1
|
Abaei A, Deelchand DK, Kassubek J, Roselli F, Rasche V. Sub-Microliter 1H Magnetic Resonance Spectroscopy for In Vivo High-Spatial Resolution Metabolite Quantification in the Mouse Brain. J Neurochem 2025; 169:e16303. [PMID: 39825728 PMCID: PMC11742661 DOI: 10.1111/jnc.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025]
Abstract
Proton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.7 T with a cryogenic coil and advanced offline pre- and post-processing. This approach achieves a signal-to-noise ratio sufficient to reliably quantify 19 distinct metabolites in a volume as small as 0.7 μL within the mouse brain. The resulting high spatial resolution and spectral quality enable the identification of distinct metabolite fingerprints in small, specific regions, as demonstrated by characteristic differences in N-acetylaspartate, glutamate, taurine, and myo-inositol between the motor and somatosensory cortices. We demonstrated a decline in taurine and glutamate in the primary motor cortex between 5 and 11 months of age, against the stability of other metabolites. Further exploitation to cortical layer-specific metabolite fingerprinting of layer I-III to layer VI-V in the primary motor cortex, with the latter showing reduced taurine and phosphoethanolamine levels, demonstrates the potential of this pipeline for detailed in vivo metabolite fingerprinting of cortical areas and subareas.
Collapse
Affiliation(s)
- Alireza Abaei
- Core Facility Small Animal MRIUlm UniversityUlmGermany
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Jan Kassubek
- Department of NeurologyUlm UniversityUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | - Francescois Roselli
- Department of NeurologyUlm UniversityUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | - Volker Rasche
- Core Facility Small Animal MRIUlm UniversityUlmGermany
- Department of Internal Medicine IIUlm University Medical CenterUlmGermany
| |
Collapse
|
2
|
Patel S, Porcari P, Coffee E, Kim N, Berishaj M, Peyear T, Zhang G, Keshari KR. Simultaneous noninvasive quantification of redox and downstream glycolytic fluxes reveals compartmentalized brain metabolism. SCIENCE ADVANCES 2024; 10:eadr2058. [PMID: 39705365 DOI: 10.1126/sciadv.adr2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
Brain metabolism across anatomic regions and cellular compartments plays an integral role in many aspects of neuronal function. Changes in key metabolic pathway fluxes, including oxidative and reductive energy metabolism, have been implicated in a wide range of brain diseases. Given the complex nature of the brain and the need for understanding compartmentalized metabolism noninvasively in vivo, new tools are required. Herein, using hyperpolarized (HP) magnetic resonance imaging coupled with in vivo isotope tracing, we develop a platform to simultaneously probe redox and energy metabolism in the murine brain. By combining HP dehydroascorbate and pyruvate, we are able to visualize increased lactate production in the white matter and increased redox capacity in the deep gray matter. Leveraging positional labeling, we show differences in compartmentalized tricarboxylic acid cycle entry versus downstream flux to glutamate. These findings lay the foundation for clinical translation of the proposed approach to probe brain metabolism.
Collapse
Affiliation(s)
- Saket Patel
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paola Porcari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Coffee
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thasin Peyear
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Guannan Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
3
|
Jing Y, Dogan I, Reetz K, Romanzetti S. Neurochemical changes in the progression of Huntington's disease: A meta-analysis of in vivo 1H-MRS studies. Neurobiol Dis 2024; 199:106574. [PMID: 38914172 DOI: 10.1016/j.nbd.2024.106574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) allows measuring specific brain metabolic alterations in Huntington's disease (HD), and these metabolite profiles may serve as non-invasive biomarkers associated with disease progression. Despite this potential, previous findings are inconsistent. Accordingly, we performed a meta-analysis on available in vivo1H-MRS studies in premanifest (Pre-HD) and symptomatic HD stages (Symp-HD), and quantified neurometabolic changes relative to controls in 9 Pre-HD studies (227 controls and 188 mutation carriers) and 14 Symp-HD studies (326 controls and 306 patients). Our results indicated decreased N-acetylaspartate and creatine in the basal ganglia in both Pre-HD and Symp-HD. The overall level of myo-inositol was decreased in Pre-HD while increased in Symp-HD. Besides, Symp-HD patients showed more severe metabolism disruption than Pre-HD patients. Taken together, 1H-MRS is important for elucidating progressive metabolite changes from Pre-HD to clinical conversion; N-acetylaspartate and creatine in the basal ganglia are already sensitive at the preclinical stage and are promising biomarkers for tracking disease progression; overall myo-inositol is a possible characteristic metabolite for distinguishing HD stages.
