exploration in decision-making. The increase of epinephrine also correlated with brain activity revealed by PET in the somatosensory cortices, anterior insula, dorsal anterior cingulate cortex, and the dorsal pons. This result is consistent with previously reported brain matrixes of representation of bodily states and interoception. In addition, activity of the anterior insula specifically correlated with entropy, suggesting possible mediation of this brain region between peripheral sympathetic arousal and exploration in decision-making. These findings shed a new light about a role of bodily states in decision-making and underlying neural mechanisms.
Collapse
Affiliation(s)
- H Ohira
- Department of Psychology, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Corbett BA, Schupp CW, Lanni KE. Comparing biobehavioral profiles across two social stress paradigms in children with and without autism spectrum disorders. Mol Autism 2012; 3:13. [PMID: 23158965 PMCID: PMC3533919 DOI: 10.1186/2040-2392-3-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/30/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Autism spectrum disorders (ASD) are defined by impairment in reciprocal social interaction and flexible adaptation to the environment. This study compared physiological stress in children with and without ASD exposed to two social stress protocols. We hypothesized that the ASD group would show heightened initial and enduring cortisol levels to the social stressors, which would be moderated by age and intelligence. METHODS Twenty-seven children with ASD and 32 with typical development (TYP) completed a standardized social-evaluative performance task and a validated paradigm of social play with peers. Physiological stress was measured by salivary cortisol at nine time points. Statistical approaches included repeated-measures linear mixed models and correlation analyses. RESULTS The average cortisol level of both groups during initial exposure to social situations was significantly greater than baseline levels (ASD, P = 0.018; TYP, P = 0.006). Stress responsivity was significantly different between the groups; the TYP group showed a significant reduction in cortisol over time (P = 0.023), whereas the ASD group maintained an elevated cortisol level (P >0.05). The ASD group evidenced greater variability in between-group, within-group and intra-individual analyses. Age was a positive moderator of stress for the ASD group (P = 0.047), whereas IQ was a negative moderator for the TYP group (P = 0.061). CONCLUSIONS Initial stress to novel social scenarios is idiosyncratic and predictive of subsequent exposure. Amidst significant variability in cortisol, children with ASD show enhanced and sustained social stress that increases with age. Developmental and cognitive factors differentially moderate stress in children with ASD and TYP, respectively. A model of neuroendocrine reactivity is proposed.
Collapse
Affiliation(s)
- Blythe A Corbett
- Department of Psychiatry, Vanderbilt University, Vanderbilt Kennedy Center, PMB 40, 230 Appleton Place, Nashville, TN, 37203, USA
| | - Clayton W Schupp
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA, 94538, USA
| | - Kimberly E Lanni
- Veterans Affairs Northern California Healthcare System, 10535 Hospital Way, Building 649, Mather, CA, 95655, USA
| |
Collapse
|
21
|
Pathogenesis of cognitive dysfunction in patients with obstructive sleep apnea: a hypothesis with emphasis on the nucleus tractus solitarius. SLEEP DISORDERS 2012; 2012:251096. [PMID: 23470865 PMCID: PMC3581091 DOI: 10.1155/2012/251096] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/13/2011] [Accepted: 12/22/2011] [Indexed: 02/06/2023]
Abstract
OSA is characterized by the quintessential triad of intermittent apnea, hypoxia, and hypoxemia due to pharyngeal collapse. This paper highlights the upstream mechanisms that may trigger cognitive decline in OSA. Three interrelated steps underpin cognitive dysfunction in OSA patients. First, several risk factors upregulate peripheral inflammation; these crucial factors promote neuroinflammation, cerebrovascular endothelial dysfunction, and oxidative stress in OSA. Secondly, the neuroinflammation exerts negative impact globally on the CNS, and thirdly, important foci in the neocortex and brainstem are rendered inflamed and dysfunctional. A strong link is known to exist between neuroinflammation and neurodegeneration. A unique perspective delineated here underscores the importance of dysfunctional brainstem nuclei in etiopathogenesis of cognitive decline in OSA patients. Nucleus tractus solitarius (NTS) is the central integration hub for afferents from upper airway (somatosensory/gustatory), respiratory, gastrointestinal, cardiovascular (baroreceptor and chemoreceptor) and other systems. The NTS has an essential role in sympathetic and parasympathetic systems also; it projects to most key brain regions and modulates numerous physiological functions. Inflamed and dysfunctional NTS and other key brainstem nuclei may play a pivotal role in triggering memory and cognitive dysfunction in OSA. Attenuation of upstream factors and amelioration of the NTS dysfunction remain important challenges.
