1
|
Li S, Xu X, Li C, Xu Z, Wu K, Ye Q, Zhang Y, Jiang X, Cang C, Tian C, Wen J. In vivo labeling and quantitative imaging of neuronal populations using MRI. Neuroimage 2023; 281:120374. [PMID: 37729795 DOI: 10.1016/j.neuroimage.2023.120374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The study of neural circuits, which underlies perception, cognition, emotion, and behavior, is essential for understanding the mammalian brain, a complex organ consisting of billions of neurons. To study the structure and function of the brain, in vivo neuronal labeling and imaging techniques are crucial as they provide true physiological information that ex vivo methods cannot offer. In this paper, we present a new strategy for in vivo neuronal labeling and quantification using MRI. We demonstrate the efficacy of this method by delivering the oatp1a1 gene to the target neurons using rAAV2-retro virus. OATP1A1 protein expression on the neuronal membrane increased the uptake of a specific MRI contrast agent (Gd-EOB-DTPA), leading to hyperintense signals on T1W images of labeled neuronal populations. We also used dynamic contrast enhancement-based methods to obtain quantitative information on labeled neuronal populations in vivo.
Collapse
Affiliation(s)
- Shana Li
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiang Xu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Canjun Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ziyan Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ke Wu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qiong Ye
- Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yan Zhang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chunlei Cang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Changlin Tian
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Jie Wen
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
In vivo multi-parametric manganese-enhanced MRI for detecting amyloid plaques in rodent models of Alzheimer's disease. Sci Rep 2021; 11:12419. [PMID: 34127752 PMCID: PMC8203664 DOI: 10.1038/s41598-021-91899-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloid plaques are a hallmark of Alzheimer's disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.
Collapse
|
3
|
Yang J, Gao J, Han D, Li Q, Liao C, Li J, Wang R, Luo Y. Hippocampal changes in inflammasomes, apoptosis, and MEMRI after radiation-induced brain injury in juvenile rats. Radiat Oncol 2020; 15:78. [PMID: 32276638 PMCID: PMC7147014 DOI: 10.1186/s13014-020-01525-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE The aim of this study was to characterize changes in hippocampal inflammasomes, pyroptosis and apoptosis in juvenile rats after brain irradiation and to assess whether manganese-enhanced magnetic resonance imaging (MEMRI) reflected those changes. MATERIALS AND METHODS Four-week-old male Sprague-Dawley rats received a whole-brain radiation dose of 15 Gy or 25 Gy. Hippocampal inflammasomes and apoptosis were measured using Western blot analysis at 4 days and 8 weeks after irradiation. MEMRI and magnetic resonance spectroscopy (MRS) were performed at the same time points. RESULTS Neither the 15 Gy nor 25 Gy group showed changes in the expression of inflammasome proteins absent in melanoma 2 (AIM2), gasdermin-D (GSDMD), nucleotide oligomerization domain-like receptor protein 1 (NLRP1) and NLRP3 at 4 days or 8 weeks after radiation injury (P > 0.05). Furthermore, the expression levels of the inflammatory cytokines interleukin-1β (IL-1β) and IL-18 were not significantly different among the groups (P > 0.05). The expression levels of cleaved caspase-1 and -3, indicators of apoptosis, were higher in the irradiation groups than in the control group at 4 days post irradiation, especially for caspase-3 (P < 0.05), but this increase was slightly attenuated at 8 weeks after radiation injury. Four days post irradiation, the MEMRI signal intensity (SI) in the irradiation groups, especially the 25 Gy group, was significantly lower than that in the control group (P < 0.05). Eight weeks after radiation injury, the SI of the 15 Gy group and the 25 Gy group recovered by different degrees, but the SI of the 25 Gy group was still significantly lower than that of the control group (P < 0.05). On day 4 post irradiation, the metabolic ratio of N-acetylaspartate (NAA) to creatine (Cr) in the 15 Gy group and 25 Gy group was significantly lower than that in the control group (P < 0.05). The NAA/Cr ratio in the 15 Gy group recovered to control levels at 8 weeks (P > 0.05), but the NAA/Cr ratio in the 25 Gy group remained significantly lower than that in the control group (P < 0.05). CONCLUSION Radiation-induced brain injury is dose-dependently associated with apoptosis but not inflammasomes or pyroptosis, and the change in apoptosis can be detected by MEMRI.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China. .,Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, PR China.
| | - Jingyan Gao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China
| | - Dan Han
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, PR China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China
| | - Chengde Liao
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China
| | - Jindan Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China
| | - Rui Wang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China
| | - Yueyuan Luo
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, No. 519 Kunzhou Road, Xishan District, Kunming, 650118, Yunnan, P.R. China
| |
Collapse
|
4
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
5
|
Xiao Z, Tang Z, Wu L, Feng X, Sun X, Tang W, Wang J, Jin L, Wang R. Manganese-enhanced magnetic resonance imaging in the whole visual pathway: chemical identification and neurotoxic changes. Acta Radiol 2019; 60:1653-1662. [PMID: 30922072 DOI: 10.1177/0284185119840227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lingjie Wu
- Department of Otolaryngology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital of Shanghai Medical School, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Key Laboratory of Myopia, NHFPC (Fudan University), and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, PR China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| | - Lixin Jin
- Siemens Ltd., Healthcare Sector, Shanghai, PR China
| | - Rong Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, PR China
| |
Collapse
|
6
|
Deng W, Faiq MA, Liu C, Adi V, Chan KC. Applications of Manganese-Enhanced Magnetic Resonance Imaging in Ophthalmology and Visual Neuroscience. Front Neural Circuits 2019; 13:35. [PMID: 31156399 PMCID: PMC6530364 DOI: 10.3389/fncir.2019.00035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Understanding the mechanisms of vision in health and disease requires knowledge of the anatomy and physiology of the eye and the neural pathways relevant to visual perception. As such, development of imaging techniques for the visual system is crucial for unveiling the neural basis of visual function or impairment. Magnetic resonance imaging (MRI) offers non-invasive probing of the structure and function of the neural circuits without depth limitation, and can help identify abnormalities in brain tissues in vivo. Among the advanced MRI techniques, manganese-enhanced MRI (MEMRI) involves the use of active manganese contrast agents that positively enhance brain tissue signals in T1-weighted imaging with respect to the levels of connectivity and activity. Depending on the routes of administration, accumulation of manganese ions in the eye and the visual pathways can be attributed to systemic distribution or their local transport across axons in an anterograde fashion, entering the neurons through voltage-gated calcium channels. The use of the paramagnetic manganese contrast in MRI has a wide range of applications in the visual system from imaging neurodevelopment to assessing and monitoring neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this review, we present four major domains of scientific inquiry where MEMRI can be put to imperative use — deciphering neuroarchitecture, tracing neuronal tracts, detecting neuronal activity, and identifying or differentiating glial activity. We deliberate upon each category studies that have successfully employed MEMRI to examine the visual system, including the delivery protocols, spatiotemporal characteristics, and biophysical interpretation. Based on this literature, we have identified some critical challenges in the field in terms of toxicity, and sensitivity and specificity of manganese enhancement. We also discuss the pitfalls and alternatives of MEMRI which will provide new avenues to explore in the future.
