1
|
Li L, Tang J, Chen X, Xiang L, Taft M, Feng X. Abstract sentence meanings are grounded in the sensory-motor regions in a context-dependent fashion. BRAIN AND LANGUAGE 2025; 265:105567. [PMID: 40064064 DOI: 10.1016/j.bandl.2025.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Sentences conveying abstract meanings are crucial tools for high-level thinking and communication. Previous research has sparked a debate on whether abstract concepts rely on the representation of the sensory-motor brain areas. We explored this issue with the assumption that abstract meanings at the sentence level could invoke the sensory-motor regions a context-dependent fashion. With a sentence comprehension task and functional MRI, we measured the neural response patterns of sentences with multimodal abstract meaning, which were presented following context sentences describing either concrete sound-related or action-related events. Multivariate pattern analyses revealed that neural responses to sentences could discriminate abstract sentences in sound- versus action-related contexts, and also context sentences describing these two types of events. The discrimination was manifested in the regions responsible for high-level auditory perception and action execution. Our finding indicates that abstract meanings in modality-specific contexts mayrequire a certain degree of grounded processing in the sensory-motor regions.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Language and Cognitive Science (Ministry of Education), Beijing Language and Culture University, Beijing, PR China; Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, PR China.
| | - Jiaman Tang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, PR China
| | - Xinyi Chen
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, PR China
| | - Liyu Xiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, PR China
| | - Marcus Taft
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, PR China; School of Psychology, UNSW Sydney, Australia
| | - Xiaoxia Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing Normal University, Beijing, PR China.
| |
Collapse
|
2
|
Kim H, Zuleger T, Slutsky‐Ganesh A, Anand M, Warren S, Diekfuss J, Schlink B, Rush J, Simon J, Myer G, Grooms D. Reliability of Brain Activity During a Supine Bilateral Leg Press and Association With Concurrent 3D Knee Joint Biomechanics. Eur J Neurosci 2025; 61:e70126. [PMID: 40304370 PMCID: PMC12042646 DOI: 10.1111/ejn.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Previous neuroimaging studies have established a foundation of knowledge regarding the supraspinal control of lower extremity movements. However, the relationship between subtle differences in lower extremity kinematics and concurrent brain activity during motor tasks is mainly unknown. Additionally, there is limited information regarding the consistency of brain activation measures during a lower extremity motor task. The current study evaluated the within-session reliability of knee joint kinematics and brain activation during a supine bilateral leg press task using functional magnetic resonance imaging in 67 adolescent female athletes. Knee joint kinematics, including the number of leg press repetitions (cycles), as well as sagittal and frontal ranges of motion and their standard deviations, were analysed with concurrent blood-oxygen-level-dependent signals to explore the relationship between these biomechanical variables and brain activation. The results showed good reliability for knee joint kinematics and moderate reliability for brain activation in sensorimotor regions (precentral and postcentral gyri, supplementary motor cortex, brainstem, and anterior cerebellum lobules). Greater knee sagittal range of motion correlated with increased activation in motor planning and sensory integration regions, such as the dorsal striatum and lateral occipital cortex. These findings establish the supine bilateral leg press task as a reliable paradigm for investigating lower extremity motor control, providing insights into the neural mechanisms underlying movement variability. Additionally, brain regions exhibiting reliable activation could serve as valuable regions of interest for future investigations, enhancing the statistical power and reproducibility of research findings.
Collapse
Affiliation(s)
- HoWon Kim
- Ohio Musculoskeletal and Neurological InstituteOhio UniversityAthensOhioUSA
- Translational Biomedical Sciences Program, School of Rehabilitation and Communication SciencesCollege of Health Sciences and Professions, Ohio UniversityAthensOhioUSA
| | - Taylor M. Zuleger
- Emory Sports Performance And Research Center (SPARC)Flowery BranchGeorgiaUSA
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans AffairsAtlanta VA Medical CenterDecaturGeorgiaUSA
- Emory Sports Medicine CenterAtlantaGeorgiaUSA
| | - Alexis B. Slutsky‐Ganesh
- Emory Sports Performance And Research Center (SPARC)Flowery BranchGeorgiaUSA
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Sports Medicine CenterAtlantaGeorgiaUSA
| | - Manish Anand
- Emory Sports Performance And Research Center (SPARC)Flowery BranchGeorgiaUSA
| | - Shayla M. Warren
- Emory Sports Performance And Research Center (SPARC)Flowery BranchGeorgiaUSA
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Emory Sports Medicine CenterAtlantaGeorgiaUSA
| | - Jed A. Diekfuss
- Emory Sports Performance And Research Center (SPARC)Flowery BranchGeorgiaUSA
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Department of Veterans AffairsAtlanta VA Medical CenterDecaturGeorgiaUSA
- Emory Sports Medicine CenterAtlantaGeorgiaUSA
| | | | - Justin L. Rush
- Ohio Musculoskeletal and Neurological InstituteOhio UniversityAthensOhioUSA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and ProfessionsOhio UniversityAthensOhioUSA
| | - Janet E. Simon
- Ohio Musculoskeletal and Neurological InstituteOhio UniversityAthensOhioUSA
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and ProfessionsOhio UniversityAthensOhioUSA
| | - Gregory D. Myer
- Emory Sports Performance And Research Center (SPARC)Flowery BranchGeorgiaUSA
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlantaGeorgiaUSA
- The Micheli Center for Sports Injury PreventionWalthamMassachusettsUSA
- Youth Physical Development CentreCardiff Metropolitan UniversityWalesUK
| | - Dustin R. Grooms
- Ohio Musculoskeletal and Neurological InstituteOhio UniversityAthensOhioUSA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and ProfessionsOhio UniversityAthensOhioUSA
| |
Collapse
|
3
|
Wohl TR, Criss CR, Haggerty AL, Rush JL, Simon JE, Grooms DR. The Impact of Visual Perturbation Neuromuscular Training on Landing Mechanics and Neural Activity: A Pilot Study. Int J Sports Phys Ther 2024; 19:1333-1347. [PMID: 39502544 PMCID: PMC11534169 DOI: 10.26603/001c.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 11/08/2024] Open
Abstract
Background Athletes at risk for anterior cruciate ligament (ACL) injury have concurrent deficits in visuocognitive function and sensorimotor brain functional connectivity. Purpose This study aimed to determine whether visual perturbation neuromuscular training (VPNT, using stroboscopic glasses and external visual focus feedback) increases physical and cognitive training demand, improves landing mechanics, and reduces neural activity for knee motor control. Design Controlled laboratory study. Methods: Eight right leg dominant healthy female athletes (20.4±1.1yrs; 1.6±0.1m; 64.4±7.0kg) participated in four VPNT sessions. Before and after VPNT, real-time landing mechanics were assessed with the Landing Error Scoring System (LESS) and neural activity was assessed with functional magnetic resonance imaging during a unilateral right knee flexion/extension task. Physical and cognitive demand after each VPNT session was assessed with Borg's Rating of Perceived Exertion (RPE) for both physical and cognitive perceived exertion and the NASA Task Load Index. Descriptives and effect sizes were calculated. Results Following VPNT, LESS scores decreased by 1.5 ± 1.69 errors with a large effect size (0.78), indicating improved mechanics, and reductions in BOLD signal were observed in two clusters: 1) left supramarginal gyrus, inferior parietal lobule, secondary somatosensory cortex (p=.012, z=4.5); 2) right superior frontal gyrus, supplementary motor cortex (p<.01, z=5.3). There was a moderate magnitude increase of cognitive RPE between the first and last VPNT sessions. Conclusion VPNT provides a clinically feasible means to perturbate visual processing during training that improves athletes' real-time landing mechanics and promotes neural efficiency for lower extremity movement, providing the exploratory groundwork for future randomized controlled trials. Level of evidence Level 3.
Collapse
Affiliation(s)
- Timothy R Wohl
- Department of Physical TherapyThe Ohio State University
- Honors Tutorial CollegeOhio University
| | - Cody R Criss
- Translational Biomedical Sciences ProgramOhio University
- Heritage College of Osteopathic MedicineOhio University
- Ohio Musculoskeletal & Neurological InstituteOhio University
| | - Adam L Haggerty
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Athletic TrainingOhio University
| | - Justin L Rush
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Physical TherapyOhio University
| | - Janet E Simon
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Athletic TrainingOhio University
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological InstituteOhio University
- Department of Athletic TrainingOhio University
- Department of Physical TherapyOhio University
| |
Collapse
|
4
|
Choi M, Kim HC, Youn I, Lee SJ, Lee JH. Use of functional magnetic resonance imaging to identify cortical loci for lower limb movements and their efficacy for individuals after stroke. J Neuroeng Rehabil 2024; 21:58. [PMID: 38627779 PMCID: PMC11020805 DOI: 10.1186/s12984-024-01319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.
Collapse
Affiliation(s)
- Minseok Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu, South Korea
| | - Inchan Youn
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Song Joo Lee
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea.
| | - Jong-Hwan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea.
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Hong Y, Bao D, Manor B, Zhou J. Characterizing the supraspinal sensorimotor control of walking using MRI-compatible system: a systematic review. J Neuroeng Rehabil 2024; 21:34. [PMID: 38443983 PMCID: PMC10913571 DOI: 10.1186/s12984-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The regulation of gait is critical to many activities of everyday life. When walking, somatosensory information obtained from mechanoreceptors throughout body is delivered to numerous supraspinal networks and used to execute the appropriate motion to meet ever-changing environmental and task demands. Aging and age-related conditions oftentimes alter the supraspinal sensorimotor control of walking, including the responsiveness of the cortical brain regions to the sensorimotor inputs obtained from the peripheral nervous system, resulting in diminished mobility in the older adult population. It is thus important to explicitly characterize such supraspinal sensorimotor elements of walking, providing knowledge informing novel rehabilitative targets. The past efforts majorly relied upon mental imagery or virtual reality to study the supraspinal control of walking. Recent efforts have been made to develop magnetic resonance imaging (MRI)-compatible devices simulating specific somatosensory and/or motor aspects of walking. However, there exists large variance in the design and functionality of these devices, and as such inconsistent functional MRI (fMRI) observations. METHODS We have therefore completed a systematic review to summarize current achievements in the development of these MRI-compatible devices and synthesize available imaging results emanating from studies that have utilized these devices. RESULTS The device design, study protocol and neuroimaging observations of 26 studies using 13 types of devices were extracted. Three of these devices can provide somatosensory stimuli, eight motor stimuli, and two both types of stimuli. Our review demonstrated that using these devices, fMRI data of brain activation can be successfully obtained when participants remain motionless and experience sensorimotor stimulation during fMRI acquisition. The activation in multiple cortical (e.g., primary sensorimotor cortex) and subcortical (e.g., cerebellum) regions has been each linked to these types of walking-related sensorimotor stimuli. CONCLUSION The observations of these publications suggest the promise of implementing these devices to characterize the supraspinal sensorimotor control of walking. Still, the evidence level of these neuroimaging observations was still low due to small sample size and varied study protocols, which thus needs to be confirmed via studies with more rigorous design.