Collapse
Affiliation(s)
- Yinghua Jing
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany; JARA-Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
4
|
Liu Z, Dudley JA, Diekfuss JA, Ahmed N, Edmondson AD, Cecil KM, Yuan W, Zuleger TM, Slutsky-Ganesh AB, Barber Foss KD, Myer GD, Fleischer CC. Associations Between Brain Metabolites Measured With MR Spectroscopy and Head Impacts in High School American Football Athletes. J Magn Reson Imaging 2024. [PMID: 39177233 DOI: 10.1002/jmri.29581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND While changes in brain metabolites after injury have been reported, relationships between metabolite changes and head impacts are less characterized. PURPOSE To investigate alterations in neurochemistry in high school athletes as a function of head impacts, concussion, and the use of a jugular vein compression (JVC) collar. STUDY TYPE Prospective controlled trial. SUBJECTS A total of 284 male American football players, divided into JVC collar and noncollar groups; 215 included in final analysis (age = 15.9 ± 1.0 years; 114 in collar group). FIELD STRENGTH/SEQUENCE 3 Tesla/T1-weighted gradient echo, 1H point resolved spectroscopy, acquired between August and November 2018. ASSESSMENT Head impacts were quantified using accelerometers. Concussion was diagnosed by medical professionals for each team. Pre- to postseason differences in total N-acetylaspartate (tNAA), total choline (tCho), myo-inositol (myoI), and glutamate + glutamine (Glx), in primary motor cortex (M1) and anterior cingulate cortex (ACC), relative to total creatine (tCr), were determined. STATISTICAL TESTS Group-wise comparisons were performed using Wilcoxon signed-rank, Friedman's, and Mann-Whitney U tests. Relationships between ∆metabolite/tCr and mean g-force were analyzed using linear regressions accounting for concussion and JVC collar. Significance was set at P ≤ 0.05. RESULTS In participants without concussion, a significant decrease in tCho/tCr (0.233 ± 1.40 × 10-3 to 0.227 ± 1.47 × 10-7) and increase in Glx/tCr (1.60 ± 8.75 × 10-3 to 1.63 ± 1.08 × 10-2) in ACC were observed pre- to postseason. The relationship between ∆tCho/tCr in M1 and ACC and mean g-force from >80 g to >140 g differed significantly between participants with and without concussion (M1 β ranged from 3.9 × 10-3 to 2.1 × 10-3; ACC β ranged from 2.7 × 10-3 to 2.1 × 10-3). Posthoc analyses revealed increased tCho/tCr in M1 was positively associated with mean g-force >100 g (β = 3.6 × 10-3) and >110 g (β = 2.9 × 10-3) in participants with concussion. Significant associations between∆ myoI / tCr $$ \Delta \mathrm{myoI}/\mathrm{tCr} $$ in ACC and mean g-force >110 g (β = -1.1 × 10-3) and >120 g (β = -1.1 × 10-3) were observed in the collar group only. DATA CONCLUSION Diagnosed concussion and the use of a JVC collar result in distinct neurochemical trends after repeated head impacts. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Zexuan Liu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jonathan A Dudley
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jed A Diekfuss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nadine Ahmed
- Department of Neuroscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alex D Edmondson
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kim M Cecil
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Weihong Yuan
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Taylor M Zuleger
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexis B Slutsky-Ganesh
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kim D Barber Foss
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gregory D Myer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, Georgia, USA
- Emory Sports Medicine Center, Atlanta, Georgia, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Centre, Cardiff Metropolitan University, Wales, United Kingdom
| | - Candace C Fleischer
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Front Mol Neurosci 2024; 17:1458070. [PMID: 39219740 PMCID: PMC11362093 DOI: 10.3389/fnmol.2024.1458070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic resonance spectroscopy (MRS) has been employed to investigate brain metabolite concentrations in vivo, and they vary during neuronal activation, across brain activity states, or upon disease with neurological impact. Whether resting brain metabolites correlate with functioning in behavioral tasks remains to be demonstrated in any of the widely used rodent models. This study tested the hypothesis that, in the absence of neurological disease or injury, the performance in a hippocampal-dependent memory task is correlated with the hippocampal levels of metabolites that are mainly synthesized in neurons, namely N-acetylaspartate (NAA), glutamate and GABA. Experimentally naïve rats were tested for hippocampal-dependent spatial memory performance by measuring spontaneous alternation in the Y-maze, followed by anatomical magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) in the hippocampus and cortex. Memory performance correlated with hippocampal concentrations of NAA (p = 0.024) and glutamate (p = 0.014) but not GABA. Concentrations of glutamate in the cortex also correlated with spatial memory (p = 0.035). In addition, memory performance was also correlated with the relative volume of the hippocampus (p = 0.041). Altogether, this exploratory study suggests that levels of the neuronal maker NAA and the main excitatory neurotransmitter glutamate are associated with physiological functional capacity.
Collapse
Affiliation(s)
- João M. N. Duarte
- Diabetes and Brain Function Unit, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Schmitz-Abecassis B, Najac C, Plugge J, van Osch MJP, Ercan E. Investigation of metabolite correlates of CEST in the human brain at 7 T. NMR IN BIOMEDICINE 2024; 37:e5104. [PMID: 38258649 DOI: 10.1002/nbm.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024]
Abstract
Metabolite-weighted chemical exchange saturation transfer MRI can be used to indirectly image metabolites such as creatine and glutamate. This study aims to further explore the contrast of CEST at 2 ppm in the human brain at 7T and investigate the metabolite correlates of CEST at 2 ppm via correlations with magnetic resonance spectroscopy (MRS). Simulations were performed to establish the optimal acquisition parameters, such as total saturation time (tsat) and B1 root mean squared (B1rms) for CEST at 2 ppm in the human brain. Parameters were validated via in vitro phantom studies at 7T using concentrations, pH and temperature comparable to what is found in the human brain. Finally, 10 healthy volunteers were scanned at 7T for comparison with MRS. Our results show that the optimal parameters to acquire CEST at 2 ppm images are: B1rms = 2.14 μT & tsat = 1500 ms, respectively. Comparison with MRS showed no significant correlation between CEST at 2 ppm and total Creatine measured by MRS (R = 0.19; p-value = 0.273). However, a significant correlation was found between CEST at 2 ppm and Glu (R = 0.39; p-value = 0.033), indicating the broad Glutamate-weighted CEST as the main measurable contributor to CEST at 2 ppm. We identified and confirmed optimal CEST at 2 ppm sequence parameters and validated CEST at 2 ppm measurements in a controlled in vitro environment. Our findings suggest that glutamate is a substantial contributor to the CEST at 2 ppm contrast observed in the human brain, whereas the creatine contribution to CEST at 2 ppm in the brain did not show a measurable contribution.
Collapse
Affiliation(s)
- Bárbara Schmitz-Abecassis
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Chloé Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaimy Plugge
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Ece Ercan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- MR R&D, Clinical Science, Philips, Best, The Netherlands
| |
Collapse
|
7
|
Nichols SJ, Yanes JA, Reid MA, Robinson JL. 7 T characterization of excitatory and inhibitory systems of acute pain in healthy female participants. NMR IN BIOMEDICINE 2024; 37:e5088. [PMID: 38140895 DOI: 10.1002/nbm.5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Current understanding of the physiological underpinnings of normative pain processing is incomplete. Enhanced knowledge of these systems is necessary to advance our understanding of pain processes as well as to develop effective therapeutic interventions. Previous neuroimaging research suggests a network of interrelated brain regions that seem to be implicated in the processing and experience of pain. Among these, the dorsal anterior cingulate cortex (dACC) plays an important role in the affective aspects of pain signals. The current study leveraged functional MRS to investigate the underlying dynamic shifts in the neurometabolic signature of the human dACC at rest and during acute pain. Results provide support for increased glutamate levels following acute pain administration. Specifically, a 4.6% increase in glutamate was observed during moderate pressure pain compared with baseline. Exploratory analysis also revealed meaningful changes in dACC gamma aminobutyric acid in response to pain stimulation. These data contribute toward the characterization of neurometabolic shifts, which lend insight into the role of the dACC in the pain network. Further research in this area with larger sample sizes could contribute to the development of novel therapeutics or other advances in pain-related outcomes.