Collapse
Affiliation(s)
- Wenyu Deng
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Muneeb A Faiq
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Crystal Liu
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Vishnu Adi
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Kevin C Chan
- NYU Langone Eye Center, Department of Ophthalmology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Department of Radiology, NYU School of Medicine, NYU Langone Health, New York University, New York, NY, United States.,Center for Neural Science, Faculty of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
7
|
Chan KC, Zhou IY, Liu SS, van der Merwe Y, Fan SJ, Hung VK, Chung SK, Wu WT, So KF, Wu EX. Longitudinal Assessments of Normal and Perilesional Tissues in Focal Brain Ischemia and Partial Optic Nerve Injury with Manganese-enhanced MRI. Sci Rep 2017; 7:43124. [PMID: 28230106 PMCID: PMC5322351 DOI: 10.1038/srep43124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023] Open
Abstract
Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days. Intravitreal Mn administration to healthy rodents not only allowed tracing of primary visual pathways, but also enhanced the hippocampus and medial amygdala within a day, whereas partial transection of the optic nerve led to MRI detection of degrading anterograde Mn transport at the primary injury site and the perilesional tissues secondarily over 6 weeks. Taken together, our results indicate the different Mn transport dynamics across widespread projections in normal and diseased brains. Particularly, perilesional brain tissues may attract abnormal Mn accumulation and gradually reduce anterograde Mn transport via specific Mn entry routes.
Collapse
Affiliation(s)
- Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, New York, United States.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Iris Y Zhou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
| | - Stanley S Liu
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yolandi van der Merwe
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shu-Juan Fan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Victor K Hung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sookja K Chung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wu-Tian Wu
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kwok-Fai So
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,Department of Ophthalmology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.,School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
8
|
Glucose and Intermediary Metabolism and Astrocyte–Neuron Interactions Following Neonatal Hypoxia–Ischemia in Rat. Neurochem Res 2016; 42:115-132. [DOI: 10.1007/s11064-016-2149-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 11/27/2022]
|
9
|
Jeon TY, Kim JH, Im GH, Kim JH, Yang J, Yoo SY, Lee JH. Hollow manganese oxide nanoparticle-enhanced MRI of hypoxic-ischaemic brain injury in the neonatal rat. Br J Radiol 2016; 89:20150806. [PMID: 27653465 DOI: 10.1259/bjr.20150806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To determine the utility of hollow manganese oxide nanoparticle (HMON)-enhanced MRI in depicting and monitoring apoptotic area following hypoxic-ischaemic injury in a neonatal rat brain and to evaluate the longitudinal evolution of hypoxic-ischaemic brain injury (HII) up to 21 days. METHODS The institutional animal care and use committee approval was obtained. The Rice-Vannucci model of HII was used in 7-day-old rat pups (n = 17). MRI was performed 1, 3, 7, 14 and 21 days after HII with intraperitoneal injection of HMON. Relative contrast values in the injured hemisphere and mean apparent diffusion coefficient values were calculated at each time point. Apoptosis and reactive astrogliosis were detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labelling (TUNEL) and glial fibrillary acidic protein staining, and the distribution and intensity of immunohistochemical staining were directly compared with those of HMON enhancement on MRI. RESULTS The dorsolateral thalamus, hippocampus and remaining cortex of the injured hemisphere showed HMON enhancement from 3 to 21 days after HII. The mean relative contrast values in the dorsolateral thalamus showed an increase from a negative value at 1 day to 16.5 ± 4.8% at 21 days. The apoptotic cells and reactive astrocytes were observed on immunohistochemical staining from 1 to 21 days after HII. The accumulation of apoptotic cells regionally matched with the areas of HMON enhancement, while that of reactive astrocytes did not. CONCLUSION The areas of HMON enhancement showed best spatial agreement with those of apoptosis on TUNEL staining. Both HMON enhancement and TUNEL-positive cells were observed up to 21 days after HII. Advances in knowledge: The strength of our study is the visualization of apoptotic area in vivo using HMON-enhanced MRI, and we also showed that HII has a prolonged evolution lasting for several weeks.
