1
|
Coburn RP, Graff-Radford J, Machulda MM, Schwarz CG, Lowe VJ, Jones DT, Jack CR, Josephs KA, Whitwell JL, Botha H. Baseline multimodal imaging to predict longitudinal clinical decline in atypical Alzheimer's disease. Cortex 2024; 180:18-34. [PMID: 39305720 PMCID: PMC11532010 DOI: 10.1016/j.cortex.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
There are recognized neuroimaging regions of interest in typical Alzheimer's disease which have been used to track disease progression and aid prognostication. However, there is a need for validated baseline imaging markers to predict clinical decline in atypical Alzheimer's Disease. We aimed to address this need by producing models from baseline imaging features using penalized regression and evaluating their predictive performance on various clinical measures. Baseline multimodal imaging data, in combination with clinical testing data at two time points from 46 atypical Alzheimer's Disease patients with a diagnosis of logopenic progressive aphasia (N = 24) or posterior cortical atrophy (N = 22), were used to generate our models. An additional 15 patients (logopenic progressive aphasia = 7, posterior cortical atrophy = 8), whose data were not used in our original analysis, were used to test our models. Patients underwent MRI, FDG-PET and Tau-PET imaging and a full neurologic battery at two time points. The Schaefer functional atlas was used to extract network-based and regional gray matter volume or PET SUVR values from baseline imaging. Penalized regression (Elastic Net) was used to create models to predict scores on testing at Time 2 while controlling for baseline performance, education, age, and sex. In addition, we created models using clinical or Meta Region of Interested (ROI) data to serve as comparisons. We found the degree of baseline involvement on neuroimaging was predictive of future performance on cognitive testing while controlling for the above measures on all three imaging modalities. In many cases, model predictability improved with the addition of network-based neuroimaging data to clinical data. We also found our network-based models performed superiorly to the comparison models comprised of only clinical or a Meta ROI score. Creating predictive models from imaging studies at a baseline time point that are agnostic to clinical diagnosis as we have described could prove invaluable in both the clinical and research setting, particularly in the development and implementation of future disease modifying therapies.
Collapse
Affiliation(s)
- Ryan P Coburn
- Department of Neurology, Mayo Clinic (Rochester), Rochester, MN, USA.
| | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic (Rochester), Rochester, MN, USA
| | | | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic (Rochester), Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic (Rochester), Rochester, MN, USA; Department of Radiology, Mayo Clinic (Rochester), Rochester, MN, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic (Rochester), Rochester, MN, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic (Rochester), Rochester, MN, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic (Rochester), Rochester, MN, USA
| |
Collapse
|
2
|
Kumar S, Yu SC, Michelson A, Kannampallil T, Payne PRO. HiMAL: Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting Alzheimer's disease progression. JAMIA Open 2024; 7:ooae087. [PMID: 39297151 PMCID: PMC11408727 DOI: 10.1093/jamiaopen/ooae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Objective We aimed to develop and validate a novel multimodal framework Hierarchical Multi-task Auxiliary Learning (HiMAL) framework, for predicting cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Materials and Methods HiMAL utilized multimodal longitudinal visit data including imaging features, cognitive assessment scores, and clinical variables from MCI patients in the Alzheimer's Disease Neuroimaging Initiative dataset, to predict at each visit if an MCI patient will progress to AD within the next 6 months. Performance of HiMAL was compared with state-of-the-art single-task and multitask baselines using area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. An ablation study was performed to assess the impact of each input modality on model performance. Additionally, longitudinal explanations regarding risk of disease progression were provided to interpret the predicted cognitive decline. Results Out of 634 MCI patients (mean [IQR] age: 72.8 [67-78], 60% male), 209 (32%) progressed to AD. HiMAL showed better prediction performance compared to all state-of-the-art longitudinal single-modality singe-task baselines (AUROC = 0.923 [0.915-0.937]; AUPRC = 0.623 [0.605-0.644]; all P < .05). Ablation analysis highlighted that imaging and cognition scores with maximum contribution towards prediction of disease progression. Discussion Clinically informative model explanations anticipate cognitive decline 6 months in advance, aiding clinicians in future disease progression assessment. HiMAL relies on routinely collected electronic health records (EHR) variables for proximal (6 months) prediction of AD onset, indicating its translational potential for point-of-care monitoring and managing of high-risk patients.
Collapse
Affiliation(s)
- Sayantan Kumar
- Department of Computer Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sean C Yu
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Andrew Michelson
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, United States
- Division of Pulmonary and Critical Care, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Thomas Kannampallil
- Department of Computer Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Philip R O Payne
- Department of Computer Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Ji Y, Silva RF, Adali T, Wen X, Zhu Q, Jiang R, Zhang D, Qi S, Calhoun VD. Joint multi-site domain adaptation and multi-modality feature selection for the diagnosis of psychiatric disorders. Neuroimage Clin 2024; 43:103663. [PMID: 39226701 DOI: 10.1016/j.nicl.2024.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/05/2024]
Abstract
Identifying biomarkers for computer-aided diagnosis (CAD) is crucial for early intervention of psychiatric disorders. Multi-site data have been utilized to increase the sample size and improve statistical power, while multi-modality classification offers significant advantages over traditional single-modality based approaches for diagnosing psychiatric disorders. However, inter-site heterogeneity and intra-modality heterogeneity present challenges to multi-site and multi-modality based classification. In this paper, brain functional and structural networks (BFNs/BSNs) from multiple sites were constructed to establish a joint multi-site multi-modality framework for psychiatric diagnosis. To do this we developed a hypergraph based multi-source domain adaptation (HMSDA) which allowed us to transform source domain subjects into a target domain. A local ordinal structure based multi-task feature selection (LOSMFS) approach was developed by integrating the transformed functional and structural connections (FCs/SCs). The effectiveness of our method was validated by evaluating diagnosis of both schizophrenia (SZ) and autism spectrum disorder (ASD). The proposed method obtained accuracies of 92.2 %±2.22 % and 84.8 %±2.68 % for the diagnosis of SZ and ASD, respectively. We also compared with 6 DA, 10 multi-modality feature selection, and 8 multi-site and multi-modality methods. Results showed the proposed HMSDA+LOSMFS effectively integrated multi-site and multi-modality data to enhance psychiatric diagnosis and identify disorder-specific diagnostic brain connections.
Collapse
Affiliation(s)
- Yixin Ji
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Rogers F Silva
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Tülay Adali
- Department of CSEE, University of Maryland, USA
| | - Xuyun Wen
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Qi Zhu
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China
| | - Rongtao Jiang
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daoqiang Zhang
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Shile Qi
- Department of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing, China.
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
4
|
García-Gutiérrez F, Hernández-Lorenzo L, Cabrera-Martín MN, Matias-Guiu JA, Ayala JL. Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI. Neuroimage 2024; 297:120695. [PMID: 38942101 DOI: 10.1016/j.neuroimage.2024.120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investigations predominantly concentrate on distinguishing clinical phenotypes through cross-sectional approaches. This study aims to investigate the potential of modeling additional dimensions of the disease, such as variations in brain metabolism assessed via [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET), and utilize this information to identify patients with mild cognitive impairment (MCI) who will progress to dementia (pMCI). METHODS We analyzed data from 1,617 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had undergone at least one FDG-PET scan. We identified the brain regions with the most significant hypometabolism in AD and used Deep Learning (DL) models to predict future changes in brain metabolism. The best-performing model was then adapted under a multi-task learning framework to identify pMCI individuals. Finally, this model underwent further analysis using eXplainable AI (XAI) techniques. RESULTS Our results confirm a strong association between hypometabolism, disease progression, and cognitive decline. Furthermore, we demonstrated that integrating data on changes in brain metabolism during training enhanced the models' ability to detect pMCI individuals (sensitivity=88.4%, specificity=86.9%). Lastly, the application of XAI techniques enabled us to delve into the brain regions with the most significant impact on model predictions, highlighting the importance of the hippocampus, cingulate cortex, and some subcortical structures. CONCLUSION This study introduces a novel dimension to predictive modeling in AD, emphasizing the importance of projecting variations in brain metabolism under a multi-task learning paradigm.
Collapse
Affiliation(s)
| | | | - María Nieves Cabrera-Martín
- Department of Nuclear Medicine, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.
| | - José L Ayala
- Department of Computer Architecture and Automation, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
5
|
Qi W, Zhu X, He D, Wang B, Cao S, Dong C, Li Y, Chen Y, Wang B, Shi Y, Jiang G, Liu F, Boots LMM, Li J, Lou X, Yao J, Lu X, Kang J. Mapping Knowledge Landscapes and Emerging Trends in AI for Dementia Biomarkers: Bibliometric and Visualization Analysis. J Med Internet Res 2024; 26:e57830. [PMID: 39116438 PMCID: PMC11342017 DOI: 10.2196/57830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND With the rise of artificial intelligence (AI) in the field of dementia biomarker research, exploring its current developmental trends and research focuses has become increasingly important. This study, using literature data mining, analyzes and assesses the key contributions and development scale of AI in dementia biomarker research. OBJECTIVE The aim of this study was to comprehensively evaluate the current state, hot topics, and future trends of AI in dementia biomarker research globally. METHODS This study thoroughly analyzed the literature in the application of AI to dementia biomarkers across various dimensions, such as publication volume, authors, institutions, journals, and countries, based on the Web of Science Core Collection. In addition, scales, trends, and potential connections between AI and biomarkers were extracted and deeply analyzed through multiple expert panels. RESULTS To date, the field includes 1070 publications across 362 journals, involving 74 countries and 1793 major research institutions, with a total of 6455 researchers. Notably, 69.41% (994/1432) of the researchers ceased their studies before 2019. The most prevalent algorithms used are support vector machines, random forests, and neural networks. Current research frequently focuses on biomarkers such as imaging biomarkers, cerebrospinal fluid biomarkers, genetic biomarkers, and blood biomarkers. Recent advances have highlighted significant discoveries in biomarkers related to imaging, genetics, and blood, with growth in studies on digital and ophthalmic biomarkers. CONCLUSIONS The field is currently in a phase of stable development, receiving widespread attention from numerous countries, institutions, and researchers worldwide. Despite this, stable clusters of collaborative research have yet to be established, and there is a pressing need to enhance interdisciplinary collaboration. Algorithm development has shown prominence, especially the application of support vector machines and neural networks in imaging studies. Looking forward, newly discovered biomarkers are expected to undergo further validation, and new types, such as digital biomarkers, will garner increased research interest and attention.
Collapse
Affiliation(s)
- Wenhao Qi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaohong Zhu
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Danni He
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bin Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Shihua Cao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Chaoqun Dong
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yunhua Li
- College of Education, Chengdu College of Arts and Sciences, Sichuan, China
| | - Yanfei Chen
- School of Nursing, Hangzhou Normal University, Hangzhou, China
- Nursing Department, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bingsheng Wang
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Yankai Shi
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Guowei Jiang
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Fang Liu
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Lizzy M M Boots
- Department of Psychiatry and Neuropsychology and Alzheimer Center Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jiaqi Li
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiajing Lou
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Jiani Yao
- School of Nursing, Hangzhou Normal University, Hangzhou, China
| | - Xiaodong Lu
- Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Gou Y, Liu Y, He F, Hunyadi B, Zhu C. Tensor Completion for Alzheimer's Disease Prediction From Diffusion Tensor Imaging. IEEE Trans Biomed Eng 2024; 71:2211-2223. [PMID: 38349831 DOI: 10.1109/tbme.2024.3365131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder with insidious onset. Accurate prediction of the disease progression has received increasing attention. Cognitive scores that reflect patients' cognitive status have become important criteria for predicting AD. Most existing methods consider the relationship between neuroimages and cognitive scores to improve prediction results. However, the inherent structure information in interrelated cognitive scores is rarely considered. METHOD In this article, we propose a relation-aware tensor completion multitask learning method (RATC-MTL), in which the cognitive scores are represented as a third-order tensor to preserve the global structure information in clinical scores. We combine both tensor completion and linear regression into a unified framework, which allows us to capture both inter and intra modes correlations in cognitive tensor with a low-rank constraint, as well as incorporate the relationship between biological features and cognitive status by imposing a regression model on multiple cognitive scores. RESULT Compared to the single-task and state-of-the-art multi-task algorithms, our proposed method obtains the best results for predicting cognitive scores in terms of four commonly used metrics. Furthermore, the overall performance of our method in classifying AD progress is also the best. CONCLUSION Our results demonstrate the effectiveness of the proposed framework in fully exploring the global structure information in cognitive scores. SIGNIFICANCE This study introduces a novel concept of leveraging tensor completion to assist in disease diagnoses, potentially offering a solution to the issue of data scarcity encountered in prolonged monitoring scenarios.