Collapse
Affiliation(s)
- Steven J Nichols
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| | - Julio A Yanes
- Exponent Inc., Washington, District of Columbia, USA
| | - Meredith A Reid
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Jennifer L Robinson
- Department of Psychological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Xiao Y, Lanz B, Lim S, Tkáč I, Xin L. Improved reproducibility of γ-aminobutyric acid measurement from short-echo-time proton MR spectroscopy by linewidth-matched basis sets in LCModel. NMR IN BIOMEDICINE 2024; 37:e5056. [PMID: 37839823 PMCID: PMC11580110 DOI: 10.1002/nbm.5056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
γ-Aminobutyric acid (GABA), as the primary inhibitory neurotransmitter, is extremely important for maintaining healthy brain function, and deviations from GABA homeostasis are related to various brain diseases. Short-echo-time (short-TE) proton MR spectroscopy (1 H-MRS) has been employed to measure GABA concentration from various human brain regions at high magnetic fields. The aim of this study was to investigate the effect of spectral linewidth on GABA quantification and explore the application of an optimized basis-set preparation approach using a spectral-linewidth-matched (LM) basis set in LCModel to improve the reproducibility of GABA quantification from short-TE 1 H-MRS. In contrast to the fixed-linewidth basis-set approach, the LM basis-set preparation approach, where all metabolite basis spectra were simulated with a linewidth 4 Hz narrower than that of water, showed a smaller standard deviation of estimated GABA concentration from synthetic spectra with varying linewidths and lineshapes. The test-retest reproducibility was assessed by the mean within-subject coefficient of variation, which improved from 19.2% to 12.0% in the thalamus, from 27.9% to 14.9% in the motor cortex, and from 9.7% to 2.8% in the medial prefrontal cortex using LM basis sets at 7 T. We conclude that spectral linewidth has a large effect on GABA quantification from short-TE 1 H-MRS data and that using LM basis sets in LCModel can improve the reproducibility of GABA quantification.
Collapse
Affiliation(s)
- Ying Xiao
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bernard Lanz
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Song‐I Lim
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ivan Tkáč
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
9
|
Zhang C, Zhang K, Hu X, Cai X, Chen Y, Gao F, Wang G. Regional GABA levels modulate abnormal resting-state network functional connectivity and cognitive impairment in multiple sclerosis. Cereb Cortex 2024; 34:bhad535. [PMID: 38271282 DOI: 10.1093/cercor/bhad535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
More evidence shows that changes in functional connectivity with regard to brain networks and neurometabolite levels correlated to cognitive impairment in multiple sclerosis. However, the neurological basis underlying the relationship among neurometabolite levels, functional connectivity, and cognitive impairment remains unclear. For this purpose, we used a combination of magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to study gamma-aminobutyric acid and glutamate concentrations in the posterior cingulate cortex, medial prefrontal cortex and left hippocampus, and inter-network functional connectivity in 29 relapsing-remitting multiple sclerosis patients and 34 matched healthy controls. Neuropsychological tests were used to evaluate the cognitive function. We found that relapsing-remitting multiple sclerosis patients demonstrated significantly reduced gamma-aminobutyric acid and glutamate concentrations and aberrant functional connectivity involving cognitive-related networks compared to healthy controls, and both alterations were associated with specific cognition decline. Moreover, mediation analyses indicated that decremented hippocampus gamma-aminobutyric acid levels in relapsing-remitting multiple sclerosis patients mediated the association between inter-network functional connectivity in various components of default mode network and verbal memory deficits. In summary, our findings shed new lights on the essential function of GABAergic system abnormalities in regulating network dysconnectivity and functional connectivity in relapsing-remitting multiple sclerosis patients, suggesting potential novel approach to treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250358, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xianyun Cai
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
10
|
Pavlova I, Ruda-Kucerova J. Brain metabolic derangements examined using 1H MRS and their (in)consistency among different rodent models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110808. [PMID: 37301420 DOI: 10.1016/j.pnpbp.2023.110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Major depressive disorder (MDD) is underlined by neurochemical changes in the brain. Proton magnetic resonance spectroscopy (1H MRS) is a useful tool for their examination as it provides information about the levels of metabolites. This review summarises the current knowledge of 1H MRS findings from rodent models of MDD, assesses the results from both a biological and a technical perspective, and identifies the main sources of bias. From a technical point of view, bias-introducing factors are the diversity of the measured volumes and their positioning in the brain, the data processing, and the metabolite concentration expression. The biological variables are strain, sex, and species, as well as the model itself, and in vivo vs. ex vivo exploration. This review identified some consistency in the 1H MRS findings in the models of MDD: lower levels of glutamine, glutamate + glutamine, and higher levels of myo-inositol and taurine in most of the brain regions of MDD models. This may suggest changes in regional metabolism, neuronal dysregulation, inflammation, and a compensatory effect reaction in the MDD rodent models.
