1
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
2
|
Reicher V, Szalárdy O, Bódizs R, Vojnits B, Magyar TZ, Takács M, Réthelyi JM, Bunford N. NREM Slow-Wave Activity in Adolescents Is Differentially Associated With ADHD Levels and Normalized by Pharmacological Treatment. Int J Neuropsychopharmacol 2024; 27:pyae025. [PMID: 38875132 PMCID: PMC11232459 DOI: 10.1093/ijnp/pyae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/13/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND A compelling hypothesis about attention-deficit/hyperactivity disorder (ADHD) etiopathogenesis is that the ADHD phenotype reflects a delay in cortical maturation. Slow-wave activity (SWA) of non-rapid eye movement (NREM) sleep electroencephalogram (EEG) is an electrophysiological index of sleep intensity reflecting cortical maturation. Available data on ADHD and SWA are conflicting, and developmental differences, or the effect of pharmacological treatment, are relatively unknown. METHODS We examined, in samples (Mage = 16.4, SD = 1.2), of ever-medicated adolescents at risk for ADHD (n = 18; 72% boys), medication-naïve adolescents at risk for ADHD (n = 15, 67% boys), and adolescents not at risk for ADHD (n = 31, 61% boys) matched for chronological age and controlling for non-ADHD pharmacotherapy, whether ADHD pharmacotherapy modulates the association between NREM SWA and ADHD risk in home sleep. RESULTS Findings indicated medication-naïve adolescents at risk for ADHD exhibited greater first sleep cycle and entire night NREM SWA than both ever-medicated adolescents at risk for ADHD and adolescents not at risk for ADHD and no difference between ever-medicated, at-risk adolescents, and not at-risk adolescents. CONCLUSIONS Results support atypical cortical maturation in medication-naïve adolescents at risk for ADHD that appears to be normalized by ADHD pharmacotherapy in ever-medicated adolescents at risk for ADHD. Greater NREM SWA may reflect a compensatory mechanism in middle-later adolescents at risk for ADHD that normalizes an earlier occurring developmental delay.
Collapse
Affiliation(s)
- Vivien Reicher
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Blanka Vojnits
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | | | - Mária Takács
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Nóra Bunford
- Clinical and Developmental Neuropsychology Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
3
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
4
|
Sayalı C, van den Bosch R, Määttä JI, Hofmans L, Papadopetraki D, Booij J, Verkes RJ, Baas M, Cools R. Methylphenidate undermines or enhances divergent creativity depending on baseline dopamine synthesis capacity. Neuropsychopharmacology 2023; 48:1849-1858. [PMID: 37270619 PMCID: PMC10584959 DOI: 10.1038/s41386-023-01615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Catecholamine-enhancing psychostimulants, such as methylphenidate have long been argued to undermine creative thinking. However, prior evidence for this is weak or contradictory, stemming from studies with small sample sizes that do not consider the well-established large variability in psychostimulant effects across different individuals and task demands. We aimed to definitively establish the link between psychostimulants and creative thinking by measuring effects of methylphenidate in 90 healthy participants on distinct creative tasks that measure convergent and divergent thinking, as a function of individuals' baseline dopamine synthesis capacity, indexed with 18F-FDOPA PET imaging. In a double-blind, within-subject design, participants were administered methylphenidate, placebo or selective D2 receptor antagonist sulpiride. The results showed that striatal dopamine synthesis capacity and/or methylphenidate administration did not affect divergent and convergent thinking. However, exploratory analysis demonstrated a baseline dopamine-dependent effect of methylphenidate on a measure of response divergence, a creativity measure that measures response variability. Response divergence was reduced by methylphenidate in participants with low dopamine synthesis capacity but enhanced in those with high dopamine synthesis capacity. No evidence of any effect of sulpiride was found. These results show that methylphenidate can undermine certain forms of divergent creativity but only in individuals with low baseline dopamine levels.
Collapse
Affiliation(s)
- Ceyda Sayalı
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ruben van den Bosch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jessica I Määttä
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Lieke Hofmans
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Danae Papadopetraki
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robbert-Jan Verkes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Matthijs Baas
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Brancati GE, Acierno D, Barbuti M, Elefante C, Gemignani S, Raia A, Perugi G. Revisiting stimulant use for emotional dysregulation in attention-deficit/hyperactivity disorder (ADHD). Expert Rev Neurother 2023; 23:981-994. [PMID: 37747111 DOI: 10.1080/14737175.2023.2263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Emotional dysregulation (ED) symptoms are present in a considerable portion of patients with attention-deficit/hyperactivity disorder (ADHD). In recent years, an increasing number of studies investigated the effects of stimulant medications on ED in patients with ADHD. AREAS COVERED A narrative review of the literature on stimulant treatment for ED is provided, including controlled and observational clinical studies conducted on pediatric and adult samples and neurobiological investigations. Positive effects of stimulants on irritability have been demonstrated in children. Comorbidity with disruptive behavior disorders (DBD) and disruptive mood dysregulation disorder does not prevent stimulant effectiveness. Methylphenidate has also been found to reduce temper problems, affective instability, and emotional over-reactivity in adults with ADHD, although with variable effect sizes. A variety of adverse emotional effects have been reported, especially at high doses and in special populations. However, several possible confounders of treatment-emergent ED have been highlighted. Finally, according to neuroimaging studies, stimulants may mitigate emotional processing anomalies associated with ADHD. EXPERT OPINION The findings are consistent with models including ED within the core features of ADHD. Stimulant treatment should be prioritized over antipsychotics in ADHD-DBD. It remains to be elucidated whether other medications may be more effective in specific populations with ADHD and/or ED.
Collapse
Affiliation(s)
- Giulio Emilio Brancati
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Donatella Acierno
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Margherita Barbuti
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Camilla Elefante
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Samuele Gemignani
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Accursio Raia
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Yamamoto M, Inada T. Positron emission tomography studies in adult patients with attention-deficit/hyperactivity disorder. Jpn J Radiol 2022; 41:382-392. [PMID: 36480104 DOI: 10.1007/s11604-022-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, motor hyperactivity, impulsivity, and psychosocial as well as cognitive dysfunction. Although characteristic clinical manifestations have been described, no definitive biomarkers to diagnose ADHD have been established. In this review article, we summarize positron emission tomography (PET) studies conducted in adult patients with ADHD. We found that, although, disturbances of dopamine, serotonin, and norepinephrine functions have been implicated in ADHD, no characteristic findings have been identified from PET studies in patients with ADHD. Several previous PET studies on the central dopaminergic transmission-related ligands in patients with ADHD have shown altered binding of dopamine markers in the basal ganglia. However, no consistent results were observed in the binding characteristics for dopamine transporters and receptors. Findings from PET studies with ligands related to serotonin and norepinephrine pathways showed either unclear clinical significance or low replicability. Therefore, whether alterations of monoamine function may be involved in the pathophysiological mechanism remains to be clarified. The limitations of previous PET studies include their small sample sizes, focus on several kinds of existing ligands, and a questionable validity of the diagnosis (lack of biological diagnostic criteria). To determine the characteristic findings for diagnosing ADHD, further research is needed, and particularly, studies that evaluate new active ligands with specific binding to monoamine pathways should be undertaken.
Collapse
Affiliation(s)
- Maeri Yamamoto
- Department of Psychiatry, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya-Shi, Aichi, 466-8560, Japan
| | - Toshiya Inada
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, 65 Tsurumai-Cho, Showa-Ku, Nagoya-Shi, Aichi, 466-8550, Japan.
| |
Collapse
|
7
|
Tokko T, Miškinyte G, Eensoo D, Harro J. Driving risks of young drivers with symptoms of attention deficit hyperactivity disorder: association with the dopamine transporter gene VNTR polymorphism. Nord J Psychiatry 2022; 76:575-583. [PMID: 35130472 DOI: 10.1080/08039488.2022.2032330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Road traffic injuries are a leading cause of death for young adults, and young drivers with higher expression of symptoms of attention deficit-hyperactivity disorder (ADHD) could pose an even greater risk in traffic. Dopaminergic dysfunction has been found to occur in ADHD, with the dopamine transporter (DAT) gene VNTR polymorphism (DAT1 VNTR; rs28363170) being one of the most consistent genetic markers. Thus, we aimed at clarifying how the ADHD symptoms and the DAT1 VNTR relate to risk-taking behaviour in traffic, impulsivity and driving anger in young drivers. METHOD We used data of two traffic behaviour study samples (n = 741, mean age = 23.3 ± 7.2 years; n = 995, mean age = 22.9 ± 8.1 years) and the Estonian Children Personality Behaviour and Health Study (ECPBHS; traffic behaviour data n = 1,016, mean age = 25.2 ± 2.1 years). ADHD symptoms were assessed by self-report with the Adult ADHD Self-Report Scale (ASRS v1.1) and impulsivity with the Adaptive and Maladaptive Impulsivity Scale. Traffic behavioural measures were either self-reported (Driver Behaviour Questionnaire, Driving Anger Scale) or obtained from databases (registered accidents and violations). RESULTS Drivers with more self-reported ADHD symptoms also reported more risk-taking in traffic and had more of recorded traffic accidents and violations. DAT1 9 R carriers had a higher probability of high traffic risk behaviour only if they also had ADHD symptoms. CONCLUSION Higher level of ADHD symptoms is a significant risk factor in traffic, and carrying of the DAT1 9 R allele appears to aggravate these risks.