Collapse
|
7
|
Batta I, Abrol A, Calhoun VD. Multimodal active subspace analysis for computing assessment oriented subspaces from neuroimaging data. J Neurosci Methods 2024; 406:110109. [PMID: 38494061 PMCID: PMC11100582 DOI: 10.1016/j.jneumeth.2024.110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/12/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND For successful biomarker discovery, it is essential to develop computational frameworks that summarize high-dimensional neuroimaging data in terms of involved sub-systems of the brain, while also revealing underlying heterogeneous functional and structural changes covarying with specific cognitive and biological traits. However, unsupervised decompositions do not inculcate clinical assessment information, while supervised approaches extract only individual feature importance, thereby impeding qualitative interpretation at the level of subspaces. NEW METHOD We present a novel framework to extract robust multimodal brain subspaces associated with changes in a given cognitive or biological trait. Our approach involves active subspace learning on the gradients of a trained machine learning model followed by clustering to extract and summarize the most salient and consistent subspaces associated with the target variable. RESULTS Through a rigorous cross-validation procedure on an Alzheimer's disease (AD) dataset, our framework successfully extracts multimodal subspaces specific to a given clinical assessment (e.g., memory and other cognitive skills), and also retains predictive performance in standard machine learning algorithms. We also show that the salient active subspace directions occur consistently across randomly sub-sampled repetitions of the analysis. COMPARISON WITH EXISTING METHOD(S) Compared to existing unsupervised decompositions based on principle component analysis, the subspace components in our framework retain higher predictive information. CONCLUSIONS As an important step towards biomarker discovery, our framework not only uncovers AD-related brain regions in the associated brain subspaces, but also enables automated identification of multiple underlying structural and functional sub-systems of the brain that collectively characterize changes in memory and proficiency in cognitive skills related to brain disorders like AD.
Collapse
Affiliation(s)
- Ishaan Batta
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.
| | - Anees Abrol
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA
| | - Vince D Calhoun
- Center for Translational Research in Neuroimaging and Data Science (TReNDS): Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, USA; Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
8
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Attention-Like Multimodality Fusion With Data Augmentation for Diagnosis of Mental Disorders Using MRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7627-7641. [PMID: 36374900 DOI: 10.1109/tnnls.2022.3219551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The globally rising prevalence of mental disorders leads to shortfalls in timely diagnosis and therapy to reduce patients' suffering. Facing such an urgent public health problem, professional efforts based on symptom criteria are seriously overstretched. Recently, the successful applications of computer-aided diagnosis approaches have provided timely opportunities to relieve the tension in healthcare services. Particularly, multimodal representation learning gains increasing attention thanks to the high temporal and spatial resolution information extracted from neuroimaging fusion. In this work, we propose an efficient multimodality fusion framework to identify multiple mental disorders based on the combination of functional and structural magnetic resonance imaging. A multioutput conditional generative adversarial network (GAN) is developed to address the scarcity of multimodal data for augmentation. Based on the augmented training data, the multiheaded gating fusion model is proposed for classification by extracting the complementary features across different modalities. The experiments demonstrate that the proposed model can achieve robust accuracies of 75.1 ± 1.5 %, 72.9 ± 1.1 %, and 87.2 ± 1.5 % for autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and schizophrenia, respectively. In addition, the interpretability of our model is expected to enable the identification of remarkable neuropathology diagnostic biomarkers, leading to well-informed therapeutic decisions.
Collapse
|
9
|
Hojjati SH, Babajani-Feremi A. Seeing beyond the symptoms: biomarkers and brain regions linked to cognitive decline in Alzheimer's disease. Front Aging Neurosci 2024; 16:1356656. [PMID: 38813532 PMCID: PMC11135344 DOI: 10.3389/fnagi.2024.1356656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Objective Early Alzheimer's disease (AD) diagnosis remains challenging, necessitating specific biomarkers for timely detection. This study aimed to identify such biomarkers and explore their associations with cognitive decline. Methods A cohort of 1759 individuals across cognitive aging stages, including healthy controls (HC), mild cognitive impairment (MCI), and AD, was examined. Utilizing nine biomarkers from structural MRI (sMRI), diffusion tensor imaging (DTI), and positron emission tomography (PET), predictions were made for Mini-Mental State Examination (MMSE), Clinical Dementia Rating Scale Sum of Boxes (CDRSB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS). Biomarkers included four sMRI (e.g., average thickness [ATH]), four DTI (e.g., mean diffusivity [MD]), and one PET Amyloid-β (Aβ) measure. Ensemble regression tree (ERT) technique with bagging and random forest approaches were applied in four groups (HC/MCI, HC/AD, MCI/AD, and HC/MCI/AD). Results Aβ emerged as a robust predictor of cognitive scores, particularly in late-stage AD. Volumetric measures, notably ATH, consistently correlated with cognitive scores across early and late disease stages. Additionally, ADAS demonstrated links to various neuroimaging biomarkers in all subject groups, highlighting its efficacy in monitoring brain changes throughout disease progression. ERT identified key brain regions associated with cognitive scores, such as the right transverse temporal region for Aβ, left and right entorhinal cortex, left inferior temporal gyrus, and left middle temporal gyrus for ATH, and the left uncinate fasciculus for MD. Conclusion This study underscores the importance of an interdisciplinary approach in understanding AD mechanisms, offering potential contributions to early biomarker development.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Weill Cornell Medicine, Brain Health Imaging Institute, New York, NY, United States
| | - Abbas Babajani-Feremi
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Magnetoencephalography (MEG) Lab, The Norman Fixel Institute of Neurological Diseases, University of Florida Health, Gainesville, FL, United States
| | | |
Collapse
|
10
|
Chen Z, Liu Y, Zhang Y, Zhu J, Li Q, Wu X. Shared Manifold Regularized Joint Feature Selection for Joint Classification and Regression in Alzheimer's Disease Diagnosis. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2024; 33:2730-2745. [PMID: 38578858 DOI: 10.1109/tip.2024.3382600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
In Alzheimer's disease (AD) diagnosis, joint feature selection for predicting disease labels (classification) and estimating cognitive scores (regression) with neuroimaging data has received increasing attention. In this paper, we propose a model named Shared Manifold regularized Joint Feature Selection (SMJFS) that performs classification and regression in a unified framework for AD diagnosis. For classification, unlike the existing works that build least squares regression models which are insufficient in the ability of extracting discriminative information for classification, we design an objective function that integrates linear discriminant analysis and subspace sparsity regularization for acquiring an informative feature subset. Furthermore, the local data relationships are learned according to the samples' transformed distances to exploit the local data structure adaptively. For regression, in contrast to previous works that overlook the correlations among cognitive scores, we learn a latent score space to capture the correlations and employ the latent space to design a regression model with l2,1 -norm regularization, facilitating the feature selection in regression task. Moreover, the missing cognitive scores can be recovered in the latent space for increasing the number of available training samples. Meanwhile, to capture the correlations between the two tasks and describe the local relationships between samples, we construct an adaptive shared graph to guide the subspace learning in classification and the latent cognitive score learning in regression simultaneously. An efficient iterative optimization algorithm is proposed to solve the optimization problem. Extensive experiments on three datasets validate the discriminability of the features selected by SMJFS.
Collapse
|
11
|
Mai Y, Cao Z, Zhao L, Yu Q, Xu J, Liu W, Liu B, Tang J, Luo Y, Liao W, Fang W, Ruan Y, Lei M, Mok VCT, Shi L, Liu J. The role of visual rating and automated brain volumetry in early detection and differential diagnosis of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14492. [PMID: 37864441 PMCID: PMC11017425 DOI: 10.1111/cns.14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Medial temporal lobe atrophy (MTA) is a diagnostic marker for mild cognitive impairment (MCI) and Alzheimer's disease (AD), but the accuracy of quantitative MTA (QMTA) in diagnosing early AD is unclear. This study aimed to investigate the accuracy of QMTA and its related components (inferior lateral ventricle [ILV] and hippocampus) with MTA in the early diagnosis of MCI and AD. METHODS This study included four groups: normal (NC), MCI stable (MCIs), MCI converted to AD (MCIs), and mild AD (M-AD) groups. Magnetic resonance image analysis software was used to quantify the hippocampus, ILV, and QMTA. MTA was rated by two experienced neurologists. Receiver operating characteristic area under the curve (AUC) analysis was performed to compare their capability in differentiating AD from NC and MCI, and optimal thresholds were determined using the Youden index. RESULTS QMTA distinguished M-AD from NC and MCI with higher diagnostic accuracy than MTA, hippocampus, and ILV (AUCNC = 0.976, AUCMCI = 0.836, AUCMCIs = 0.894, AUCMCIc = 0.730). The diagnostic accuracy of QMTA was superior to that of MTA, the hippocampus, and ILV in differentiating MCI from AD. The diagnostic accuracy of QMTA was found to remain the best across age, sex, and pathological subgroups analyzed. The sensitivity (92.45%) and specificity (90.64%) were higher in this study when a cutoff value of 0.635 was chosen for QMTA. CONCLUSIONS QMTA may be a better choice than the MTA scale or the associated quantitative components alone in identifying AD patients and MCI individuals with higher progression risk.
Collapse
Affiliation(s)
- Yingren Mai
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiyu Cao
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Lei Zhao
- BrainNow Research InstituteShenzhenChina
| | - Qun Yu
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jiaxin Xu
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Wenyan Liu
- BrainNow Research InstituteShenzhenChina
| | - Bowen Liu
- Department of Statistics, College of Liberal Art and SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jingyi Tang
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yishan Luo
- BrainNow Research InstituteShenzhenChina
| | - Wang Liao
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenli Fang
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yuting Ruan
- Department of RehabilitationThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Ming Lei
- Department of Neurology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Vincent C. T. Mok
- BrainNow Research InstituteShenzhenChina
- Division of Neurology, Department of Medicine and Therapeutics, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong, SARChina
| | - Lin Shi
- BrainNow Research InstituteShenzhenChina
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong, SARChina
| | - Jun Liu
- Department of NeurologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | | |
Collapse
|
12
|
Wang H, Li Q, Liu Y. Multi-response Regression for Block-missing Multi-modal Data without Imputation. Stat Sin 2024; 34:527-546. [PMID: 38655129 PMCID: PMC11035992 DOI: 10.5705/ss.202021.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Multi-modal data are prevalent in many scientific fields. In this study, we consider the parameter estimation and variable selection for a multi-response regression using block-missing multi-modal data. Our method allows the dimensions of both the responses and the predictors to be large, and the responses to be incomplete and correlated, a common practical problem in high-dimensional settings. Our proposed method uses two steps to make a prediction from a multi-response linear regression model with block-missing multi-modal predictors. In the first step, without imputing missing data, we use all available data to estimate the covariance matrix of the predictors and the cross-covariance matrix between the predictors and the responses. In the second step, we use these matrices and a penalized method to simultaneously estimate the precision matrix of the response vector, given the predictors, and the sparse regression parameter matrix. Lastly, we demonstrate the effectiveness of the proposed method using theoretical studies, simulated examples, and an analysis of a multi-modal imaging data set from the Alzheimer's Disease Neuroimaging Initiative.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Statistics and Operations Research, The University of North Carolina at Chapel Hill
| | - Quefeng Li
- Department of Biostatistics, The University of North Carolina at Chapel Hill
| | - Yufeng Liu
- Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Wu Y, Wang X, Fang Y. Predicting mild cognitive impairment in older adults: A machine learning analysis of the Alzheimer's Disease Neuroimaging Initiative. Geriatr Gerontol Int 2024; 24 Suppl 1:96-101. [PMID: 37734954 DOI: 10.1111/ggi.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
AIM Mild cognitive impairment (MCI) in older adults is potentially devastating, but an accurate prediction model is still lacking. We hypothesized that neuropsychological tests and MRI-related markers could predict the onset of MCI early. METHODS We analyzed data from 306 older adults who were cognitive normal (CN) attending the Alzheimer's Disease Neuroimaging Initiative sequentially (474 pairs of visits) within 3 years. There were 231 pairs of MCI conversion (CN to MCI), and 242 pairs of CN maintenance (CN to CN). Variables on demographic, neuropsychological tests, genetic, and MRI-related markers were collected. Machine learning was used to construct MCI prediction models, comparing the area under the receiver operating characteristic curve (AUC) as the primary metric of performance. Important predictors were ranked for the optimal model. RESULTS The baseline age of the study sample was 74.8 years old. The best-performing model (gradient boosting decision tree) with 13 variables predicted MCI with an AUC of 0.819, and the rank of variable importance showed that intracranial volume, hippocampal volume, and score from task 4 (word recognition) of the Alzheimer's Disease Assessment Scale were important predictors of MCI. CONCLUSIONS With the help of machine learning, fewer neuropsychological tests and MRI-related markers are required to accurately predict MCI within 3 years, thereby facilitating targeted intervention. Geriatr Gerontol Int 2024; 24: 96-101.