Collapse
|
22
|
Ohira H, Matsunaga M, Kimura K, Murakami H, Osumi T, Isowa T, Fukuyama S, Shinoda J, Yamada J. Chronic stress modulates neural and cardiovascular responses during reversal learning. Neuroscience 2011; 193:193-204. [PMID: 21763760 DOI: 10.1016/j.neuroscience.2011.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/17/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
Abstract
Animal studies have revealed that chronic stress shifts cognitive strategies from the flexible goal-directed action to the simple and rigid habit action. In addition, stress-induced atrophy in the prefrontal cortex and dorsomedial striatum which are involved in the goal-directed action and hypertrophy of the dorsolateral striatum which is critical for the habit action were parallel with the effects of chronic stress on behaviors. The present study tested whether these previous findings in animal studies are compatible in humans by analyzing effects of chronic stress on neural and cardiovascular responses, which are likely important for performing appropriate actions. Twenty healthy men exposed to low or high chronic job stress performed a stochastic reversal learning task, which required cognitive flexibility and the goal-directed action. Regional cerebral blood flow was evaluated during the task using (15)O-water positron emission tomography, and cardiovascular parameters such as blood pressure and heart rate were also measured. During the reversal learning task, whereas participants with low chronic job stress exhibited activity in the anterior caudate, as well as orbitofrontal cortex, ventrolateral prefrontal cortex, insula, and midbrain, which might be related to the goal-directed action, participants with high chronic job stress exhibited no activity in such brain regions. Furthermore, participants with high chronic job stress exhibited less reactivity in diastolic blood pressure, which might be mediated by anterior cingulate cortical activity. These findings, in line with previous studies, suggested that chronic job stress correlates with less activity in brain regions related to the goal-directed action, and insensitive physiological responses in humans.
Collapse
Affiliation(s)
- H Ohira
- Department of Psychology, Nagoya University, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Thayer JF, Loerbroks A, Sternberg EM. Inflammation and cardiorespiratory control: the role of the vagus nerve. Respir Physiol Neurobiol 2011; 178:387-94. [PMID: 21642019 DOI: 10.1016/j.resp.2011.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 12/16/2022]
Abstract
Inflammation and immunity have been implicated in a wide variety of diseases and disorders ranging from asthma to cardiovascular disease to hemorrhagic shock. In this review we will briefly consider the evidence for the neural concomitants of immunomodulation. First, we will briefly review the anatomy and physiology of the cardiorespiratory system. Then we will review the anatomy and physiology of neural-immune communication. The nucleus of the solitary tract is a site of integration of both the afferent and efferent neural regulation of the cardiorespiratory as well as the immune system. Then we will provide an overview of what is known about neuroimmunomodulation from both animal and human studies including neuroimaging and clinical studies. Finally, we will discuss a possible role of this neural circuitry in asthma related health disparities.
Collapse
|
24
|
OHIRA HIDEKI. Modulation of stress reactivity in brain and body by serotonin transporter promoter polymorphism1. JAPANESE PSYCHOLOGICAL RESEARCH 2011. [DOI: 10.1111/j.1468-5884.2011.00465.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Cabib S, Puglisi-Allegra S. The mesoaccumbens dopamine in coping with stress. Neurosci Biobehav Rev 2011; 36:79-89. [PMID: 21565217 DOI: 10.1016/j.neubiorev.2011.04.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 04/16/2011] [Accepted: 04/21/2011] [Indexed: 12/30/2022]
Abstract
Mesoaccumbens dopamine (DA) is involved in the stress response. Although neural mechanisms involved in stress are of paramount importance for both clinical and preclinical research, the results of studies on the stress response by mesoaccumbens DA have received little attention. Therefore, we aimed to review these results and propose a role for mesoaccumbens DA in coping with stress. The data reviewed support the view that fluctuations of tonic levels characterize the mesoaccumbens DA stress response. Stress-induced increase of tonic DA levels in nucleus accumbens (NAc) supports expression of responses aimed at removing and avoiding the stressor through activation of DA D2 receptors, whereas inhibition of DA is associated with cessation of active defensive responses. In novel unescapable/uncontrollable stressful conditions tonic levels of DA in NAc show an initial increase followed by a decrease below pre-stress levels that lasts as long as the stressful situation. This biphasic response fits with the dynamics of the primary and secondary appraisal of a stressor that cannot be removed, escaped or controlled by the organism. In fact, NAc DA fluctuations are controlled by the medial pre-frontal cortex, which is involved in stress appraisal. We propose that enhanced mesoaccumbens DA supports expression of active coping strategies against an event appraised as a stressor and that inhibition of DA is required for passive coping with stressful situations appraised as unescapable/uncontrollable.