Collapse
Affiliation(s)
- Tõnis Tokko
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Grete Miškinyte
- Department of Psychology, University of Tartu, Tartu, Estonia
| | - Diva Eensoo
- Department of Chronic Diseases, Research Centre, National Institute for Health Development, Tallinn, Estonia
| | - Jaanus Harro
- Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Dutta CN, Christov-Moore L, Ombao H, Douglas PK. Neuroprotection in late life attention-deficit/hyperactivity disorder: A review of pharmacotherapy and phenotype across the lifespan. Front Hum Neurosci 2022; 16:938501. [PMID: 36226261 PMCID: PMC9548548 DOI: 10.3389/fnhum.2022.938501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, psychostimulants have been the gold standard pharmaceutical treatment for attention-deficit/hyperactivity disorder (ADHD). In the United States, an astounding 9% of all boys and 4% of girls will be prescribed stimulant drugs at some point during their childhood. Recent meta-analyses have revealed that individuals with ADHD have reduced brain volume loss later in life (>60 y.o.) compared to the normal aging brain, which suggests that either ADHD or its treatment may be neuroprotective. Crucially, these neuroprotective effects were significant in brain regions (e.g., hippocampus, amygdala) where severe volume loss is linked to cognitive impairment and Alzheimer's disease. Historically, the ADHD diagnosis and its pharmacotherapy came about nearly simultaneously, making it difficult to evaluate their effects in isolation. Certain evidence suggests that psychostimulants may normalize structural brain changes typically observed in the ADHD brain. If ADHD itself is neuroprotective, perhaps exercising the brain, then psychostimulants may not be recommended across the lifespan. Alternatively, if stimulant drugs are neuroprotective, then this class of medications may warrant further investigation for their therapeutic effects. Here, we take a bottom-up holistic approach to review the psychopharmacology of ADHD in the context of recent models of attention. We suggest that future studies are greatly needed to better appreciate the interactions amongst an ADHD diagnosis, stimulant treatment across the lifespan, and structure-function alterations in the aging brain.
Collapse
Affiliation(s)
- Cintya Nirvana Dutta
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
| | - Leonardo Christov-Moore
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA, United States
| | - Hernando Ombao
- Biostatistics Group, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pamela K. Douglas
- School of Modeling, Simulation, and Training, and Computer Science, University of Central Florida, Orlando, FL, United States
- Department of Psychiatry and Biobehavioral Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
van den Bosch R, Lambregts B, Määttä J, Hofmans L, Papadopetraki D, Westbrook A, Verkes RJ, Booij J, Cools R. Striatal dopamine dissociates methylphenidate effects on value-based versus surprise-based reversal learning. Nat Commun 2022; 13:4962. [PMID: 36002446 PMCID: PMC9402573 DOI: 10.1038/s41467-022-32679-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Psychostimulants such as methylphenidate are widely used for their cognitive enhancing effects, but there is large variability in the direction and extent of these effects. We tested the hypothesis that methylphenidate enhances or impairs reward/punishment-based reversal learning depending on baseline striatal dopamine levels and corticostriatal gating of reward/punishment-related representations in stimulus-specific sensory cortex. Young healthy adults (N = 100) were scanned with functional magnetic resonance imaging during a reward/punishment reversal learning task, after intake of methylphenidate or the selective D2/3-receptor antagonist sulpiride. Striatal dopamine synthesis capacity was indexed with [18F]DOPA positron emission tomography. Methylphenidate improved and sulpiride decreased overall accuracy and response speed. Both drugs boosted reward versus punishment learning signals to a greater degree in participants with higher dopamine synthesis capacity. By contrast, striatal and stimulus-specific sensory surprise signals were boosted in participants with lower dopamine synthesis. These results unravel the mechanisms by which methylphenidate gates both attention and reward learning. The mechanisms underpinning the variability in methylphenidate’s effects on cognition remain unclear. Here, the authors show that such effects reflect changes in striatal dopamine-related output gating of task-relevant cortical signals, and that these changes depend on baseline dopamine synthesis capacity.
Collapse
Affiliation(s)
- Ruben van den Bosch
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Britt Lambregts
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jessica Määttä
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lieke Hofmans
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Danae Papadopetraki
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Andrew Westbrook
- Cognitive, Linguistic & Psychological Sciences Department, Brown University, Providence, RI, USA
| | - Robbert-Jan Verkes
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location Academic Medical Center, Amsterdam, The Netherlands.,Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands
| | - Roshan Cools
- Radboud University Medical Center, Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Westbrook A, Ghosh A, van den Bosch R, Määttä JI, Hofmans L, Cools R. Striatal dopamine synthesis capacity reflects smartphone social activity. iScience 2021; 24:102497. [PMID: 34113831 PMCID: PMC8170001 DOI: 10.1016/j.isci.2021.102497] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Striatal dopamine and smartphone behavior have both been linked with behavioral variability. Here, we leverage day-to-day logs of natural, unconstrained smartphone behavior and establish a correlation between a measure of smartphone social activity previously linked with behavioral variability and a measure of striatal dopamine synthesis capacity using [18F]-DOPA PET in (N = 22) healthy adult humans. Specifically, we find that a higher proportion of social app interactions correlates with lower dopamine synthesis capacity in the bilateral putamen. Permutation tests and penalized regressions provide evidence that this link between dopamine synthesis capacity and social versus non-social smartphone interactions is specific. These observations provide a key empirical grounding for current speculations about dopamine's role in digital social behavior. Putamen dopamine synthesis capacity correlates with smartphone social app use. The correlation parallels a prior link between social app use and motor variability. It is selective to social app use, controlling for multiple smartphone use factors.
Collapse
Affiliation(s)
- Andrew Westbrook
- Radboud University Medical Centre, Department of Psychiatry, Nijmegen 6525 GA, The Netherlands.,Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 EN, The Netherlands.,Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Arko Ghosh
- Institute of Psychology, Cognitive Psychology Unit, Leiden University, Leiden 2333 AK, The Netherlands
| | - Ruben van den Bosch
- Radboud University Medical Centre, Department of Psychiatry, Nijmegen 6525 GA, The Netherlands.,Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 EN, The Netherlands
| | - Jessica I Määttä
- Radboud University Medical Centre, Department of Psychiatry, Nijmegen 6525 GA, The Netherlands.,Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 EN, The Netherlands
| | - Lieke Hofmans
- Radboud University Medical Centre, Department of Psychiatry, Nijmegen 6525 GA, The Netherlands.,Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 EN, The Netherlands
| | - Roshan Cools
- Radboud University Medical Centre, Department of Psychiatry, Nijmegen 6525 GA, The Netherlands.,Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6525 EN, The Netherlands
| |
Collapse
|
11
|
Martinat M, Rossitto M, Di Miceli M, Layé S. Perinatal Dietary Polyunsaturated Fatty Acids in Brain Development, Role in Neurodevelopmental Disorders. Nutrients 2021; 13:1185. [PMID: 33918517 PMCID: PMC8065891 DOI: 10.3390/nu13041185] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
n-3 and n-6 polyunsaturated fatty acids (PUFAs) are essential fatty acids that are provided by dietary intake. Growing evidence suggests that n-3 and n-6 PUFAs are paramount for brain functions. They constitute crucial elements of cellular membranes, especially in the brain. They are the precursors of several metabolites with different effects on inflammation and neuron outgrowth. Overall, long-chain PUFAs accumulate in the offspring brain during the embryonic and post-natal periods. In this review, we discuss how they accumulate in the developing brain, considering the maternal dietary supply, the polymorphisms of genes involved in their metabolism, and the differences linked to gender. We also report the mechanisms linking their bioavailability in the developing brain, their transfer from the mother to the embryo through the placenta, and their role in brain development. In addition, data on the potential role of altered bioavailability of long-chain n-3 PUFAs in the etiologies of neurodevelopmental diseases, such as autism, attention deficit and hyperactivity disorder, and schizophrenia, are reviewed.
Collapse
|
12
|
Hofmans L, Papadopetraki D, van den Bosch R, Määttä JI, Froböse MI, Zandbelt BB, Westbrook A, Verkes RJ, Cools R. Methylphenidate boosts choices of mental labor over leisure depending on striatal dopamine synthesis capacity. Neuropsychopharmacology 2020; 45:2170-2179. [PMID: 32919405 PMCID: PMC7784967 DOI: 10.1038/s41386-020-00834-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/19/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022]
Abstract
The cognitive enhancing effects of methylphenidate are well established, but the mechanisms remain unclear. We recently demonstrated that methylphenidate boosts cognitive motivation by enhancing the weight on the benefits of a cognitive task in a manner that depended on striatal dopamine. Here, we considered the complementary hypothesis that methylphenidate might also act by changing the weight on the opportunity cost of a cognitive task, that is, the cost of foregoing alternative opportunity. To this end, 50 healthy participants (25 women) completed a novel cognitive effort-discounting task that required choices between task and leisure. They were tested on methylphenidate, placebo, as well as the selective D2-receptor agent sulpiride, the latter to strengthen inference about dopamine receptor selectivity of methylphenidate's effects. Furthermore, they also underwent an [18F]DOPA PET scan to quantify striatal dopamine synthesis capacity. Methylphenidate boosted choices of cognitive effort over leisure across the group, and this effect was greatest in participants with more striatal dopamine synthesis capacity. The effects of sulpiride did not reach significance. This study strengthens the motivational account of methylphenidate's effects on cognition, and suggests that methylphenidate reduces the cost of mental labor by increasing striatal dopamine.