Collapse
Affiliation(s)
- Yafei Wu
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
| | - Xing Wang
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
| | - Ya Fang
- School of Public Health, Xiamen University, Xiamen, China
- Key Laboratory of Health Technology Assessment of Fujian Province, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Sheng J, Zhang Q, Zhang Q, Wang L, Yang Z, Xin Y, Wang B. A hybrid multimodal machine learning model for Detecting Alzheimer's disease. Comput Biol Med 2024; 170:108035. [PMID: 38325214 DOI: 10.1016/j.compbiomed.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) diagnosis utilizing single modality neuroimaging data has limitations. Multimodal fusion of complementary biomarkers may improve diagnostic performance. This study proposes a multimodal machine learning framework integrating magnetic resonance imaging (MRI), positron emission tomography (PET) and cerebrospinal fluid (CSF) assays for enhanced AD characterization. The model incorporates a hybrid algorithm combining enhanced Harris Hawks Optimization (HHO) algorithm referred to as ILHHO, with Kernel Extreme Learning Machine (KELM) classifier for simultaneous feature selection and classification. ILHHO enhances HHO's search efficiency by integrating iterative mapping (IM) to improve population diversity and local escaping operator (LEO) to balance exploration-exploitation. Comparative analysis with other improved HHO algorithms, classic meta-heuristic algorithms (MHAs), and state-of-the-art MHAs on IEEE CEC2014 benchmark functions indicates that ILHHO achieves superior optimization performance compared to other comparative algorithms. The synergistic ILHHO-KELM model is evaluated on 202 AD Neuroimaging Initiative (ADNI) subjects. Results demonstrate superior multimodal classification accuracy over single modalities, validating the importance of fusing heterogeneous biomarkers. MRI + PET + CSF achieves 99.2 % accuracy for AD vs. normal control (NC), outperforming conventional and proposed methods. Discriminative feature analysis provides further insights into differential AD-related neurodegeneration patterns detected by MRI and PET. The differential PET and MRI features demonstrate how the two modalities provide complementary biomarkers. The neuroanatomical relevance of selected features supports ILHHO-KELM's potential for extracting sensitive AD imaging signatures. Overall, the study showcases the advantages of capitalizing on complementary multimodal data through advanced feature learning techniques for improving AD diagnosis.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China.
| | - Qian Zhang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China; School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, Zhejiang, 325035, China
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China; National Center of Gerontology, Beijing, 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Ze Yang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Yu Xin
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Binbing Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
15
|
Irfan M, Shahrestani S, Elkhodr M. Machine learning in neurological disorders: A multivariate LSTM and AdaBoost approach to Alzheimer's disease time series analysis. HEALTH CARE SCIENCE 2024; 3:41-52. [PMID: 38939169 PMCID: PMC11080865 DOI: 10.1002/hcs2.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 06/29/2024]
Abstract
Introduction Alzheimer's disease (AD) is a progressive brain disorder that impairs cognitive functions, behavior, and memory. Early detection is crucial as it can slow down the progression of AD. However, early diagnosis and monitoring of AD's advancement pose significant challenges due to the necessity for complex cognitive assessments and medical tests. Methods This study introduces a data acquisition technique and a preprocessing pipeline, combined with multivariate long short-term memory (M-LSTM) and AdaBoost models. These models utilize biomarkers from cognitive assessments and neuroimaging scans to detect the progression of AD in patients, using The AD Prediction of Longitudinal Evolution challenge cohort from the Alzheimer's Disease Neuroimaging Initiative database. Results The methodology proposed in this study significantly improved performance metrics. The testing accuracy reached 80% with the AdaBoost model, while the M-LSTM model achieved an accuracy of 82%. This represents a 20% increase in accuracy compared to a recent similar study. Discussion The findings indicate that the multivariate model, specifically the M-LSTM, is more effective in identifying the progression of AD compared to the AdaBoost model and methodologies used in recent research.
Collapse
Affiliation(s)
- Muhammad Irfan
- School of Computer, Data and Mathematical SciencesWestern Sydney UniversitySydneyAustralia
| | - Seyed Shahrestani
- School of Computer, Data and Mathematical SciencesWestern Sydney UniversitySydneyAustralia
| | - Mahmoud Elkhodr
- School of Engineering and TechnologyCentral Queensland UniversitySydneyAustralia
| |
Collapse
|
16
|
Chen Y, Pan Y, Xia Y, Yuan Y. Disentangle First, Then Distill: A Unified Framework for Missing Modality Imputation and Alzheimer's Disease Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3566-3578. [PMID: 37450359 DOI: 10.1109/tmi.2023.3295489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Multi-modality medical data provide complementary information, and hence have been widely explored for computer-aided AD diagnosis. However, the research is hindered by the unavoidable missing-data problem, i.e., one data modality was not acquired on some subjects due to various reasons. Although the missing data can be imputed using generative models, the imputation process may introduce unrealistic information to the classification process, leading to poor performance. In this paper, we propose the Disentangle First, Then Distill (DFTD) framework for AD diagnosis using incomplete multi-modality medical images. First, we design a region-aware disentanglement module to disentangle each image into inter-modality relevant representation and intra-modality specific representation with emphasis on disease-related regions. To progressively integrate multi-modality knowledge, we then construct an imputation-induced distillation module, in which a lateral inter-modality transition unit is created to impute representation of the missing modality. The proposed DFTD framework has been evaluated against six existing methods on an ADNI dataset with 1248 subjects. The results show that our method has superior performance in both AD-CN classification and MCI-to-AD prediction tasks, substantially over-performing all competing methods.
Collapse
|
17
|
Nemali A, Vockert N, Berron D, Maas A, Bernal J, Yakupov R, Peters O, Gref D, Cosma N, Preis L, Priller J, Spruth E, Altenstein S, Lohse A, Fliessbach K, Kimmich O, Vogt I, Wiltfang J, Hansen N, Bartels C, Schott BH, Maier F, Meiberth D, Glanz W, Incesoy E, Butryn M, Buerger K, Janowitz D, Pernecky R, Rauchmann B, Burow L, Teipel S, Kilimann I, Göerß D, Dyrba M, Laske C, Munk M, Sanzenbacher C, Müller S, Spottke A, Roy N, Heneka M, Brosseron F, Roeske S, Dobisch L, Ramirez A, Ewers M, Dechent P, Scheffler K, Kleineidam L, Wolfsgruber S, Wagner M, Jessen F, Duzel E, Ziegler G. Gaussian Process-based prediction of memory performance and biomarker status in ageing and Alzheimer's disease-A systematic model evaluation. Med Image Anal 2023; 90:102913. [PMID: 37660483 DOI: 10.1016/j.media.2023.102913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Neuroimaging markers based on Magnetic Resonance Imaging (MRI) combined with various other measures (such as genetic covariates, biomarkers, vascular risk factors, neuropsychological tests etc.) might provide useful predictions of clinical outcomes during the progression towards Alzheimer's disease (AD). The use of multiple features in predictive frameworks for clinical outcomes has become increasingly prevalent in AD research. However, many studies do not focus on systematically and accurately evaluating combinations of multiple input features. Hence, the aim of the present work is to explore and assess optimal combinations of various features for MR-based prediction of (1) cognitive status and (2) biomarker positivity with a multi-kernel learning Gaussian process framework. The explored features and parameters included (A) combinations of brain tissues, modulation, smoothing, and image resolution; (B) incorporating demographics & clinical covariates; (C) the impact of the size of the training data set; (D) the influence of dimensionality reduction and the choice of kernel types. The approach was tested in a large German cohort including 959 subjects from the multicentric longitudinal study of cognitive impairment and dementia (DELCODE). Our evaluation suggests the best prediction of memory performance was obtained for a combination of neuroimaging markers, demographics, genetic information (ApoE4) and CSF biomarkers explaining 57% of outcome variance in out-of-sample predictions. The highest performance for Aβ42/40 status classification was achieved for a combination of demographics, ApoE4, and a memory score while usage of structural MRI further improved the classification of individual patient's pTau status.
Collapse
Affiliation(s)
- A Nemali
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - N Vockert
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - D Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - A Maas
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - J Bernal
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - R Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - O Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - D Gref
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - N Cosma
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - L Preis
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Department of Psychiatry, Hindenburgdamm 30, 12203, Berlin, Germany
| | - J Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany; School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - E Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - S Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - A Lohse
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - K Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - O Kimmich
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - I Vogt
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - J Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany; Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - N Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - C Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - B H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany
| | - F Maier
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - D Meiberth
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany
| | - W Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany
| | - E Incesoy
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - M Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - K Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - D Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - R Pernecky
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany; Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - B Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - L Burow
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - S Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - I Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany; Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - D Göerß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany
| | - M Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - C Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - M Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - C Sanzenbacher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - S Müller
- Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - A Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - N Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - M Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - F Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - S Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - L Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - A Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany; Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - M Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - P Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Germany
| | - K Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | - L Kleineidam
- University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - S Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - M Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; University of Bonn Medical Center, Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, Venusberg-Campus 1, 53127 Bonn, Germany
| | - F Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Köln, Germany
| | - E Duzel
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - G Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
18
|
Jahan S, Abu Taher K, Kaiser MS, Mahmud M, Rahman MS, Hosen ASMS, Ra IH. Explainable AI-based Alzheimer's prediction and management using multimodal data. PLoS One 2023; 18:e0294253. [PMID: 37972072 PMCID: PMC10653516 DOI: 10.1371/journal.pone.0294253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND According to the World Health Organization (WHO), dementia is the seventh leading reason of death among all illnesses and one of the leading causes of disability among the world's elderly people. Day by day the number of Alzheimer's patients is rising. Considering the increasing rate and the dangers, Alzheimer's disease should be diagnosed carefully. Machine learning is a potential technique for Alzheimer's diagnosis but general users do not trust machine learning models due to the black-box nature. Even, some of those models do not provide the best performance because of using only neuroimaging data. OBJECTIVE To solve these issues, this paper proposes a novel explainable Alzheimer's disease prediction model using a multimodal dataset. This approach performs a data-level fusion using clinical data, MRI segmentation data, and psychological data. However, currently, there is very little understanding of multimodal five-class classification of Alzheimer's disease. METHOD For predicting five class classifications, 9 most popular Machine Learning models are used. These models are Random Forest (RF), Logistic Regression (LR), Decision Tree (DT), Multi-Layer Perceptron (MLP), K-Nearest Neighbor (KNN), Gradient Boosting (GB), Adaptive Boosting (AdaB), Support Vector Machine (SVM), and Naive Bayes (NB). Among these models RF has scored the highest value. Besides for explainability, SHapley Additive exPlanation (SHAP) is used in this research work. RESULTS AND CONCLUSIONS The performance evaluation demonstrates that the RF classifier has a 10-fold cross-validation accuracy of 98.81% for predicting Alzheimer's disease, cognitively normal, non-Alzheimer's dementia, uncertain dementia, and others. In addition, the study utilized Explainable Artificial Intelligence based on the SHAP model and analyzed the causes of prediction. To the best of our knowledge, we are the first to present this multimodal (Clinical, Psychological, and MRI segmentation data) five-class classification of Alzheimer's disease using Open Access Series of Imaging Studies (OASIS-3) dataset. Besides, a novel Alzheimer's patient management architecture is also proposed in this work.