Collapse
Affiliation(s)
- Iveta Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
11
|
Baranovicova E, Kalenska D, Kaplan P, Kovalska M, Tatarkova Z, Lehotsky J. Blood and Brain Metabolites after Cerebral Ischemia. Int J Mol Sci 2023; 24:17302. [PMID: 38139131 PMCID: PMC10743907 DOI: 10.3390/ijms242417302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Peter Kaplan
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
| | - Zuzana Tatarkova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia (Z.T.)
| |
Collapse
|
12
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
13
|
Garcia-Serrano AM, Vieira JPP, Fleischhart V, Duarte JMN. Taurine and N-acetylcysteine treatments prevent memory impairment and metabolite profile alterations in the hippocampus of high-fat diet-fed female mice. Nutr Neurosci 2023; 26:1090-1102. [PMID: 36222315 DOI: 10.1080/1028415x.2022.2131062] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Background: Obesity constitutes a risk factor for cognitive impairment. In rodent models, long-term exposure to obesogenic diets leads to hippocampal taurine accumulation. Since taurine has putative cyto-protective effects, hippocampal taurine accumulation in obese and diabetic models might constitute a counteracting response to metabolic stress. Objective: We tested the hypothesis that treatment with taurine or with N-acetylcysteine (NAC), which provides cysteine for the synthesis of taurine and glutathione, prevent high-fat diet (HFD)-associated hippocampal alterations and memory impairment. Methods: Female mice were fed either a regular diet or HFD. Some mice had access to 3%(w/v) taurine or 3%(w/v) NAC in the drinking water. After 2 months, magnetic resonance spectroscopy (MRS) was used to measure metabolite profiles. Memory was assessed in novel object and novel location recognition tests. Results: HFD feeding caused memory impairment in both tests, and reduced concentration of lactate, phosphocreatine-to-creatine ratio, and the neuronal marker N-acetylaspartate in the hippocampus. Taurine and NAC prevented HFD-induced memory impairment and N-acetylaspartate reduction. NAC, but not taurine, prevented the reduction of lactate and phosphocreatine-to-creatine ratio. MRS revealed NAC/taurine-induced increase of hippocampal glutamate and GABA levels. Conclusion: NAC and taurine can prevent memory impairment, while only NAC prevents alterations of metabolite concentrations in HFD-exposed female mice.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Joao P P Vieira
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Veronika Fleischhart
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - João M N Duarte
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Tkáč I, Xie T, Shah N, Larson S, Dubinsky JM, Gomez-Pastor R, McLoughlin HS, Orr HT, Eberly LE, Öz G. Regional sex differences in neurochemical profiles of healthy mice measured by magnetic resonance spectroscopy at 9.4 tesla. Front Neurosci 2023; 17:1278828. [PMID: 37954878 PMCID: PMC10634209 DOI: 10.3389/fnins.2023.1278828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To determine sex differences in the neurochemical concentrations measured by in vivo proton magnetic resonance spectroscopy (1H MRS) of healthy mice on a genetic background commonly used for neurodegenerative disease models. Methods 1H MRS data collected from wild type mice with C57BL/6 or related genetic backgrounds in seven prior studies were used in this retrospective analysis. To be included, data had to be collected at 9.4 tesla magnetic field using advanced 1H MRS protocols, with isoflurane anesthesia and similar animal handling protocols, and a similar number of datasets from male and female mice had to be available for the brain regions analyzed. Overall, 155 spectra from female mice and 166 spectra from male mice (321 in total), collected from six brain regions (brainstem, cerebellum, cortex, hippocampus, hypothalamus, and striatum) at various ages were included. Results Concentrations of taurine, total creatine (creatine + phosphocreatine), ascorbate, glucose and glutamate were consistently higher in male vs. female mice in most brain regions. Striatum was an exception with similar total creatine in male and female mice. The sex difference pattern in the hypothalamus was notably different from other regions. Interaction between sex and age was significant for total creatine and taurine in the cerebellum and hippocampus. Conclusion Sex differences in regional neurochemical levels are small but significant and age-dependent, with consistent male-female differences across most brain regions. The neuroendocrine region hypothalamus displays a different pattern of sex differences in neurochemical levels. Differences in energy metabolism and cellular density may underlie the differences, with higher metabolic rates in females and higher osmoregulatory and antioxidant capacity in males.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Tiankai Xie
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Nitya Shah
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Sarah Larson
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Janet M. Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Lynn E. Eberly
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
15
|
Waszczykowska A, Jeziorny K, Barańska D, Matera K, Pyziak-Skupien A, Ciborowski M, Zmysłowska A. Searching for Effective Methods of Diagnosing Nervous System Lesions in Patients with Alström and Bardet-Biedl Syndromes. Genes (Basel) 2023; 14:1784. [PMID: 37761924 PMCID: PMC10530666 DOI: 10.3390/genes14091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) and Alström syndrome (ALMS) are rare multisystem diseases with an autosomal recessive mode of inheritance and genetic heterogeneity, characterized by visual impairment, hearing impairment, cardiomyopathy, childhood obesity, and insulin resistance. The purpose of our study was to evaluate the indicators of nervous system changes occurring in patients with ALMS and BBS using optical coherence tomography (OCT) and magnetic resonance spectroscopy (MRS) methods compared to a group of healthy subjects. The OCT results showed significantly lower macular thickness in the patient group compared to the control group (p = 0.002). The MRS study observed differences in metabolite levels between the study and control groups in brain areas such as the cerebellum, thalamus, and white matter. After summing the concentrations from all areas, statistically significant results were obtained for N-acetylaspartate, total N-acetylaspartate, and total creatine. Concentrations of these metabolites were reduced in ALMS/BBS patients by 38% (p = 0.0004), 35% (p = 0.0008), and 28% (p = 0.0005), respectively. Our results may help to understand the pathophysiology of these rare diseases and identify strategies for new therapies.