Collapse
Affiliation(s)
- Tae Yeon Jeon
- 1 Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Hye Kim
- 1 Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Geun Ho Im
- 2 Department of Radiology and Center for Molecular and Cellular Imaging, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Hun Kim
- 2 Department of Radiology and Center for Molecular and Cellular Imaging, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jehoon Yang
- 2 Department of Radiology and Center for Molecular and Cellular Imaging, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So-Young Yoo
- 1 Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Hee Lee
- 2 Department of Radiology and Center for Molecular and Cellular Imaging, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Olson KE, Bade AN, Schutt CR, Dong J, Shandler SJ, Boska MD, Mosley RL, Gendelman HE, Liu Y. Manganese-Enhanced Magnetic Resonance Imaging for Detection of Vasoactive Intestinal Peptide Receptor 2 Agonist Therapy in a Model of Parkinson's Disease. Neurotherapeutics 2016; 13:635-46. [PMID: 27329163 PMCID: PMC4965412 DOI: 10.1007/s13311-016-0449-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroprotective immunity is defined by transformation of T-cell polarity for therapeutic gain. For neurodegenerative disorders and specifically for Parkinson's disease (PD), granulocyte-macrophage colony stimulating factor or vasoactive intestinal peptide receptor 2 (VIPR2) agonists elicit robust anti-inflammatory microglial responses leading to neuronal sparing in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. While neurotherapeutic potential was demonstrated for PD, there remain inherent limitations in translating these inventions from the laboratory to patients. One obstacle in translating such novel neurotherapeutics centers on the availability of suitable noninvasive methods to track disease progression and therapeutic efficacy. To this end, we developed manganese-enhanced magnetic resonance imaging (MEMRI) assays as a way to track a linkage between glial activation and VIPR2 agonist (LBT-3627)-induced neuroprotective immunity for MPTP-induced nigrostriatal degeneration. Notably, LBT-3627-treated, MPTP-intoxicated mice show reduced MEMRI brain signal intensities. These changes paralleled reduced astrogliosis and resulted in sparing of nigral tyrosine hydroxylase neurons. Most importantly, the data suggest that MEMRI can be developed as a biomarker tool to monitor neurotherapeutic responses that are relevant to common neurodegenerative disorders used to improve disease outcomes.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Charles R Schutt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingdong Dong
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Michael D Boska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
11
|
Hao XZ, Yin LK, Zhang XX, Tian JQ, Li CC, Feng XY, Jiang M, Yang YM. Combining systemic and stereotactic MEMRI to detect the correlation between gliosis and neuronal connective pathway at the chronic stage after stroke. J Neuroinflammation 2016; 13:156. [PMID: 27316350 PMCID: PMC4912752 DOI: 10.1186/s12974-016-0622-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/10/2016] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The early dysfunction and subsequent recovery after stroke, characterized by the destruction and remodeling of connective pathways between cortex and subcortical regions, is associated with neuroinflammation. As major components of the inflammatory process, reactive astrocytes have double-edged effects on pathological progression. The temporal patterns of astrocyte and neuronal pathway activity can be revealed by systemic and stereotactic manganese-enhanced magnetic resonance imaging (MEMRI), respectively. In the present study, we aimed to detect an association between astrocyte activity and recovery of neuronal connective pathways by combining systemic with stereotactic MEMRI. METHODS Fifty adult rats, divided into two groups, underwent a 60-min occlusion of the middle cerebral artery. The groups were given either a systemic administration or stereotactic injection of MnCl2 at 1, 3, 7, and 14 days after stroke and underwent MRI 4 and 2 days later, respectively. Immunofluorescence (IF) of group 1 was conducted to corroborate the results. Repetitive behavioral testing was also performed with all rats at 1, 3, 7, and 14 days to obtain a functional score. RESULTS Ring- or crescent-shaped enhancements formed in the striatal peri-infarct regions (STR) at 11 and 18 days. This was concurrent with the activity of glial fibrillary acidic protein (GFAP)-positive astrocytes, which mainly localized at the peri-infarct region and significantly increased in number at 11 and 18 days after stroke. Microglia/macrophages, detected by IF, mainly localized in the lesion core, rather than in the region of enhancement. The ipsilateral substantia nigra (SN) revealed Mn-related signal enhancement reduction and subsequent signs of the recovery process at 3 to 5 days and 9 to 16 days, respectively. Behavioral testing showed that sensorimotor functions were initially disturbed, but subsequently recovered at 7 and 14 days. CONCLUSIONS We found a positive temporal correlation between astrogliosis and the recovery of neuronal connective pathways at the chronic stage by using the in vivo method of MEMRI. Our results highlighted the potential contribution of astrocytes to the neuronal recovery of these connective pathways.
Collapse
Affiliation(s)
- Xiao-zhu Hao
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Le-kang Yin
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xiao-xue Zhang
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Jia-qi Tian
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Chan-chan Li
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xiao-yuan Feng
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Min Jiang
- />Institutes of Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032 China
| | - Yan-mei Yang
- />Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
12
|
Huang HZ, Wen XH, Liu H. Sex differences in brain MRI abnormalities and neurodevelopmental outcomes in a rat model of neonatal hypoxia-ischemia. Int J Neurosci 2015; 126:647-57. [DOI: 10.3109/00207454.2015.1047016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Malheiros JM, Paiva FF, Longo BM, Hamani C, Covolan L. Manganese-Enhanced MRI: Biological Applications in Neuroscience. Front Neurol 2015. [PMID: 26217304 PMCID: PMC4498388 DOI: 10.3389/fneur.2015.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnetic resonance imaging (MRI) is an excellent non-invasive tool to investigate biological systems. The administration of the paramagnetic divalent ion manganese (Mn2+) enhances MRI contrast in vivo. Due to similarities between Mn2+ and calcium (Ca2+), the premise of manganese-enhanced MRI (MEMRI) is that the former may enter neurons and other excitable cells through voltage-gated Ca2+ channels. As such, MEMRI has been used to trace neuronal pathways, define morphological boundaries, and study connectivity in morphological and functional imaging studies. In this article, we provide a brief overview of MEMRI and discuss recently published data to illustrate the usefulness of this method, particularly in animal models.