Collapse
Affiliation(s)
- Sobhana Jahan
- Department of Computer Science and Engineering, Bangladesh University of Professionals, Dhaka, Bangladesh
- Department of Information and Communication Technology, Bangladesh University of Professionals, Dhaka, Bangladesh
| | - Kazi Abu Taher
- Department of Information and Communication Technology, Bangladesh University of Professionals, Dhaka, Bangladesh
| | - M. Shamim Kaiser
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Nottingham, United Kingdom
| | - Md. Sazzadur Rahman
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - A. S. M. Sanwar Hosen
- Department of Artificial Intelligence and Big Data, Woosong University, Daejeon, South Korea
| | - In-Ho Ra
- School of Computer, Information and Communication Engineering, Kunsan National University, Gunsan, South Korea
| |
Collapse
|
19
|
Yuan C, Linn KA, Hubbard RA. Algorithmic Fairness of Machine Learning Models for Alzheimer Disease Progression. JAMA Netw Open 2023; 6:e2342203. [PMID: 37934495 PMCID: PMC10630899 DOI: 10.1001/jamanetworkopen.2023.42203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023] Open
Abstract
Importance Predictive models using machine learning techniques have potential to improve early detection and management of Alzheimer disease (AD). However, these models potentially have biases and may perpetuate or exacerbate existing disparities. Objective To characterize the algorithmic fairness of longitudinal prediction models for AD progression. Design, Setting, and Participants This prognostic study investigated the algorithmic fairness of logistic regression, support vector machines, and recurrent neural networks for predicting progression to mild cognitive impairment (MCI) and AD using data from participants in the Alzheimer Disease Neuroimaging Initiative evaluated at 57 sites in the US and Canada. Participants aged 54 to 91 years who contributed data on at least 2 visits between September 2005 and May 2017 were included. Data were analyzed in October 2022. Exposures Fairness was quantified across sex, ethnicity, and race groups. Neuropsychological test scores, anatomical features from T1 magnetic resonance imaging, measures extracted from positron emission tomography, and cerebrospinal fluid biomarkers were included as predictors. Main Outcomes and Measures Outcome measures quantified fairness of prediction models (logistic regression [LR], support vector machine [SVM], and recurrent neural network [RNN] models), including equal opportunity, equalized odds, and demographic parity. Specifically, if the model exhibited equal sensitivity for all groups, it aligned with the principle of equal opportunity, indicating fairness in predictive performance. Results A total of 1730 participants in the cohort (mean [SD] age, 73.81 [6.92] years; 776 females [44.9%]; 69 Hispanic [4.0%] and 1661 non-Hispanic [96.0%]; 29 Asian [1.7%], 77 Black [4.5%], 1599 White [92.4%], and 25 other race [1.4%]) were included. Sensitivity for predicting progression to MCI and AD was lower for Hispanic participants compared with non-Hispanic participants; the difference (SD) in true positive rate ranged from 20.9% (5.5%) for the RNN model to 27.8% (9.8%) for the SVM model in MCI and 24.1% (5.4%) for the RNN model to 48.2% (17.3%) for the LR model in AD. Sensitivity was similarly lower for Black and Asian participants compared with non-Hispanic White participants; for example, the difference (SD) in AD true positive rate was 14.5% (51.6%) in the LR model, 12.3% (35.1%) in the SVM model, and 28.4% (16.8%) in the RNN model for Black vs White participants, and the difference (SD) in MCI true positive rate was 25.6% (13.1%) in the LR model, 24.3% (13.1%) in the SVM model, and 6.8% (18.7%) in the RNN model for Asian vs White participants. Models generally satisfied metrics of fairness with respect to sex, with no significant differences by group, except for cognitively normal (CN)-MCI and MCI-AD transitions (eg, an absolute increase [SD] in the true positive rate of CN-MCI transitions of 10.3% [27.8%] for the LR model). Conclusions and Relevance In this study, models were accurate in aggregate but failed to satisfy fairness metrics. These findings suggest that fairness should be considered in the development and use of machine learning models for AD progression.
Collapse
Affiliation(s)
- Chenxi Yuan
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kristin A. Linn
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Rebecca A. Hubbard
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
20
|
Blanco K, Salcidua S, Orellana P, Sauma-Pérez T, León T, Steinmetz LCL, Ibañez A, Duran-Aniotz C, de la Cruz R. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer's disease. Alzheimers Res Ther 2023; 15:176. [PMID: 37838690 PMCID: PMC10576366 DOI: 10.1186/s13195-023-01304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/16/2023]
Abstract
Mild cognitive impairment (MCI) is often considered an early stage of dementia, with estimated rates of progression to dementia up to 80-90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impairment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it is due to Alzheimer's disease (AD). However, only a limited percentage of the population has access to etiological confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical models and multimodal machine learning (ML) algorithms for the diagnosis of MCI based on fluid biomarkers from CSF, peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, including AD. After a PRISMA analysis, 29 articles revealed a trend towards using multimodal algorithms that incorporate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, neuroimaging is commonly used in conjunction with fluid biomarkers for both cross-sectional and longitudinal studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the development of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, could prove pivotal in improving diagnostic tools for MCI due to AD.
Collapse
Affiliation(s)
- Kevin Blanco
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Building D, Peñalolén, Santiago, Chile
| | - Paulina Orellana
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Tania Sauma-Pérez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Tomás León
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Center (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena Cecilia López Steinmetz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Technische Universität Berlin, Berlin, Deutschland
- Instituto de Investigaciones Psicológicas (IIPsi), Universidad Nacional de Córdoba (UNC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Agustín Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Claudia Duran-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile.
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Rolando de la Cruz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Building D, Peñalolén, Santiago, Chile.
- Data Observatory Foundation, ANID Technology Center No. DO210001, Santiago, Chile.
| |
Collapse
|
21
|
Zhang Q, Sheng J, Zhang Q, Wang L, Yang Z, Xin Y. Enhanced Harris hawks optimization-based fuzzy k-nearest neighbor algorithm for diagnosis of Alzheimer's disease. Comput Biol Med 2023; 165:107392. [PMID: 37669585 DOI: 10.1016/j.compbiomed.2023.107392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
In order to stop deterioration and give patients with Alzheimer's disease (AD) early therapy, it is crucial to correctly diagnose AD and its early stage, mild cognitive impairment (MCI). A framework for diagnosing AD is presented in this paper, which includes magnetic resonance imaging (MRI) image preprocessing, feature extraction, and the Fuzzy k-nearest neighbor algorithm (FKNN) model. In particular, the framework's novelty lies in the use of an improved Harris Hawks Optimization (HHO) algorithm named SSFSHHO, which integrates the Sobol sequence and Stochastic Fractal Search (SFS) mechanisms for optimizing the parameters of FKNN. The HHO method improves the quality of the initial population overall by incorporating the Sobol sequence, and the SFS mechanism increases the algorithm's capacity to get out of the local optimum solution. Comparisons with other classical meta-heuristic algorithms, state-of-the-art HHO variants in low and high dimensions, and enhanced meta-heuristic algorithms on 30 typical IEEE CEC2014 benchmark test problems show that the overall performance of SSFSHHO is significantly better than other comparative algorithms. Moreover, the created framework based on the SSFSHHO-FKNN model is employed to classify AD and MCI using MRI scans from the ADNI dataset, achieving high classification performance for 6 representative cases. Experimental findings indicate that the proposed algorithm performs better than a number of high-performance optimization algorithms and classical machine learning algorithms, thus offering a promising approach for AD classification. Additionally, the proposed strategy can successfully identify relevant features and enhance classification performance for AD diagnosis.
Collapse
Affiliation(s)
- Qian Zhang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China; School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, Zhejiang, 325035, China
| | - Jinhua Sheng
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China.
| | - Qiao Zhang
- Beijing Hospital, Beijing, 100730, China; National Center of Gerontology, Beijing, 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Luyun Wang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Ze Yang
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| | - Yu Xin
- College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
22
|
Ge X, Cui K, Qin Y, Chen D, Han H, Yu H. Screening strategies and dynamic risk prediction models for Alzheimer's disease. J Psychiatr Res 2023; 166:92-99. [PMID: 37757706 DOI: 10.1016/j.jpsychires.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/16/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Characterizing the progression from Mild cognitive impairment (MCI) to Alzheimer's disease (AD) is essential for early AD prevention and targeted intervention. Our goal was to construct precise screening schemes for individuals with different risk of AD and to establish prognosis models for them. METHODS We constructed a retrospective cohort by reviewing individuals with baseline diagnosis of MCI and at least one follow-up visits between November 2005 and May 2021. They were stratified into high-risk and low-risk groups with longitudinal cognitive trajectory. Then, we established a screening framework and obtained optimal screening strategies for two risk groups. Cox and random survival forest (RSF) models were developed for dynamic prognosis prediction. RESULTS In terms of screening strategies, the combination of Clinical Dementia Rating Sum of Boxes (CDRSB) and hippocampus volume was recommended for the high-risk MCI group, while the combination of Alzheimer's Disease Assessment Scale Cognitive 13 items (ADAS13) and FAQ was recommended for low-risk MCI group. The concordance index (C-index) of the Cox model for the high-risk group was 0.844 (95% CI: 0.815-0.873) and adjustments for demographic information and APOE ε4. The RSF model incorporating longitudinal ADAS13, FAQ, and demographic information and APOE ε4 performed for the low-risk group. CONCLUSION This precise screening scheme will optimize allocation of medical resources and reduce the economic burden on individuals with low risk of MCI. Moreover, dynamic prognosis models may be helpful for early identification of individuals at risk and clinical decisions, which will promote the secondary prevention of AD.