Collapse
Affiliation(s)
| | - Krzysztof Jeziorny
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland;
- Department of Pediatric Endocrinology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Dobromiła Barańska
- Department of Diagnostic Imaging, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland; (D.B.); (K.M.)
| | - Katarzyna Matera
- Department of Diagnostic Imaging, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland; (D.B.); (K.M.)
| | - Aleksandra Pyziak-Skupien
- Department of Children’s Diabetology, Silesian Medical University in Katowice, 40-752 Katowice, Poland;
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Agnieszka Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
16
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
17
|
Martinho RP, Jain MG, Frydman L. High-field ex vivo and in vivo two-dimensional nuclear magnetic resonance spectroscopy in murine brain: Resolving and exploring the molecular environment. NMR IN BIOMEDICINE 2023; 36:e4833. [PMID: 36114827 PMCID: PMC10077987 DOI: 10.1002/nbm.4833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The structural and chemical complexities within the brain pose a challenge that few noninvasive techniques can tackle with the dexterity of nuclear magnetic resonance (NMR) spectroscopy. Still, even with the advent of ultrahigh fields and of cryogenically cooled coils for in vivo research, the superposition of metabolic resonances arising from the brain remains a challenge. The present study explores the potential to tackle this milieu using a combination of two-dimensional (2D) NMR techniques, implemented on murine brains in vivo at 15.2 T and ex vivo at 14.1 T. While both experiments were affected by substantial inhomogeneous broadenings conveying distinct elongated lineshapes to the cross-peaks, the ability of increased fields to resolve off-diagonal resonances was clear. A comparison between the corresponding conventional and double quantum-filtered correlated spectroscopy traces enabled an improved assignment of in vivo resonances on the basis of more sensitive ex vivo 2D acquisitions, foremost on the basis of homonuclear cross-relaxation-driven correlations for peaks resonating downfield from water, and of heteronuclear correlations at natural abundance for the upfield protons. With the aid of such 2D correlations approximately 29 metabolites could be resolved and identified. This enhanced resolution was used to explore features related to the metabolites' diffusivities, their exposure to water, and their facility to undergo magnetization transfers to amide/amine/hydroxyl resonances. Cross-peaks from main murine brain biomolecules, including choline, creatine, γ-aminobutyric acid, N-acetyl aspartate, glutamine, and glutamate, showed enhancements in several of these various features, opening interesting vistas about metabolite compartmentalization as viewed by these 2D NMR experiments.
Collapse
Affiliation(s)
- Ricardo P. Martinho
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Mukul G. Jain
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| | - Lucio Frydman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
18
|
Rodríguez-Nieto G, Levin O, Hermans L, Weerasekera A, Sava AC, Haghebaert A, Huybrechts A, Cuypers K, Mantini D, Himmelreich U, Swinnen SP. Organization of neurochemical interactions in young and older brains as revealed with a network approach: Evidence from proton magnetic resonance spectroscopy ( 1H-MRS). Neuroimage 2023; 266:119830. [PMID: 36566925 DOI: 10.1016/j.neuroimage.2022.119830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Aging is associated with alterations in the brain including structural and metabolic changes. Previous research has focused on neurometabolite level differences associated to age in a variety of brain regions, but the relationship among metabolites across the brain has been much less studied. Investigating these relationships can reveal underlying neurometabolic processes, their interdependency, and their progress throughout the lifespan. Using 1H-MRS, we investigated the relationship among metabolite concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-Inositol (mIns) and glutamate-glutamine complex (Glx) in seven voxel locations, i.e., bilateral sensorimotor cortex, bilateral striatum, pre-supplementary motor area, right inferior frontal gyrus and occipital cortex. These measurements were performed on 59 human participants divided in two age groups: young adults (YA: 23.2 ± 4.3; 18-34 years) and older adults (OA: 67.5 ± 3.9; 61-74 years). Our results showed age-related differences in NAA, Cho, and mIns across brain regions, suggesting the presence of neurodegeneration and altered gliosis. Moreover, associative patterns among NAA, Cho and Cr were observed across the selected brain regions, which differed between young and older adults. Whereas most of metabolite concentrations were inhomogeneous across different brain regions, Cho levels were shown to be strongly related across brain regions in both age groups. Finally, we found metabolic associations between homologous brain regions (SM1 and striatum) in the OA group, with NAA showing a significant correlation between bilateral sensorimotor cortices (SM1) and mIns levels being correlated between the bilateral striata. We posit that a network perspective provides important insights regarding the potential interactions among neurochemicals underlying metabolic processes at a local and global level and their relationship with aging.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium.
| | - Oron Levin
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Lize Hermans
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Akila Weerasekera
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Biomedical MRI Unit, Group Biomedical Sciences, KU Leuven, Belgium; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | | | - Astrid Haghebaert
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Astrid Huybrechts
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium
| | - Koen Cuypers
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; REVAL Research Institute, Hasselt University, Diepenbeek, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Group Biomedical Sciences, KU Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuurse Vest 101, Leuven 3001, Belgium; Leuven Brain Institute, KU Leuven-LBI, Leuven, Belgium
| |
Collapse
|
19
|
Sheoran S, Vints WAJ, Valatkevičienė K, Kušleikienė S, Gleiznienė R, Česnaitienė VJ, Himmelreich U, Levin O, Masiulis N. Strength gains after 12 weeks of resistance training correlate with neurochemical markers of brain health in older adults: a randomized control 1H-MRS study. GeroScience 2023:10.1007/s11357-023-00732-6. [PMID: 36701005 PMCID: PMC9877502 DOI: 10.1007/s11357-023-00732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Physical exercise is considered a potent countermeasure against various age-associated physiological deterioration processes. We therefore assessed the effect of 12 weeks of resistance training on brain metabolism in older adults (age range: 60-80 years). Participants either underwent two times weekly resistance training program which consisted of four lower body exercises performed for 3 sets of 6-10 repetitions at 70-85% of 1 repetition maximum (n = 20) or served as the passive control group (n = 21). The study used proton magnetic resonance spectroscopy to quantify the ratio of total N-acetyl aspartate, total choline, glutamate-glutamine complex, and myo-inositol relative to total creatine (tNAA/tCr, tCho/tCr, Glx/tCr, and mIns/tCr respectively) in the hippocampus (HPC), sensorimotor (SM1), and prefrontal (dlPFC) cortices. The peak torque (PT at 60°/s) of knee extension and flexion was assessed using an isokinetic dynamometer. We used repeated measures time × group ANOVA to assess time and group differences and correlation coefficient analyses to examine the pre-to-post change (∆) associations between PT and neurometabolite variables. The control group showed significant declines in tNAA/tCr and Glx/tCr of SM1, and tNAA/tCr of dlPFC after 12 weeks, which were not seen in the experimental group. A significant positive correlation was found between ∆PT knee extension and ∆SM1 Glx/tCr, ∆dlPFC Glx/tCr and between ∆PT knee flexion and ∆dlPFC mIns/tCr in the experimental group. Overall, findings suggest that resistance training seems to elicit alterations in various neurometabolites that correspond to exercise-induced "preservation" of brain health, while simultaneously having its beneficial effect on augmenting muscle functional characteristics in older adults.