Collapse
Affiliation(s)
- Jackeline Moraes Malheiros
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil ; Centro de Imagens e Espectroscopia In vivo por Ressonância Magnética, Institute of Physics of São Carlos, Universidade de São Paulo , São Carlos , Brazil
| | - Fernando Fernandes Paiva
- Centro de Imagens e Espectroscopia In vivo por Ressonância Magnética, Institute of Physics of São Carlos, Universidade de São Paulo , São Carlos , Brazil
| | - Beatriz Monteiro Longo
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| | - Clement Hamani
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil ; Research Imaging Centre, Centre for Addiction and Mental Health , Toronto, ON , Canada ; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute , Toronto, ON , Canada
| | - Luciene Covolan
- Department of Physiology, Universidade Federal de São Paulo - UNIFESP , São Paulo , Brazil
| |
Collapse
|
14
|
van de Looij Y, Dean JM, Gunn AJ, Hüppi PS, Sizonenko SV. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int J Dev Neurosci 2015; 45:29-38. [PMID: 25818582 DOI: 10.1016/j.ijdevneu.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, favoring (1)H-MRS with quantification of up to 18 metabolites in the brain and short echo time (TE) MRI sequences including phase and susceptibility imaging. For longer TE techniques including diffusion imaging modalities, the benefits of higher B0 have not been clearly established. Nevertheless, progress has also been made in new advanced diffusion models that have been developed to enhance the accuracy and specificity of the derived diffusion parameters. In this review, we will describe the latest developments in MRS and MRI techniques, including high-field (1)H-MRS, phase and susceptibility imaging, and diffusion imaging, and discuss their application in the study of cerebral development and perinatal brain injury.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Petra S Hüppi
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Jakola AS, Jørgensen A, Selbekk T, Michler RP, Solheim O, Torp SH, Sagberg LM, Aadahl P, Unsgård G. Animal study assessing safety of an acoustic coupling fluid that holds the potential to avoid surgically induced artifacts in 3D ultrasound guided operations. BMC Med Imaging 2014; 14:11. [PMID: 24666721 PMCID: PMC3977940 DOI: 10.1186/1471-2342-14-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/19/2014] [Indexed: 11/18/2022] Open
Abstract
Background Use of ultrasound in brain tumor surgery is common. The difference in attenuation between brain and isotonic saline may cause artifacts that degrade the ultrasound images, potentially affecting resection grades and safety. Our research group has developed an acoustic coupling fluid that attenuates ultrasound energy like the normal brain. We aimed to test in animals if the newly developed acoustic coupling fluid may have harmful effects. Methods Eight rats were included for intraparenchymal injection into the brain, and if no adverse reactions were detected, 6 pigs were to be included with injection of the coupling fluid into the subarachnoid space. Animal behavior, EEG registrations, histopathology and immunohistochemistry were used in assessment. Results In total, 14 animals were included, 8 rats and 6 pigs. We did not detect any clinical adverse effects, seizure activity on EEG or histopathological signs of tissue damage. Conclusion The novel acoustic coupling fluid intended for brain tumor surgery appears safe in rats and pigs under the tested circumstances.
Collapse
Affiliation(s)
- Asgeir S Jakola
- Department of Neurosurgery, St,Olavs University Hospital, Trondheim, N-7006, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hattori S, Hagihara H, Ohira K, Aoki I, Saga T, Suhara T, Higuchi M, Miyakawa T. In vivo evaluation of cellular activity in αCaMKII heterozygous knockout mice using manganese-enhanced magnetic resonance imaging (MEMRI). Front Integr Neurosci 2013; 7:76. [PMID: 24273499 PMCID: PMC3822296 DOI: 10.3389/fnint.2013.00076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/16/2013] [Indexed: 11/13/2022] Open
Abstract
The alpha-calcium/calmodulin-dependent protein kinase II (αCaMKII) is a serine/threonine protein kinase predominantly expressed in the forebrain, especially in the postsynaptic density, and plays a key role in synaptic plasticity, learning and memory. αCaMKII heterozygous knockout (HKO) mice exhibit abnormal emotional and aggressive behaviors and cognitive impairments and have been proposed as an animal model of psychiatric illness. Our previous studies have shown that the expression of immediate early genes (IEGs) after exposure to electric foot shock or after performing a working memory task is decreased in the hippocampus, central amygdala, and medial prefrontal cortex of mutant mice. These changes could be caused by disturbances in neuronal signal transduction; however, it is still unclear whether neuronal activity is reduced in these regions. In this study, we performed in vivo manganese-enhanced magnetic resonance imaging (MEMRI) to assess the regional cellular activity in the brains of αCaMKII HKO mice. The signal intensity of MEMRI 24 h after systemic MnCl2 administration reflects functional increases of Mn(2+) influx into neurons and glia via transport mechanisms, such as voltage-gated and/or ligand-gated Ca(2+) channels. αCaMKII HKO mice demonstrated a low signal intensity of MEMRI in the dentate gyrus (DG), in which almost all neurons were at immature status at the molecular, morphological, and electrophysiological levels. In contrast, analysis of the signal intensity in these mutant mice revealed increased activity in the CA1 area of the hippocampus, a region crucial for cognitive function. The signal intensity was also increased in the bed nucleus of the stria terminalis (BNST), which is involved in anxiety. These changes in the mutant mice may be responsible for the observed dysregulated behaviors, such as cognitive deficit and abnormal anxiety-like behavior, which are similar to symptoms seen in human psychiatric disorders.
Collapse
Affiliation(s)
- Satoko Hattori
- 1Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan ; 2Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Aichi, Japan ; 3Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST) Kawaguchi, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mesenchymal stem cells migration homing and tracking. Stem Cells Int 2013; 2013:130763. [PMID: 24194766 PMCID: PMC3806396 DOI: 10.1155/2013/130763] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023] Open
Abstract
In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo.
Collapse
|
18
|
Bade AN, Zhou B, Epstein AA, Gorantla S, Poluektova LY, Luo J, Gendelman HE, Boska MD, Liu Y. Improved visualization of neuronal injury following glial activation by manganese enhanced MRI. J Neuroimmune Pharmacol 2013; 8:1027-36. [PMID: 23729245 DOI: 10.1007/s11481-013-9475-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 12/24/2022]
Abstract
Research directed at anatomical, integrative and functional activities of the central nervous system (CNS) can be realized through bioimaging. A wealth of data now demonstrates the utility of magnetic resonance imaging (MRI) towards unraveling complex neural connectivity operative in health and disease. A means to improve MRI sensitivity is through contrast agents and notably manganese (Mn²⁺). The Mn²⁺ ions enter neurons through voltage-gated calcium channels and unlike other contrast agents such as gadolinium, iron oxide, iron platinum and imaging proteins, provide unique insights into brain physiology. Nonetheless, a critical question that remains is the brain target cells serving as sources for the signal of Mn²⁺ enhanced MRI (MEMRI). To this end, we investigated MEMRI's abilities to detect glial (astrocyte and microglia) and neuronal activation signals following treatment with known inflammatory inducing agents. The idea is to distinguish between gliosis (glial activation) and neuronal injury for the MEMRI signal and as such use the agent as a marker for neural activity in inflammatory and degenerative disease. We now demonstrate that glial inflammation facilitates Mn²⁺ neuronal ion uptake. Glial Mn²⁺ content was not linked to its activation. MEMRI performed on mice injected intracranially with lipopolysaccharide was associated with increased neuronal activity. These results support the notion that MEMRI reflects neuronal excitotoxicity and impairment that can occur through a range of insults including neuroinflammation. We conclude that the MEMRI signal enhancement is induced by inflammation stimulating neuronal Mn²⁺ uptake.