Collapse
Affiliation(s)
- Xiaoyan Ge
- Department of Health Statistics, School of Public Health, Jinzhou Medical University, 40 SongPo Road, Jinzhou, China.
| | - Kai Cui
- Department of Health Statistics, School of Public Health, Jinzhou Medical University, 40 SongPo Road, Jinzhou, China.
| | - Yao Qin
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 XinJian South Road, Taiyuan, China.
| | - Durong Chen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 XinJian South Road, Taiyuan, China.
| | - Hongjuan Han
- Department of Mathematics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 XinJian South Road, Taiyuan, China; Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, 56 XinJian South Road, Taiyuan, China.
| |
Collapse
|
23
|
Peng J, Wang W, Song Q, Hou J, Jin H, Qin X, Yuan Z, Wei Y, Shu Z. 18F-FDG-PET Radiomics Based on White Matter Predicts The Progression of Mild Cognitive Impairment to Alzheimer Disease: A Machine Learning Study. Acad Radiol 2023; 30:1874-1884. [PMID: 36587998 DOI: 10.1016/j.acra.2022.12.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/11/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES To build a model using white-matter radiomics features on positron-emission tomography (PET) and machine learning methods to predict progression from mild cognitive impairment (MCI) to Alzheimer disease (AD). MATERIALS AND METHODS We analyzed the data of 341 MCI patients from the Alzheimer's Disease Neuroimaging Initiative, of whom 102 progressed to AD during an 8-year follow-up. The patients were divided into the training (238 patients) and test groups (103 patients). PET-based radiomics features were extracted from the white matter in the training group, and dimensionally reduced to construct a psychoradiomics signature (PS), which was combined with multimodal data using machine learning methods to construct an integrated model. Model performance was evaluated using receiver operating characteristic curves in the test group. RESULTS Clinical Dementia Rating (CDR) scores, Alzheimer's Disease Assessment Scale (ADAS) scores, and PS independently predicted MCI progression to AD on multivariate logistic regression. The areas under the curve (AUCs) of the CDR, ADAS and PS in the training and test groups were 0.683, 0.755, 0.747 and 0.737, 0.743, 0.719 respectively, and were combined using a support vector machine to construct an integrated model. The AUC of the integrated model in the training and test groups was 0.868 and 0.865, respectively (sensitivity, 0.873 and 0.839, respectively; specificity, 0.784 and 0.806, respectively). The AUCs of the integrated model significantly differed from those of other predictors in both groups (p < 0.05, Delong test). CONCLUSION Our psych radiomics signature based on white-matter PET data predicted MCI progression to AD. The integrated model built using multimodal data and machine learning identified MCI patients at a high risk of progression to AD.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Jinzhou medical university, Jinzhou, Liaoning Province, China
| | - Wei Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqin, China
| | - Qiaowei Song
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Hou
- Jinzhou medical university, Jinzhou, Liaoning Province, China
| | - Hui Jin
- Bengbu medical college, Bengbu, China
| | - Xue Qin
- Bengbu medical college, Bengbu, China
| | - Zhongyu Yuan
- Jinzhou medical university, Jinzhou, Liaoning Province, China
| | - Yuguo Wei
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Zhenyu Shu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Kesler SR, Henneghan AM, Prinsloo S, Palesh O, Wintermark M. Neuroimaging based biotypes for precision diagnosis and prognosis in cancer-related cognitive impairment. Front Med (Lausanne) 2023; 10:1199605. [PMID: 37720513 PMCID: PMC10499624 DOI: 10.3389/fmed.2023.1199605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer related cognitive impairment (CRCI) is commonly associated with cancer and its treatments, yet the present binary diagnostic approach fails to capture the full spectrum of this syndrome. Cognitive function is highly complex and exists on a continuum that is poorly characterized by dichotomous categories. Advanced statistical methodologies applied to symptom assessments have demonstrated that there are multiple subclasses of CRCI. However, studies suggest that relying on symptom assessments alone may fail to account for significant differences in the neural mechanisms that underlie a specific cognitive phenotype. Treatment plans that address the specific physiologic mechanisms involved in an individual patient's condition is the heart of precision medicine. In this narrative review, we discuss how biotyping, a precision medicine framework being utilized in other mental disorders, could be applied to CRCI. Specifically, we discuss how neuroimaging can be used to determine biotypes of CRCI, which allow for increased precision in prediction and diagnosis of CRCI via biologic mechanistic data. Biotypes may also provide more precise clinical endpoints for intervention trials. Biotyping could be made more feasible with proxy imaging technologies or liquid biomarkers. Large cross-sectional phenotyping studies are needed in addition to evaluation of longitudinal trajectories, and data sharing/pooling is highly feasible with currently available digital infrastructures.
Collapse
Affiliation(s)
- Shelli R. Kesler
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Ashley M. Henneghan
- Division of Adult Health, School of Nursing, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, Dell School of Medicine, The University of Texas at Austin, Austin, TX, United States
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Oxana Palesh
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer, Houston, TX, United States
| |
Collapse
|
25
|
Goel N, Thomopoulos SI, Chattopadhyay T, Thompson PM. Predictive Modeling Of Alzheimer's Disease Prognosis Using Anatomical & Diffusion MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38083439 DOI: 10.1109/embc40787.2023.10341001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Mild cognitive impairment (MCI) is an intermediate stage between healthy aging and Alzheimer's disease (AD), and AD is a progressive neurodegenerative disorder that affects around 50 million people worldwide. As new AD treatments begin to be developed, one key goal of AD research is to predict which individuals with MCI are most likely to progress to AD over a given interval (such as 2 years); if successful, these individuals could be preferentially enrolled in drug trials that aim to slow AD progression. Here we benchmarked a range of MCI-to-AD predictive models including linear regressions, support vector machines, and random forests, using predictors from anatomical and diffusion-weighted brain MRI, age, sex, APOE genotype and standardized clinical scores. In evaluations on 2,448 subjects (1,132 MCI, 883 healthy controls, 433 with dementia) from the ADNI study, models including PCA-compacted features achieved a balanced accuracy of 75.3% (using cortical features) and 89.7% using diffusion MRI measures on test set, suggesting the added prognostic value of microstructural metrics obtainable with diffusion MRI.
Collapse
|
26
|
Al Olaimat M, Martinez J, Saeed F, Bozdag S. PPAD: a deep learning architecture to predict progression of Alzheimer's disease. Bioinformatics 2023; 39:i149-i157. [PMID: 37387135 PMCID: PMC10311312 DOI: 10.1093/bioinformatics/btad249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Mild cognitive impairment (MCI) is an intermediary stage between cognitively normal state and AD. Not all people who have MCI convert to AD. The diagnosis of AD is made after significant symptoms of dementia such as short-term memory loss are already present. Since AD is currently an irreversible disease, diagnosis at the onset of the disease brings a huge burden on patients, their caregivers, and the healthcare sector. Thus, there is a crucial need to develop methods for the early prediction AD for patients who have MCI. Recurrent neural networks (RNN) have been successfully used to handle electronic health records (EHR) for predicting conversion from MCI to AD. However, RNN ignores irregular time intervals between successive events which occurs common in electronic health record data. In this study, we propose two deep learning architectures based on RNN, namely Predicting Progression of Alzheimer's Disease (PPAD) and PPAD-Autoencoder. PPAD and PPAD-Autoencoder are designed for early predicting conversion from MCI to AD at the next visit and multiple visits ahead for patients, respectively. To minimize the effect of the irregular time intervals between visits, we propose using age in each visit as an indicator of time change between successive visits. RESULTS Our experimental results conducted on Alzheimer's Disease Neuroimaging Initiative and National Alzheimer's Coordinating Center datasets showed that our proposed models outperformed all baseline models for most prediction scenarios in terms of F2 and sensitivity. We also observed that the age feature was one of top features and was able to address irregular time interval problem. AVAILABILITY AND IMPLEMENTATION https://github.com/bozdaglab/PPAD.
Collapse
Affiliation(s)
- Mohammad Al Olaimat
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
| | - Jared Martinez
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, United States
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States
- Department of Mathematics, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | | |
Collapse
|
27
|
Zhao J, Zhou Y, Liu Y. Estimation of Linear Functionals in High-Dimensional Linear Models: From Sparsity to Nonsparsity. J Am Stat Assoc 2023; 119:1579-1591. [PMID: 39296805 PMCID: PMC11407100 DOI: 10.1080/01621459.2023.2206084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/18/2023] [Indexed: 09/21/2024]
Abstract
High dimensional linear models are commonly used in practice. In many applications, one is interested in linear transformationsβ ⊤ x of regression coefficients β ∈ R p , where x is a specific point and is not required to be identically distributed as the training data. One common approach is the plug-in technique which first estimates β , then plugs the estimator in the linear transformation for prediction. Despite its popularity, estimation of β can be difficult for high dimensional problems. Commonly used assumptions in the literature include that the signal of coefficients β is sparse and predictors are weakly correlated. These assumptions, however, may not be easily verified, and can be violated in practice. When β is non-sparse or predictors are strongly correlated, estimation of β can be very difficult. In this paper, we propose a novel pointwise estimator for linear transformations of β . This new estimator greatly relaxes the common assumptions for high dimensional problems, and is adaptive to the degree of sparsity of β and strength of correlations among the predictors. In particular, β can be sparse or non-sparse and predictors can be strongly or weakly correlated. The proposed method is simple for implementation. Numerical and theoretical results demonstrate the competitive advantages of the proposed method for a wide range of problems.
Collapse
Affiliation(s)
- Junlong Zhao
- Professor, School of Statistics, Beijing Normal University, China
| | - Yang Zhou
- Assistant Professor, School of Statistics, Beijing Normal University, Beijing China
| | - Yufeng Liu
- Professor, Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Wang X, Liu B, Zhang X, Liu Y. Efficient multiple change point detection for high-dimensional generalized linear models. CAN J STAT 2023; 51:596-629. [PMID: 37346756 PMCID: PMC10281755 DOI: 10.1002/cjs.11721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/16/2021] [Indexed: 11/11/2022]
Abstract
Change point detection for high-dimensional data is an important yet challenging problem for many applications. In this paper, we consider multiple change point detection in the context of high-dimensional generalized linear models, allowing the covariate dimension p to grow exponentially with the sample size n. The model considered is general and flexible in the sense that it covers various specific models as special cases. It can automatically account for the underlying data generation mechanism without specifying any prior knowledge about the number of change points. Based on dynamic programming and binary segmentation techniques, two algorithms are proposed to detect multiple change points, allowing the number of change points to grow with n. To further improve the computational efficiency, a more efficient algorithm designed for the case of a single change point is proposed. We present theoretical properties of our proposed algorithms, including estimation consistency for the number and locations of change points as well as consistency and asymptotic distributions for the underlying regression coefficients. Finally, extensive simulation studies and application to the Alzheimer's Disease Neuroimaging Initiative data further demonstrate the competitive performance of our proposed methods.
Collapse
Affiliation(s)
- Xianru Wang
- Department of Statistics and Data Science, School of Management at Fudan University, Shanghai, China
| | - Bin Liu
- Department of Statistics and Data Science, School of Management at Fudan University, Shanghai, China
| | - Xinsheng Zhang
- Department of Statistics and Data Science, School of Management at Fudan University, Shanghai, China
| | - Yufeng Liu
- Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, Carolina Center for Genome Sciences, Linberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, U.S.A
| | | |
Collapse
|
29
|
Zhou L, Xie Y, Wang R, Fan Y, Wu Y. Dynamic segregation and integration of brain functional networks associated with emotional arousal. iScience 2023; 26:106609. [PMID: 37250309 PMCID: PMC10214403 DOI: 10.1016/j.isci.2023.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/12/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The organization of brain functional networks dynamically changes with emotional stimuli, but its relationship to emotional behaviors is still unclear. In the DEAP dataset, we used the nested-spectral partition approach to identify the hierarchical segregation and integration of functional networks and investigated the dynamic transitions between connectivity states under different arousal conditions. The frontal and right posterior parietal regions were dominant for network integration whereas the bilateral temporal, left posterior parietal, and occipital regions were responsible for segregation and functional flexibility. High emotional arousal behavior was associated with stronger network integration and more stable state transitions. Crucially, the connectivity states of frontal, central, and right parietal regions were closely related to arousal ratings in individuals. Besides, we predicted the individual emotional performance based on functional connectivity activities. Our results demonstrate that brain connectivity states are closely associated with emotional behaviors and could be reliable and robust indicators for emotional arousal.