Collapse
Affiliation(s)
- Lieke Hofmans
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands.
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands.
| | - Danae Papadopetraki
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| | - Ruben van den Bosch
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| | - Jessica I Määttä
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| | - Monja I Froböse
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bram B Zandbelt
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| | - Andrew Westbrook
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
- Department of Cognitive, Linguistics and Psychological Sciences, Brown University, Providence, RI, USA
| | - Robbert-Jan Verkes
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
- Forensic Psychiatric Centre Nijmegen, Pompestichting, Nijmegen, The Netherlands
- Department of Criminal Law, Law School, Radboud Universiteit, Nijmegen, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Mehta T, Mannem N, Yarasi NK, Bollu PC. Biomarkers for ADHD: the Present and Future Directions. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020. [DOI: 10.1007/s40474-020-00196-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zhao Y, Cui D, Lu W, Li H, Zhang H, Qiu J. Aberrant gray matter volumes and functional connectivity in adolescent patients with ADHD. J Magn Reson Imaging 2019; 51:719-726. [DOI: 10.1002/jmri.26854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yue Zhao
- The Shandong University of Science and Technology Qingdao China
- Medical Engineering and Technology Research CenterShandong First Medical University (Shandong Academy of Medical Sciences) Taian China
| | - Dong Cui
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Weizhao Lu
- Medical Engineering and Technology Research CenterShandong First Medical University (Shandong Academy of Medical Sciences) Taian China
- Radiology DepartmentShandong First Medical University (Shandong Academy of Medical Sciences) Taian China
| | - Hongyu Li
- The Shandong University of Science and Technology Qingdao China
| | - Huayu Zhang
- The Shandong University of Science and Technology Qingdao China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research CenterShandong First Medical University (Shandong Academy of Medical Sciences) Taian China
- Radiology DepartmentShandong First Medical University (Shandong Academy of Medical Sciences) Taian China
| |
Collapse
|
15
|
Lam AP, Matthies S, Graf E, Colla M, Jacob C, Sobanski E, Alm B, Rösler M, Retz W, Retz-Junginger P, Kis B, Abdel-Hamid M, Müller HHO, Lücke C, Huss M, Jans T, Berger M, Tebartz van Elst L, Philipsen A. Long-term Effects of Multimodal Treatment on Adult Attention-Deficit/Hyperactivity Disorder Symptoms: Follow-up Analysis of the COMPAS Trial. JAMA Netw Open 2019; 2:e194980. [PMID: 31150084 PMCID: PMC6547099 DOI: 10.1001/jamanetworkopen.2019.4980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPORTANCE Knowledge about the long-term effects of multimodal treatment in adult attention-deficit/hyperactivity disorder (ADHD) is much needed. OBJECTIVE To evaluate the long-term efficacy of multimodal treatment for adult ADHD. DESIGN, SETTING, AND PARTICIPANTS This observer-masked, 1.5-year follow-up of the Comparison of Methylphenidate and Psychotherapy in Adult ADHD Study (COMPAS), a prospective, multicenter randomized clinical trial, compared cognitive behavioral group psychotherapy (GPT) with individual clinical management (CM) and methylphenidate (MPH) with placebo (2 × 2 factorial design). Recruitment started January 2007 and ended August 2010, and treatments were finalized in August 2011 with follow-up through March 2013. Overall, 433 adults with ADHD participated in the trial, and 256 (59.1%) participated in the follow-up assessment. Analysis began in November 2013 and was completed in February 2018. INTERVENTIONS After 1-year treatment with GPT or CM and MPH or placebo, no further treatment restrictions were imposed. MAIN OUTCOMES AND MEASURES The primary outcome was change in the observer-masked ADHD Index of Conners Adult ADHD Rating Scale score from baseline to follow-up. Secondary outcomes included further ADHD rating scale scores, observer-masked ratings of the Clinical Global Impression scale, and self-ratings of depression on the Beck Depression Inventory. RESULTS At follow-up, 256 of 433 randomized patients (baseline measured in 419 individuals) participated. Of the 256 patients participating in follow-up, the observer-masked ADHD Index of Conners Adult ADHD Rating Scale score was assessed for 251; the mean (SD) baseline age was 36.3 (10.1) years; 125 patients (49.8%) were men; and the sample was well-balanced with respect to prior randomization (GPT and MPH: 64 of 107; GPT and placebo: 67 of 109; CM and MPH: 70 of 110; and CM and placebo: 55 of 107). At baseline, the all-group mean ADHD Index of Conners Adult ADHD Rating Scale score was 20.6, which improved to adjusted means of 14.2 for the GPT arm and 14.7 for the CM arm at follow-up with no significant difference between groups (difference, -0.5; 95% CI, -1.9 to 0.9; P = .48). The adjusted mean decreased to 13.8 for the MPH arm and 15.2 for the placebo arm (difference, -1.4; 95% CI, -2.8 to -0.1; P = .04). As in the core study, MPH was associated with a larger reduction in symptoms than placebo at follow-up. These results remained unchanged when accounting for MPH intake at follow-up. Compared with participants in the CM arm, patients who participated in group psychotherapy were associated with less severe symptoms as measured by the self-reported ADHD Symptoms Total Score according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) of Conners Adult ADHD Rating Scale (AMD, -2.1; 95% CI, -4.2 to -0.1; P = .04) and in the subscale of reducing pure hyperactive symptoms, measured via the Diagnostic Checklist for the diagnosis of ADHD in adults (AMD, -1.3; 95% CI, -2.8 to 0.1; P = .08). Regarding the Clinical Global Impression scale assessment of effectiveness, the difference between GPT and CM remained significant at follow-up (odds ratio, 1.63; 95% CI, 1.03-2.59; P = .04). No differences were found for any comparison concerning depression as measured with the Beck Depression Inventory. CONCLUSIONS AND RELEVANCE Results from COMPAS demonstrate a maintained improvement in ADHD symptoms for adults 1.5 years after the end of a 52-week controlled multimodal treatment period. The results indicate that MPH treatment combined with GPT or CM provides a benefit lasting 1.5 years. Confirming the results of the core study, GPT was not associated with better results regarding the primary outcome compared with CM. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN54096201.
Collapse
Affiliation(s)
- Alexandra P. Lam
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Swantje Matthies
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Erika Graf
- Clinical Trials Unit, Institute of Medical Biometry and Statistics, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Michael Colla
- Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
| | - Christian Jacob
- Clinic for Psychiatry and Psychotherapy, Medius Clinic, Kirchheim, Germany
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Esther Sobanski
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Clinical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medicine Mainz, Mainz, Germany
| | - Barbara Alm
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Clinical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Rösler
- Institute for Forensic Psychology and Psychiatry, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Wolfgang Retz
- Institute for Forensic Psychology and Psychiatry, Saarland University Faculty of Medicine, Homburg/Saar, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Petra Retz-Junginger
- Institute for Forensic Psychology and Psychiatry, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Bernhard Kis
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Mona Abdel-Hamid
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Helge H. O. Müller
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Caroline Lücke
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Michael Huss
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medicine Mainz, Mainz, Germany
| | - Thomas Jans
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Mathias Berger
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Tai YC, Chi MH, Chu CL, Chiu NT, Yao WJ, Chen PS, Yang YK. Availability of Striatal Dopamine Transporter in Healthy Individuals With and Without a Family History of ADHD. J Atten Disord 2019; 23:665-670. [PMID: 27401239 DOI: 10.1177/1087054716654570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ADHD is the most prevalent neurodevelopmental disorder. It is highly heritable and multifactorial, but the definitive causes remain unknown. Abnormal dopamine transporter (DAT) availability has been reported, but the data are inconsistent. The aim of this study was to examine whether DAT availability differs between healthy parents with and without ADHD offspring. METHOD Eleven healthy parents with ADHD offspring and 11 age- and sex-matched healthy controls without ADHD offspring were recruited. The availability of DAT was approximated using single-photon emission computed tomography, with [99mTc] TRODAT-1 as the ligand. RESULTS DAT availability in the basal ganglia, caudate nucleus, and putamen was significantly lower in the parents with ADHD offspring than in the healthy controls without ADHD offspring. CONCLUSION The results suggest that ADHD could be heritable via abnormal DAT activities.
Collapse
Affiliation(s)
- Ying Chun Tai
- 1 Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.,2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mei Hung Chi
- 2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lin Chu
- 2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Nan Tsing Chiu
- 4 Department of Nuclear Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Jen Yao
- 4 Department of Nuclear Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- 2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- 1 Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan.,2 Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,3 Addiction Research Center, National Cheng Kung University, Tainan, Taiwan.,5 Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
17
|
Jacob L, Haro JM, Koyanagi A. Relationship between attention-deficit hyperactivity disorder symptoms and problem gambling: A mediation analysis of influential factors among 7,403 individuals from the UK. J Behav Addict 2018; 7:781-791. [PMID: 30238788 PMCID: PMC6426384 DOI: 10.1556/2006.7.2018.72] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Our goal was to examine the association between attention-deficit hyperactivity disorder (ADHD) symptoms and gambling problems, and to identify potential mediating factors of this association. METHODS This study used cross-sectional, community-based data from 7,403 people aged ≥16 years who participated in the Adult Psychiatric Morbidity Survey 2007. ADHD symptoms were assessed using the Adult ADHD Self-Report Scale (ASRS) Screener. Problem gambling was assessed using a questionnaire based on the 10 DSM-IV diagnostic criteria for pathological gambling. Respondents were classified as having no problem, at-risk, or problem gambling. Logistic regression and mediation analyses were conducted to analyze the association between ADHD symptoms (i.e., ASRS score ≥14) and problem gambling and the role of several variables in this association. RESULTS The prevalence of at-risk (5.3% vs. 2.4%) and problem gambling (2.4% vs. 0.6%) was higher in individuals with ADHD symptoms than in those without ADHD symptoms. ADHD symptoms were significantly associated with both at-risk (OR = 2.15; 95% CI = 1.22-3.79) and problem gambling (OR = 3.57; 95% CI = 1.53-8.31) when adjusted for age, sex, and ethnicity. Common mental disorders (CMDs; i.e., depression and anxiety disorders) (mediated percentage = 22.4%), borderline personality disorder (BPD) traits (22.1%), stressful life events (13.2%), stress at work or home (12.6%), alcohol dependence (11.8%), and impulsivity (11.2%) were significant mediators in the ADHD-gambling association. DISCUSSION AND CONCLUSIONS Overall, ADHD symptoms were positively associated with problem gambling. CMDs, BPD traits, and stressful life events were important mediators in this relationship.