Collapse
Affiliation(s)
- Yinglu Hong
- School of Sport Medicine and Physical Therapy, Beijing Sport University, Beijing, China
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China.
| | - Brad Manor
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Riehm CD, Zuleger T, Diekfuss JA, Arellano E, Myer GD. The Evolution of Neuroimaging Technologies to Evaluate Neural Activity Related to Knee Pain and Injury Risk. Curr Rev Musculoskelet Med 2024; 17:14-22. [PMID: 38109007 PMCID: PMC10766917 DOI: 10.1007/s12178-023-09877-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
PURPOSE OF REVIEW In this review, we present recent findings and advancements in the use of neuroimaging to evaluate neural activity relative to ACL injury risk and patellofemoral pain. In particular, we describe prior work using fMRI and EEG that demonstrate the value of these techniques as well as the necessity of continued development in this area. Our goal is to support future work by providing guidance for the successful application of neuroimaging techniques that most effectively expose pain and injury mechanisms. RECENT FINDINGS Recent studies that utilized both fMRI and EEG indicate that athletes who are at risk for future ACL injury exhibit divergent brain activity both during active lower extremity movement and at rest. Such activity patterns are likely due to alterations to cognitive, visual, and attentional processes that manifest as coordination deficits during naturalistic movement that may result in higher risk of injury. Similarly, in individuals with PFP altered brain activity in a number of key regions is related to subjective pain judgements as well as measures of fear of movement. Although these findings may begin to allow objective pain assessment and identification, continued refinement is needed. One key limitation across both ACL and PFP related work is the restriction of movement during fMRI and EEG data collection, which drastically limits ecological validity. Given the lack of sufficient research using EEG and fMRI within a naturalistic setting, our recommendation is that researchers target the use of mobile, source localized EEG as a primary methodology for exposing neural mechanisms of ACL injury risk and PFP. Our contention is that this method provides an optimal balance of spatial and temporal resolution with ecological validity via naturalistic movement.
Collapse
Affiliation(s)
- Christopher D Riehm
- Emory Sports Performance And Research Center (SPARC), 4450 Falcon Pkwy, Flowery Branch, GA, 30542, USA.
- Emory Sports Medicine Center, Atlanta, GA, USA.
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA.
| | - Taylor Zuleger
- Emory Sports Performance And Research Center (SPARC), 4450 Falcon Pkwy, Flowery Branch, GA, 30542, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Neuroscience Graduate Program, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jed A Diekfuss
- Emory Sports Performance And Research Center (SPARC), 4450 Falcon Pkwy, Flowery Branch, GA, 30542, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emilio Arellano
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory D Myer
- Emory Sports Performance And Research Center (SPARC), 4450 Falcon Pkwy, Flowery Branch, GA, 30542, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, UK
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| |
Collapse
|
7
|
Zuleger TM, Slutsky-Ganesh AB, Anand M, Kim H, Warren SM, Grooms DR, Foss KDB, Riley MA, Yuan W, Gore RK, Myer GD, Diekfuss JA. The effects of sports-related concussion history on female adolescent brain activity and connectivity for bilateral lower extremity knee motor control. Psychophysiology 2023; 60:e14314. [PMID: 37114838 PMCID: PMC10523876 DOI: 10.1111/psyp.14314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Sports-related concussions (SRCs) are associated with neuromuscular control deficits in athletes following return to play. However, the connection between SRC and potentially disrupted neural regulation of lower extremity motor control has not been investigated. The purpose of this study was to investigate brain activity and connectivity during a functional magnetic resonance imaging (fMRI) lower extremity motor control task (bilateral leg press) in female adolescent athletes with a history of SRC. Nineteen female adolescent athletes with a history of SRC and nineteen uninjured (without a history of SRC) age- and sport-matched control athletes participated in this study. Athletes with a history of SRC exhibited less neural activity in the left inferior parietal lobule/supramarginal gyrus (IPL) during the bilateral leg press compared to matched controls. Based upon signal change detected in the brain activity analysis, a 6 mm region of interest (seed) was defined to perform secondary connectivity analyses using psychophysiological interaction (PPI) analyses. During the motor control task, the left IPL (seed) was significantly connected to the right posterior cingulate gyrus/precuneus cortex and right IPL for athletes with a history of SRC. The left IPL was significantly connected to the left primary motor cortex (M1) and primary somatosensory cortex (S1), right inferior temporal gyrus, and right S1 for matched controls. Altered neural activity in brain regions important for sensorimotor integration and motor attention, combined with unique connectivity to regions responsible for attentional, cognitive, and proprioceptive processing, indicate compensatory neural mechanisms may underlie the lingering neuromuscular control deficits associated with SRC.
Collapse
Affiliation(s)
- Taylor M. Zuleger
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- University of Cincinnati, Neuroscience Graduate Program, Cincinnati, OH, USA
| | - Alexis B. Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manish Anand
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, TN, India
| | - HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
| | - Shayla M. Warren
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Science and Professions, Ohio University, Grover Center, Athens, OH, USA
| | - Kim D. Barber Foss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael A. Riley
- Department of Rehabilitation, Exercise, & Nutrition Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Russell K. Gore
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Shepherd Center, Atlanta, GA, USA
| | - Gregory D. Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Zulauf-Czaja A, Osuagwu B, Vuckovic A. Source-Based EEG Neurofeedback for Sustained Motor Imagery of a Single Leg. SENSORS (BASEL, SWITZERLAND) 2023; 23:5601. [PMID: 37420769 DOI: 10.3390/s23125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
The aim of the study was to test the feasibility of visual-neurofeedback-guided motor imagery (MI) of the dominant leg, based on source analysis with real-time sLORETA derived from 44 EEG channels. Ten able-bodied participants took part in two sessions: session 1 sustained MI without feedback and session 2 sustained MI of a single leg with neurofeedback. MI was performed in 20 s on and 20 s off intervals to mimic functional magnetic resonance imaging. Neurofeedback in the form of a cortical slice presenting the motor cortex was provided from a frequency band with the strongest activity during real movements. The sLORETA processing delay was 250 ms. Session 1 resulted in bilateral/contralateral activity in the 8-15 Hz band dominantly over the prefrontal cortex while session 2 resulted in ipsi/bilateral activity over the primary motor cortex, covering similar areas as during motor execution. Different frequency bands and spatial distributions in sessions with and without neurofeedback may reflect different motor strategies, most notably a larger proprioception in session 1 and operant conditioning in session 2. Single-leg MI might be used in the early phases of rehabilitation of stroke patients. Simpler visual feedback and motor cueing rather than sustained MI might further increase the intensity of cortical activation.
Collapse
Affiliation(s)
- Anna Zulauf-Czaja
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bethel Osuagwu
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Aleksandra Vuckovic
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
9
|
Slutsky-Ganesh AB, Anand M, Diekfuss JA, Myer GD, Grooms DR. Lower extremity Interlimb coordination associated brain activity in young female athletes: A biomechanically instrumented neuroimaging study. Psychophysiology 2023; 60:e14221. [PMID: 36416574 PMCID: PMC10038871 DOI: 10.1111/psyp.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
Abstract
Bilateral sensorimotor coordination is required for everyday activities, such as walking and sitting down/standing up from a chair. Sensorimotor coordination functional neuroimaging (fMRI) paradigms (e.g., stepping, cycling) increase activity in the sensorimotor cortex, supplementary motor area, insula, and cerebellum. Although these paradigms are designed to assay coordination, performance measures are rarely collected simultaneously with fMRI. Therefore, we aimed to identify neural correlates of lower extremity coordination using a bilateral, in-phase, multi-joint coordination task with concurrent MRI-compatible 3D motion analysis. Seventeen female athletes (15.0 ± 1.4 years) completed a bilateral, multi-joint lower-extremity coordination task during brain fMRI. Interlimb coordination was quantified from kinematic data as the correlation between peak-to-peak knee flexion cycle time between legs. Standard preprocessing and whole-brain analyses for task-based fMRI were completed in FSL, controlling for total movement cycles and neuroanatomical differences, with interlimb coordination as a covariate of interest. A clusterwise multi-comparison correction was applied at z > 3.1 and p < .05. Less interlimb coordination during the task was associated with greater activation in the posterior cingulate and precuneus (zmax = 6.41, p < .01) and the lateral occipital cortex (zmax = 7.55, p = .02). The inability to maintain interlimb coordination alongside greater activity in attention- and sensory-related brain regions may indicate a failed compensatory neural strategy to execute the task. Alternatively, greater activity could be secondary to reduced afferent acuity that may be elevating central demand to maintain in-phase lower extremity motor coordination. Future research aiming to improve sensorimotor coordination should consider interventional approaches uniquely capable of promoting adaptive neuroplasticity to enhance motor control.
Collapse
Affiliation(s)
- Alexis B. Slutsky-Ganesh
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Flowery Branch, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Manish Anand
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Flowery Branch, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jed. A. Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Flowery Branch, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gregory D. Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Flowery Branch, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| | - Dustin R. Grooms
- School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| |
Collapse
|
10
|
Kim H, Onate JA, Criss CR, Simon JE, Mischkowski D, Grooms DR. The relationship between drop vertical jump action-observation brain activity and kinesiophobia after anterior cruciate ligament reconstruction: A cross-sectional fMRI study. Brain Behav 2023; 13:e2879. [PMID: 36602922 PMCID: PMC9927857 DOI: 10.1002/brb3.2879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Injury and reconstruction of anterior cruciate ligament (ACL) result in central nervous system alteration to control the muscles around the knee joint. Most individuals with ACL reconstruction (ACLR) experience kinesiophobia which can prevent them from returning to activity and is associated with negative outcomes after ACLR. However, it is unknown if kinesiophobia alters brain activity after ACL injury. OBJECTIVES To compare brain activity between an ACLR group and matched uninjured controls during an action-observation drop vertical jump (AO-DVJ) paradigm and to explore the association between kinesiophobia and brain activity in the ACLR group. METHODS This cross-sectional study enrolled 26 individuals, 13 with ACLR (5 males and 8 females, 20.62 ± 1.93 years, 1.71 ± 0.1 m, 68.42 ± 14.75 kg) and 13 matched uninjured controls (5 males and 8 females, 22.92 ± 3.17 years, 1.74 ± 0.10 m, 70.48 ± 15.38 kg). Individuals were matched on sex and activity level. Participants completed the Tampa Scale of Kinesiophobia-11 (TSK-11) to evaluate the level of movement-related fear. To assay the brain activity associated with a functional movement, the current study employed an action-observation/motor imagery paradigm during functional magnetic resonance imaging (fMRI). RESULTS The ACLR group had lower brain activity in the right ventrolateral prefrontal cortex relative to the uninjured control group. Brain activity of the left cerebellum Crus I and Crus II, the right cerebellum lobule IX, amygdala, middle temporal gyrus, and temporal pole were positively correlated with TSK-11 scores in the ACLR group. CONCLUSION Brain activity for the AO-DVJ paradigm was different between the ACLR group and uninjured controls. Secondly, in participants with ACLR, there was a positive relationship between TSK-11 scores and activity in brain areas engaged in fear and cognitive processes during the AO-DVJ paradigm.