Collapse
Affiliation(s)
- Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Wouter A. J. Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Rymantė Gleiznienė
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vida J. Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Group Biomedical Sciences, Biomedical MRI Unit, Catholic University Leuven, 3000 Leuven, Belgium
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, 3001 Heverlee, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Institute of Health Science, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
20
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
21
|
Meissner A, Garcia-Serrano AM, Vanherle L, Rafiee Z, Don-Doncow N, Skoug C, Larsson S, Gottschalk M, Magnusson M, Duarte JMN. Alterations to Cerebral Perfusion, Metabolite Profiles, and Neuronal Morphology in the Hippocampus and Cortex of Male and Female Mice during Chronic Exposure to a High-Salt Diet. Int J Mol Sci 2022; 24:ijms24010300. [PMID: 36613742 PMCID: PMC9820346 DOI: 10.3390/ijms24010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Excess dietary salt reduces resting cerebral blood flow (CBF) and vascular reactivity, which can limit the fueling of neuronal metabolism. It is hitherto unknown whether metabolic derangements induced by high-salt-diet (HSD) exposure during adulthood are reversed by reducing salt intake. In this study, male and female mice were fed an HSD from 9 to 16 months of age, followed by a normal-salt diet (ND) thereafter until 23 months of age. Controls were continuously fed either ND or HSD. CBF and metabolite profiles were determined longitudinally by arterial spin labeling magnetic resonance imaging and magnetic resonance spectroscopy, respectively. HSD reduced cortical and hippocampal CBF, which recovered after dietary salt normalization, and affected hippocampal but not cortical metabolite profiles. Compared to ND, HSD increased hippocampal glutamine and phosphocreatine levels and decreased creatine and choline levels. Dietary reversal only allowed recovery of glutamine levels. Histology analyses revealed that HSD reduced the dendritic arborization and spine density of cortical and hippocampal neurons, which were not recovered after dietary salt normalization. We conclude that sustained HSD exposure throughout adulthood causes permanent structural and metabolic alterations to the mouse brain that are not fully normalized by lowering dietary salt during aging.
Collapse
Affiliation(s)
- Anja Meissner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, 86159 Augsburg, Germany
| | - Alba M. Garcia-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Zeinab Rafiee
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Nicholas Don-Doncow
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Cecilia Skoug
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | - Sara Larsson
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
| | | | - Martin Magnusson
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 20502 Malmö, Sweden
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 22184 Lund, Sweden
- Correspondence:
| |
Collapse
|
22
|
Campillo BW, Galguera D, Cerdan S, López-Larrubia P, Lizarbe B. Short-term high-fat diet alters the mouse brain magnetic resonance imaging parameters consistently with neuroinflammation on males and metabolic rearrangements on females. A pre-clinical study with an optimized selection of linear mixed-effects models. Front Neurosci 2022; 16:1025108. [PMID: 36507349 PMCID: PMC9729798 DOI: 10.3389/fnins.2022.1025108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction High-fat diet (HFD) consumption is known to trigger an inflammatory response in the brain that prompts the dysregulation of energy balance, leads to insulin and leptin resistance, and ultimately obesity. Obesity, at the same, has been related to cerebral magnetic resonance imaging (MRI) alterations, but the onset of HFD-induced neuroinflammation, however, has been principally reported on male rodents and by ex vivo methods, with the effects on females and the origin of MRI changes remaining unassessed. Methods We characterized the onset and evolution of obesity on male and female mice during standard or HFD administration by physiological markers and multiparametric MRI on four cerebral regions involved in appetite regulation and energy homeostasis. We investigated the effects of diet, time under diet, brain region and sex by identifying their significant contributions to sequential linear mixed-effects models, and obtained their regional neurochemical profiles by high-resolution magic angle spinning spectroscopy. Results Male mice developed an obese phenotype paralleled by fast increases in magnetization transfer ratio values, while females delayed the obesity progress and showed no MRI-signs of cerebral inflammation, but larger metabolic rearrangements on the neurochemical profile. Discussion Our study reveals early MRI-detectable changes compatible with the development of HFD-induced cerebral cytotoxic inflammation on males but suggest the existence of compensatory metabolic adaptations on females that preclude the corresponding detection of MRI alterations.
Collapse
Affiliation(s)
- Basilio Willem Campillo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - David Galguera
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sebastian Cerdan
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Pilar López-Larrubia,
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain,*Correspondence: Blanca Lizarbe,
| |
Collapse
|
23
|
Chen W, Liu H, Liu S, Kang Y, Nie Z, Lei H. Altered prefrontal neurochemistry in the DJ-1 knockout mouse model of Parkinson's disease: complementary semi-quantitative analyses with in vivo magnetic resonance spectroscopy and MALDI-MSI. Anal Bioanal Chem 2022; 414:7977-7987. [PMID: 36208327 DOI: 10.1007/s00216-022-04341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
In vivo proton magnetic resonance spectroscopy (1H-MRS) and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) are two semi-quantitative analytical methods commonly used in neurochemical research. In this study, the two methods were used complementarily, in parallel, to investigate neurochemical perturbations in the medial prefrontal cortex (mPFC) of 9-month-old DJ-1 knockout mice, a well-established transgenic model for Parkinson's diseases. Convergingly, the results obtained with the two methods demonstrated that, compared with the wild-type (WT) mice, the DJ-1 knockout mice had significantly increased glutathione (GSH) level and GSH/glutamate (Glu) ratio in the mPFC, which likely presented an astrocytic compensatory mechanism in response to elevated regional oxidative stress induced by the loss of DJ-1 function. The results from this study also highlighted (1) the need to be cautious when interpreting the in vivo 1H-MRS results obtained from aged transgenic animals, in which the concentration of internal reference, being whether water or total creatine, could no longer be assumed to be the same as that in the age-matched WT animals, and (2) the necessity and importance of complementary analyses with more than one method under such circumstances.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First, Street 2, Beijing, 100190, China
| | - Sijie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan Kang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China. .,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First, Street 2, Beijing, 100190, China.