Collapse
Affiliation(s)
- Louis Jacob
- Faculty of Medicine, University of Paris 5, Paris, France,Corresponding author: Dr. Louis Jacob; Faculty of Medicine, University of Paris 5, 15 rue de l’École de Médecine, Paris 75006, France; Phone: +33 6 27 88 37 06; E-mail:
| | - Josep Maria Haro
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
18
|
Hong JH, Hwang IW, Lim MH, Kwon HJ, Jin HJ. Genetic associations between ADHD and dopaminergic genes (DAT1 and DRD4) VNTRs in Korean children. Genes Genomics 2018; 40:1309-1317. [PMID: 30099719 DOI: 10.1007/s13258-018-0726-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023]
Abstract
It is well known that dopaminergic genes affect the development of attention deficit hyperactivity disorder (ADHD) in various populations. Many studies have shown that variable number tandem repeats (VNTRs) located within the 3'-untranslated region of DAT1 and in exon 3 of DRD4 are associated with ADHD development; however, these results were inconsistent. Therefore, we investigated the genetic association between two VNTRs and ADHD in Korean children. We determined the VNTRs using PCR. We examined genotype and allele frequency differences between the experimental and control groups, along with the odds ratios, using Chi square and exact tests. We observed a significant association between the children with ADHD and the control group in the 10R/10R genotype of DAT1 VNTRs (p = 0.025). In addition, the 11R allele of DAT1 VNTRs showed a higher frequency in the control group than in the ADHD group (p = 0.023). Also, the short repeat (without 11R) and long repeat alleles (including 11R) were associated with ADHD (p < 0.05). The analysis of DRD4 VNTRs revealed that the 2R allele is associated with ADHD (p = 0.025). A significant result was also observed in long and short repeats (p < 0.05). Additionally, ADHD subtypes showed that the DRD4 VNTRs are associated with combined and hyperactive-impulsive subtype groups (p < 0.05). Therefore, our results suggest that DAT1 VNTRs and DRD4 VNTRs play a role in the genetic etiology of ADHD in Korean children.
Collapse
Affiliation(s)
- Jun Ho Hong
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea
| | - In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Myung Ho Lim
- Department of Psychology and Psychotherapy, College of Health Sciences, Dankook University, Cheonan, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Ho Jang Kwon
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan, 330-714, Republic of Korea.
- Enviromental Health Center, Dankook Medical Hospital, Cheonan, Republic of Korea.
| |
Collapse
|
19
|
Prehn-Kristensen A, Zimmermann A, Tittmann L, Lieb W, Schreiber S, Baving L, Fischer A. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018; 13:e0200728. [PMID: 30001426 PMCID: PMC6042771 DOI: 10.1371/journal.pone.0200728] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
ADHD is a psychiatric disorder which is characterized by hyperactivity, impulsivity and attention problems. Due to recent findings of microbial involvement in other psychiatric disorders like autism and depression, a role of the gut microbiota in ADHD pathogenesis is assumed but has not yet been investigated. In this study, the gut microbiota of 14 male ADHD patients (mean age: 11.9 yrs.) and 17 male controls (mean age: 13.1 yrs.) was examined via next generation sequencing of 16S rDNA and analyzed for diversity and biomarkers. We found that the microbial diversity (alpha diversity) was significantly decreased in ADHD patients compared to controls (pShannon = 0.036) and that the composition (beta diversity) differed significantly between patients and controls (pANOSIM = 0.033, pADONIS = 0.006, pbetadisper = 0.002). In detail, the bacterial family Prevotellacae was associated with controls, while patients with ADHD showed elevated levels of Bacteroidaceae, and both Neisseriaceae and Neisseria spec. were found as possible biomarkers for juvenile ADHD. Our results point to a possible link of certain microbiota with ADHD, with Neisseria spec. being a very promising ADHD-associated candidate. This finding provides the basis for a systematic, longitudinal assessment of the role of the gut microbiome in ADHD, yielding promising potential for both prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexandra Zimmermann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lukas Tittmann
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute for Epidemiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lioba Baving
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Annegret Fischer
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
20
|
Soleimani R, Salehi Z, Soltanipour S, Hasandokht T, Jalali MM. SLC6A3 polymorphism and response to methylphenidate in children with ADHD: A systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2018; 177:287-300. [PMID: 29171685 DOI: 10.1002/ajmg.b.32613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/13/2017] [Indexed: 01/29/2023]
Abstract
Methylphenidate (MPH) is the most commonly used treatment for attention-deficit hyperactivity disorder (ADHD) in children. However, the response to MPH is not similar in all patients. This meta-analysis investigated the potential role of SLC6A3 polymorphisms in response to MPH in children with ADHD. Clinical trials or naturalistic studies were selected from electronic databases. A meta-analysis was conducted using a random-effects model. Cohen's d effect size and 95% confidence intervals (CIs) were determined. Sensitivity analysis and meta-regression were performed. Q-statistic and Egger's tests were conducted to evaluate heterogeneity and publication bias, respectively. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to assess the quality of evidence. Sixteen studies with follow-up periods of 1-28 weeks were eligible. The mean treatment acceptability of MPH was 97.2%. In contrast to clinical trials, the meta-analysis of naturalistic studies indicated that children without 10/10 repeat carriers had better response to MPH (Cohen's d: -0.09 and 0.44, respectively). The 9/9 repeat polymorphism had no effect on the response rate (Cohen's d: -0.43). In the meta-regression, a significant association was observed between baseline severity of ADHD, MPH dosage, and combined type of ADHD in some genetic models. Sensitivity analysis indicated the robustness of our findings. No publication bias was observed in our meta-analysis. The GRADE evaluations revealed very low levels of confidence for each outcome of response to MPH. The results of clinical trials and naturalistic studies regarding the effect size between different polymorphisms of SLC6A3 were contradictory. Therefore, further research is recommended.
Collapse
Affiliation(s)
- Robabeh Soleimani
- Psychiatry, Kavosh Behavioral, Cognitive and Addiction Research Center, Shafa Hospital, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Zivar Salehi
- Molecular Genetics, Department of Biology, University of Guilan, Rasht, Guilan, Iran
| | - Soheil Soltanipour
- Public Health and Preventive Medicine, Medical Faculty, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Tolou Hasandokht
- Public Health and Preventive Medicine, Medical Faculty, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mir Mohammad Jalali
- Otolaryngology, RhinoSinus diseases Research Center, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| |
Collapse
|
21
|
Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 2018; 87:255-270. [PMID: 29428394 DOI: 10.1016/j.neubiorev.2018.02.001] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Psychostimulants, including amphetamines and methylphenidate, are first-line pharmacotherapies for individuals with attention-deficit/hyperactivity disorder (ADHD). This review aims to educate physicians regarding differences in pharmacology and mechanisms of action between amphetamine and methylphenidate, thus enhancing physician understanding of psychostimulants and their use in managing individuals with ADHD who may have comorbid psychiatric conditions. A systematic literature review of PubMed was conducted in April 2017, focusing on cellular- and brain system-level effects of amphetamine and methylphenidate. The primary pharmacologic effect of both amphetamine and methylphenidate is to increase central dopamine and norepinephrine activity, which impacts executive and attentional function. Amphetamine actions include dopamine and norepinephrine transporter inhibition, vesicular monoamine transporter 2 (VMAT-2) inhibition, and monoamine oxidase activity inhibition. Methylphenidate actions include dopamine and norepinephrine transporter inhibition, agonist activity at the serotonin type 1A receptor, and redistribution of the VMAT-2. There is also evidence for interactions with glutamate and opioid systems. Clinical implications of these actions in individuals with ADHD with comorbid depression, anxiety, substance use disorder, and sleep disturbances are discussed.