Collapse
Affiliation(s)
- HoWon Kim
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Translational Biomedical Sciences Program, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - James A Onate
- Division of Athletic Training, School of Health and Rehabilitation Sciences, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Cody R Criss
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Heritage Fellow, Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Janet E Simon
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Dominik Mischkowski
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Psychology Department, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, Ohio, USA.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| |
Collapse
|
11
|
Criss CR, Lepley AS, Onate JA, Simon JE, France CR, Clark BC, Grooms DR. Neural Correlates of Self-Reported Knee Function in Individuals After Anterior Cruciate Ligament Reconstruction. Sports Health 2023; 15:52-60. [PMID: 35321615 PMCID: PMC9808834 DOI: 10.1177/19417381221079339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Anterior cruciate ligament (ACL) rupture is a common knee injury among athletes and physically active adults. Despite surgical reconstruction and extensive rehabilitation, reinjuries are common and disability levels are high, even years after therapy and return to activity. Prolonged knee dysfunction may result in part from unresolved neuromuscular deficits of the surrounding joint musculature in response to injury. Indeed, "upstream" neurological adaptations occurring after injury may explain these persistent functional deficits. Despite evidence for injury consequences extending beyond the joint to the nervous system, the link between neurophysiological impairments and patient-reported measures of knee function remains unclear. HYPOTHESIS Patterns of brain activation for knee control are related to measures of patient-reported knee function in individuals after ACL reconstruction (ACL-R). STUDY DESIGN Cross-sectional study. LEVEL OF EVIDENCE Level 3. METHODS In this multicenter, cross-sectional study, participants with unilateral ACL-R (n = 25; 10 men, 15 women) underwent task-based functional magnetic resonance imaging testing. Participants performed repeated cycles of open-chain knee flexion/extension. Neural activation patterns during the movement task were quantified using blood oxygen level-dependent (BOLD) signals. Regions of interest were generated using the Juelich Histological Brain Atlas. Pearson product-moment correlations were used to determine the relationship between mean BOLD signal within each brain region and self-reported knee function level, as measured by the International Knee Documentation Committee index. Partial correlations were also calculated after controlling for time from surgery and sex. RESULTS Patient-reported knee function was positively and moderately correlated with the ipsilateral secondary somatosensory cortex (r = 0.57, P = 0.005) and the ipsilateral supplementary motor area (r = 0.51, P = 0.01). CONCLUSION Increased ipsilateral secondary sensorimotor cortical activity is related to higher perceived knee function. CLINICAL RELEVANCE Central nervous system mechanisms for knee control are related to subjective levels of knee function after ACL-R. Increased neural activity may reflect central neuroplastic strategies to preserve knee functionality after traumatic injury.
Collapse
Affiliation(s)
- Cody R. Criss
- Translational Biomedical Sciences,
Graduate College, Ohio University, Athens, Ohio
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Cody R Criss, W283 Grover
Center, 1 Ohio University, Athens, OH 45701 (
) (Twitter: @criss_cody)
| | - Adam S. Lepley
- Exercise and Sport Science Initiative,
School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - James A. Onate
- School of Health and Rehabilitation
Sciences, The Ohio State University, Columbus, Ohio
| | - Janet E. Simon
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Division of Athletic Training, School
of Applied Health Sciences and Wellness, College of Health Sciences and Professions,
Ohio University, Athens, Ohio
| | - Christopher R. France
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Department of Psychology, College of
Arts and Sciences, Ohio University, Athens, Ohio
| | - Brian C. Clark
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Department of Biomedical Sciences,
Ohio University, Athens, Ohio
- Department of Geriatric Medicine, Ohio
University, Athens, Ohio
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Division of Athletic Training, School
of Applied Health Sciences and Wellness, College of Health Sciences and Professions,
Ohio University, Athens, Ohio
- Division of Physical Therapy, School
of Rehabilitation and Communication Sciences, College of Health Sciences and
Professions, Ohio University, Athens, Ohio
| |
Collapse
|
12
|
Sato S, Shibahara I, Inukai M, Komai H, Hide T, Kumabe T. Anatomical and neurophysiological localization of the leg motor area at the medial central sulcus. Clin Neurophysiol 2022; 143:67-74. [PMID: 36126357 DOI: 10.1016/j.clinph.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The exact location of the leg motor area is still in debate due to the lack of landmarks such as 'precentral knob' in the medial cortex. This study tried to identify the leg motor area based on intraoperative neurophysiological data and neuroimaging techniques. METHODS Intraoperative data of somatosensory evoked potential (SEP) elicited by tibial nerve stimulation and motor evoked potential (MEP) of the leg muscles induced by direct cortical stimulation were recorded using subdural electrodes placed in the medial cortex. We displayed the neurophysiological data on the individual MR images and the MNI52. RESULTS Definite N40-P40 phase reversal was observed with the shallow grooves in the medial cortex in 5 cases. Leg MEP was successfully obtained in all 12 cases preserving the leg motor function. Superimposed SEP and leg MEP data on the MNI152 indicated the leg motor area was predominantly located in the posterior two-thirds between the vertical lines passing through the anterior commissure and the posterior commissure (VCP). CONCLUSIONS Our study revealed the location of the leg motor area and the presence of the 'medial central sulcus' in the medial cortex. SIGNIFICANCE The VCP can be useful landmark to identify the sensorimotor border in the medial cortex.
Collapse
Affiliation(s)
- Sumito Sato
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hideto Komai
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
13
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
14
|
Preliminary brain-behavioral neural correlates of anterior cruciate ligament injury risk landing biomechanics using a novel bilateral leg press neuroimaging paradigm. PLoS One 2022; 17:e0272578. [PMID: 35951584 PMCID: PMC9371272 DOI: 10.1371/journal.pone.0272578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/21/2022] [Indexed: 01/02/2023] Open
Abstract
Anterior cruciate ligament (ACL) injury risk reduction strategies primarily focus on biomechanical factors related to frontal plane knee motion and loading. Although central nervous system processing has emerged as a contributor to injury risk, brain activity associated with the resultant ACL injury-risk biomechanics is limited. Thus, the purposes of this preliminary study were to determine the relationship between bilateral motor control brain activity and injury risk biomechanics and isolate differences in brain activity for those who demonstrate high versus low ACL injury risk. Thirty-one high school female athletes completed a novel, multi-joint leg press during brain functional magnetic resonance imaging (fMRI) to characterize bilateral motor control brain activity. Athletes also completed an established biomechanical assessment of ACL injury risk biomechanics within a 3D motion analysis laboratory. Knee abduction moments during landing were modelled as a covariate of interest within the fMRI analyses to identify directional relationships with brain activity and an injury-risk group classification analysis, based on established knee abduction moment cut-points. Greater landing knee abduction moments were associated with greater lingual gyrus, intracalcarine cortex, posterior cingulate cortex and precuneus activity when performing the bilateral leg press (all z > 3.1, p < .05; multiple comparison corrected). In the follow-up injury-risk classification analysis, those classified as high ACL injury-risk had greater activity in the lingual gyrus, parietal cortex and bilateral primary and secondary motor cortices relative to those classified as low ACL injury-risk (all z > 3.1, p < .05; multiple comparison corrected). In young female athletes, elevated brain activity for bilateral leg motor control in regions that integrate sensory, spatial, and attentional information were related to ACL injury-risk landing biomechanics. These data implicate crossmodal visual and proprioceptive integration brain activity and knee spatial awareness as potential neurotherapeutic targets to optimize ACL injury-risk reduction strategies.
Collapse
|
15
|
Jordon MK, Stewart JC, Silfies SP, Beattie PF. Task-Based Functional Connectivity and Blood-Oxygen-Level-Dependent Activation During Within-Scanner Performance of Lumbopelvic Motor Tasks: A Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:816595. [PMID: 35308606 PMCID: PMC8924587 DOI: 10.3389/fnhum.2022.816595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
There are a limited number of neuroimaging investigations into motor control of the lumbopelvic musculature. Most investigation examining motor control of the lumbopelvic musculature utilize transcranial magnetic stimulation (TMS) and focus primarily on the motor cortex. This has resulted in a dearth of knowledge as it relates to how other regions of the brain activate during lumbopelvic movement. Additionally, task-based functional connectivity during lumbopelvic movements has not been well elucidated. Therefore, we used functional magnetic resonance imaging (fMRI) to examine brain activation and ROI-to-ROI task-based functional connectivity in 19 healthy individuals (12 female, age 29.8 ± 4.5 years) during the performance of three lumbopelvic movements: modified bilateral bridge, left unilateral bridge, and right unilateral bridge. The whole brain analysis found robust, bilateral activation within the motor regions of the brain during the bilateral bridge task, and contralateral activation of the motor regions during unilateral bridging tasks. Furthermore, the ROI-to-ROI analysis demonstrated significant connectivity of a motor network that included the supplemental motor area, bilateral precentral gyrus, and bilateral cerebellum regardless of the motor task performed. These data suggest that while whole brain activation reveals unique patterns of activation across the three tasks, functional connectivity is very similar. As motor control of the lumbopelvic area is of high interest to those studying low back pain (LBP), this study can provide a comparison for future research into potential connectivity changes that occur in individuals with LBP.
Collapse
Affiliation(s)
- Max K. Jordon
- Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | | | - Sheri P. Silfies
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, United States
| | - Paul F. Beattie
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
16
|
Patra A, Kaur H, Chaudhary P, Asghar A, Singal A. Morphology and Morphometry of Human Paracentral Lobule: An Anatomical Study with its Application in Neurosurgery. Asian J Neurosurg 2021; 16:349-354. [PMID: 34268163 PMCID: PMC8244697 DOI: 10.4103/ajns.ajns_505_20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The human paracentral lobule (PCL) is the medial continuation of the precentral and postcentral gyri. It has important functional area related to the lower limb and perineum. Its visible surface that corresponds to magnetic resonance imaging scout images varies in morphology, so it requires exact data. Studies related to such data are rare. With such a facile, we studied the morphology and morphometry of PCL. MATERIALS AND METHODS Fifty formalin-fixed adult human brains dissected in the midsagittal plane were used in this study. First, the morphological types of PCL and its boundary were determined, followed by morphometry of its extrasulcal surface using digital vernier calipers. Measurements were done along the anteroposterior axis (length) and vertical axis (height). In addition to that, the extent of motor and sensory area into PCL was also measured. RESULTS Three distinct morphological types of PCL were found: continuous (2%), partially segmented (91%), and completely segmented type (7%). In completely segmented type, a short transitional lobulolimbic gyrus was also found in three cases. The mean extrasulcal surface of the left PCL was significantly larger, both in males (left 10.67 cm2 vs. right 8.80 cm2) and in females (left 8.80 cm2 vs. right 6.99 cm2). Irrespective of gender and sidedness, motor area was significantly larger than the sensory area. CONCLUSION Reported data will be useful in diagnosis and treatment of diseases affecting the human PCL. Variations in the distribution of sensorimotor cortex over PCL may help further assessment of hemispheric lateralization and the location of central sulcus as a reliable indicator of cytoarchitectonic borders.
Collapse
Affiliation(s)
- Apurba Patra
- Department of Anatomy, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Harsimarjit Kaur
- Department of Anatomy, Government Medical College, Patiala, Punjab, India
| | - Priti Chaudhary
- Department of Anatomy, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Adil Asghar
- Department of Anatomy, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Anjali Singal
- Department of Anatomy, All India Institute of Medical Sciences, Bathinda, Punjab, India
| |
Collapse
|
17
|
Grooms DR, Criss CR, Simon JE, Haggerty AL, Wohl TR. Neural Correlates of Knee Extension and Flexion Force Control: A Kinetically-Instrumented Neuroimaging Study. Front Hum Neurosci 2021; 14:622637. [PMID: 33613205 PMCID: PMC7890238 DOI: 10.3389/fnhum.2020.622637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The regulation of muscle force is a vital aspect of sensorimotor control, requiring intricate neural processes. While neural activity associated with upper extremity force control has been documented, extrapolation to lower extremity force control is limited. Knowledge of how the brain regulates force control for knee extension and flexion may provide insights as to how pathology or intervention impacts central control of movement. Objectives: To develop and implement a neuroimaging-compatible force control paradigm for knee extension and flexion. Methods: A magnetic resonance imaging (MRI) safe load cell was used in a customized apparatus to quantify force (N) during neuroimaging (Philips Achieva 3T). Visual biofeedback and a target sinusoidal wave that fluctuated between 0 and 5 N was provided via an MRI-safe virtual reality display. Fifteen right leg dominant female participants (age = 20.3 ± 1.2 years, height = 1.6 ± 0.10 m, weight = 64.8 ± 6.4 kg) completed a knee extension and flexion force matching paradigm during neuroimaging. The force-matching error was calculated based on the difference between the visual target and actual performance. Brain activation patterns were calculated and associated with force-matching error and the difference between quadriceps and hamstring force-matching tasks were evaluated with a mixed-effects model (z > 3.1, p < 0.05, cluster corrected). Results: Knee extension and flexion force-matching tasks increased BOLD signal among cerebellar, sensorimotor, and visual-processing regions. Increased knee extension force-matching error was associated with greater right frontal cortex and left parietal cortex activity and reduced left lingual gyrus activity. Increased knee flexion force-matching error was associated with reduced left frontal and right parietal region activity. Knee flexion force control increased bilateral premotor, secondary somatosensory, and right anterior temporal activity relative to knee extension. The force-matching error was not statistically different between tasks. Conclusion: Lower extremity force control results in unique activation strategies depending on if engaging knee extension or flexion, with knee flexion requiring increased neural activity (BOLD signal) for the same level of force and no difference in relative error. These fMRI compatible force control paradigms allow precise behavioral quantification of motor performance concurrent with brain activity for lower extremity sensorimotor function and may serve as a method for future research to investigate how pathologies affect lower extremity neuromuscular function.