Collapse
Affiliation(s)
- Lv Zhou
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yong Xie
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
| | - Rong Wang
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- College of Science, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yongchen Fan
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
| | - Ying Wu
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
30
|
Park S, Hong CH, Lee DG, Park K, Shin H. Prospective classification of Alzheimer's disease conversion from mild cognitive impairment. Neural Netw 2023; 164:335-344. [PMID: 37163849 DOI: 10.1016/j.neunet.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Alzheimer's disease (AD) is emerging as a serious problem with the rapid aging of the population, but due to the unclear cause of the disease and the absence of therapy, appropriate preventive measures are the next best thing. For this reason, it is important to early detect whether the disease converts from mild cognitive impairment (MCI) which is a prodromal phase of AD. With the advance in brain imaging techniques, various machine learning algorithms have become able to predict the conversion from MCI to AD by learning brain atrophy patterns. However, at the time of diagnosis, it is difficult to distinguish between the conversion group and the non-conversion group of subjects because the difference between groups is small, but the within-group variability is large in brain images. After a certain period of time, the subjects of conversion group show significant brain atrophy, whereas subjects of non-conversion group show only subtle changes due to the normal aging effect. This difference on brain atrophy makes the brain images more discriminative for learning. Motivated by this, we propose a method to perform classification by projecting brain images into the future, namely prospective classification. The experiments on the Alzheimer's Disease Neuroimaging Initiative dataset show that the prospective classification outperforms ordinary classification. Moreover, the features of prospective classification indicate the brain regions that significantly influence the conversion from MCI to AD.
Collapse
Affiliation(s)
- Sunghong Park
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Dong-Gi Lee
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kanghee Park
- Korea Institute of Science and Technology Information, Seoul, 02456, Republic of Korea
| | - Hyunjung Shin
- Department of Artificial Intelligence, Ajou University, Suwon, 16499, Republic of Korea; Department of Industrial Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
31
|
Wang R, Bashyam V, Yang Z, Yu F, Tassopoulou V, Chintapalli SS, Skampardoni I, Sreepada LP, Sahoo D, Nikita K, Abdulkadir A, Wen J, Davatzikos C. Applications of generative adversarial networks in neuroimaging and clinical neuroscience. Neuroimage 2023; 269:119898. [PMID: 36702211 PMCID: PMC9992336 DOI: 10.1016/j.neuroimage.2023.119898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/16/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields. They belong to the broader family of generative methods, which learn to generate realistic data with a probabilistic model by learning distributions from real samples. In the clinical context, GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects compared to traditional generative methods. This review critically appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions, including Alzheimer's disease, brain tumors, brain aging, and multiple sclerosis. We provide an intuitive explanation of various GAN methods for each application and further discuss the main challenges, open questions, and promising future directions of leveraging GANs in neuroimaging. We aim to bridge the gap between advanced deep learning methods and neurology research by highlighting how GANs can be leveraged to support clinical decision making and contribute to a better understanding of the structural and functional patterns of brain diseases.
Collapse
Affiliation(s)
- Rongguang Wang
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA.
| | - Vishnu Bashyam
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Zhijian Yang
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Fanyang Yu
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Vasiliki Tassopoulou
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Sai Spandana Chintapalli
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Ioanna Skampardoni
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Lasya P Sreepada
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Dushyant Sahoo
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Konstantina Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | - Ahmed Abdulkadir
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Junhao Wen
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA
| | - Christos Davatzikos
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA; Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
32
|
Zhuparris A, Maleki G, Koopmans I, Doll RJ, Voet N, Kraaij W, Cohen A, van Brummelen E, De Maeyer JH, Groeneveld GJ. Smartphone and Wearable Sensors for the Estimation of Facioscapulohumeral Muscular Dystrophy Disease Severity: Cross-sectional Study. JMIR Form Res 2023; 7:e41178. [PMID: 36920465 PMCID: PMC10131943 DOI: 10.2196/41178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disease. Its slow and variable progression makes the development of new treatments highly dependent on validated biomarkers that can quantify disease progression and response to drug interventions. OBJECTIVE We aimed to build a tool that estimates FSHD clinical severity based on behavioral features captured using smartphone and remote sensor data. The adoption of remote monitoring tools, such as smartphones and wearables, would provide a novel opportunity for continuous, passive, and objective monitoring of FSHD symptom severity outside the clinic. METHODS In total, 38 genetically confirmed patients with FSHD were enrolled. The FSHD Clinical Score and the Timed Up and Go (TUG) test were used to assess FSHD symptom severity at days 0 and 42. Remote sensor data were collected using an Android smartphone, Withings Steel HR+, Body+, and BPM Connect+ for 6 continuous weeks. We created 2 single-task regression models that estimated the FSHD Clinical Score and TUG separately. Further, we built 1 multitask regression model that estimated the 2 clinical assessments simultaneously. Further, we assessed how an increasingly incremental time window affected the model performance. To do so, we trained the models on an incrementally increasing time window (from day 1 until day 14) and evaluated the predictions of the clinical severity on the remaining 4 weeks of data. RESULTS The single-task regression models achieved an R2 of 0.57 and 0.59 and a root-mean-square error (RMSE) of 2.09 and 1.66 when estimating FSHD Clinical Score and TUG, respectively. Time spent at a health-related location (such as a gym or hospital) and call duration were features that were predictive of both clinical assessments. The multitask model achieved an R2 of 0.66 and 0.81 and an RMSE of 1.97 and 1.61 for the FSHD Clinical Score and TUG, respectively, and therefore outperformed the single-task models in estimating clinical severity. The 3 most important features selected by the multitask model were light sleep duration, total steps per day, and mean steps per minute. Using an increasing time window (starting from day 1 to day 14) for the FSHD Clinical Score, TUG, and multitask estimation yielded an average R2 of 0.65, 0.79, and 0.76 and an average RMSE of 3.37, 2.05, and 4.37, respectively. CONCLUSIONS We demonstrated that smartphone and remote sensor data could be used to estimate FSHD clinical severity and therefore complement the assessment of FSHD outside the clinic. In addition, our results illustrated that training the models on the first week of data allows for consistent and stable prediction of FSHD symptom severity. Longitudinal follow-up studies should be conducted to further validate the reliability and validity of the multitask model as a tool to monitor disease progression over a longer period. TRIAL REGISTRATION ClinicalTrials.gov NCT04999735; https://www.clinicaltrials.gov/ct2/show/NCT04999735.
Collapse
Affiliation(s)
| | - Ghobad Maleki
- Centre for Human Drug Research (CHDR), Leiden, Netherlands
| | | | - Robert J Doll
- Centre for Human Drug Research (CHDR), Leiden, Netherlands
| | - Nicoline Voet
- Department of Rehabilitation, Rehabilitation Center Klimmendaal, Nijmegen, Netherlands
| | - Wessel Kraaij
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Adam Cohen
- Centre for Human Drug Research (CHDR), Leiden, Netherlands
| | | | | | | |
Collapse
|
33
|
Ban Y, Lao H, Li B, Su W, Zhang X. Diagnosis of Alzheimer's disease using hypergraph p-Laplacian regularized multi-task feature learning. J Biomed Inform 2023; 140:104326. [PMID: 36870585 DOI: 10.1016/j.jbi.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Multimodal data-based classification methods have been widely used in the diagnosis of Alzheimer's disease (AD) and have achieved better performance than single-modal-based methods. However, most classification methods based on multimodal data tend to consider only the correlation between different modal data and ignore the inherent non-linear higher-order relationships between similar data, which can improve the robustness of the model. Therefore, this study proposes a hypergraph p-Laplacian regularized multi-task feature selection (HpMTFS) method for AD classification. Specifically, feature selection for each modal data is considered as a distinct task and the common features of multimodal data are extracted jointly by group-sparsity regularizer. In particular, two regularization terms are introduced in this study, namely (1) a hypergraph p-Laplacian regularization term to retain higher-order structural information for similar data, and (2) a Frobenius norm regularization term to improve the noise immunity of the model. Finally, using a multi-kernel support vector machine to fuse multimodal features and perform the final classification. We used baseline sMRI, FDG-PET, and AV-45 PET imaging data from 528 subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to evaluate our approach. Experimental results show that our HpMTFS method outperforms existing multimodal-based classification methods.
Collapse
Affiliation(s)
- Yanjiao Ban
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China
| | - Huan Lao
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, Guangxi, China; School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Bin Li
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China
| | - Wenjun Su
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China
| | - Xuejun Zhang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, Guangxi, China; Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
34
|
Gong W, Bai S, Zheng YQ, Smith SM, Beckmann CF. Supervised Phenotype Discovery From Multimodal Brain Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:834-849. [PMID: 36318559 DOI: 10.1109/tmi.2022.3218720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Data-driven discovery of image-derived phenotypes (IDPs) from large-scale multimodal brain imaging data has enormous potential for neuroscientific and clinical research by linking IDPs to subjects' demographic, behavioural, clinical and cognitive measures (i.e., non-imaging derived phenotypes or nIDPs). However, current approaches are primarily based on unsupervised approaches, without the use of information in nIDPs. In this paper, we proposed a semi-supervised, multimodal, and multi-task fusion approach, termed SuperBigFLICA, for IDP discovery, which simultaneously integrates information from multiple imaging modalities as well as multiple nIDPs. SuperBigFLICA is computationally efficient and largely avoids the need for parameter tuning. Using the UK Biobank brain imaging dataset with around 40,000 subjects and 47 modalities, along with more than 17,000 nIDPs, we showed that SuperBigFLICA enhances the prediction power of nIDPs, benchmarked against IDPs derived by conventional expert-knowledge and unsupervised-learning approaches (with average nIDP prediction accuracy improvements of up to 46%). It also enables the learning of generic imaging features that can predict new nIDPs. Further empirical analysis of the SuperBigFLICA algorithm demonstrates its robustness in different prediction tasks and the ability to derive biologically meaningful IDPs in predicting health outcomes and cognitive nIDPs, such as fluid intelligence and hypertension.
Collapse
|
35
|
Statsenko Y, Meribout S, Habuza T, Almansoori TM, Gorkom KNV, Gelovani JG, Ljubisavljevic M. Patterns of structure-function association in normal aging and in Alzheimer's disease: Screening for mild cognitive impairment and dementia with ML regression and classification models. Front Aging Neurosci 2023; 14:943566. [PMID: 36910862 PMCID: PMC9995946 DOI: 10.3389/fnagi.2022.943566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/21/2022] [Indexed: 02/25/2023] Open
Abstract
Background The combined analysis of imaging and functional modalities is supposed to improve diagnostics of neurodegenerative diseases with advanced data science techniques. Objective To get an insight into normal and accelerated brain aging by developing the machine learning models that predict individual performance in neuropsychological and cognitive tests from brain MRI. With these models we endeavor to look for patterns of brain structure-function association (SFA) indicative of mild cognitive impairment (MCI) and Alzheimer's dementia. Materials and methods We explored the age-related variability of cognitive and neuropsychological test scores in normal and accelerated aging and constructed regression models predicting functional performance in cognitive tests from brain radiomics data. The models were trained on the three study cohorts from ADNI dataset-cognitively normal individuals, patients with MCI or dementia-separately. We also looked for significant correlations between cortical parcellation volumes and test scores in the cohorts to investigate neuroanatomical differences in relation to cognitive status. Finally, we worked out an approach for the classification of the examinees according to the pattern of structure-function associations into the cohorts of the cognitively normal elderly and patients with MCI or dementia. Results In the healthy population, the global cognitive functioning slightly changes with age. It also remains stable across the disease course in the majority of cases. In healthy adults and patients with MCI or dementia, the trendlines of performance in digit symbol substitution test and trail making test converge at the approximated point of 100 years of age. According to the SFA pattern, we distinguish three cohorts: the cognitively normal elderly, patients with MCI, and dementia. The highest accuracy is achieved with the model trained to predict the mini-mental state examination score from voxel-based morphometry data. The application of the majority voting technique to models predicting results in cognitive tests improved the classification performance up to 91.95% true positive rate for healthy participants, 86.21%-for MCI and 80.18%-for dementia cases. Conclusion The machine learning model, when trained on the cases of this of that group, describes a disease-specific SFA pattern. The pattern serves as a "stamp" of the disease reflected by the model.