Collapse
Affiliation(s)
- Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Havnes MB, Widerøe M, Thuen M, Torp SH, Brubakk AO, Møllerløkken A. Simulated dive in rats lead to acute changes in cerebral blood flow on MRI, but no cerebral injuries to grey or white matter. Eur J Appl Physiol 2013; 113:1405-14. [PMID: 23232710 PMCID: PMC3654193 DOI: 10.1007/s00421-012-2565-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022]
Abstract
In this study, the effect of a simulated dive on rat brain was investigated using several magnetic resonance imaging (MRI)-methods and immunohistochemistry. Rats were randomly assigned to a dive- or a control group. The dive group was exposed to a simulated air dive to 600 kPa for 45 min. Pulmonary artery was monitored for vascular gas bubbles by ultrasound. MRI was performed 1 h after decompression and at one and 2 weeks after the dive with a different combination of MRI sequences at each time point. Two weeks after decompression, rats were sacrificed and brains were prepared for histology. Dived rats had a different time-curve for the dynamic contrast-enhanced MRI signal than controls with higher relative signal intensity, a tendency towards longer time to peak and a larger area under the curve for the whole brain on the acute MRI scan. On MRI, 1 and 2 weeks after dive, T2-maps showed no signal abnormalities or morphological changes. However, region of interest based measurements of T2 showed higher T2 in the brain stem among decompressed animals than controls after one and 2 weeks. Microscopical examination including immunohistochemistry did not reveal apparent structural or cellular injuries in any part of the rat brains. These observations indicate that severe decompression does not seem to cause any structural or cellular injury to the brain tissue of the rat, but may cause circulatory changes in the brain perfusion in the acute phase.
Collapse
Affiliation(s)
- Marianne B Havnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
20
|
Saito S, Hasegawa S, Sekita A, Bakalova R, Furukawa T, Murase K, Saga T, Aoki I. Manganese-enhanced MRI reveals early-phase radiation-induced cell alterations in vivo. Cancer Res 2013; 73:3216-24. [PMID: 23695553 DOI: 10.1158/0008-5472.can-12-3837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For tumor radiotherapy, the in vivo detection of early cellular responses is important for predicting therapeutic efficacy. Mn(2+) is used as a positive contrast agent in manganese-enhanced MRI (MEMRI) and is expected to behave as a mimic of Ca(2+) in many biologic systems. We conducted in vitro and in vivo MRI experiments with Mn(2+) to investigate whether MEMRI can be used to detect cell alterations as an early-phase tumor response after radiotherapy. Colon-26 cells or a subcutaneously grafted colon-26 tumor model were irradiated with 20 Gy of X-rays. One day after irradiation, a significant augmentation of G2-M-phase cells, indicating a cell-cycle arrest, was observed in the irradiated cells in comparison with the control cells, although both early and late apoptotic alterations were rarely observed. The MEMRI signal in radiation-exposed tumor cells (R1: 0.77 ± 0.01 s(-1)) was significantly lower than that in control cells (R1: 0.82 ± 0.01 s(-1)) in vitro. MEMRI signal reduction was also observed in the in vivo tumor model 24 hours after irradiation (R1 of radiation: 0.97 ± 0.02 s(-1), control: 1.10 ± 0.02 s(-1)), along with cell-cycle and proliferation alterations identified with immunostaining (cyclin D1 and Ki-67). Therefore, MEMRI after tumor radiotherapy was successfully used to detect cell alterations as an early-phase cellular response in vitro and in vivo.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Longitudinal diffusion tensor and manganese-enhanced MRI detect delayed cerebral gray and white matter injury after hypoxia-ischemia and hyperoxia. Pediatr Res 2013; 73:171-9. [PMID: 23174702 DOI: 10.1038/pr.2012.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI) induces delayed inflammation and long-term gray and white matter brain injury that may be altered by hyperoxia. METHODS HI and 2 h of hyperoxia (100% O2) or room air (21% O2) in 7-d-old (P7) rats were studied by magnetic resonance imaging at 7 Tesla during 42 d: apparent diffusion coefficient (ADC) maps on day 1; T(1)-weighted manganese-enhanced images on day 7; diffusion tensor images on days 21 and 42; and T2 maps at all time points. RESULTS The long-term brain tissue destruction on T2 maps was more severe in HI+hyperoxia than HI+room air. ADC was lower in HI+hyperoxia vs. HI+room air and sham and was correlated with long-term outcome. Manganese enhancement indicating inflammation was seen in both the groups along with more microglial activation in HI+hyperoxia on day 7. Fractional anisotropy (FA) in corpus callosum was lower and radial diffusivity was higher in HI+hyperoxia than that in HI+room air and sham on day 21. From day 21 to day 42, FA and radial diffusivity in HI+hyperoxia were unchanged, whereas in HI+room air, FA increased and radial diffusivity decreased to values similar to sham. CONCLUSION Hyperoxia caused a more severe tissue destruction, delayed irreversible white matter injury, and increased inflammatory response resulting in a worsening in the trajectory of injury after HI in developing gray and white matter.
Collapse
|
22
|
Queiroga CSF, Tomasi S, Widerøe M, Alves PM, Vercelli A, Vieira HLA. Preconditioning triggered by carbon monoxide (CO) provides neuronal protection following perinatal hypoxia-ischemia. PLoS One 2012; 7:e42632. [PMID: 22952602 PMCID: PMC3429477 DOI: 10.1371/journal.pone.0042632] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
Perinatal hypoxia-ischemia is a major cause of acute mortality in newborns and cognitive and motor impairments in children. Cerebral hypoxia-ischemia leads to excitotoxicity and necrotic and apoptotic cell death, in which mitochondria play a major role. Increased resistance against major damage can be achieved by preconditioning triggered by subtle insults. CO, a toxic molecule that is also generated endogenously, may have a role in preconditioning as low doses can protect against inflammation and apoptosis. In this study, the role of CO-induced preconditioning on neurons was addressed in vitro and in vivo. The effect of 1 h of CO treatment on neuronal death (plasmatic membrane permeabilization and chromatin condensation) and bcl-2 expression was studied in cerebellar granule cells undergoing to glutamate-induced apoptosis. CO's role was studied in vivo in the Rice-Vannucci model of neonatal hypoxia-ischemia (common carotid artery ligature +75 min at 8% oxygen). Apoptotic cells, assessed by Nissl staining were counted with a stereological approach and cleaved caspase 3-positive profiles in the hippocampus were assessed. Apoptotic hallmarks were analyzed in hippocampal extracts by Western Blot. CO inhibited excitotoxicity-induced cell death and increased Bcl-2 mRNA in primary cultures of neurons. In vivo, CO prevented hypoxia-ischemia induced apoptosis in the hippocampus, limited cytochrome c released from mitochondria and reduced activation of caspase-3. Still, Bcl-2 protein levels were higher in hippocampus of CO pre-treated rat pups. Our results show that CO preconditioning elicits a molecular cascade that limits neuronal apoptosis. This could represent an innovative therapeutic strategy for high-risk cerebral hypoxia-ischemia patients, in particular neonates.