Collapse
Affiliation(s)
- Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Adam L Haggerty
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Timothy R Wohl
- Honors Tutorial College, Ohio University, Athens, OH, United States.,Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Saunders E, Clark BC, Clark LA, Grooms DR. Development of a trunk motor paradigm for use in neuroimaging. Transl Neurosci 2020; 11:193-200. [PMID: 33335758 PMCID: PMC7712160 DOI: 10.1515/tnsci-2020-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to quantify head motion between isometric erector spinae (ES) contraction strategies, paradigms, and intensities in the development of a neuroimaging protocol for the study of neural activity associated with trunk motor control in individuals with low back pain. Ten healthy participants completed two contraction strategies; (1) a supine upper spine (US) press and (2) a supine lower extremity (LE) press. Each contraction strategy was performed at electromyographic (EMG) contraction intensities of 30, 40, 50, and 60% of an individually determined maximum voluntary contraction (MVC) (±10% range for each respective intensity) with real-time, EMG biofeedback. A cyclic contraction paradigm was performed at 30% of MVC with US and LE contraction strategies. Inertial measurement units (IMUs) quantified head motion to determine the viability of each paradigm for neuroimaging. US vs LE hold contractions induced no differences in head motion. Hold contractions elicited significantly less head motion relative to cyclic contractions. Contraction intensity increased head motion in a linear fashion with 30% MVC having the least head motion and 60% the highest. The LE hold contraction strategy, below 50% MVC, was found to be the most viable trunk motor control neuroimaging paradigm.
Collapse
Affiliation(s)
- Elizabeth Saunders
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, 45701, United States of America.,Physical Therapy and Sports Medicine Centers, New London, CT, 06320, United States of America
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, United States of America.,Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, United States of America
| | - Leatha A Clark
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, United States of America.,Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, United States of America.,Department of Family Medicine, Ohio University, Athens, OH, 45701, United States of America
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, 45701, United States of America.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, 45701, United States of America
| |
Collapse
|
19
|
Doolittle JD, Downey RJ, Imperatore JP, Dowdle LT, Lench DH, McLeod J, McCalley DM, Gregory CM, Hanlon CA. Evaluating a novel MR-compatible foot pedal device for unipedal and bipedal motion: Test-retest reliability of evoked brain activity. Hum Brain Mapp 2020; 42:128-138. [PMID: 33089953 PMCID: PMC7721228 DOI: 10.1002/hbm.25209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to develop and evaluate a new, open‐source MR‐compatible device capable of assessing unipedal and bipedal lower extremity movement with minimal head motion and high test–retest reliability. To evaluate the prototype, 20 healthy adults participated in two magnetic resonance imaging (MRI) visits, separated by 2–6 months, in which they performed a visually guided dorsiflexion/plantar flexion task with their left foot, right foot, and alternating feet. Dependent measures included: evoked blood oxygen level‐dependent (BOLD) signal in the motor network, head movement associated with dorsiflexion/plantar flexion, the test–retest reliability of these measurements. Left and right unipedal movement led to a significant increase in BOLD signal compared to rest in the medial portion of the right and left primary motor cortex (respectively), and the ipsilateral cerebellum (FWE corrected, p < .001). Average head motion was 0.10 ± 0.02 mm. The test–retest reliability was high for the functional MRI data (intraclass correlation coefficients [ICCs]: >0.75) and the angular displacement of the ankle joint (ICC: 0.842). This bipedal device can robustly isolate activity in the motor network during alternating plantarflexion and dorsiflexion with minimal head movement, while providing high test–retest reliability. Ultimately, these data and open‐source building instructions will provide a new, economical tool for investigators interested in evaluating brain function resulting from lower extremity movement.
Collapse
Affiliation(s)
- Jade D Doolittle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ryan J Downey
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Julia P Imperatore
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Logan T Dowdle
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel H Lench
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John McLeod
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Daniel M McCalley
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chris M Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Cancer Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
20
|
Fukuo M, Kamagata K, Kuramochi M, Andica C, Tomita H, Waki H, Sugano H, Tange Y, Mitsuhashi T, Uchida W, Takenaka Y, Hagiwara A, Harada M, Goto M, Hori M, Aoki S, Naito H. Regional brain gray matter volume in world-class artistic gymnasts. J Physiol Sci 2020; 70:43. [PMID: 32948133 PMCID: PMC10717960 DOI: 10.1186/s12576-020-00767-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 08/31/2020] [Indexed: 12/19/2022]
Abstract
The relationship between long-term intensive training and brain plasticity in gymnasts has recently been reported. However, the relationship between abilities in different gymnastic events and brain structural changes has not been explored. This study aimed to evaluate the correlation between world-class gymnasts (WCGs)' specific abilities in different gymnastics events and their gray matter (GM) volume. Ten right-handed Japanese male WCGs and 10 right-handed gender- and age-matched controls with no history of gymnastic training participated in this study. Whole brain three-dimensional T1-weighted images (magnetization-prepared rapid gradient-echo sequence) with 0.90 mm3 voxels were obtained using a 3 T-MRI scanner from each subject. Volume-based morphometry (VolBM) was used to compare GM volume differences between WCGs and controls. We then explored the correlation between specific gymnastic abilities using different gymnastic apparatuses, and GM volume. Significantly higher GM volumes (false discovery rate-corrected p < 0.05) in the inferior parietal lobule, middle temporal gyrus, precentral gyrus, rostral middle frontal gyrus, and superior frontal gyrus were demonstrated in WCGs, compared with controls using VolBM. Moreover, significant positive correlations were observed between brain regions and the difficulty scores for each gymnastic event, for example, rings and inferior parietal lobule and parallel bars and rostral middle frontal gyrus. These results may reflect the neural basis of an outstanding gymnastic ability resulting from brain plasticity in areas associated with spatial perception, vision, working memory, and motor control.
Collapse
Affiliation(s)
- Makoto Fukuo
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Mana Kuramochi
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Hiroyuki Tomita
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Hidefumi Waki
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan.
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Tange
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuki Takenaka
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
- Department of Radiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mutsumi Harada
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| | - Masami Goto
- School of Allied Health Science, Kitasato University, Kanagawa, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicin, Tokyo, Japan
| | - Hisashi Naito
- Juntendo University Graduate School of Health and Sports Scienc, 1-1 Hirakagakuendai, Inzai, Chiba, 270-1695, Japan
| |
Collapse
|
21
|
Anand M, Diekfuss JA, Slutsky-Ganesh AB, Bonnette S, Grooms DR, Myer GD. Graphical interface for automated management of motion artifact within fMRI acquisitions: INFOBAR. SOFTWAREX 2020; 12:100598. [PMID: 33447655 PMCID: PMC7806167 DOI: 10.1016/j.softx.2020.100598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Independent Component Analysis-based Automatic Removal of Motion Artifacts (ICA-AROMA; Pruim et al., 2015) is a robust approach to remove brain activity related to head motion within functional magnetic resonance imaging (fMRI) datasets. However, ICA-AROMA requires command line implementation and customized code to batch process large datasets. We developed a cross-platform, open-source graphical user Interface for Batch processing fMRI datasets using ICA-AROMA (INFOBAR). INFOBAR allows a user to search directories, identify appropriate datasets, and batch execute ICA-AROMA. INFOBAR also has additional data processing options and visualization features to support all researchers interested in mitigating head motion artifact in post-processing using ICA-AROMA.
Collapse
Affiliation(s)
- Manish Anand
- The SPORT Center, Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jed A. Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Emory Sport Performance and Research Center, Flowery Branch, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Scott Bonnette
- The SPORT Center, Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute, Ohio University, Athens, OH, USA
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences & Professions, Ohio University, Athens, OH, USA
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences & Professions, Ohio University, Athens, OH, USA
| | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics and Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Emory Sport Performance and Research Center, Flowery Branch, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
22
|
Criss CR, Onate JA, Grooms DR. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: A task-based functional connectivity analysis. Neurosci Lett 2020; 730:134985. [PMID: 32380143 DOI: 10.1016/j.neulet.2020.134985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/17/2023]
Abstract
Anterior cruciate ligament injury may induce neurophysiological changes for sensorimotor control. Neuroimaging investigations have revealed unique brain activity patterns for knee movement following injury, indicating potential neural mechanisms underlying aberrant neuromuscular control that may contribute to heightened risk of secondary injury, altered movement patterns and poor patient outcomes. However, neuroimaging paradigms thus far have been limited to single joint, single motion knee tasks. Therefore, we sought to overcome prior limitations to understand the effects of injury on neural control of lower extremity movement by employing a multi-joint motor paradigm and determining differences in neural activity between ACL-reconstructed (ACLr) individuals relative to healthy matched controls. Fifteen patients with left anterior cruciate ligament reconstruction and fifteen matched healthy controls participated in this study. Neural activity was examined using functional magnetic resonance imaging during a block-designed knee-hip movement paradigm (similar to a supine heel-slide). Participants for each group were monitored and task performance was controlled via a metronome to ensure the same spatial-temporal parameters. We observed that those with ACL reconstruction displayed increased activation within the intracalcarine cortex, lingual gyrus, occipital fusiform gyrus, lateral occipital cortex, angular gyrus, and superior parietal lobule relative to controls. A follow-up task-based functional connectivity analyses using seed regions identified from the group analysis revealed connectivity among fronto-insular-temporal and sensorimotor regions within the ACLr participants. The results of this fMRI investigation suggest ACLr individuals require increased activity and connectivity in areas responsible for visual-spatial cognition and orientation, and attention for hip and knee motor control.
Collapse
Affiliation(s)
- Cody R Criss
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA; Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, USA; Heritage College of Osteopathic Medicine, Athens, OH, USA.
| | - James A Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, OH, USA; Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH, USA
| |
Collapse
|
23
|
Peters S, Eng JJ, Liu-Ambrose T, Borich MR, Dao E, Amanian A, Boyd LA. Brain activity associated with Dual-task performance of Ankle motor control during cognitive challenge. Brain Behav 2019; 9:e01349. [PMID: 31265216 PMCID: PMC6710191 DOI: 10.1002/brb3.1349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Skilled Ankle motor control is frequently required while performing secondary cognitively demanding tasks such as socializing and avoiding obstacles while walking, termed "Dual tasking." It is likely that Dual-task performance increases demand on the brain, as both motor and cognitive systems require neural resources. The purpose of this study was to use functional MRI to understand which brain regions are involved in resolving Dual-task interference created by requiring high levels of Ankle motor control during a cognitive task. METHODS Using functional MRI, brain activity was measured in sixteen young adults during performance of visually cued Ankle plantar flexion to a target (Ankle task), a cognitive task (Flanker task), and both tasks simultaneously (Dual task). RESULTS Dual-task performance did not impact the Ankle task (p = 0.78), but did affect behavior on the Flanker task. Response times for both the congruent and incongruent conditions during the Flanker task were significantly longer (p < 0.001, p = 0.050, respectively), and accuracy for the congruent condition decreased during Dual tasking (p < 0.001). Activity in 3 brain regions was associated with Dual-task Flanker performance. Percent signal change from baseline in Brodmann area (BA) 5, BA6, and the left caudate correlated with performance on the Flanker task during the Dual-task condition (R2 = 0.261, p = 0.04; R2 = -0.258, p = 0.04; R2 = 0.303, p = 0.03, respectively). CONCLUSIONS Performance of Ankle motor control may be prioritized over a cognitive task during Dual-task performance. Our work advances Dual-task research by elucidating patterns of whole brain activity for Dual tasks that require Ankle motor control during a cognitive task.