Collapse
Affiliation(s)
- Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
Rincón-Pérez I, Sánchez-Carmona AJ, Albert J, Hinojosa JA. The association of monoamine-related gene polymorphisms with behavioural correlates of response inhibition: A meta-analytic review. Neurosci Biobehav Rev 2018; 84:49-62. [DOI: 10.1016/j.neubiorev.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022]
|
23
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Neural substrates of trait impulsivity, anhedonia, and irritability: Mechanisms of heterotypic comorbidity between externalizing disorders and unipolar depression. Dev Psychopathol 2017; 28:1177-1208. [PMID: 27739396 DOI: 10.1017/s0954579416000754] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trait impulsivity, which is often defined as a strong preference for immediate over delayed rewards and results in behaviors that are socially inappropriate, maladaptive, and short-sighted, is a predisposing vulnerability to all externalizing spectrum disorders. In contrast, anhedonia is characterized by chronically low motivation and reduced capacity to experience pleasure, and is common to depressive disorders. Although externalizing and depressive disorders have virtually nonoverlapping diagnostic criteria in the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, heterotypic comorbidity between them is common. Here, we review common neural substrates of trait impulsivity, anhedonia, and irritability, which include both low tonic mesolimbic dopamine activity and low phasic mesolimbic dopamine responding to incentives during reward anticipation and associative learning. We also consider how other neural networks, including bottom-up emotion generation systems and top-down emotion regulation systems, interact with mesolimbic dysfunction to result in alternative manifestations of psychiatric illness. Finally, we present a model that emphasizes a translational, transdiagnostic approach to understanding externalizing/depression comorbidity. This model should refine ways in which internalizing and externalizing disorders are studied, classified, and treated.
Collapse
|
25
|
Jauhar S, Veronese M, Rogdaki M, Bloomfield M, Natesan S, Turkheimer F, Kapur S, Howes OD. Regulation of dopaminergic function: an [ 18F]-DOPA PET apomorphine challenge study in humans. Transl Psychiatry 2017; 7:e1027. [PMID: 28170002 PMCID: PMC5438020 DOI: 10.1038/tp.2016.270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023] Open
Abstract
Dopaminergic function has a key role in normal brain function, dopaminergic dysfunction being implicated in numerous neuropsychiatric disorders. Animal studies show that dopaminergic stimulation regulates dopaminergic function, but it is not known whether this exists in humans. In the first study (study 1), we measured dopamine synthesis capacity (indexed as Kicer) to identify the relationship between baseline and change in Kicer under resting conditions for comparison with effects of dopaminergic stimulation. In the second study (study 2), we used a within-subjects design to test effects of dopaminergic stimulation on dopamine synthesis capacity. In study 1, eight volunteers received two 18F-DOPA scans on separate days, both at rest. In study 2, 12 healthy male volunteers received two 18F-DOPA positron emission tomographic (PET) scans after treatment with either the dopamine partial agonist apomorphine (0.03 or 0.005 mg kg-1) or placebo. In study 1, no significant correlation was found between baseline and change in dopamine synthesis capacity between scans (r=-0.57, n=8, P=0.17, two-tailed). In study 2, a significant negative correlation was found between baseline dopamine synthesis capacity and percentage change in dopamine synthesis capacity after apomorphine challenge (r=-0.71, n=12, P=0.01, two-tailed). This correlation was significantly different (P<0.01) from the correlation between baseline and change in dopamine synthesis capacity under unstimulated conditions. One-way repeated-measures analysis of variance showed a significant group (study 1/study 2) × time interaction (F(1,18)=11.5, P=0.003). Our findings suggest that regulation of dopamine synthesis capacity by apomorphine depends on baseline dopamine function, consistent with dopamine stimulation stabilizing dopaminergic function. Loss of this autoregulation may contribute to dopaminergic dysfunction in brain disorders such as schizophrenia, substance dependence, and Parkinson's disease.
Collapse
Affiliation(s)
- S Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - M Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - M Rogdaki
- MRC London Institute of Medical Sciences, London, UK
| | - M Bloomfield
- MRC London Institute of Medical Sciences, London, UK
| | - S Natesan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - F Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - S Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
26
|
Chemogenetic activation of dopamine neurons in the ventral tegmental area, but not substantia nigra, induces hyperactivity in rats. Eur Neuropsychopharmacol 2016; 26:1784-1793. [PMID: 27712862 DOI: 10.1016/j.euroneuro.2016.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/27/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022]
Abstract
Hyperactivity is a core symptom in various psychiatric disorders, including attention-deficit/hyperactivity disorder, schizophrenia, bipolar disorders, and anorexia nervosa. Although hyperactivity has been linked to dopaminergic signalling, the causal relationship between midbrain dopamine neuronal activity and locomotor hyperactivity remains unknown. In this study, we test whether increased dopamine neuronal activity is sufficient to induce locomotor hyperactivity. To do so, we used designer receptors exclusively activated by designer drugs (DREADD) to chemogenetically enhance neuronal activity in two main midbrain dopamine neuron populations, i.e. the ventral tegmental area (VTA) and substantia nigra pars compacta (SN), in TH:Cre rats. We found that activation of VTA dopamine neurons induced a pronounced and long-lasting hyperactive phenotype, whilst SN dopamine neuron activation only modestly increased home cage locomotion. Furthermore, this hyperactive phenotype was replicated by selective activation of the neuronal pathway from VTA to the nucleus accumbens (NAC). These results show a clear functional difference between neuronal subpopulations in the VTA and SN with regards to inducing locomotor hyperactivity, and suggest that the dopaminergic pathway from VTA to NAC may be a promising target for the treatment of hyperactivity disorders.
Collapse
|
27
|
Abstract
Children/adolescents with attention-deficit/hyperactivity disorder (ADHD) may have a poor or inadequate response to psychostimulants or be unable to tolerate their side-effects; furthermore, stimulants may be inappropriate because of co-existing conditions. Only one non-stimulant ADHD pharmacotherapy, the noradrenaline transporter inhibitor atomoxetine, is currently approved for use in Europe. We review recent advances in understanding of the pathophysiology of ADHD with a focus on the roles of catecholamine receptors in context of the α2A-adrenergic receptor agonist guanfacine extended release (GXR), a new non-stimulant treatment option in Europe. Neuroimaging studies of children/adolescents with ADHD show impaired brain maturation, and structural and functional anomalies in brain regions and networks. Neurobiological studies in ADHD and medication response patterns support involvement of monoaminergic neurotransmitters (primarily dopamine and noradrenaline). Guanfacine is a selective α2A-adrenergic receptor agonist that has been shown to improve prefrontal cortical cognitive function, including working memory. The hypothesized mode of action of guanfacine centres on direct stimulation of post-synaptic α2A-adrenergic receptors to enhance noradrenaline neurotransmission. Preclinical data suggest that guanfacine also influences dendritic spine growth and maturation. Clinical trials have demonstrated the efficacy of GXR in ADHD, and it is approved as monotherapy or adjunctive therapy to stimulants in Canada and the USA (for children and adolescents). GXR was approved recently in Europe for the treatment of ADHD in children and adolescents for whom stimulants are not suitable, not tolerated or have been shown to be ineffective. GXR may provide particular benefit for children/adolescents who have specific co-morbidities such as chronic tic disorders or oppositional defiant disorder (or oppositional symptoms) that have failed to respond to first-line treatment options.
Collapse
|
28
|
Common Variation in the DOPA Decarboxylase (DDC) Gene and Human Striatal DDC Activity In Vivo. Neuropsychopharmacology 2016; 41:2303-8. [PMID: 26924680 PMCID: PMC4946061 DOI: 10.1038/npp.2016.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Abstract
The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.
Collapse
|
29
|
Darki F, Nemmi F, Möller A, Sitnikov R, Klingberg T. Quantitative susceptibility mapping of striatum in children and adults, and its association with working memory performance. Neuroimage 2016; 136:208-14. [DOI: 10.1016/j.neuroimage.2016.04.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/13/2023] Open
|
30
|
Stimulant treatment history predicts frontal-striatal structural connectivity in adolescents with attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2016; 26:674-83. [PMID: 26899587 DOI: 10.1016/j.euroneuro.2016.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 01/20/2016] [Accepted: 02/05/2016] [Indexed: 02/05/2023]
Abstract
Diffusion tensor imaging (DTI) has revealed white matter abnormalities in individuals with attention-deficit/hyperactivity disorder (ADHD). Stimulant treatment may affect such abnormalities. The current study investigated associations between long-term stimulant treatment and white matter integrity within the frontal-striatal and mesolimbic pathways, in a large sample of children, adolescents and young adults with ADHD. Participants with ADHD (N=172; mean age 17, range 9-26) underwent diffusion-weighted MRI scanning, along with an age- and gendermatched group of 96 control participants. Five study-specific white matter tract masks (orbitofrontal-striatal, orbitofrontal-amygdalar, amygdalar-striatal, dorsolateral-prefrontal-striatal and medialprefrontal-striatal) were created. First we analyzed case-control differences in fractional anisotropy (FA) and mean diffusivity (MD) within each tract. Second, FA and MD in each tract was predicted from cumulative stimulant intake within the ADHD group. After correction for multiple testing, participants with ADHD showed reduced FA in the orbitofrontal-striatal pathway (p=0.010, effect size=0.269). Within the ADHD group, higher cumulative stimulant intake was associated with lower MD in the same pathway (p=0.011, effect size=-0.164), but not with FA. The association between stimulant treatment and orbitofrontal-striatal MD was of modest effect size. It fell short of significance after adding ADHD severity or ADHD type to the model (p=0.036 and p=0.094, respectively), while the effect size changed little. Our findings are compatible with stimulant treatment enhancing orbitofrontal-striatal white matter connectivity, and emphasize the importance of the orbitofrontal cortex and its connections in ADHD. Longitudinal studies including a drug-naïve baseline assessment are needed to distinguish between-subject variability in ADHD severity from treatment effects.