Collapse
Affiliation(s)
- Cláudia S. F. Queiroga
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)/Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Simone Tomasi
- Neuroscience Institute Cavalieri Ottolenghi (NICO) - AOU San Luigi Gonzaga, Orbassano, Turin, Italy
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin Medical School, Turin, Italy
| | - Marius Widerøe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Paula M. Alves
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO) - AOU San Luigi Gonzaga, Orbassano, Turin, Italy
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin Medical School, Turin, Italy
| | - Helena L. A. Vieira
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)/Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
23
|
Hartono S, Thng CH, Ng QS, Yong CX, Yang CT, Shi W, Chuang KH, Koh TS. High temporal resolution dynamic contrast-enhanced MRI at 7 Tesla: a feasibility study with mouse liver model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2788-91. [PMID: 22254920 DOI: 10.1109/iembs.2011.6090763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been widely applied to evaluate microcirculatory parameters in clinical settings. However, pre-clinical studies involving DCE-MRI of small animals remain challenging with the requirement for high spatial and temporal resolution for quantitative tracer kinetic analysis. This study illustrates the feasibility of applying a high temporal resolution (2 s) protocol for liver imaging in mice by analyzing the DCE-MRI datasets of mice liver with a dual-input two-compartment tracer kinetic model. Phantom studies were performed to validate the T(1) estimates derived by the proposed protocol before applying it in mice studies. The DCE-MRI datasets of mice liver were amendable to tracer kinetic analysis using a dual-input two-compartment model. Estimated micro-circulatory parameters were consistent with liver physiology, indicating viability of applying the technique for pre-clinical drug developments.
Collapse
Affiliation(s)
- S Hartono
- National Cancer Centre Singapore and Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Widerøe M, Havnes MB, Morken TS, Skranes J, Goa PE, Brubakk AM. Doxycycline treatment in a neonatal rat model of hypoxia-ischemia reduces cerebral tissue and white matter injury: a longitudinal magnetic resonance imaging study. Eur J Neurosci 2012; 36:2006-16. [PMID: 22594966 DOI: 10.1111/j.1460-9568.2012.08114.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Doxycycline may potentially be a neuroprotective treatment for neonatal hypoxic-ischemic brain injury through its anti-inflammatory effects. The aim of this study was to examine any long-term neuroprotection by doxycycline treatment on cerebral gray and white matter. Hypoxic-ischemic brain injury was induced in 7-day-old rats. Pups were treated with either doxycycline (HI+doxy) or saline (HI+vehicle) by intraperitoneal injection at 1 h after hypoxia-ischemia (HI). At 6 h after HI, MnCl(2) was injected intraperitoneally for later manganese-enhanced magnetic resonance imaging (MRI). MRI was performed with diffusion-weighted imaging on day 1 and T(1) -weighted imaging and diffusion tensor imaging at 7, 21 and 42 days after HI. Animals were killed after MRI on day 42 and histological examinations of the brains were performed. There was a tendency towards lower lesion volumes on diffusion maps among HI+doxy than HI+vehicle rats at 1 day after HI. Volumetric MRI showed increasing differences between groups with time after HI, with less cyst formation and less cerebral tissue loss among HI+doxy than HI+vehicle pups. HI+doxy pups had less manganese enhancement on day 7 after HI, indicating reduced inflammation. HI+doxy pups had higher fractional anisotropy on diffusion tensor imaging in major white matter tracts in the injured hemisphere than HI+vehicle pups, indicating less injury to white matter and better myelination. Histological examinations supported the MRI results. Lesion size on early MRI was highly correlated with final injury measures. In conclusion, a single dose of doxycycline reduced long-term cerebral tissue loss and white matter injury after neonatal HI, with an increasing effect of treatment with time after injury.
Collapse
Affiliation(s)
- Marius Widerøe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
25
|
Lutkenhoff E, Karlsgodt KH, Gutman B, Stein JL, Thompson PM, Cannon TD, Jentsch JD. Structural and functional neuroimaging phenotypes in dysbindin mutant mice. Neuroimage 2012; 62:120-9. [PMID: 22584233 DOI: 10.1016/j.neuroimage.2012.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 05/02/2012] [Accepted: 05/05/2012] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia is a highly heritable psychiatric disorder that is associated with a number of structural and functional neurophenotypes. DTNBP1, the gene encoding dysbindin-1, is a promising candidate gene for schizophrenia. Use of a mouse model carrying a large genomic deletion exclusively within the dysbindin gene permits a direct investigation of the gene in isolation. Here, we use manganese-enhanced magnetic resonance imaging (MEMRI) to explore the regional alterations in brain structure and function caused by loss of the gene encoding dysbindin-1. We report novel findings that uniquely inform our understanding of the relationship of dysbindin-1 to known schizophrenia phenotypes. First, in mutant mice, analysis of the rate of manganese uptake into the brain over a 24-hour period, putatively indexing basal cellular activity, revealed differences in dopamine rich brain regions, as well as in CA1 and dentate subregions of the hippocampus formation. Finally, novel tensor-based morphometry techniques were applied to the mouse MRI data, providing evidence for structural volume deficits in cortical regions, subiculum and dentate gyrus, and the striatum of dysbindin mutant mice. The affected cortical regions were primarily localized to the sensory cortices in particular the auditory cortex. This work represents the first application of manganese-enhanced small animal imaging to a mouse model of schizophrenia endophenotypes, and a novel combination of functional and structural measures. It revealed both hypothesized and novel structural and functional neural alterations related to dysbindin-1.