Collapse
Affiliation(s)
- Sue Peters
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janice J Eng
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Teresa Liu-Ambrose
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael R Borich
- School of Medicine, Division of Physical Therapy, Emory University, Atlanta, Georgia
| | - Elizabeth Dao
- Graduate Program in Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ameen Amanian
- Faculty of Applied Science, Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Grooms DR, Diekfuss JA, Ellis JD, Yuan W, Dudley J, Foss KDB, Thomas S, Altaye M, Haas L, Williams B, Lanier JM, Bridgewater K, Myer GD. A Novel Approach to Evaluate Brain Activation for Lower Extremity Motor Control. J Neuroimaging 2019; 29:580-588. [PMID: 31270890 DOI: 10.1111/jon.12645] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to assess the consistency of a novel MR safe lower extremity motor control neuroimaging paradigm to elicit reliable sensorimotor region brain activity. METHODS Participants completed multiple sets of unilateral leg presses combining ankle, knee, and hip extension and flexion movements against resistance at a pace of 1.2 Hz while lying supine in a 3T MRI scanner. Regions of Interest (ROI) consisted of regions primarily involved in lower extremity motor control (right and left primary motor cortex, primary somatosensory cortex, premotor cortex, secondary somatosensory cortex, basal ganglia, and the cerebellum). RESULTS The group analysis based on mixed effects paired samples t-test revealed no differences for brain activity between sessions (P > .05). Intraclass correlation coefficients in the sensorimotor regions were good to excellent for average percent signal change (.621 to .918) and Z-score (.697 to .883), with the exception of the left secondary somatosensory cortex percent signal change (.165). CONCLUSIONS These results indicate that a loaded lower extremity force production and attenuation task that simulates the range of motion of squatting, stepping, and landing from a jump is reliable for longitudinal neuroimaging applications and support the use of this paradigm in further studies examining therapeutic interventions and changes in dynamic lower extremity motor function.
Collapse
Affiliation(s)
- Dustin R Grooms
- Ohio Musculoskeletal & Neurological Institute and Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, OH
| | - Jed A Diekfuss
- the SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jonathan D Ellis
- Department of Orthopaedics and Sports Medicine, University of Cincinnati, Cincinnati, OH
| | - Weihong Yuan
- College of Medicine, University of Cincinnati, Cincinnati, OH.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kim D Barber Foss
- the SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Staci Thomas
- the SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lacey Haas
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Brynne Williams
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - John M Lanier
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kaley Bridgewater
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gregory D Myer
- the SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,College of Medicine, University of Cincinnati, Cincinnati, OH.,Departments of Pediatrics and Orthopaedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH.,The Micheli Center for Sports Injury Prevention, Waltham, MA
| |
Collapse
|
25
|
Allexandre D, Androwis GJ, Saleh S, Benony B, Yue GH. Design of a low-cost MRI compatible plantarflexion force measurement device. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3950-3953. [PMID: 30441224 DOI: 10.1109/embc.2018.8513374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Investigating the neural correlates of ankles' joint rotation is critical to better understand the underlying deficit in balance or posture control in the clinical population. This work describes the design and characteristics of a low-cost MRI compatible isometric plantarflexion force measurement device. The device is fully adjustable to the particular height and shoe size of participants. Each individual force sensor has an operational linear range up to 80-100kg amounting to a force range up to 180kg when combining the two sensors, which is well above the maximal force for the majority of the population. Preliminary neuroimaging tests suggest that performing submaximal ankle plantar flexions on the device induce minimal motion artifacts on fMRI signal that are within an acceptable range.
Collapse
|
26
|
Toyomura A, Yokosawa K, Shimojo A, Fujii T, Kuriki S. Turning a cylindrical treadmill with feet: An MR-compatible device for assessment of the neural correlates of lower-limb movement. J Neurosci Methods 2018; 307:14-22. [PMID: 29924979 DOI: 10.1016/j.jneumeth.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/24/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Locomotion, which is one of the most basic motor functions, is critical for performing various daily-life activities. Despite its essential function, assessment of brain activity during lower-limb movement is still limited because of the constraints of existing brain imaging methods. NEW METHOD Here, we describe an MR-compatible, cylindrical treadmill device that allows participants to perform stepping movements on an MRI scanner table. The device was constructed from wood and all of the parts were handmade by the authors. RESULTS We confirmed the MR-compatibility of the device by evaluating the temporal signal-to-noise ratio of 64 voxels of a phantom during scanning. Brain activity was measured while twenty participants turned the treadmill with feet in sync with metronome sounds. The rotary speed of the cylinder was encoded by optical fibers. The post/pre-central gyrus and cerebellum showed significant activity during the movements, which was comparable to the activity patterns reported in previous studies. Head movement on the y- and z-axes was influenced more by lower-limb movement than was head movement on the x-axis. Among the 60 runs (3 runs × 20 participants), head movement during two of the runs (3.3%) was excessive due to the lower-limb movement. COMPARISON WITH EXISTING METHODS Compared to MR-compatible devices proposed in the previous studies, the advantage of this device may be simple structure and replicability to realize stepping movement with a supine position. CONCLUSIONS Collectively, our results suggest that the treadmill device is useful for evaluating lower-limb-related neural activity.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan; Research and Education Center for Brain Science, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan.
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| | - Atsushi Shimojo
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7 Kita-ku, Sapporo 060-8638, Japan
| | - Tetsunoshin Fujii
- Department of Psychology, Graduate School of Letters, Hokkaido University, Kita 10, Nishi 7 Kita-ku, Sapporo 060-0810, Japan
| | - Shinya Kuriki
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5 Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Wei P, Bao R, Lv Z, Jing B. Weak but Critical Links between Primary Somatosensory Centers and Motor Cortex during Movement. Front Hum Neurosci 2018; 12:1. [PMID: 29387003 PMCID: PMC5776089 DOI: 10.3389/fnhum.2018.00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/01/2018] [Indexed: 12/12/2022] Open
Abstract
Motor performance is improved by stimulation of the agonist muscle during movement. However, related brain mechanisms remain unknown. In this work, we perform a functional magnetic resonance imaging (fMRI) study in 21 healthy subjects under three different conditions: (1) movement of right ankle alone; (2) movement and simultaneous stimulation of the agonist muscle; or (3) movement and simultaneous stimulation of a control area. We constructed weighted brain networks for each condition by using functional connectivity. Network features were analyzed using graph theoretical approaches. We found that: (1) the second condition evokes the strongest and most widespread brain activations (5147 vs. 4419 and 2320 activated voxels); and (2) this condition also induces a unique network layout and changes hubs and the modular structure of the brain motor network by activating the most “silent” links between primary somatosensory centers and the motor cortex, particularly weak links from the thalamus to the left primary motor cortex (M1). Significant statistical differences were found when the strength values of the right cerebellum (P < 0.001) or the left thalamus (P = 0.006) were compared among the three conditions. Over the years, studies reported a small number of projections from the thalamus to the motor cortex. This is the first work to present functions of these pathways. These findings reveal mechanisms for enhancing motor function with somatosensory stimulation, and suggest that network function cannot be thoroughly understood when weak ties are disregarded.
Collapse
Affiliation(s)
- Pengxu Wei
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Ruixue Bao
- Beijing Boai Hospital, School of Rehabilitation Medicine, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Zeping Lv
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Tan XR, Low ICC, Stephenson MC, Soong TW, Lee JKW. Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods. Scand J Med Sci Sports 2017; 28:807-818. [PMID: 29136305 DOI: 10.1111/sms.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat.
Collapse
Affiliation(s)
- X R Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - I C C Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - M C Stephenson
- Clinical Imaging Research Centre, Agency for Science, Technology and Research - National University of Singapore (A*STAR-NUS), Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - T W Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - J K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| |
Collapse
|
29
|
Wei P, Zhang Z, Lv Z, Jing B. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement. Front Hum Neurosci 2017; 11:366. [PMID: 28747880 PMCID: PMC5506200 DOI: 10.3389/fnhum.2017.00366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/27/2017] [Indexed: 11/13/2022] Open
Abstract
The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.
Collapse
Affiliation(s)
- Pengxu Wei
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical AidsBeijing, China
| | - Zuting Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical AidsBeijing, China
| | - Zeping Lv
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-age Disability, Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical AidsBeijing, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical UniversityBeijing, China
| |
Collapse
|
30
|
Liu D, Chen W, Lee K, Chavarriaga R, Bouri M, Pei Z, Del R Millán J. Brain-actuated gait trainer with visual and proprioceptive feedback. J Neural Eng 2017; 14:056017. [PMID: 28696340 DOI: 10.1088/1741-2552/aa7df9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Brain-machine interfaces (BMIs) have been proposed in closed-loop applications for neuromodulation and neurorehabilitation. This study describes the impact of different feedback modalities on the performance of an EEG-based BMI that decodes motor imagery (MI) of leg flexion and extension. APPROACH We executed experiments in a lower-limb gait trainer (the legoPress) where nine able-bodied subjects participated in three consecutive sessions based on a crossover design. A random forest classifier was trained from the offline session and tested online with visual and proprioceptive feedback, respectively. Post-hoc classification was conducted to assess the impact of feedback modalities and learning effect (an improvement over time) on the simulated trial-based performance. Finally, we performed feature analysis to investigate the discriminant power and brain pattern modulations across the subjects. MAIN RESULTS (i) For real-time classification, the average accuracy was [Formula: see text]% and [Formula: see text]% for the two online sessions. The results were significantly higher than chance level, demonstrating the feasibility to distinguish between MI of leg extension and flexion. (ii) For post-hoc classification, the performance with proprioceptive feedback ([Formula: see text]%) was significantly better than with visual feedback ([Formula: see text]%), while there was no significant learning effect. (iii) We reported individual discriminate features and brain patterns associated to each feedback modality, which exhibited differences between the two modalities although no general conclusion can be drawn. SIGNIFICANCE The study reported a closed-loop brain-controlled gait trainer, as a proof of concept for neurorehabilitation devices. We reported the feasibility of decoding lower-limb movement in an intuitive and natural way. As far as we know, this is the first online study discussing the role of feedback modalities in lower-limb MI decoding. Our results suggest that proprioceptive feedback has an advantage over visual feedback, which could be used to improve robot-assisted strategies for motor training and functional recovery.