Collapse
Affiliation(s)
- Simona Cabib
- University Sapienza, Dept. Psychology, Centro D. Bovet, Rome, Italy.
| | | |
Collapse
|
26
|
Thayer JF, Sternberg EM. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav Immun 2010; 24:1223-8. [PMID: 20674737 PMCID: PMC2949498 DOI: 10.1016/j.bbi.2010.07.247] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/24/2010] [Accepted: 07/25/2010] [Indexed: 12/30/2022] Open
Abstract
Inflammation and immunity have been implicated in a wide variety of diseases and disorders ranging from Alzheimer's disease to cardiovascular disease to hemorrhagic shock. In this review, we will briefly consider the evidence for the neural concomitants of immunomodulation. First, we will briefly review the anatomy and physiology of neural-immune communication. Evidence for the somatotopic organization of the vagus nerve and for pain processes suggests that such an organization may be relevant for the investigation of the neural concomitants of immunity. Then we will provide an overview of what is known from both animal and human studies including neuroimaging and clinical studies. Finally, we will discuss some of the challenges and opportunities in this exciting area of investigation.
Collapse
Affiliation(s)
- Julian F. Thayer
- The Ohio State University, Columbus, OH, USA,Corresponding author. Address: The Ohio State University, Department of Psychology, 1835 Neil Avenue, Columbus, OH 43210, USA. Fax: +1 614 688 8261. (J.F. Thayer)
| | - Esther M. Sternberg
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Genetic variations in the serotonin transporter gene-linked polymorphic region influence attraction for a favorite person and the associated interactions between the central nervous and immune systems. Neurosci Lett 2009; 468:211-5. [PMID: 19895869 DOI: 10.1016/j.neulet.2009.10.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/28/2009] [Accepted: 10/28/2009] [Indexed: 11/22/2022]
Abstract
Limbic system activation that occurs when a person experiences several emotions is primarily represented by the amygdala output that influences autonomic brainstem nuclei that control autonomic nervous function, thus modulating the endocrine and immune systems. Amygdala activity is modulated by the serotonin transporter gene-linked polymorphic region (5HTTLPR); however, whether variations in 5HTTLPR influence central nervous and immune activities in response to positive stimuli remains unclear. Here, we found that seeing a favorite person induced significantly higher amygdala activity in individuals with the 5HTTLPR SS genotype than in others. This activity was positively correlated with changes in the NK cell proportion among peripheral lymphocytes. Thus, 5HTTLPR influences attraction and the associated interactions between the central nervous and immune systems in affectively positive situations.
Collapse
|
28
|
Ohira H, Matsunaga M, Isowa T, Nomura M, Ichikawa N, Kimura K, Kanayama N, Murakami H, Osumi T, Konagaya T, Nogimori T, Fukuyama S, Shinoda J, Yamada J. Polymorphism of the serotonin transporter gene modulates brain and physiological responses to acute stress in Japanese men. Stress 2009; 12:533-43. [PMID: 19658029 DOI: 10.3109/10253890902787826] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A short (S) variant, compared to a long (L) variant, of the promoter region of the serotonin transporter gene-linked polymorphic region (5HTTLPR) has been related to emotional hyper-reactivity. We tested whether the 5HTTLPR could modulate acute stress responses in the brain and, the cardiovascular and neuroendocrine systems. Ten Japanese male participants carrying double copies of the S alleles and 10 Japanese males carrying S and L alleles conducted a mental arithmetic task, and their regional cerebral blood flow by (15)O positron emission tomography and cardiovascular and neuroendocrine parameters were measured. During the acute stress task, the participants with the SS alleles showed stronger reactivity in blood pressure and secretion of epinephrine, compared to the participants with the SL and LL alleles. Furthermore, the SS carriers showed greater activation in stress-related brain regions such as the hypothalamus, cerebellum, midbrain, and pulvinar compared to the SL and LL carriers during the acute stress task. The present findings indicated that the S allele of the 5HTTLPR is associated with greater brain and physiological reactivity to acute stress in Japanese men.