Collapse
|
31
|
Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study. J Neurosci 2015; 34:14769-76. [PMID: 25355228 DOI: 10.1523/jneurosci.1560-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methylphenidate (MPH) inhibits the reuptake of dopamine and noradrenaline. PET studies with MPH challenge show increased competition at postsynaptic D2/3-receptors, thus indirectly revealing presynaptic dopamine release. We used [(18)F]fluorodopamine ([(18)F]FDOPA)-PET in conjunction with the inlet-outlet model (IOM) of Kumakura et al. (2007) to investigate acute and long-term changes in dopamine synthesis capacity and turnover in nigrostriatal fibers of healthy subjects with MPH challenge. Twenty healthy human females underwent two dynamic [(18)F]FDOPA PET scans (124 min; slow bolus-injection; arterial blood sampling), with one scan in untreated baseline condition and the other after MPH administration (0.5 mg/kg, p.o.), in randomized order. Subjects underwent cognitive testing at each PET session. Time activity curves were obtained for ventral putamen and caudate and were analyzed according to the IOM to obtain the regional net-uptake of [(18)F]FDOPA (K; dopamine synthesis capacity) as well as the [(18)F]fluorodopamine washout rate (kloss, index of dopamine turnover). MPH substantially decreased kloss in putamen (-22%; p = 0.003). In the reversed treatment order group (MPH/no drug), K was increased by 18% at no drug follow-up. The magnitude of K at the no drug baseline correlated with cognitive parameters. Furthermore, individual kloss changes correlated with altered cognitive performance under MPH. [(18)F]FDOPA PET in combination with the IOM detects an MPH-evoked decrease in striatal dopamine turnover, in accordance with the known acute pharmacodynamics of MPH. Furthermore, the scan-ordering effect on K suggested that a single MPH challenge persistently increased striatal dopamine synthesis capacity. Attenuation of dopamine turnover by MPH is linked to enhanced cognitive performance in healthy females.
Collapse
|
32
|
Improvement of facial affect recognition in children and adolescents with attention-deficit/hyperactivity disorder under methylphenidate. Acta Neuropsychiatr 2014; 26:202-8. [PMID: 25142287 DOI: 10.1017/neu.2013.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Some authors draw a connection between the dopaminergic pathways and emotional perception. The present study is based on that association and addresses the question whether methylphenidate and the resulting amelioration of the disturbed dopamine metabolism lead to an improvement of the facial affect recognition abilities in children with attention-deficit/hyperactivity disorder (ADHD). METHODS A computer test was conducted on 21 participants, aged 7-14 years and with a diagnosis of ADHD - some with comorbid oppositional defiant disorder - conducted the FEFA (Frankfurt Test and Training of Facial Affect), a computer test to examine their facial affect recognition abilities. It consists of two subtests, one with faces and one with eye pairs. All participants were tested in a double-blind cross-over study, once under placebo and once under methylphenidate. RESULTS AND DISCUSSION The collected data showed that methylphenidate leads to amelioration of facial affect recognition abilities, but not on a significant level. Reasons for missing significance may be the small sample size or the fact that there exists some overlapping in cerebral connections and metabolic pathways of the site of action of methylphenidate and the affected dopaminergic areas in ADHD. However, consistent with the endophenotype concept, certain gene locations of the dopaminergic metabolism as both an aetiological factor for ADHD and the deficient facial affect recognition abilities with these individuals were considered. Consulting current literature they were found to be not concordant. Therefore, we conclude that the lacking significance of the methylphenidate affect on facial affect recognition is based on this fact.
Collapse
|
33
|
Bioulac S, Lallemand S, Fabrigoule C, Thoumy AL, Philip P, Bouvard MP. Video game performances are preserved in ADHD children compared with controls. J Atten Disord 2014; 18:542-50. [PMID: 22628143 DOI: 10.1177/1087054712443702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Although ADHD and excessive video game playing have received some attention, few studies have explored the performances of ADHD children when playing video games. The authors hypothesized that performances of ADHD children would be as good as those of control children in motivating video games tasks but not in the Continuous Performance Test II (CPT II). METHOD The sample consisted of 26 ADHD children and 16 control children. Performances of ADHD and control children were compared on three commercially available games, on the repetition of every game, and on the CPT II. RESULTS ADHD children had lower performances on the CPT II than did controls, but they exhibited equivalent performances to controls when playing video games at both sessions and on all three games. CONCLUSION When playing video games, ADHD children present no difference in inhibitory performances compared with control children. This demonstrates that cognitive difficulties in ADHD are task dependent.
Collapse
Affiliation(s)
- Stéphanie Bioulac
- Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Bordeaux, France Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | | - Anne-Laure Thoumy
- Pôle Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Bordeaux, France
| | - Pierre Philip
- Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | |
Collapse
|
34
|
Dolina S, Margalit D, Malitsky S, Rabinkov A. Attention-deficit hyperactivity disorder (ADHD) as a pyridoxine-dependent condition: Urinary diagnostic biomarkers. Med Hypotheses 2014; 82:111-6. [DOI: 10.1016/j.mehy.2013.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 11/02/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
35
|
Abstract
Cerebral dopamine (DA) transmission is thought to be an important modulator for the development and occurrence of aggressive behavior. However, the link between aggression and DA transmission in humans has not been investigated using molecular imaging and standardized behavioral tasks. We investigated aggression as a function of DA transmission in a group of (N = 21) healthy male volunteers undergoing 6-[18F]-fluoro-L-DOPA (FDOPA)-positron emission tomography (PET) and a modified version of the Point Subtraction Aggression Paradigm (PSAP). This task measures aggressive behavior during a monetary reward-related paradigm, where a putative adversary habitually tries to cheat. The participant can react in three ways (i.e., money substraction of the putative opponent [aggressive punishment], pressing a defense button, or continuing his money-making behavior). FDOPA-PET was analyzed using a steady-state model yielding estimates of the DA-synthesis capacity (K), the turnover of tracer DA formed in living brain (kloss), and the tracer distribution volume (Vd), which is an index of DA storage capacity. Significant negative correlations between PSAP aggressive responses and the DA-synthesis capacity were present in several regions, most prominently in the midbrain (r = -0.640; p = 0.002). Lower degrees of aggressive responses were associated with higher DA storage capacity in the striatum and midbrain. Additionally, there was a significant positive correlation between the investment into monetary incentive responses on the PSAP and DA-synthesis capacity, notably in the midbrain (r = +0.618, p = 0.003). The results suggest that individuals with low DA transmission capacity are more vulnerable to reactive/impulsive aggression in response to provocation.
Collapse
|
36
|
Weyandt L, Swentosky A, Gudmundsdottir BG. Neuroimaging and ADHD: fMRI, PET, DTI findings, and methodological limitations. Dev Neuropsychol 2013; 38:211-25. [PMID: 23682662 DOI: 10.1080/87565641.2013.783833] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by pervasive and developmentally inappropriate levels of inattention, impulsivity, and hyperactivity. There is no conclusive cause of ADHD although a number of etiologic theories have been advanced. Research across neuroanatomical, neurochemical, and genetic disciplines collectively support a physiological basis for ADHD and, within the past decade, the number of neuroimaging studies concerning ADHD has increased exponentially. The current selective review summarizes research findings concerning ADHD using functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and diffusion tensor imaging (DTI). Although these technologies and studies offer promise in helping to better understand the physiologic underpinnings of ADHD, they are not without methodological problems, including inadequate sensitivity and specificity for psychiatric disorders. Consequently, neuroimaging technology, in its current state of development, should not be used to inform clinical practice.
Collapse
Affiliation(s)
- Lisa Weyandt
- Psychology Department, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | | | | |
Collapse
|
37
|
De Crescenzo F, Armando M, Mazzone L, Ciliberto M, Sciannamea M, Figueroa C, Janiri L, Quested D, Vicari S. The use of actigraphy in the monitoring of methylphenidate versus placebo in ADHD: a meta-analysis. ACTA ACUST UNITED AC 2013; 6:49-58. [PMID: 24287735 DOI: 10.1007/s12402-013-0122-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder of childhood. There is an increasing need to find objective measures and markers of the disorder in order to assess the efficacy of the therapy and to improve follow-up strategies. Actigraphy is an objective method for recording motor activity and sleep parameters using small, computerized, watch-like devices worn on the body, and it has been used in many clinical trials to assess methylphenidate efficacy and adverse effects in ADHD. Our article aim is to systematically review and perform a meta-analysis of the current evidence on the role of actigraphy in both the detection of changes in activity and in sleep patterns in randomized clinical trials that compared methylphenidate against placebo in the treatment of ADHD. A comprehensive literature search of PubMed/MEDLINE, Scopus, Embase, Cochrane Library, CINHAL and PsycINFO databases was carried out to find randomized clinical trials comparing methylphenidate versus placebo in children with ADHD, using actigraphic measures as an outcome. No start date limit was used and the search was updated until June 2013. The primary outcome measures were 'total sleep time' and daytime 'activity mean'. As secondary outcomes, we analyzed 'sleep onset latency', 'sleep efficiency' and 'wake after sleep onset'. Eight articles comprising 393 patients were included in the analysis. Children with ADHD using MPH compared to placebo have a significant difference of a large effect with a diminishing value in the activity mean. For the total sleep time, we found a significant and large effect in the decrease in sleep in MPH group. This study shows that MPH may effectively reduce mean activity in ADHD children, but it may negatively affect total sleep time.