Collapse
Affiliation(s)
- Dong Liu
- School of Automation Science and Electrical Engineering, Beihang University (BUAA), Beijing 100191, People's Republic of China. Defitech Chair in Brain-Machine Interface (CNBI), Center for Neuroprosthetics, Institute of Bioengineering and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech H4, 1202, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
31
|
Wegrzyk J, Ranjeva JP, Fouré A, Kavounoudias A, Vilmen C, Mattei JP, Guye M, Maffiuletti NA, Place N, Bendahan D, Gondin J. Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols. Sci Rep 2017; 7:2742. [PMID: 28577338 PMCID: PMC5457446 DOI: 10.1038/s41598-017-03188-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz–1 ms) and conventional (CONV, 25 Hz–0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
Collapse
Affiliation(s)
- Jennifer Wegrzyk
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | | | - Alexandre Fouré
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, Laboratoire Neurosciences Intégratives et Adaptatives, UMR 7260, 13385, Marseille, France
| | | | - Jean-Pierre Mattei
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de Sainte Marguerite, Service de Rhumatologie, Pôle Appareil Locomoteur, 13005, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de la Timone, CEMEREM, Pôle Imagerie Médicale, 13005, Marseille, France
| | | | - Nicolas Place
- University of Lausanne, Faculty of Biology and Medicine, Institute of Sport Sciences and Department of Physiology, Lausanne, Switzerland
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Julien Gondin
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France. .,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France.
| |
Collapse
|
32
|
Yoo PE, John SE, Farquharson S, Cleary JO, Wong YT, Ng A, Mulcahy CB, Grayden DB, Ordidge RJ, Opie NL, O'Brien TJ, Oxley TJ, Moffat BA. 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution. Neuroimage 2017; 164:214-229. [PMID: 28286317 DOI: 10.1016/j.neuroimage.2017.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
Recent developments in accelerated imaging methods allow faster acquisition of high spatial resolution images. This could improve the applications of functional magnetic resonance imaging at 7 Tesla (7T-fMRI), such as neurosurgical planning and Brain Computer Interfaces (BCIs). However, increasing the spatial and temporal resolution will both lead to signal-to-noise ratio (SNR) losses due to decreased net magnetization per voxel and T1-relaxation effect, respectively. This could potentially offset the SNR efficiency gains made with increasing temporal resolution. We investigated the effects of varying spatial and temporal resolution on fMRI sensitivity measures and their implications on fMRI-based BCI simulations. We compared temporal signal-to-noise ratio (tSNR), observed percent signal change (%∆S), volumes of significant activation, Z-scores and decoding performance of linear classifiers commonly used in BCIs across a range of spatial and temporal resolution images acquired during an ankle-tapping task. Our results revealed an average increase of 22% in %∆S (p=0.006) and 9% in decoding performance (p=0.015) with temporal resolution only at the highest spatial resolution of 1.5×1.5×1.5mm3, despite a 29% decrease in tSNR (p<0.001) and plateaued Z-scores. Further, the volume of significant activation was indifferent (p>0.05) across spatial resolution specifically at the highest temporal resolution of 500ms. These results demonstrate that the overall BOLD sensitivity can be increased significantly with temporal resolution, granted an adequately high spatial resolution with minimal physiological noise level. This shows the feasibility of diffuse motor-network imaging at high spatial and temporal resolution with robust BOLD sensitivity with 7T-fMRI. Importantly, we show that this sensitivity improvement could be extended to an fMRI application such as BCIs.
Collapse
Affiliation(s)
- Peter E Yoo
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia; Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, The University of Melbourne, Victoria, Australia
| | - Sam E John
- Department of Electrical & Electronic Engineering, The University of Melbourne, Victoria, Australia; Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, The University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, Australia
| | - Shawna Farquharson
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia; Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Melbourne, Victoria, Australia
| | - Jon O Cleary
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia
| | - Yan T Wong
- Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Physiology, Monash University, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Amanda Ng
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia
| | - Claire B Mulcahy
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia; Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Electrical & Electronic Engineering, The University of Melbourne, Victoria, Australia; Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, The University of Melbourne, Victoria, Australia; Center for Neural Engineering, The University of Melbourne, Victoria, Australia
| | - Roger J Ordidge
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia
| | - Nicholas L Opie
- Department of Electrical & Electronic Engineering, The University of Melbourne, Victoria, Australia; Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, The University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas J Oxley
- Vascular Bionics Laboratory, Melbourne Brain Centre, Department of Medicine, The University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria, Australia; NeuroEngineering Laboratory, Department of Electrical &Electronic Engineering, The University of Melbourne, Melbourne, Victoria, Australia; Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Kenneth Myer Building 30 Royal Parade, Parkville, Victoria, Australia.
| |
Collapse
|
33
|
Abstract
Anterior cruciate ligament (ACL) reconstruction is a common and predominantly successful surgical intervention. But are there specific preoperative patient characteristics or intraoperative surgeon decisions that lead to better or worse outcomes? And can understanding brain function changes of patients after ACL reconstruction reveal insights into the ways that postsurgical rehabilitation can be improved to further enhance outcomes? These intriguing and clinically applicable questions are addressed in this webinar titled "Improving ACL Reconstruction Outcomes," hosted jointly by JOSPT and JBJS. The webinar is based on 2 published research articles-one from JBJS and the other from JOSPT. Participants in this continuing education activity are asked to read both articles carefully before watching the webinar. JBJS co-author Kurt Spindler, MD, discusses findings from a longitudinal analysis that identified certain baseline patient characteristics and intraoperative choices that predicted higher and lower SF-36 Physical Component scores after ACL reconstruction. JOSPT co-author Dustin Grooms, PhD, ATC, shares recently published results of a controlled laboratory study that employed functional MRI to investigate brain-activation differences between patients who did and did not undergo ACL reconstruction. Moderated by Kevin Wilk, PT, DPT, FAPTA, a leading authority on rehabilitation of sports injuries, the webinar includes additional insights from expert commentators Eric McCarty, MD, and Karin Grävare Silbernagel, PT, PhD, ATC.
Collapse
|
34
|
Abstract
Study Design Controlled laboratory study. Background Anterior cruciate ligament (ACL) injury may result in neuroplastic changes due to lost mechanoreceptors of the ACL and compensations in neuromuscular control. These alterations are not completely understood. Assessing brain function after ACL injury and anterior cruciate ligament reconstruction (ACLR) with functional magnetic resonance imaging provides a means to address this gap in knowledge. Objective To compare differences in brain activation during knee flexion/extension in persons who have undergone ACLR and in matched controls. Methods Fifteen participants who had undergone left ACLR (38.13 ± 27.16 months postsurgery) and 15 healthy controls matched on age, sex, height, mass, extremity dominance, education level, sport participation, and physical activity level participated. Functional magnetic resonance imaging data were obtained during a unilateral knee motor task consisting of repeated cycles of knee flexion and extension. Results Participants who had undergone ACLR had increased activation in the contralateral motor cortex, lingual gyrus, and ipsilateral secondary somatosensory area and diminished activation in the ipsilateral motor cortex and cerebellum when compared to healthy matched controls. Conclusion Brain activation for knee flexion/extension motion may be altered following ACLR. The ACLR brain activation profile may indicate a shift toward a visual-motor strategy as opposed to a sensory-motor strategy to engage in knee movement. Level of Evidence Cohort, level 3. J Orthop Sports Phys Ther 2017;47(3):180-189. Epub 5 Nov 2016. doi:10.2519/jospt.2017.7003.
Collapse
|
35
|
Toyomura A, Yokosawa K, Kuriki S. Fluctuation of Lower Limb Movement in the MRI Bore: Different Contributions of the Cortical and Subcortical Locomotor Regions. ADVANCED BIOMEDICAL ENGINEERING 2017. [DOI: 10.14326/abe.6.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University
- Research and Education Center for Brain Science, Hokkaido University
| | - Koichi Yokosawa
- Research and Education Center for Brain Science, Hokkaido University
- Faculty of Health Sciences, Hokkaido University
| | | |
Collapse
|
36
|
Sharp KG, Gramer R, Page SJ, Cramer SC. Increased Brain Sensorimotor Network Activation after Incomplete Spinal Cord Injury. J Neurotrauma 2016; 34:623-631. [PMID: 27528274 DOI: 10.1089/neu.2016.4503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After complete spinal cord injury (SCI), activation during attempted movement of paralyzed limbs is sharply reduced, but after incomplete SCI-the more common form of human injury-it is unknown how attempts to move voluntarily are accompanied by activation of brain motor and sensory networks. Here, we assessed brain activation during ankle movement in subjects with incomplete SCI, among whom voluntary motor function is partially preserved. Adults with incomplete SCI (n = 20) and healthy controls (n = 15) underwent functional magnetic resonance imaging that alternated rest with 0.3-Hz right ankle dorsiflexion. In both subject groups, ankle movement was associated with bilateral activation of primary and secondary sensory and motor areas, with significantly (p < 0.001) greater activation in subjects with SCI within right hemisphere areas, including primary sensorimotor cortex and pre-motor cortex. This result was further evaluated using linear regression analysis with respect to core clinical variables. Poorer locomotor function correlated with larger activation within several right hemisphere areas, including pre- and post-central gyri, possibly reflecting increased movement complexity and effort, whereas longer time post-SCI was associated with larger activation in left post-central gyrus and bilateral supplementary motor area, which may reflect behaviorally useful adaptations. The results indicate that brain adaptations after incomplete SCI differ sharply from complete SCI, are related to functional behavioral status, and evolve with increasing time post-SCI. The results suggest measures that might be useful for understanding and treating incomplete SCI in human subjects.
Collapse
Affiliation(s)
- Kelli G Sharp
- 1 Reeve-Irvine Research Center, University of California , Irvine, Irvine, California.,2 Department of Dance, University of California , Irvine, Irvine, California
| | - Robert Gramer
- 3 Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California , Irvine, Irvine, California
| | - Stephen J Page
- 4 Division of Occupational Therapy, The Ohio State University Medical Center , Columbus, Ohio
| | - Steven C Cramer
- 1 Reeve-Irvine Research Center, University of California , Irvine, Irvine, California.,3 Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California , Irvine, Irvine, California.,5 The Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, Irvine, California
| |
Collapse
|
37
|
Gade V, Allen J, Cole JL, Barrance PJ. Upright Magnetic Resonance Imaging Tasks in the Knee Osteoarthritis Population: Relationships Between Knee Flexion Angle, Self-Reported Pain, and Performance. Arch Phys Med Rehabil 2016; 97:1107-14. [PMID: 26723855 DOI: 10.1016/j.apmr.2015.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To characterize the ability of patients with symptomatic knee osteoarthritis (OA) to perform a weight-bearing activity compatible with upright magnetic resonance imaging (MRI) scanning and how this ability is affected by knee pain symptoms and flexion angles. DESIGN Cross-sectional observational study assessing effects of knee flexion angle, pain level, and study sequence on accuracy and duration of performing a task used in weight-bearing MRI evaluation. Visual feedback of knee position from an MRI compatible sensor was provided. Pain levels were self-reported on a standardized scale. SETTING Simulated MRI setup in a research laboratory. PARTICIPANTS Convenience sample of individuals (N=14; 9 women, 5 men; mean, 69±14y) with symptomatic knee OA. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Averaged absolute and signed angle error from target knee flexion for each minute of trial and duration tolerance (the duration that subjects maintained position within a prescribed error threshold). RESULTS Absolute targeting error increased at longer trial durations (P<.001). Duration tolerance decreased with increasing pain (mean ± SE, no pain: 3min 19s±11s; severe pain: 1min 49s±23s; P=.008). Study sequence affected duration tolerance (first knee: 3min 5s±9.1s; second knee: 2min 19s±9.7s; P=.015). CONCLUSIONS The study provided evidence that weight-bearing MRI evaluations based on imaging protocols in the range of 2 to 3 minutes are compatible with patients reporting mild to moderate knee OA-related pain.