Collapse
Affiliation(s)
- Evan Lutkenhoff
- Interdisciplinary Neuroscience Program, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Gobbo OL, Petit F, Gurden H, Dhenain M. In vivo detection of excitotoxicity by manganese-enhanced MRI: comparison with physiological stimulation. Magn Reson Med 2011; 68:234-40. [PMID: 22127903 DOI: 10.1002/mrm.23210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/27/2011] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
Abstract
Manganese-enhanced MRI (MEMRI) is a powerful technique for the in vivo monitoring of brain function in animals. Manganese enters into cells through calcium channels, i.e., voltage-gated calcium channels and activated glutamate receptors (e.g., N-methyl-D-aspartate receptors). N-methyl-D-aspartate receptors are activated both in normal physiological and pathophysiological conditions. Consistent with these mechanisms, we showed that in the olfactory bulb, the MEMRI signal strongly increases when excitotoxic mechanisms are induced by an administration of a N-methyl-D-aspartate receptor agonist, quinolinate. We found that the intensity of the MEMRI signal in excitotoxic conditions is similar to the odor-evoked signal in normal physiological conditions. Finally, we showed that the dynamics of the MEMRI signal are determined by the early phase of manganese in the olfactory bulb. Overall, these data show that, in addition to physiological studies, MEMRI can be used as an in vivo method to follow-up the dynamics of excitotoxic events.
Collapse
Affiliation(s)
- Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
27
|
Cengiz P, Uluc K, Kendigelen P, Akture E, Hutchinson E, Song C, Zhang L, Lee J, Budoff GE, Meyerand E, Sun D, Ferrazzano P. Chronic neurological deficits in mice after perinatal hypoxia and ischemia correlate with hemispheric tissue loss and white matter injury detected by MRI. Dev Neurosci 2011; 33:270-9. [PMID: 21701150 DOI: 10.1159/000328430] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 04/06/2011] [Indexed: 01/01/2023] Open
Abstract
We investigated the effects of perinatal hypoxia-ischemia (HI) on brain injury and neurological functional outcome at postnatal day (P)30 through P90. HI was induced by exposing P9 mice to 8% O(2) for 55 min using the Vannucci HI model. Following HI, mice were treated with either vehicle control or Na(+)/H(+) exchanger isoform 1 (NHE1) inhibitor HOE 642. The animals were examined by the accelerating rotarod test at P30 and the Morris water maze (MWM) test at P60. T(2)-weighted MRI was conducted at P90. Diffusion tensor imaging (DTI) was subsequently performed in ex vivo brains, followed by immunohistochemical staining for changes in myelin basic protein (MBP) and neurofilament protein expression in the corpus callosum (CC). Animals at P30 after HI showed deficits in motor and spatial learning. T(2) MRI detected a wide spectrum of brain injury in these animals. A positive linear correlation was observed between learning deficits and the degree of tissue loss in the ipsilateral hemisphere and hippocampus. Additionally, CC DTI fractional anisotropy (FA) values correlated with MBP expression. Both FA and MBP values correlated with performance on the MWM test. HOE 642-treated mice exhibited improved spatial learning and memory, and less white matter injury in the CC. These findings suggest that HI-induced cerebral atrophy and CC injury contribute to the development of deficits in learning and memory, and that inhibition of NHE1 is neuroprotective in part by reducing white matter injury. T(2)-weighted MRI and DTI are useful indicators of functional outcome after perinatal HI.
Collapse
Affiliation(s)
- Pelin Cengiz
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Widerøe M, Brekken C, Kavelaars A, Pedersen TB, Goa PE, Heijnen C, Skranes J, Brubakk AM. Longitudinal manganese-enhanced magnetic resonance imaging of delayed brain damage after hypoxic-ischemic injury in the neonatal rat. Neonatology 2011; 100:363-72. [PMID: 21791927 DOI: 10.1159/000328705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 04/20/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hypoxia-ischemia (HI) in the neonatal brain results in a prolonged injury process. Longitudinal studies using noninvasive methods can help elucidate the mechanisms behind this process. We have recently demonstrated that manganese-enhanced magnetic resonance imaging (MRI) can depict areas with activated microglia and astrogliosis 7 days after hypoxic-ischemic brain injury. OBJECTIVE The current study aimed to follow brain injury after HI in rats longitudinally and compare manganese enhancement of brain areas to the development of injury and presence of reactive astrocytes and microglia. METHODS The Vannucci model for hypoxic-ischemic injury in the neonatal rat was used. Pups were injected with either MnCl(2) or saline after 6 h and again on day 41 after HI. Longitudinal MRI (T(1) weighted) was performed 1, 3, 7 and 42 days after HI. The brains were prepared for immunohistochemistry after the final MRI. RESULTS There was severe loss of cerebral tissue from day 7 to day 42 after HI. Most manganese-enhanced areas in the hippocampus, thalamus and basal ganglia at day 7 were liquefied after 42 days. Manganese-enhancement on day 42 corresponded to areas of activated microglia and reactive astrocytes in the remaining cortex, hippocampus and amygdala. However, the main area of enhancement was in the remaining thalamus in a calcified area surrounded by activated microglia and reactive astrocytes. CONCLUSION Manganese-enhanced MRI can be a useful tool for in vivo identification of cerebral tissue undergoing delayed cell death and liquefaction after HI. Manganese enhancement at a late stage seems to be related to the accumulation of manganese in calcifications and gliotic tissue.
Collapse
Affiliation(s)
- Marius Widerøe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on contrasts that are due to the shortening of the T (1) relaxation time of tissue water protons that become exposed to paramagnetic manganese ions. In experimental animals, the technique combines the high spatial resolution achievable by MRI with the biological information gathered by tissue-specific or functionally induced accumulations of manganese. After in vivo administration, manganese ions may enter cells via voltage-gated calcium channels. In the nervous system, manganese ions are actively transported along the axon. Based on these properties, MEMRI is increasingly used to delineate neuroanatomical structures, assess differences in functional brain activity, and unravel neuronal connectivities in both healthy animals and models of neurological disorders. Because of the cellular toxicity of manganese, a major challenge for a successful MEMRI study is to achieve the lowest possible dose for a particular biological question. Moreover, the interpretation of MEMRI findings requires a profound knowledge of the behavior of manganese in complex organ systems under physiological and pathological conditions. Starting with an overview of manganese pharmacokinetics and mechanisms of toxicity, this chapter covers experimental methods and protocols for applications in neuroscience.