Collapse
Affiliation(s)
- Franco De Crescenzo
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00100, Rome, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schweren LJS, de Zeeuw P, Durston S. MR imaging of the effects of methylphenidate on brain structure and function in attention-deficit/hyperactivity disorder. Eur Neuropsychopharmacol 2013; 23:1151-64. [PMID: 23165220 DOI: 10.1016/j.euroneuro.2012.10.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/04/2012] [Accepted: 10/26/2012] [Indexed: 11/30/2022]
Abstract
Methylphenidate is the first-choice pharmacological intervention for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). The pharmacological and behavioral effects of methylphenidate are well described, but less is known about neurochemical brain changes induced by methylphenidate. This level of analysis may be informative on how the behavioral effects of methylphenidate are established. This paper reviews structural and functional MRI studies that have investigated effects of methylphenidate in children with ADHD. Structural MRI studies provide evidence that long-term stimulant treatment may normalize structural brain changes found in the white matter, the anterior cingulate cortex, the thalamus, and the cerebellum in ADHD. Moreover, preliminary evidence suggests that methylphenidate treatment may normalize the trajectory of cortical development in ADHD. Functional MRI has provided evidence that methylphenidate administration has acute effects on brain functioning, and even suggests that methylphenidate may normalize brain activation patterns as well as functional connectivity in children with ADHD during cognitive control, attention, and during rest. The effects of methylphenidate on the developing brain appear highly specific and dependent on numerous factors, including biological factors such as genetic predispositions, subject-related factors such as age and symptom severity, and task-related factors such as task difficulty. Future studies on structural and functional brain changes in ADHD may benefit from inclusion strategies guided by current medication status and medication history. Further studies on the effects of methylphenidate treatment on structural and functional MRI parameters are needed to address unresolved issues of the long-term effects of treatment, as well as the mechanism through which medication-induced brain changes bring about clinical improvement.
Collapse
Affiliation(s)
- Lizanne J S Schweren
- Neuroimaging Lab, Department of Psychiatry, Rudolf Magnus Institute of Neurosciences, University Medical Centre Utrecht, The Netherlands.
| | | | | |
Collapse
|
39
|
Reduced striatal brain volumes in non-medicated adult ADHD patients with comorbid cocaine dependence. Drug Alcohol Depend 2013; 131:198-203. [PMID: 23726981 DOI: 10.1016/j.drugalcdep.2013.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Adult attention deficit/hyperactivity disorder (ADHD) is highly comorbid with other psychiatric disorders, including substance use disorders (SUD). Patients with ADHD and SUD comorbidity respond less well to pharmacological treatment (e.g., methylphenidate), have more severe ADHD symptoms, and are generally more impulsive than ADHD patients without SUD. However, little is known about structural brain abnormalities that may differentiate ADHD patients with and without comorbid SUD. METHODS We compared regional grey matter volumes of 10 non-medicated male ADHD patients with comorbid cocaine dependence, 14 non-medicated male ADHD patients without cocaine dependence and 15 healthy control participants matched for age and premorbid intellectual functioning, using voxel-based morphometry (VBM) using both a whole-brain analysis and a priori ROI analysis based on the existing ADHD VBM literature. RESULTS In a whole brain analysis, ADHD patients with and without cocaine dependence showed smaller volumes in the right putamen and cerebellum compared to healthy controls. In addition, ADHD patients without cocaine dependence showed larger volumes in the midbrain and in the precentral gyrus compared to healthy control participants and larger volumes in the occipital cortex compared to ADHD patients with comorbid cocaine dependence. A direct comparison using the a priori defined ROI approach showed that ADHD patients with cocaine dependence had smaller putamen volumes than ADHD patients without cocaine dependence. CONCLUSIONS ADHD patients with cocaine dependence show more profound grey matter volume reductions in the striatum compared to ADHD patients without cocaine dependence. Possible implications for treatment are discussed.
Collapse
|
40
|
Buse J, Schoenefeld K, Münchau A, Roessner V. Neuromodulation in Tourette syndrome: Dopamine and beyond. Neurosci Biobehav Rev 2013; 37:1069-84. [DOI: 10.1016/j.neubiorev.2012.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/28/2012] [Accepted: 10/08/2012] [Indexed: 01/11/2023]
|
41
|
Prehn-Kristensen A, Munz M, Molzow I, Wilhelm I, Wiesner CD, Baving L. Sleep promotes consolidation of emotional memory in healthy children but not in children with attention-deficit hyperactivity disorder. PLoS One 2013; 8:e65098. [PMID: 23734235 PMCID: PMC3667133 DOI: 10.1371/journal.pone.0065098] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/22/2013] [Indexed: 12/01/2022] Open
Abstract
Fronto-limbic brain activity during sleep is believed to support the consolidation of emotional memories in healthy adults. Attention deficit-hyperactivity disorder (ADHD) is accompanied by emotional deficits coincidently caused by dysfunctional interplay of fronto-limbic circuits. This study aimed to examine the role of sleep in the consolidation of emotional memory in ADHD in the context of healthy development. 16 children with ADHD, 16 healthy children, and 20 healthy adults participated in this study. Participants completed an emotional picture recognition paradigm in sleep and wake control conditions. Each condition had an immediate (baseline) and delayed (target) retrieval session. The emotional memory bias was baseline–corrected, and groups were compared in terms of sleep-dependent memory consolidation (sleep vs. wake). We observed an increased sleep-dependent emotional memory bias in healthy children compared to children with ADHD and healthy adults. Frontal oscillatory EEG activity (slow oscillations, theta) during sleep correlated negatively with emotional memory performance in children with ADHD. When combining data of healthy children and adults, correlation coefficients were positive and differed from those in children with ADHD. Since children displayed a higher frontal EEG activity than adults these data indicate a decline in sleep-related consolidation of emotional memory in healthy development. In addition, it is suggested that deficits in sleep-related selection between emotional and non-emotional memories in ADHD exacerbate emotional problems during daytime as they are often reported in ADHD.
Collapse
Affiliation(s)
- Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry and Psychotherapy, Center for Integrative Psychiatry, School of Medicine, Christian-Albrechts-University Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Taylor IM, Ilitchev AI, Michael AC. Restricted diffusion of dopamine in the rat dorsal striatum. ACS Chem Neurosci 2013; 4:870-8. [PMID: 23600442 DOI: 10.1021/cn400078n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent evidence has shown that the dorsal striatum of the rat is arranged as a patchwork of domains that exhibit distinct dopamine kinetics and concentrations. This raises the pressing question of how these distinct domains are maintained, especially if dopamine is able to diffuse through the extracellular space. Diffusion between the domains would eliminate the concentration differences and, thereby, the domains themselves. The present study is a closer examination of dopamine's ability to diffuse in the extracellular space. We used voltammetry to record dopamine overflow in dorsal striatum while stimulating the medial forebrain bundle over a range of stimulus currents and frequencies. We also examined the effects of drugs that modulated the dopamine release (raclopride and quinpirole) and uptake (nomifensine). Examining the details of the temporal features of the evoked profiles reveals no clear evidence for long-distance diffusion of dopamine between fast and slow domains, even though uptake inhibition by nomifensine clearly prolongs the time that dopamine resides in the extracellular space. Our observations support the conclusion that striatal tissue has the capacity to retain dopamine molecules, thereby limiting its tendency to diffuse through the extracellular space.
Collapse
Affiliation(s)
- I. Mitch Taylor
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Alexandre I. Ilitchev
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Adrian C. Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| |
Collapse
|
43
|
Nondopaminergic Neurotransmission in the Pathophysiology of Tourette Syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:95-130. [DOI: 10.1016/b978-0-12-411546-0.00004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
44
|
Thome J, Ehlis AC, Fallgatter AJ, Krauel K, Lange KW, Riederer P, Romanos M, Taurines R, Tucha O, Uzbekov M, Gerlach M. Biomarkers for attention-deficit/hyperactivity disorder (ADHD). A consensus report of the WFSBP task force on biological markers and the World Federation of ADHD. World J Biol Psychiatry 2012; 13:379-400. [PMID: 22834452 DOI: 10.3109/15622975.2012.690535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Psychiatric "nosology" is largely based on clinical phenomenology using convention-based diagnostic systems not necessarily reflecting neurobiological pathomechanisms. While progress has been made regarding its molecular biology and neuropathology, the phenotypic characterization of ADHD has not improved. Thus, validated biomarkers, more directly linked to the underlying pathology, could constitute an objective measure for the condition. METHOD The task force on biological markers of the World Federation of Societies of Biological Psychiatry (WFSBP) and the World Federation of ADHD commissioned this paper to develop a consensus report on potential biomarkers of ADHD. The criteria for biomarker-candidate evaluation were: (1) sensitivity >80%, (2) specificity >80%, (3) the candidate is reliable, reproducible, inexpensive, non-invasive, easy to use, and (4) confirmed by at least two independent studies in peer-reviewed journals conducted by qualified investigators. RESULTS No reliable ADHD biomarker has been described to date, but some promising candidates (e.g., olfactory sensitivity, substantial echogenicity) exist. A problem in the development of ADHD markers is sample heterogeneity due to aetiological and phenotypic complexity and age-dependent co-morbidities. CONCLUSIONS Most likely, no single ADHD biomarker can be identified. However, the use of a combination of markers may help to reduce heterogeneity and to identify homogeneous subtypes of ADHD.