Collapse
Affiliation(s)
- Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Big Data Analytics Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sarah Meribout
- Department of Medicine, University of Constantine 3, Constantine, Algeria
| | - Tetiana Habuza
- Big Data Analytics Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates
- College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Taleb M. Almansoori
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Klaus Neidl-Van Gorkom
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juri G. Gelovani
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Surgery, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Biomedical Engineering Department, College of Engineering, Wayne State University, Detroit, MI, United States
- Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Milos Ljubisavljevic
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Abu Dhabi Precision Medicine Virtual Research Institute (ADPMVRI), United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
36
|
Liu Y, Li H, Luo T, Zhang C, Xiao Z, Wei Y, Gao Y, Shi F, Shan F, Shen D. Structural Attention Graph Neural Network for Diagnosis and Prediction of COVID-19 Severity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:557-567. [PMID: 36459600 DOI: 10.1109/tmi.2022.3226575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With rapid worldwide spread of Coronavirus Disease 2019 (COVID-19), jointly identifying severe COVID-19 cases from mild ones and predicting the conversion time (from mild to severe) is essential to optimize the workflow and reduce the clinician's workload. In this study, we propose a novel framework for COVID-19 diagnosis, termed as Structural Attention Graph Neural Network (SAGNN), which can combine the multi-source information including features extracted from chest CT, latent lung structural distribution, and non-imaging patient information to conduct diagnosis of COVID-19 severity and predict the conversion time from mild to severe. Specifically, we first construct a graph to incorporate structural information of the lung and adopt graph attention network to iteratively update representations of lung segments. To distinguish different infection degrees of left and right lungs, we further introduce a structural attention mechanism. Finally, we introduce demographic information and develop a multi-task learning framework to jointly perform both tasks of classification and regression. Experiments are conducted on a real dataset with 1687 chest CT scans, which includes 1328 mild cases and 359 severe cases. Experimental results show that our method achieves the best classification (e.g., 86.86% in terms of Area Under Curve) and regression (e.g., 0.58 in terms of Correlation Coefficient) performance, compared with other comparison methods.
Collapse
|
37
|
Subramanyam Rallabandi V, Seetharaman K. Deep learning-based classification of healthy aging controls, mild cognitive impairment and Alzheimer’s disease using fusion of MRI-PET imaging. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Di X, Yin Y, Fu Y, Mo Z, Lo SH, DiGuiseppi C, Eby DW, Hill L, Mielenz TJ, Strogatz D, Kim M, Li G. Detecting mild cognitive impairment and dementia in older adults using naturalistic driving data and interaction-based classification from influence score. Artif Intell Med 2023; 138:102510. [PMID: 36990588 DOI: 10.1016/j.artmed.2023.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Several recent studies indicate that atypical changes in driving behaviors appear to be early signs of mild cognitive impairment (MCI) and dementia. These studies, however, are limited by small sample sizes and short follow-up duration. This study aims to develop an interaction-based classification method building on a statistic named Influence Score (i.e., I-score) for prediction of MCI and dementia using naturalistic driving data collected from the Longitudinal Research on Aging Drivers (LongROAD) project. Naturalistic driving trajectories were collected through in-vehicle recording devices for up to 44 months from 2977 participants who were cognitively intact at the time of enrollment. These data were further processed and aggregated to generate 31 time-series driving variables. Because of high dimensional time-series features for driving variables, we used I-score for variable selection. I-score is a measure to evaluate variables' ability to predict and is proven to be effective in differentiating between noisy and predictive variables in big data. It is introduced here to select influential variable modules or groups that account for compound interactions among explanatory variables. It is explainable regarding to what extent variables and their interactions contribute to the predictiveness of a classifier. In addition, I-score boosts the performance of classifiers over imbalanced datasets due to its association with the F1 score. Using predictive variables selected by I-score, interaction-based residual blocks are constructed over top I-score modules to generate predictors and ensemble learning aggregates these predictors to boost the prediction of the overall classifier. Experiments using naturalistic driving data show that our proposed classification method achieves the best accuracy (96%) for predicting MCI and dementia, followed by random forest (93%) and logistic regression (88%). In terms of F1 score and AUC, our proposed classifier achieves 98% and 87%, respectively, followed by random forest (with an F1 score of 96% and an AUC of 79%) and logistic regression (with an F1 score of 92% and an AUC of 77%). The results indicate that incorporating I-score into machine learning algorithms could considerably improve the model performance for predicting MCI and dementia in older drivers. We also performed the feature importance analysis and found that the right to left turn ratio and the number of hard braking events are the most important driving variables to predict MCI and dementia.
Collapse
|
39
|
Al Olaimat M, Martinez J, Saeed F, Bozdag S. PPAD: A deep learning architecture to predict progression of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526045. [PMID: 36778453 PMCID: PMC9915480 DOI: 10.1101/2023.01.28.526045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Mild cognitive impairment (MCI) is an intermediary stage between cognitively normal (CN) state and AD. Not all people who have MCI convert to AD. The diagnosis of AD is made after significant symptoms of dementia such as short-term memory loss are already present. Since AD is currently an irreversible disease, diagnosis at the onset of disease brings a huge burden on patients, their caregivers, and the healthcare sector. Thus, there is a crucial need to develop methods for the early prediction AD for patients who have MCI. Recurrent Neural Networks (RNN) have been successfully used to handle Electronic Health Records (EHR) for predicting conversion from MCI to AD. However, RNN ignores irregular time intervals between successive events which occurs common in EHR data. In this study, we propose two deep learning architectures based on RNN, namely Predicting Progression of Alzheimer's Disease (PPAD) and PPAD-Autoencoder (PPAD-AE). PPAD and PPAD-AE are designed for early predicting conversion from MCI to AD at the next visit and multiple visits ahead for patients, respectively. To minimize the effect of the irregular time intervals between visits, we propose using age in each visit as an indicator of time change between successive visits. Our experimental results conducted on Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC) datasets showed that our proposed models outperformed all baseline models for most prediction scenarios in terms of F2 and sensitivity. We also observed that the age feature was one of top features and was able to address irregular time interval problem.
Collapse
Affiliation(s)
- Mohammad Al Olaimat
- Dept. of Computer Science and Engineering, University of North Texas, Denton, USA
| | - Jared Martinez
- Dept. of Computer Science and Engineering, University of North Texas, Denton, USA
| | - Fahad Saeed
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Serdar Bozdag
- Dept. of Computer Science and Engineering, University of North Texas, Denton, USA.,Dept. of Math-ematics, University of North Texas, Denton, USA,BioDiscovery Institute, University of North Texas, Denton, USA
| | | |
Collapse
|
40
|
Dar SA, Imtiaz N. Classification of neuroimaging data in Alzheimer's disease using particle swarm optimization: A systematic review. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-12. [PMID: 36719791 DOI: 10.1080/23279095.2023.2169886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AIM Particle swarm optimization (PSO) is an algorithm that involves the optimization of Non-linear and Multidimensional problems to reach the best solutions with minimal parameterization. This metaheuristic model has frequently been used in the Pathological domain. This optimization model has been used in diverse forms while predicting Alzheimer's disease. It is a robust algorithm that works on linear and multi-modal data while predicting Alzheimer's disease. PSO techniques have been in action for quite some time for detecting various diseases and this paper systematically reviews the papers on various kinds of PSO techniques. METHODS To perform the systematic review, PRISMA guidelines were followed and a Boolean search ("particle swarm optimization" OR "PSO") AND Neuroimaging AND (Alzheimer's disease prediction OR classification OR diagnosis) were performed. The query was run in 4-reputed databases: Google Scholar, Scopus, Science Direct, and Wiley publications. RESULTS For the final analysis, 10 papers were incorporated for qualitative and quantitative synthesis. PSO has shown a dominant character while handling the uni-modal as well as the multi-modal data while predicting the conversion from MCI to Alzheimer's. It can be seen from the table that almost all the 10 reviewed papers had MRI-driven data. The accuracy rate was accentuated while adding other modalities or Neurocognitive measures. CONCLUSIONS Through this algorithm, we are providing an opportunity to other researchers to compare this algorithm with other state-of-the-art algorithms, while seeing the classification accuracy, with the aim of early prediction and progression of MCI into Alzheimer's disease.
Collapse
Affiliation(s)
- Suhail Ahmad Dar
- Department of Psychology, Aligarh Muslim University, Aligarh, India
| | - Nasheed Imtiaz
- Department of Psychology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
41
|
Warren SL, Moustafa AA. Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review. J Neuroimaging 2023; 33:5-18. [PMID: 36257926 PMCID: PMC10092597 DOI: 10.1111/jon.13063] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is currently diagnosed using a mixture of psychological tests and clinical observations. However, these diagnoses are not perfect, and additional diagnostic tools (e.g., MRI) can help improve our understanding of AD as well as our ability to detect the disease. Accordingly, a large amount of research has been invested into innovative diagnostic methods for AD. Functional MRI (fMRI) is a form of neuroimaging technology that has been used to diagnose AD; however, fMRI is incredibly noisy, complex, and thus lacks clinical use. Nonetheless, recent innovations in deep learning technology could enable the simplified and streamlined analysis of fMRI. Deep learning is a form of artificial intelligence that uses computer algorithms based on human neural networks to solve complex problems. For example, in fMRI research, deep learning models can automatically denoise images and classify AD by detecting patterns in participants' brain scans. In this systematic review, we investigate how fMRI (specifically resting-state fMRI) and deep learning methods are used to diagnose AD. In turn, we outline the common deep neural network, preprocessing, and classification methods used in the literature. We also discuss the accuracy, strengths, limitations, and future direction of fMRI deep learning methods. In turn, we aim to summarize the current field for new researchers, suggest specific areas for future research, and highlight the potential of fMRI to aid AD diagnoses.
Collapse
Affiliation(s)
- Samuel L. Warren
- School of Psychology, Faculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
| | - Ahmed A. Moustafa
- School of Psychology, Faculty of Society and DesignBond UniversityGold CoastQueenslandAustralia
- Department of Human Anatomy and Physiology, Faculty of Health SciencesUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
42
|
Zhu L, Zhao B, An Y. A stacked broad learning system with multitask learning method for cellular wireless network traffic prediction. Soft comput 2022. [DOI: 10.1007/s00500-022-07718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Yue Y, Liu Y, Hao L, Lei H, He S. Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning. Brief Bioinform 2022; 24:6958504. [PMID: 36562724 PMCID: PMC9851313 DOI: 10.1093/bib/bbac564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Drug combinations could trigger pharmacological therapeutic effects (TEs) and adverse effects (AEs). Many computational methods have been developed to predict TEs, e.g. the therapeutic synergy scores of anti-cancer drug combinations, or AEs from drug-drug interactions. However, most of the methods treated the AEs and TEs predictions as two separate tasks, ignoring the potential mechanistic commonalities shared between them. Based on previous clinical observations, we hypothesized that by learning the shared mechanistic commonalities between AEs and TEs, we could learn the underlying MoAs (mechanisms of actions) and ultimately improve the accuracy of TE predictions. To test our hypothesis, we formulated the TE prediction problem as a multi-task heterogeneous network learning problem that performed TE and AE learning tasks simultaneously. To solve this problem, we proposed Muthene (multi-task heterogeneous network embedding) and evaluated it on our collected drug-drug interaction dataset with both TEs and AEs indications. Our experimental results showed that, by including the AE prediction as an auxiliary task, Muthene generated more accurate TE predictions than standard single-task learning methods, which supports our hypothesis. Using a drug pair Vincristine-Dasatinib as a case study, we demonstrated that our method not only provides a novel way of TE predictions but also helps us gain a deeper understanding of the MoAs of drug combinations.