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 30# Xiaohongshan West, Wuhan, 430071, Hubei, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
24
|
Baranovicova E, Kalenska D, Kovalska M, Lehotsky J. Hippocampal metabolic recovery as a manifestation of the protective effect of ischemic preconditioning in rats. Neurochem Int 2022; 160:105419. [PMID: 36113578 DOI: 10.1016/j.neuint.2022.105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
The ever-present risk of brain ischemic events in humans and its full prevention make the detailed studies of an organism's response to ischemia at different levels essential to understanding the mechanism of the injury as well as protection. We used the four-vessel occlusion as an animal model of forebrain ischemia to investigate its impact on the metabolic alterations in both the hippocampus and the blood plasma to see changes on the systemic level. By inducing sublethal ischemic stimuli, we focused on the endogenous phenomena known as ischemic tolerance. NMR spectroscopy was used to analyze relative metabolite levels in tissue extracts from rats' hippocampus and blood plasma in three various ischemic/reperfusion times: 3 h, 24 h, and 72 h. Hippocampal tissues were characterized by postischemically decreased glutamate and GABA (4-aminobutyrate) tissue content balanced with increased glutamine level, with most pronounced changes at 3 h reperfusion time. Glutamate (as well as glutamine) levels recovered towards the control levels on the third day, as if the glutamate re-synthesis would be firstly preferred before GABA. These results are indicating the higher feasibility of re-establishing of glutamatergic transmission three days after an ischemic event, in contrast to GABA-ergic. Tissue levels of N-acetylaspartate (NAA), as well as choline, were decreased without the tendency to recover three days after the ischemic event. Metabolomic analysis of blood plasma revealed that ischemically preconditioned rats, contrary to the non-preconditioned animals, did not show hyperglycemic conditions. Ischemically induced semi-ketotic state, manifested in increased plasma ketone bodies 3-hydroxybutyrate and acetoacetate, seems to be programmed to support the brain tissue revitalization after the ischemic event. These and other metabolites changes found in blood plasma as well as in the hippocampus were observed to a lower extent or recovered faster in preconditioned animals. Some metabolomic changes in hippocampal tissue extract were so strong that even single metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| |
Collapse
|
25
|
Li Y, Lu T, Wei W, Lin Z, Ding L, Li Z, Xue X. Swimming Training Mitigates Neurological Impairment of Intracerebral Haemorrhage in Mice via the Serine-Threonine Kinase/Glycogen Synthase Kinase 3β Signalling Pathway. Neuroscience 2022; 501:72-84. [PMID: 35961525 DOI: 10.1016/j.neuroscience.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Swimming training (ST) can mitigate functional disorders in neurological diseases, but the effect and mechanism of ST in improving the neurological function of intracerebral haemorrhage (ICH) have not been reported. Our study aimed to explore the protective effect of early ST on ICH mice and its relationship with the serine-threonine kinase (Akt)/glycogen synthase kinase 3β (GSK3β) pathway. Our findings showed that the ICH model mice had poor behavioural manifestations in the Y maze test and open field test compared to the ST group and sham group. The modified neurological severity score was increased in the ICH mice, and 7 days of ST intervention significantly attenuated the neurological deficits. The ratios of myo-inositol/creatine, lactate/creatine and glutamate/creatine were decreased, and the ratios of N-acetylaspartate/creatine and choline/creatine were increased in the ICH mice with ST intervention. ST intervention decreased the expression of Iba1 and GFAP. Seven days of ST significantly increased the expression of p-Akt/Akt compared to that in the ICH mice. Furthermore, the Akt kinase inhibitor GSK690693 exacerbated neurological impairment, increased the expression of Iba1, GFAP and Bax/Bcl-2, and reversed the anti-apoptotic effects and anti-glia activation of ST, which was associated with the inhibition of p-Akt/Akt and p-GSK3β/GSK3β expression. These results indicated that the protective role of ST in ICH was mediated via the Akt/GSK3β pathway. In conclusion, ST displayed neuroprotection by inhibiting apoptosis and glial activation in ICH mice by activating the Akt/GSK3β signalling pathway.
Collapse
Affiliation(s)
- Yongxu Li
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; College of Rehabilitation Medicine, Fujian University of Chinese Medicine, China
| | - Taotao Lu
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; College of Rehabilitation Medicine, Fujian University of Chinese Medicine, China
| | - Wei Wei
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Zhicheng Lin
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Linlin Ding
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Zhaohui Li
- Anxi County Hospital of Traditional Chinese Medicine, Quanzhou, Fujian Province, China.
| | - Xiehua Xue
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, China; Fujian Key Laboratory of Rehabilitation Technology and Cognition Rehabilitation, China.