Collapse
Affiliation(s)
- Johannes Thome
- Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Minzenberg MJ. Pharmacotherapy for attention-deficit/hyperactivity disorder: from cells to circuits. Neurotherapeutics 2012; 9:610-21. [PMID: 22718077 PMCID: PMC3441935 DOI: 10.1007/s13311-012-0128-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent disorder of childhood and adulthood, with a considerable impact on public health. There is a substantial pharmacopoeia available for safe and effective treatment of ADHD, and newly available agents diversify the treatment options. With the burgeoning scientific literature addressing the genetic, neurochemical, and neural systems basis for this condition, increasing attention is directed at establishing the neural basis for the efficacy of existing treatments. ADHD remains the only highly prevalent, nondegenerative neuropsychiatric disorder for which effective medications remediate the principal cognitive disturbances in concert with clinical efficacy. Therefore, deeper insight into the neural mechanisms of cognitive remediation may serve to advance treatment development not only in ADHD, but across a wide range of neuropsychiatric disorders in which cognitive dysfunction is a cardinal feature and a strong predictor of clinical outcome. To date, all effective medications for ADHD act on 1 or both of the major catecholamine neurotransmitter systems in the brain. These 2 systems, which arise from subcortical nuclei and use norepinephrine (NE) or dopamine (DA) as transmitters, exert strong modulatory effects on widely distributed cortical-subcortical neural circuits, with important effects on cognition, mood, and behavior, in both health and illness. The present review outlines the actions of ADHD medications from subcellular effects to effects on neural systems and cognition in ADHD patients. This is a very active area of investigation at all phases of the translational cycle, and near-term work is poised to firmly link cellular neuropharmacology to large-scale effects, and point the way toward advances in treatment.
Collapse
Affiliation(s)
- Michael J Minzenberg
- Department of Psychiatry, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
| |
Collapse
|
46
|
Abstract
In recent years, descriptive symptom-based approaches of attention deficit hyperactivity disorder (ADHD) have been increasingly replaced by more sophisticated endophenotype-based strategies, better suited to investigate its pathophysiological basis, which is inherently heterogeneous. Measurements derived from neuroimaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) constitute endophenotypes of growing interest, capable of providing unprecedented windows on neurochemical and neuroanatomical components of psychiatric conditions. This chapter reviews the current state of knowledge regarding putative neural and behavioral endophenotypes of ADHD, across the lifespan. To this end, recent evidence drawn from molecular and structural neuroimaging studies are discussed in the light of widely accepted neuropsychological and pharmacological models of ADHD.
Collapse
Affiliation(s)
- Natalia del Campo
- Department of Psychiatry, and Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,
| | | | | |
Collapse
|
47
|
Cumming P, Caprioli D, Dalley JW. What have positron emission tomography and 'Zippy' told us about the neuropharmacology of drug addiction? Br J Pharmacol 2011; 163:1586-604. [PMID: 20846139 PMCID: PMC3166689 DOI: 10.1111/j.1476-5381.2010.01036.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/09/2010] [Accepted: 08/31/2010] [Indexed: 11/27/2022] Open
Abstract
Translational molecular imaging with positron emission tomography (PET) and allied technologies offer unrivalled applications in the discovery of biomarkers and aetiological mechanisms relevant to human disease. Foremost among clinical PET findings during the past two decades of addiction research is the seminal discovery of reduced dopamine D(2/3) receptor expression in the striatum of drug addicts, which could indicate a predisposing factor and/or compensatory reaction to the chronic abuse of stimulant drugs. In parallel, recent years have witnessed significant improvements in the performance of small animal tomographs (microPET) and a refinement of animal models of addiction based on clinically relevant diagnostic criteria. This review surveys the utility of PET in the elucidation of neuropharmacological mechanisms underlying drug addiction. It considers the consequences of chronic drug exposure on regional brain metabolism and neurotransmitter function and identifies those areas where further research is needed, especially concerning the implementation of PET tracers targeting neurotransmitter systems other than dopamine, which increasingly have been implicated in the pathophysiology of drug addiction. In addition, this review considers the causal effects of behavioural traits such as impulsivity and novelty/sensation-seeking on the emergence of compulsive drug-taking. Previous research indicates that spontaneously high-impulsive rats--as exemplified by 'Zippy'--are pre-disposed to escalate intravenous cocaine self-administration, and subsequently to develop compulsive drug taking tendencies that endure despite concurrent adverse consequences of such behaviour, just as in human addiction. The discovery using microPET of pre-existing differences in dopamine D(2/3) receptor expression in the striatum of high-impulsive rats suggests a neural endophenotype that may likewise pre-dispose to stimulant addiction in humans.
Collapse
Affiliation(s)
- Paul Cumming
- Department of Nuclear Medicine, Ludwig-Maximilian's University, Munich, Germany
| | | | | |
Collapse
|
48
|
Ningdong granule: a complementary and alternative therapy in the treatment of attention deficit/hyperactivity disorder. Psychopharmacology (Berl) 2011; 216:501-9. [PMID: 21416235 DOI: 10.1007/s00213-011-2238-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Attention deficit/hyperactivity disorder (ADHD) is a common neurobehavioral and neuropsychiatric disorder in school-age children, and recent studies provide evidence implicating the metabolic abnormalities of dopamine (DA) for its pathophysiology. Methylphenidate, a kind of psychostimulant, is widely used in the treatment of ADHD, but some patients do not respond to it or cannot bear its side effects. As a traditional Chinese medicine preparation, Ningdong granule (NDG) has been used in the treatment of ADHD for several years in China. However, a systematical pharmacological study on its safety and mechanism still remains obscure. OBJECTIVE This paper aims to evaluate the efficiency, safety, and possible mechanism of NDG on ADHD children compared to methylphenidate. METHODS Seventy-two ADHD children were recruited to perform an 8-week, randomized, methylphenidate-controlled, doubled-blinded trial. The subjects were equally assigned to two groups receiving either NDG 5 mg/kg/day or methylphenidate 1 mg/kg/day for 8 weeks. The efficiency was assessed by the Teacher and Parent ADHD Rating Scales every 2 weeks for a total of 8 weeks. The side effects were recorded during the study. Blood, urine, and stool routine samples, liver and renal function test, and DA and homovanillic acid (HVA) concentration in sera were tested at the beginning and end of the trial. RESULTS NDG ameliorated ADHD symptoms after an 8-week medication with fewer side effects compared to methylphenidate (P < 0.05). The result also showed NDG to be safe and tolerable for ADHD children as monitored by the blood, urine, and stool analysis and liver and renal function for 8 weeks (P < 0.05). Moreover, the level of HVA in sera increased in NDG-treated group (P < 0.05), while the content of DA had no significant change during the study. An analysis of Pearson correlation coefficients also showed that the increased content of HVA in sera was associated with the improved scores of Teacher and Parent ADHD Rating Scales. CONCLUSIONS Compared to methylphenidate, NDG is effective and safe for ADHD children in the short term, increases the HVA concentration in sera to regulate DA metabolism, and promises to be an alternative medication, safely and effectively.
Collapse
|
49
|
Schlochtermeier L, Stoy M, Schlagenhauf F, Wrase J, Park SQ, Friedel E, Huss M, Lehmkuhl U, Heinz A, Ströhle A. Childhood methylphenidate treatment of ADHD and response to affective stimuli. Eur Neuropsychopharmacol 2011; 21:646-54. [PMID: 20570115 DOI: 10.1016/j.euroneuro.2010.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 01/09/2023]
Abstract
Neural correlates of emotional dysregulation in attention-deficit/hyperactivity disorder (ADHD) and persisting influence of Methylphenidate (MPH) still remain insufficiently understood. Decreased activation in the subgenual cingulate and the ventral striatum were found during the perception of positive and negative affective pictures in drug-naïve males with ADHD during childhood (n=10). Males with ADHD during childhood treated with MPH (n=10) did not show any significant differences compared to healthy controls (n=10). Further prospective studies need to clarify direct and indirect mechanisms of MPH treatment that may contribute to emotional processing, which is dysfunctional in males without pharmacological treatment in childhood.
Collapse
Affiliation(s)
- Lorna Schlochtermeier
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 69:e145-57. [PMID: 21550021 DOI: 10.1016/j.biopsych.2011.02.036] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 01/16/2011] [Accepted: 02/15/2011] [Indexed: 12/14/2022]
Abstract
Through neuromodulatory influences over fronto-striato-cerebellar circuits, dopamine and noradrenaline play important roles in high-level executive functions often reported to be impaired in attention-deficit/hyperactivity disorder (ADHD). Medications used in the treatment of ADHD (including methylphenidate, dextroamphetamine and atomoxetine) act to increase brain catecholamine levels. However, the precise prefrontal cortical and subcortical mechanisms by which these agents exert their therapeutic effects remain to be fully specified. Herein, we review and discuss the present state of knowledge regarding the roles of dopamine (DA) and noradrenaline in the regulation of corticostriatal circuits, with a focus on the molecular neuroimaging literature (both in ADHD patients and in healthy subjects). Recent positron emission tomography evidence has highlighted the utility of quantifying DA markers, at baseline or following drug administration, in striatal subregions governed by differential cortical connectivity. This approach opens the possibility of characterizing the neurobiological underpinnings of ADHD (and associated cognitive dysfunction) and its treatment by targeting specific neural circuits. It is anticipated that the application of refined and novel positron emission tomography methodology will help to disentangle the overlapping and dissociable contributions of DA and noradrenaline in the prefrontal cortex, thereby aiding our understanding of ADHD and facilitating new treatments.
Collapse
|