Collapse
Affiliation(s)
- Yang Yue
- School of Computer Science from the University of Birmingham, UK
| | - Yongxuan Liu
- State Key Laboratory of Agricultural Microbiology from Huazhong Agricultural University, China
| | - Luoying Hao
- School of Computer Science from the University of Birmingham, UK
| | | | - Shan He
- Corresponding author. S. He, Centre for Computational Biology, School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. Tel.: +44-1214142775; Fax: +44-1214144281; E-mail:
| |
Collapse
|
44
|
Multi-stage classification of Alzheimer's disease from 18F-FDG-PET images using deep learning techniques. Phys Eng Sci Med 2022; 45:1301-1315. [PMID: 36357627 DOI: 10.1007/s13246-022-01196-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/28/2022] [Indexed: 11/12/2022]
Abstract
The study aims to implement a convolutional neural network framework that uses the 18F-FDG PET modality of brain imaging to detect multiple stages of dementia, including Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI), and Alzheimer's disease (AD) from Cognitively Normal (CN), and assess the results. 18F-FDG PET imaging modality for brain were procured from Alzheimer's disease neuroimaging initiative's (ADNI) repository. The ResNet50V2 model layers were utilised for feature extraction, with the final convolutional layers fine-tuned for this dataset's multi-classification objectives. Multiple metrics and feature maps were utilized to scrutinize and evaluate the model's statistical and qualitative inference. The multi-classification model achieved an overarching accuracy of 98.44% and Area under the receiver operating characteristic curve of 95% on the testing set. Feature maps aided in deducing finer aspects of the model's overall operation. This framework helped classifying from the 18F-FDG PET brain images, the subtypes of Mild Cognitive Impairment (MCI) which include EMCI, LMCI, from AD, CN groups and achieved an all-inclusive sensitivity of 94% and specificity of 95% respectively.
Collapse
|
45
|
Yang Y, Lv H, Chen N. A Survey on ensemble learning under the era of deep learning. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Imaoka Y, Flury A, Hauri L, de Bruin ED. Effects of different virtual reality technology driven dual-tasking paradigms on posture and saccadic eye movements in healthy older adults. Sci Rep 2022; 12:18059. [PMID: 36302813 PMCID: PMC9613688 DOI: 10.1038/s41598-022-21346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Postural sway and eye movements are potential biomarkers for dementia screening. Assessing the two movements comprehensively could improve the understanding of complicated syndrome for more accurate screening. The purpose of this research is to evaluate the effects of comprehensive assessment in healthy older adults (OA), using a novel concurrent comprehensive assessment system consisting of stabilometer and virtual reality headset. 20 healthy OA (70.4 ± 4.9 years) were recruited. Using a cross-sectional study design, this study investigated the effects of various dual-tasking paradigms with integrated tasks of visuospatial memory (VM), spatial orientation (SO), and visual challenge on posture and saccades. Dual-task paradigms with VM and SO affected the saccadic eye movements significantly. Two highly intensive tests of anti-saccade with VM task and pro-saccade with SO task also influenced postural sway significantly. Strong associations were seen between postural sway and eye movements for the conditions where the two movements theoretically shared common neural pathways in the brain, and vice versa. This study suggests that assessing posture and saccades with the integrated tasks comprehensively and simultaneously could be useful to explain different functions of the brain. The results warrant a cross-sectional study in OA with and without dementia to explore differences between these groups.
Collapse
Affiliation(s)
- Yu Imaoka
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Andri Flury
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Laura Hauri
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eling D. de Bruin
- grid.5801.c0000 0001 2156 2780Motor Control and Learning Laboratory, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland ,grid.4714.60000 0004 1937 0626Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 141 83 Stockholm, Sweden ,grid.510272.3School of Health Professions, Eastern Switzerland University of Applied Sciences, 9001 St. Gallen, Switzerland
| |
Collapse
|
47
|
Meng X, Zhuo W, Ge P, Zou B, Zhu Y, Liu W, Li X. Diagnostic model optimization method for ADHD based on brain network analysis of resting-state fMRI images and transfer learning neural network. Front Hum Neurosci 2022; 16:1005425. [PMID: 36310844 PMCID: PMC9614268 DOI: 10.3389/fnhum.2022.1005425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction: Attention deficit and hyperactivity disorder (ADHD) is a common inherited disease of the nervous system whose cause(s) and pathogenesis remain unclear. Currently, the diagnosis of ADHD is mainly based on clinical experience and guidelines that have laid out some diagnostic standards. Our study aimed to apply a learning-based classification method to assist the ADHD diagnosis based on high-dimensional resting-state fMRI. Methods: Our study selected the ADHD-200 Peking dataset of resting-state fMRI, which has an ADHD patient (n = 142) group and a typically developing control (TDC) healthy control (n = 102) group. We first used Pearson and partial correlation coefficients to perform functional connectivity (FC) analysis between ROIs. Then, the Pearson and partial correlation coefficient matrices were concatenated into a dual-channel feature to build a dual data channel as input to the transfer learning neural network (TLNN) architecture. Finally, we transferred the pretrained model from the auxiliary domain to our target domain and fine-tuned it. Results: Based on the Pearson correlation coefficient, FC between ROIs was detected in 22 brain regions, including the fusiform gyrus, superior frontal gyrus, posterior superior temporal sulcus, inferior parietal lobule, anterior cingulate cortex, and parahippocampal gyrus. Based on the partial correlation coefficient, we found FC in the salient network, default network, sensory-motor network, dorsal attention network, and cerebellum network. With the TLNN architecture, we solved the problem of insufficient training data and improved the sensitivity of the classification method. When the VGG model (fine-tuned transfer strategy, 1,024 fully connected layers) was applied, the accuracy of TLNN classification ultimately reached 82%. Conclusion: Our study suggests that completing the training of the target domain by transferring the prior knowledge of the auxiliary domain is effective in solving the classification problem of small sample datasets. Based on prior knowledge of FC analysis, TLNN classification may assist ADHD diagnosis in a new way.
Collapse
Affiliation(s)
| | - Wenjie Zhuo
- Collaborative Innovation Center of Artificial Intelligence, Zhejiang University, Hangzhou, China
| | - Peng Ge
- China University of Mining and Technology, Xuzhou, China
| | - Bin Zou
- Mental Health Counseling Center, Zhejiang Financial College, Hangzhou, China
| | - Yao Zhu
- The School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Weidong Liu
- China University of Mining and Technology, Xuzhou, China,*Correspondence: Xuzhou Li Weidong Liu
| | - Xuzhou Li
- Faculty of Education, Yunnan Normal University, Kunming, China,*Correspondence: Xuzhou Li Weidong Liu
| |
Collapse
|
48
|
Yu J, Kong Z, Zhan L, Shen L, He L. Tensor-Based Multi-Modality Feature Selection and Regression for Alzheimer's Disease Diagnosis. COMPUTER SCIENCE & INFORMATION TECHNOLOGY 2022; 12:123-134. [PMID: 36880061 PMCID: PMC9985071 DOI: 10.5121/csit.2022.121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The assessment of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) associated with brain changes remains a challenging task. Recent studies have demonstrated that combination of multi-modality imaging techniques can better reflect pathological characteristics and contribute to more accurate diagnosis of AD and MCI. In this paper, we propose a novel tensor-based multi-modality feature selection and regression method for diagnosis and biomarker identification of AD and MCI from normal controls. Specifically, we leverage the tensor structure to exploit high-level correlation information inherent in the multi-modality data, and investigate tensor-level sparsity in the multilinear regression model. We present the practical advantages of our method for the analysis of ADNI data using three imaging modalities (VBM-MRI, FDG-PET and AV45-PET) with clinical parameters of disease severity and cognitive scores. The experimental results demonstrate the superior performance of our proposed method against the state-of-the-art for the disease diagnosis and the identification of disease-specific regions and modality-related differences. The code for this work is publicly available at https://github.com/junfish/BIOS22.
Collapse
Affiliation(s)
- Jun Yu
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Zhaoming Kong
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lifang He
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
49
|
Chen Z, Zhang R, Xie J, Liu P, Zhang C, Zhao J, Laplante JP, Feng T. Hybrid brain model accurately predict human procrastination behavior. Cogn Neurodyn 2022; 16:1107-1121. [PMID: 36237406 PMCID: PMC9508313 DOI: 10.1007/s11571-021-09765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Procrastination behavior is quite ubiquitous, and should warrant cautions to us owing to its significant influences in poor mental health, low subjective well-beings and bad academic performance. However, how to identify this behavioral problem have not yet to be fully elucidated. 1132 participants were recruited as distribution of benchmark. 81 high trait procrastinators (HP) and matched low trait procrastinators (LP) were screened. To address this issue, we have built upon the hybrid brain model by using hierarchical machine learning techniques to classify HP and LP with multi-modalities neuroimaging data (i.e., grey matter volume, fractional anisotropy, static/dynamic amplitude of low frequency fluctuation and static/dynamic degree centrality). Further, we capitalized on the multiple Canonical Correlation Analysis (mCCA) and joint Independent Component Analysis algorithm (mCCA + jICA) to clarify its fusion neural components as well. The hybrid brain model showed high accuracy to discriminate HP and LP (accuracy rate = 87.04%, sensitivity rate = 86.42%, specificity rate = 85.19%). Moreover, results of mCCA + jICA model revealed several joint-discriminative neural independent components (ICs) of this classification, showing wider co-variants of frontoparietal cortex and hippocampus networks. In addition, this study demonstrated three modal-specific discriminative ICs for classification, highlighting the temporal variants of brain local and global natures in ventromedial prefrontal cortex (vmPFC) and PHC in HP. To sum-up, this research developed a hybrid brain model to identify trait procrastination with high accuracy, and further revealed the neural hallmarks of this trait by integrating neuroimaging fusion data. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09765-z.
Collapse
Affiliation(s)
- Zhiyi Chen
- Faculty of Psychology, School of Psychology, Southwest University, Tian Sheng RD, No.2, Beibei, ChongQing, 400715 China
- Key Laboratory of Cognition and Personality, Ministry of Education, ChongQing, China
| | - Rong Zhang
- Faculty of Psychology, School of Psychology, Southwest University, Tian Sheng RD, No.2, Beibei, ChongQing, 400715 China
- Key Laboratory of Cognition and Personality, Ministry of Education, ChongQing, China
| | - Jiawei Xie
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, USA
| | - Chenyan Zhang
- Cognitive Psychology Unit, Faculty of Social and Behavioural Sciences, The Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Jia Zhao
- Faculty of Psychology, School of Psychology, Southwest University, Tian Sheng RD, No.2, Beibei, ChongQing, 400715 China
- Key Laboratory of Cognition and Personality, Ministry of Education, ChongQing, China
| | | | - Tingyong Feng
- Faculty of Psychology, School of Psychology, Southwest University, Tian Sheng RD, No.2, Beibei, ChongQing, 400715 China
- Key Laboratory of Cognition and Personality, Ministry of Education, ChongQing, China
| |
Collapse
|
50
|
Pan Y, Liu M, Xia Y, Shen D. Disease-Image-Specific Learning for Diagnosis-Oriented Neuroimage Synthesis With Incomplete Multi-Modality Data. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:6839-6853. [PMID: 34156939 PMCID: PMC9297233 DOI: 10.1109/tpami.2021.3091214] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Incomplete data problem is commonly existing in classification tasks with multi-source data, particularly the disease diagnosis with multi-modality neuroimages, to track which, some methods have been proposed to utilize all available subjects by imputing missing neuroimages. However, these methods usually treat image synthesis and disease diagnosis as two standalone tasks, thus ignoring the specificity conveyed in different modalities, i.e., different modalities may highlight different disease-relevant regions in the brain. To this end, we propose a disease-image-specific deep learning (DSDL) framework for joint neuroimage synthesis and disease diagnosis using incomplete multi-modality neuroimages. Specifically, with each whole-brain scan as input, we first design a Disease-image-Specific Network (DSNet) with a spatial cosine module to implicitly model the disease-image specificity. We then develop a Feature-consistency Generative Adversarial Network (FGAN) to impute missing neuroimages, where feature maps (generated by DSNet) of a synthetic image and its respective real image are encouraged to be consistent while preserving the disease-image-specific information. Since our FGAN is correlated with DSNet, missing neuroimages can be synthesized in a diagnosis-oriented manner. Experimental results on three datasets suggest that our method can not only generate reasonable neuroimages, but also achieve state-of-the-art performance in both tasks of Alzheimer's disease identification and mild cognitive impairment conversion prediction.
Collapse
|