Collapse
Affiliation(s)
- Susann Boretius
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen, Germany.
| | | |
Collapse
|
30
|
Zhang J, Yan X, Shi J, Gong Q, Weng X, Liu Y. Structural modifications of the brain in acclimatization to high-altitude. PLoS One 2010; 5:e11449. [PMID: 20625426 PMCID: PMC2897842 DOI: 10.1371/journal.pone.0011449] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/11/2010] [Indexed: 12/30/2022] Open
Abstract
Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17–22 yr) born and raised at HA of 2616–4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2–3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA.
Collapse
Affiliation(s)
- Jiaxing Zhang
- Laboratory for Higher Brain Function, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | |
Collapse
|
31
|
Crabbe A, Vandeputte C, Dresselaers T, Sacido AA, Verdugo JMG, Eyckmans J, Luyten FP, Van Laere K, Verfaillie CM, Himmelreich U. Effects of MRI contrast agents on the stem cell phenotype. Cell Transplant 2010; 19:919-36. [PMID: 20350351 DOI: 10.3727/096368910x494623] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ultimate therapy for ischemic stroke is restoration of blood supply in the ischemic region and regeneration of lost neural cells. This might be achieved by transplanting cells that differentiate into vascular or neuronal cell types, or secrete trophic factors that enhance self-renewal, recruitment, long-term survival, and functional integration of endogenous stem/progenitor cells. Experimental stroke models have been developed to determine potential beneficial effect of stem/progenitor cell-based therapies. To follow the fate of grafted cells in vivo, a number of noninvasive imaging approaches have been developed. Magnetic resonance imaging (MRI) is a high-resolution, clinically relevant method allowing in vivo monitoring of cells labeled with contrast agents. In this study, labeling efficiency of three different stem cell populations [mouse embryonic stem cells (mESC), rat multipotent adult progenitor cells (rMAPC), and mouse mesenchymal stem cells (mMSC)] with three different (ultra)small superparamagnetic iron oxide [(U)SPIO] particles (Resovist, Endorem, Sinerem) was compared. Labeling efficiency with Resovist and Endorem differed significantly between the different stem cells. Labeling with (U)SPIOs in the range that allows detection of cells by in vivo MRI did not affect differentiation of stem cells when labeled with concentrations of particles needed for MRI-based visualization. Finally, we demonstrated that labeled rMAPC could be detected in vivo and that labeling did not interfere with their migration. We conclude that successful use of (U)SPIOs for MRI-based visualization will require assessment of the optimal (U)SPIO for each individual (stem) cell population to ensure the most sensitive detection without associated toxicity.
Collapse
|
32
|
Microscopic magnetic resonance in congenital diaphragmatic hernia and associated malformations in rats. Pediatr Surg Int 2010; 26:51-7. [PMID: 19855978 DOI: 10.1007/s00383-009-2518-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND/AIM The research on congenital diaphragmatic hernia (CDH) is often carried out on the nitrofen fetal rat model in which most investigations involve microdissections and fastidious assessment of serial sections of different anatomic areas. Current microscopic magnetic resonance (MMR) equipment allows detailed anatomic studies of alive, fresh or fixed fetuses. The purpose of the present study was to demonstrate that CDH itself and most of the associated malformations are adequately imaged and measured by MMR. MATERIALS AND METHODS Fetuses from pregnant rats treated with either i.g. vehicle (control, n = 10) or 100 mg nitrofen (only those with CDH, n = 18) on E9.5 were recovered on E21 (term = E22) and total body was scanned by MMR under sedation in a 7 T MRI system (Bruker Medical, Ettlingen, Germany). CDH was detected with a coronal multislice fast spin echo sequence with a long repetition time and short effective echo time. Oblique MPR and 3D reconstructions were used. All studies were processed with attention to the hernia and its contents and the structure of the tracheobronchial tree and the lung, the heart and great vessels, the thymus and cervico-thoracic vertebrae. The findings in both groups were compared. RESULTS Congenital diaphragmatic hernia, lung hypoplasia and parenchymal features were clearly depicted. Tracheal ring anomalies were also demonstrated. The thymus was significantly smaller in CDH pups (2.9 x 1 x 2.4 mm) than in controls (4 x 1.3 x 2.8 mm) (p < 0.01). MRI was particularly performant for imaging cardiovascular anomalies: 4 double aortic arches, 3 Fallots, 3 right aortic arches, 3 ventricular septal defects and 1 aberrant subclavian artery. CONCLUSIONS Microscopic magnetic resonance involves refined and expensive equipment but it provides a powerful research tool for the study of CDH and other malformations in rat fetuses. Further work on this area is warranted.
Collapse
|
33
|
Kawai Y, Aoki I, Umeda M, Higuchi T, Kershaw J, Higuchi M, Silva AC, Tanaka C. In vivo visualization of reactive gliosis using manganese-enhanced magnetic resonance imaging. Neuroimage 2009; 49:3122-31. [PMID: 19909819 DOI: 10.1016/j.neuroimage.2009.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 01/15/2023] Open
Abstract
Reactive astrogliosis occurs after diverse central nervous system (CNS) insults. While astrogliosis provides protection against inflammation, it is also obstructive in the progress of neuranagenesis after CNS insults. Thus, a method that enables in vivo visualization and tissue characterization for gliosis would be invaluable for studies of CNS insults and corresponding treatments. Manganese has proven to be a useful MRI contrast agent that enters cells via Ca(2+) channels and has been applied to manganese-enhanced MRI (MEMRI) for neuronal functional mapping. This study investigated whether MEMRI can detect astrogliosis after focal ischemia in vivo. Rats were divided into groups according to the number of days after either transient middle cerebral artery occlusion or a sham. Ring- or crescent-shaped enhancement of MEMRI corresponded to the GFAP-positive astroglia observed in the peripheral region of the ischemic core 11 days after middle cerebral artery occlusion. This indicates that MEMRI enhancement predominantly reflects reactive astrogliosis after stroke.
Collapse
Affiliation(s)
- Yuko Kawai
- Department of Neurosurgery, Meiji University of Integrative Medicine, Kyoto, 629-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|