Collapse
Affiliation(s)
- Venkata Gade
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ
| | - Jerome Allen
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ
| | - Jeffrey L Cole
- Kessler Institute for Rehabilitation, West Orange, NJ; Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Peter J Barrance
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ; Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ.
| |
Collapse
|
38
|
Hackney ME, Lee HL, Battisto J, Crosson B, McGregor KM. Context-Dependent Neural Activation: Internally and Externally Guided Rhythmic Lower Limb Movement in Individuals With and Without Neurodegenerative Disease. Front Neurol 2015; 6:251. [PMID: 26696952 PMCID: PMC4667008 DOI: 10.3389/fneur.2015.00251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder that has received considerable attention in allopathic medicine over the past decades. However, it is clear that, to date, pharmacological and surgical interventions do not fully address symptoms of PD and patients’ quality of life. As both an alternative therapy and as an adjuvant to conventional approaches, several types of rhythmic movement (e.g., movement strategies, dance, tandem biking, and Tai Chi) have shown improvements to motor symptoms, lower limb control, and postural stability in people with PD (1–6). However, while these programs are increasing in number, still little is known about the neural mechanisms underlying motor improvements attained with such interventions. Studying limb motor control under task-specific contexts can help determine the mechanisms of rehabilitation effectiveness. Both internally guided (IG) and externally guided (EG) movement strategies have evidence to support their use in rehabilitative programs. However, there appears to be a degree of differentiation in the neural substrates involved in IG vs. EG designs. Because of the potential task-specific benefits of rhythmic training within a rehabilitative context, this report will consider the use of IG and EG movement strategies, and observations produced by functional magnetic resonance imaging and other imaging techniques. This review will present findings from lower limb imaging studies, under IG and EG conditions for populations with and without movement disorders. We will discuss how these studies might inform movement disorders rehabilitation (in the form of rhythmic, music-based movement training) and highlight research gaps. We believe better understanding of lower limb neural activity with respect to PD impairment during rhythmic IG and EG movement will facilitate the development of novel and effective therapeutic approaches to mobility limitations and postural instability.
Collapse
Affiliation(s)
- Madeleine E Hackney
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation , Decatur, GA , USA ; Division of General Medicine and Geriatrics, Department of Medicine, Emory School of Medicine , Atlanta, GA , USA
| | - Ho Lim Lee
- Emory College of Arts and Sciences, Emory University , Atlanta, GA , USA
| | - Jessica Battisto
- Emory College of Arts and Sciences, Emory University , Atlanta, GA , USA
| | - Bruce Crosson
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation , Decatur, GA , USA ; Department of Neurology, Emory School of Medicine , Atlanta, GA , USA
| | - Keith M McGregor
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation , Decatur, GA , USA ; Department of Neurology, Emory School of Medicine , Atlanta, GA , USA
| |
Collapse
|
39
|
Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Kollias S, Michels L. Test-retest reliability of fMRI experiments during robot-assisted active and passive stepping. J Neuroeng Rehabil 2015. [PMID: 26577598 DOI: 10.1186/s12984‐015‐0097‐2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brain activity has been shown to undergo cortical and sub-cortical functional reorganisation over the course of gait rehabilitation in patients suffering from a spinal cord injury or a stroke. These changes however, have not been completely elucidated by neuroimaging to date, mainly due to the scarcity of long-term, follow-up investigations. The magnetic resonance imaging (MRI) compatible stepper MARCOS was specifically developed to enable the investigation of the supraspinal adaptations in paretic patients undergoing gait-rehabilitation in a controlled and repeatable manner. In view of future clinical research, the present study aims at examining the test-retest reliability of functional MRI (fMRI) experiments using MARCOS. METHODS The effect of repeated active and passive stepping movements on brain activity was investigated in 16 healthy participants from fMRI data collected in two separate imaging sessions six weeks apart. Root mean square errors (RMSE) were calculated for the metrics of motor performance. Regional overlap of brain activation between sessions, as well as an intra-class correlation coefficient (ICC) was computed from the single-subject and group activation maps for five regions of interest (ROI). RESULTS Data from eight participants had to be excluded due to excessive head motion. Reliability of motor performance was higher during passive than active movements, as seen in 4.5- to 13-fold lower RMSE for passive movements. In contrast, ICC ranged from 0.48 to 0.72 during passive movements and from 0.77 to 0.85 during active movements. Regional overlap of activations was also higher during active than during passive movements. CONCLUSION These findings imply that an increased variability of motor performance during active movements of healthy participants may be associated with a stable neuronal activation pattern across repeated measurements. In contrast, a stable motor performance during passive movements may be accompanied by a confined reliability of brain activation across repeated measurements.
Collapse
Affiliation(s)
- Lukas Jaeger
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland. .,Clinic of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.
| | - Laura Marchal-Crespo
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Peter Wolf
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Robert Riener
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland. .,Center of MR-Research, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
40
|
Jaeger L, Marchal-Crespo L, Wolf P, Riener R, Kollias S, Michels L. Test-retest reliability of fMRI experiments during robot-assisted active and passive stepping. J Neuroeng Rehabil 2015; 12:102. [PMID: 26577598 PMCID: PMC4647500 DOI: 10.1186/s12984-015-0097-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Brain activity has been shown to undergo cortical and sub-cortical functional reorganisation over the course of gait rehabilitation in patients suffering from a spinal cord injury or a stroke. These changes however, have not been completely elucidated by neuroimaging to date, mainly due to the scarcity of long-term, follow-up investigations. The magnetic resonance imaging (MRI) compatible stepper MARCOS was specifically developed to enable the investigation of the supraspinal adaptations in paretic patients undergoing gait-rehabilitation in a controlled and repeatable manner. In view of future clinical research, the present study aims at examining the test-retest reliability of functional MRI (fMRI) experiments using MARCOS. Methods The effect of repeated active and passive stepping movements on brain activity was investigated in 16 healthy participants from fMRI data collected in two separate imaging sessions six weeks apart. Root mean square errors (RMSE) were calculated for the metrics of motor performance. Regional overlap of brain activation between sessions, as well as an intra-class correlation coefficient (ICC) was computed from the single-subject and group activation maps for five regions of interest (ROI). Results Data from eight participants had to be excluded due to excessive head motion. Reliability of motor performance was higher during passive than active movements, as seen in 4.5- to 13-fold lower RMSE for passive movements. In contrast, ICC ranged from 0.48 to 0.72 during passive movements and from 0.77 to 0.85 during active movements. Regional overlap of activations was also higher during active than during passive movements. Conclusion These findings imply that an increased variability of motor performance during active movements of healthy participants may be associated with a stable neuronal activation pattern across repeated measurements. In contrast, a stable motor performance during passive movements may be accompanied by a confined reliability of brain activation across repeated measurements.
Collapse
Affiliation(s)
- Lukas Jaeger
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland. .,Clinic of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.
| | - Laura Marchal-Crespo
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Peter Wolf
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Robert Riener
- Department of Health Sciences and Technology, Sensory-Motor Systems (SMS) Lab, ETH Zurich, ML G 59, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Medical Faculty, University of Zurich, Zurich, Switzerland.
| | - Spyros Kollias
- Clinic of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.
| | - Lars Michels
- Clinic of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland. .,Center of MR-Research, University Children's Hospital, Zurich, Switzerland.
| |
Collapse
|
41
|
Shanahan CJ, Hodges PW, Wrigley TV, Bennell KL, Farrell MJ. Organisation of the motor cortex differs between people with and without knee osteoarthritis. Arthritis Res Ther 2015; 17:164. [PMID: 26080802 PMCID: PMC4494800 DOI: 10.1186/s13075-015-0676-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/09/2015] [Indexed: 01/23/2023] Open
Abstract
Introduction The aim of this study was to investigate possible differences in the organisation of the motor cortex in people with knee osteoarthritis (OA) and whether there is an association between cortical organisation and accuracy of a motor task. Methods fMRI data were collected while 11 participants with moderate/severe right knee OA (6 male, 69 ± 6 (mean ± SD) years) and seven asymptomatic controls (5 male, 64 ± 6 years) performed three visually guided, variable force, force matching motor tasks involving isolated isometric muscle contractions of: 1) quadriceps (knee), 2) tibialis anterior (ankle) and, 3) finger/thumb flexor (hand) muscles. fMRI data were used to map the loci of peak activation in the motor cortex during the three tasks and to assess whether there were differences in the organisation of the motor cortex between the groups for the three motor tasks. Root mean square of the difference between target and generated forces during muscle contraction quantified task accuracy. Results A 4.1 mm anterior shift in the representation of the knee (p = 0.03) and swap of the relative position of the knee and ankle representations in the motor cortex (p = 0.003) were found in people with knee OA. Poorer performance of the knee task was associated with more anterior placement of motor cortex loci in people with (p = 0.05) and without (p = 0.02) knee OA. Conclusions Differences in the organisation of the motor cortex in knee OA was demonstrated in relation to performance of knee and ankle motor tasks and was related to quality of performance of the knee motor task. These results highlight the possible mechanistic link between cortical changes and modified motor behavior in people with knee OA.
Collapse
Affiliation(s)
- Camille J Shanahan
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia. .,The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| | - Paul W Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, Brisbane, Australia.
| | - Tim V Wrigley
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia.
| | - Kim L Bennell
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia.
| | - Michael J Farrell
- The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC, 3052, Australia. .,Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
42
|
Lisi G, Noda T, Morimoto J. Decoding the ERD/ERS: influence of afferent input induced by a leg assistive robot. Front Syst Neurosci 2014; 8:85. [PMID: 24860444 PMCID: PMC4030155 DOI: 10.3389/fnsys.2014.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/22/2014] [Indexed: 11/13/2022] Open
Abstract
This paper investigates the influence of the leg afferent input, induced by a leg assistive robot, on the decoding performance of a BMI system. Specifically, it focuses on a decoder based on the event-related (de)synchronization (ERD/ERS) of the sensorimotor area. The EEG experiment, performed with healthy subjects, is structured as a 3 × 2 factorial design, consisting of two factors: "finger tapping task" and "leg condition." The former is divided into three levels (BMI classes), being left hand finger tapping, right hand finger tapping and no movement (Idle); while the latter is composed by two levels: leg perturbed (Pert) and leg not perturbed (NoPert). Specifically, the subjects' leg was periodically perturbed by an assistive robot in 5 out of 10 sessions of the experiment and not moved in the remaining sessions. The aim of this study is to verify that the decoding performance of the finger tapping task is comparable between the two conditions NoPert and Pert. Accordingly, a classifier is trained to output the class of the finger tapping, given as input the features associated with the ERD/ERS. Individually for each subject, the decoding performance is statistically compared between the NoPert and Pert conditions. Results show that the decoding performance is notably above chance, for all the subjects, under both conditions. Moreover, the statistical comparison do not highlight a significant difference between NoPert and Pert in any subject, which is confirmed by feature visualization.
Collapse
Affiliation(s)
- Giuseppe Lisi
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, ATR Kyoto, Japan ; Mathematical Informatics Laboratory, Department of Information Science, Nara Institute of Science and Technology Nara, Japan
| | - Tomoyuki Noda
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, ATR Kyoto, Japan
| | - Jun Morimoto
- ATR Computational Neuroscience Laboratories, Department of Brain Robot Interface, ATR Kyoto, Japan
| |
Collapse
|
43
|
Wenzel U, Taubert M, Ragert P, Krug J, Villringer A. Functional and structural correlates of motor speed in the cerebellar anterior lobe. PLoS One 2014; 9:e96871. [PMID: 24800742 PMCID: PMC4011948 DOI: 10.1371/journal.pone.0096871] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022] Open
Abstract
In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows "power athletes" to perform a simple foot movement significantly faster than "endurance athletes". We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 "power athletes" requiring high speed foot movements (sprinters, jumpers, throwers) and 16 endurance athletes (distance runners) which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI) was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry). We tested maximum movement velocity of plantarflexion (PF-Vmax) and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Uwe Wenzel
- Institute of Training Science and General Kinesiology, University of Leipzig, Leipzig, Germany
| | - Marco Taubert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jürgen Krug
- Institute of Training Science and General Kinesiology, University of Leipzig, Leipzig, Germany
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
44
|
Martinez M, Villagra F, Loayza F, Vidorreta M, Arrondo G, Luis E, Diaz J, Echeverria M, Fernandez-Seara MA, Pastor MA. MRI-compatible device for examining brain activation related to stepping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1044-1053. [PMID: 24770910 DOI: 10.1109/tmi.2014.2301493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Repetitive and alternating lower limb movements are a specific component of human gait. Due to technical challenges, the neural mechanisms underlying such movements have not been previously studied with functional magnetic resonance imaging. In this study, we present a novel treadmill device employed to investigate the kinematics and the brain activation patterns involved in alternating and repetitive movements of the lower limbs. Once inside the scanner, 19 healthy subjects were guided by two visual cues and instructed to perform a motor task which involved repetitive and alternating movements of both lower limbs while selecting their individual comfortable amplitude on the treadmill. The device facilitated the performance of coordinated stepping while registering the concurrent lower-limb displacements, which allowed us to quantify some movement primary kinematic features such as amplitude and frequency. During stepping, significant blood oxygen level dependent signal increases were observed bilaterally in primary and secondary sensorimotor cortex, the supplementary motor area, premotor cortex, prefrontal cortex, superior and inferior parietal lobules, putamen and cerebellum, regions that are known to be involved in lower limb motor control. Brain activations related to individual adjustments during motor performance were identified in a right lateralized network including striatal, extrastriatal, and fronto-parietal areas.