Collapse
Affiliation(s)
- Hideki Ohira
- Department of Psychology, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Regulation of natural killer cell redistribution by prefrontal cortex during stochastic learning. Neuroimage 2009; 47:897-907. [DOI: 10.1016/j.neuroimage.2009.04.088] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/09/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022] Open
|
30
|
Brain and autonomic association accompanying stochastic decision-making. Neuroimage 2009; 49:1024-37. [PMID: 19647796 DOI: 10.1016/j.neuroimage.2009.07.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 07/16/2009] [Accepted: 07/23/2009] [Indexed: 12/30/2022] Open
Abstract
To examine the functional association between brain and autonomic activities accompanying decision-making, we simultaneously recorded regional cerebral blood flow using (15)O-water positron emission tomography and event-related brain potentials (ERPs) time-locked to feedback of reward and punishment, as well as cardiovascular parameters, during a stochastic decision-making task. We manipulated the uncertainty of outcomes in the task; specifically, we compared a condition with high predictability of reward/punishment (contingent-reward condition) and a condition with low predictability of reward/punishment (random-reward condition). The anterior cingulate cortex (ACC) was commonly activated in both conditions. Compared with the contingent-reward condition, the orbitofrontal and right dorsolateral prefrontal cortices and dorsal striatum were activated in the random-reward condition, where subjects had to continue to seek contingency between stimuli and reward/punishment. Activation of these brain regions correlated with a positive component of ERPs locked to feedback signals (feedback-related positivity), which showed an association with behavioral decision-making in the contingent-reward condition. Furthermore, cardiovascular responses were attenuated in the random-reward condition, where continuous attention and contingency monitoring were needed, and such attenuation of cardiovascular responses was mediated by vagal activity that was governed by the rostral ACC. These findings suggest that the prefrontal-striatal network provides a neural basis for decision-making and modulation over the peripheral autonomic activity accompanying decision-making.
Collapse
|
31
|
Lane RD, Wager TD. The new field of Brain-Body Medicine: what have we learned and where are we headed? Neuroimage 2009; 47:1135-40. [PMID: 19524045 DOI: 10.1016/j.neuroimage.2009.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
32
|
Thayer JF, Sternberg EM. Neural concomitants of immunity--focus on the vagus nerve. Neuroimage 2009; 47:908-10. [PMID: 19481613 DOI: 10.1016/j.neuroimage.2009.05.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/15/2009] [Accepted: 05/22/2009] [Indexed: 12/30/2022] Open
|
33
|
Associations among positive mood, brain, and cardiovascular activities in an affectively positive situation. Brain Res 2009; 1263:93-103. [DOI: 10.1016/j.brainres.2009.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 11/14/2008] [Accepted: 01/18/2009] [Indexed: 12/30/2022]
|
34
|
The rebirth of neuroscience in psychosomatic medicine, Part I: historical context, methods, and relevant basic science. Psychosom Med 2009; 71:117-34. [PMID: 19196808 DOI: 10.1097/psy.0b013e31819783be] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroscience was an integral part of psychosomatic medicine at its inception in the early 20th century. Since the mid-20th century, however, psychosomatic research has largely ignored the brain. The field of neuroscience has burgeoned in recent years largely because a variety of powerful new methods have become available. Many of these methods allow for the noninvasive study of the living human brain and thus are potentially available for integration into psychosomatic medicine research at this time. In this first paper we examine various methods available for human neuroscientific investigation and discuss their relative strengths and weaknesses. We next review some basic functional neuroanatomy involving structures that are increasingly being identified as relevant for psychosomatic processes. We then discuss, and provide examples of, how the brain influences end organs through "information transfer systems," including the autonomic, neuroendocrine, and immune systems. The evidence currently available suggests that neuroscience holds great promise for advancing the goal of understanding the mechanisms by which psychosocial variables influence physical disease outcomes. An increased focus on such mechanistic research in psychosomatic medicine is needed to further its acceptance into the field of medicine.
Collapse
|
35
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|