Collapse
|
45
|
Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study. Exp Brain Res 2014; 232:2785-95. [PMID: 24770862 DOI: 10.1007/s00221-014-3963-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
Movements that involve simultaneous coordination of muscles of the right and left lower limbs form a large part of our daily activities (e.g., standing, rising from a chair). This study used functional magnetic resonance imaging to determine which brain areas are used to control coordinated lower-limb movements, specifically comparing regions that are activated during bilateral exertions to those performed unilaterally. Plantarflexor exertions were produced at a target force level of 15% of the participants' maximum voluntary contraction, in three conditions, with their right (dominant) foot, with their left foot, and with both feet simultaneously. A voxel-wise analysis determined which regions were active in the bilateral, but not in the unilateral conditions. In addition, a region of interest (ROI) approach was used to determine differences in the percent signal change (PSC) between the conditions within motor areas. The voxel-wise analysis showed a large number of regions (cortical, subcortical, and cerebellar) that were active during the bilateral condition, but not during either unilateral condition. The ROI analysis showed several motor regions with higher activation in the bilateral condition than unilateral conditions; further, the magnitude of bilateral PSC was more than the sum of the two unilateral conditions in several of these regions. We postulate that the greater levels of activation during bilateral exertions may arise from interhemispheric inhibition, as well as from the greater need for motor coordination (e.g., synchronizing the two limbs to activate together) and visual processing (e.g., monitoring of two visual stimuli).
Collapse
|
46
|
Nebel MB, Joel SE, Muschelli J, Barber AD, Caffo BS, Pekar JJ, Mostofsky SH. Disruption of functional organization within the primary motor cortex in children with autism. Hum Brain Mapp 2014; 35:567-80. [PMID: 23118015 PMCID: PMC3864146 DOI: 10.1002/hbm.22188] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 07/02/2012] [Accepted: 08/03/2012] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that motor impairments are prevalent in autism spectrum disorder (ASD), relate to the social and communicative deficits at the core of the diagnosis and may reflect abnormal connectivity within brain networks underlying motor control and learning. Parcellation of resting-state functional connectivity data using spectral clustering approaches has been shown to be an effective means of visualizing functional organization within the brain but has most commonly been applied to explorations of normal brain function. This article presents a parcellation of a key area of the motor network, the primary motor cortex (M1), a key area of the motor control network, in adults, typically developing (TD) children and children with ASD and introduces methods for selecting the number of parcels, matching parcels across groups and testing group differences. The parcellation is based solely on patterns of connectivity between individual M1 voxels and all voxels outside of M1, and within all groups, a gross dorsomedial to ventrolateral organization emerged within M1 which was left-right symmetric. Although this gross organizational scheme was present in both groups of children, statistically significant group differences in the size and segregation of M1 parcels within regions of the motor homunculus corresponding to the upper and lower limbs were observed. Qualitative comparison of the M1 parcellation for children with ASD with that of younger and older TD children suggests that these organizational differences, with a lack of differentiation between lower limb/trunk regions and upper limb/hand regions, may be due, at least in part, to a delay in functional specialization within the motor cortex.
Collapse
Affiliation(s)
- Mary Beth Nebel
- Laboratory for Neurocognitive and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang M, Davies TC, Zhang Y, Xie S. Reviewing effectiveness of ankle assessment techniques for use in robot-assisted therapy. ACTA ACUST UNITED AC 2014; 51:517-34. [DOI: 10.1682/jrrd.2013.03.0066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 12/13/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Yanxin Zhang
- Sport and Exercise Science, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
48
|
Abeln V, Harig A, Knicker A, Vogt T, Schneider S. Brain-imaging during an isometric leg extension task at graded intensities. Front Physiol 2013; 4:296. [PMID: 24151468 PMCID: PMC3799230 DOI: 10.3389/fphys.2013.00296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/27/2013] [Indexed: 11/26/2022] Open
Abstract
Imaging the brain during complex and intensive movements is challenging due to the susceptibility of brain-imaging methods for motion and myogenic artifacts. A few studies measured brain activity during either single-joint or low-intensity exercises; however, the cortical activation state during larger movements with increases up to maximal intensity has barely been investigated so far. Eleven right-handed volunteers (22-45 years in age) performed isometric leg extensions with their right leg at 20, 40, 60, 80, and 100% of their maximal voluntary contraction. Contractions were hold for 20 s respectively. Electroencephalographic (EEG) and electromyographic (EMG) activity was recorded. Standardized low-resolution brain electromagnetic tomography (sLORETA) was used to localize the cortical current density within the premotor (PMC), primary motor (M1), primary somatosensory (S1) and somatosensory association cortex (SAC). ANOVA was used for repeated measures for comparison of intensities and between the left and right hemispheres. The quality of the EEG signal was satisfying up to 80% intensity. At 100% half of the participants were not able to keep their neck and face muscles relaxed, leading to myogenic artifacts. Higher contralateral vs. ipsilateral hemispheric activity was found for the S1, SAC and, PMC. M1 possessed higher ipsilateral activity. The highest activity was localized in the M1, followed by S1, PMC, and SAC. EMG activity and cortical current density within the M1 increased with exercise intensity. EEG recordings during bigger movements up to submaximal intensity (80%) are possible, but maximal intensities are still hard to investigate when subjects contracted their neck and face muscles at the same time. Isometric contractions mainly involve the M1, whereas the S1, PMC, and SAC seem not to be involved in the force output. Limitations and recommendations for future studies are discussed.
Collapse
Affiliation(s)
- Vera Abeln
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Alexandra Harig
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Axel Knicker
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Tobias Vogt
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Stefan Schneider
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
49
|
Johannsen L, Li KZH, Chechlacz M, Bibi A, Kourtzi Z, Wing AM. Functional neuroimaging of the interference between working memory and the control of periodic ankle movement timing. Neuropsychologia 2013; 51:2142-53. [PMID: 23876923 PMCID: PMC4410789 DOI: 10.1016/j.neuropsychologia.2013.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 07/07/2013] [Accepted: 07/12/2013] [Indexed: 11/15/2022]
Abstract
Background Limited information processing capacity in the brain necessitates task prioritisation and subsequent adaptive behavioural strategies for the dual-task coordination of locomotion with severe concurrent cognitive loading. Commonly observed strategies include prioritisation of gait at the cost of reduced performance in the cognitive task. Alternatively alterations of gait parameters such as gait velocity have been reported presumably to free processing capacity for the benefit of performance in the cognitive task. The aim of this study was to describe the neuroanatomical correlates of adaptive behavioural strategies in cognitive-motor dual-tasking when the competition for information processing capacity is severe and may exceed individuals’ capacity limitations. Methods During an fMRI experiment, 12 young adults performed slow continuous, auditorily paced bilateral anti-phase ankle dorsi-plantarflexion movements as an element of normal gait at .5 Hz in single and dual task modes. The secondary task involved a visual, alphabetic N-back task with presentation rate jittered around .7 Hz. The N-back task, which randomly occurred in 0-back or 2-back form, was modified into a silent counting task to avoid confounding motor responses at the cost of slightly increasing the task′s general coordinative complexity. Participants’ ankle movements were recorded using an optoelectronic motion capture system to derive kinematic parameters representing the stability of the movement timing and synchronization. Participants were instructed to perform both tasks as accurately as possible. Results Increased processing complexity in the dual-task 2-back condition led to significant changes in movement parameters such as the average inter-response interval, the coefficient of variation of absolute asynchrony and the standard deviation of peak angular velocity. A regions-of-interest analysis indicated correlations between these parameters and local activations within the left inferior frontal gyrus (IFG) such that lower IFG activations coincided with performance decrements. Conclusions Dual-task interference effects show that the production of periodically timed ankle movements, taken as modelling elements of the normal gait cycle, draws on higher-level cognitive resources involved in working memory. The interference effect predominantly concerns the timing accuracy of the ankle movements. Reduced activations within regions of the left IFG, and in some respect also within the superior parietal lobule, were identified as one factor affecting the timing of periodic ankle movements resulting in involuntary ‘hastening’ during severe dual-task working memory load. This ‘hastening’ phenomenon may be an expression of re-automated locomotor control when higher-order cognitive processing capacity can no longer be allocated to the movements due to the demands of the cognitive task. The results of our study also propose the left IFG as a target region to improve performance during dual-task walking by techniques for non-invasive brain stimulation. Neural correlates of involuntary ‘hastening’ of movements during cognitive-motor dual-tasking. Role of left inferior frontal gyrus and left superior parietal lobe in the temporal regulation of dual-task bilateral movements. Dissociation between left-hemisphere parietal involvement in external timing of bilateral movements and right hemisphere parietal involvement in interlimb coordination.
Collapse
Affiliation(s)
- Leif Johannsen
- Department of Sport and Health Sciences, Technische Universität München, Munich, Germany; School of Psychology, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Effects of patellar taping on brain activity during knee joint proprioception tests using functional magnetic resonance imaging. Phys Ther 2012; 92:821-30. [PMID: 22282771 PMCID: PMC3367140 DOI: 10.2522/ptj.20110209] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Patellar taping is a common treatment modality for physical therapists managing patellofemoral pain. However, the mechanisms of action remain unclear, with much debate as to whether its efficacy is due to a change in patellar alignment or an alteration in sensory input. OBJECTIVE The purpose of this study was to investigate the sensory input hypothesis using functional magnetic resonance imaging when taping was applied to the knee joint during a proprioception task. DESIGN This was an observational study with patellar taping intervention. METHODS Eight male volunteers who were healthy and right-leg dominant participated in a motor block design study. Each participant performed 2 right knee extension repetitive movement tasks: one simple and one proprioceptive. These tasks were performed with and without patellar taping and were auditorally paced for 400 seconds at 72 beats/min (1.2 Hz). RESULTS The proprioception task without patellar taping caused a positive blood oxygenation level-dependant (BOLD) response bilaterally in the medial supplementary motor area, the cingulate motor area, the basal ganglion, and the thalamus and medial primary sensory motor cortex. For the proprioception task with patellar taping, there was a decreased BOLD response in these regions. In the lateral primary sensory cortex, there was a negative BOLD response with less activity for the proprioception task with taping. Limitations This study may have been limited by the small sample size, a possible learning effect due to a nonrandom order of tasks, and use of a single-joint knee extension task. CONCLUSIONS This study demonstrated that patellar taping modulates brain activity in several areas of the brain during a proprioception knee movement task.
Collapse
|