| |
Collapse
|
26
|
Yap KH, Abdul Manan H, Yahya N, Azmin S, Mohamed Mukari SA, Mohamed Ibrahim N. Magnetic Resonance Imaging and Its Clinical Correlation in Spinocerebellar Ataxia Type 3: A Systematic Review. Front Neurosci 2022; 16:859651. [PMID: 35757531 PMCID: PMC9226753 DOI: 10.3389/fnins.2022.859651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is a complex cerebrocerebellar disease primarily characterized by ataxia symptoms alongside motor and cognitive impairments. The heterogeneous clinical presentation of SCA3 necessitates correlations between magnetic resonance imaging (MRI) and clinical findings in reflecting progressive disease changes. At present, an attempt to systematically examine the brain-behavior relationship in SCA3, specifically, the correlation between MRI and clinical findings, is lacking. Objective We investigated the association strength between MRI abnormality and each clinical symptom to understand the brain-behavior relationship in SCA3. Methods We conducted a systematic review on Medline and Scopus to review studies evaluating the brain MRI profile of SCA3 using structural MRI (volumetric, voxel-based morphometry, surface analysis), magnetic resonance spectroscopy, and diffusion tensor imaging, including their correlations with clinical outcomes. Results Of 1,767 articles identified, 29 articles met the eligibility criteria. According to the National Institutes of Health quality assessment tool for case-control studies, all articles were of excellent quality. This systematic review found that SCA3 neuropathology contributes to widespread brain degeneration, affecting the cerebellum and brainstem. The disease gradually impedes the cerebral cortex and basal ganglia in the late stages of SCA3. Most findings reported moderate correlations (r = 0.30–0.49) between MRI features in several regions and clinical findings. Regardless of the MRI techniques, most studies focused on the brainstem and cerebellum. Conclusions Clinical findings suggest that rather than individual brain regions, the connectivity between different brain regions in distributed networks (i.e., cerebellar-cerebral network) may be responsible for motor and neurocognitive function in SCA3. This review highlights the importance of evaluating the progressive changes of the cerebellar-cerebral networks in SCA3 patients, specifically the functional connectivity. Given the relative lack of knowledge about functional connectivity on SCA3, future studies should investigate possible functional connectivity abnormalities in SCA3 using fMRI.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian, Department of Radiology, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia.,Department of Radiology and Intervency, Hospital Pakar Kanan-Kanak, Children Specialist Hospital, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Shahizon Azura Mohamed Mukari
- Makmal Pemprosesan Imej Kefungsian, Department of Radiology, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Tiwari AK, Adhikari A, Mishra LC, Srivastava A. Current Status of Our Understanding for Brain Integrated Functions and its Energetics. Neurochem Res 2022; 47:2499-2512. [PMID: 35689788 DOI: 10.1007/s11064-022-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Human/animal brain is a unique organ with substantially high metabolism but it contains no energy reserve that is the reason it requires continuous supply of O2 and energy fluxes through CBF. The main source of energy remains glucose as the other biomolecules do not able to cross the blood-brain barrier. The speed of glucose metabolism is heterogeneous throughout the brain. One of the major flux consumption is Neuron-astrocyte cycling of glutamate and glutamine in glutamatergic neurons (approximately 80% of glucose metabolism in brain). The quantification of cellular glucose and other related substrate in resting, activated state can be analyzed through [18 F]FDG -positron-emission tomography (studying CMRglc) and [13 C/31P -MRS: for neuroenergetics & neurotransmitter cycling &31P-MRS: for energy induction & redox state). Merging basic in vitro studies with these techniques will help to develop new treatment paradigms for human brain diseased conditions.
Collapse
Affiliation(s)
- Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India.
| | - Anupriya Adhikari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University (A Central University), 226025, Lucknow, Uttar Pradesh, India
| | - Lokesh Chandra Mishra
- Department of Zoology, Hansraj College, University of Delhi, North Campus, 110007, Delhi, India
| | | |
Collapse
|
28
|
Maier S, Düppers AL, Runge K, Dacko M, Lange T, Fangmeier T, Riedel A, Ebert D, Endres D, Domschke K, Perlov E, Nickel K, Tebartz van Elst L. Increased prefrontal GABA concentrations in adults with autism spectrum disorders. Autism Res 2022; 15:1222-1236. [PMID: 35587691 DOI: 10.1002/aur.2740] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
The excitatory-inhibitory imbalance hypothesis postulates dysregulation of the gamma-aminobutyric acid (GABA) and glutamate (Glu) neurotransmitter systems as a common underlying deficit in individuals with autism spectrum disorders (ASD). Previous studies suggest an important role of these systems in the pathophysiology of ASD, including a study of our group reporting decreased glutamate concentrations in the pregenual anterior cingulate cortex (ACC) of adults with ASD. The aim of this study was to replicate our previous findings of impaired glutamate metabolism in ASD in a new sample and to additionally quantify GABA in the ACC and dorsolateral prefrontal cortex (dlPFC). Concentrations of GABA and glutamate-glutamine (Glx; combined glutamate and glutamine signal) were quantified in the ACC and dlPFC of 43 adults with ASD and 43 neurotypical controls (NTC) by magnetic resonance spectroscopy (MRS). The ASD group showed increased absolute GABA concentrations and elevated GABA/creatine ratios in the left dlPFC compared to NTC, while no group differences were detected in the pregenual and dorsal ACC. Previous findings of altered Glx concentration in the pregenual ACC of the ASD group could not be replicated. Regarding Glx concentrations and Glx/creatine ratios, there were no significant differences in the dlPFC and ACC either. The study supports the hypothesis of an altered GABA and glutamate equilibrium, indicating an imbalance between excitatory and inhibitory metabolism in ASD patients. However, inconsistent results across studies and brain regions suggest a complex underlying phenomenon. LAY SUMMARY: Adults of the autism spectrum exhibit elevated levels of the inhibitory neurotransmitter GABA in the left dorsolateral prefrontal cortex. This finding supports the hypothesis of an imbalance between excitatory and inhibitory equilibrium in patients with autism spectrum disorders.
Collapse
Affiliation(s)
- Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dacko
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Fangmeier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Luzerner Psychiatrie, Ambulante Dienste, Luzern, Switzerland
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinic for Psychiatry Luzern, Hospital St. Urban, St. Urban, Switzerland
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Rafiee Z, García-Serrano AM, Duarte JMN. Taurine Supplementation as a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. Nutrients 2022; 14:1292. [PMID: 35334949 PMCID: PMC8952284 DOI: 10.3390/nu14061292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Obesity, type 2 diabetes, and their associated comorbidities impact brain metabolism and function and constitute risk factors for cognitive impairment. Alterations to taurine homeostasis can impact a number of biological processes, such as osmolarity control, calcium homeostasis, and inhibitory neurotransmission, and have been reported in both metabolic and neurodegenerative disorders. Models of neurodegenerative disorders show reduced brain taurine concentrations. On the other hand, models of insulin-dependent diabetes, insulin resistance, and diet-induced obesity display taurine accumulation in the hippocampus. Given the possible cytoprotective actions of taurine, such cerebral accumulation of taurine might constitute a compensatory mechanism that attempts to prevent neurodegeneration. The present article provides an overview of brain taurine homeostasis and reviews the mechanisms by which taurine can afford neuroprotection in individuals with obesity and diabetes. We conclude that further research is needed for understanding taurine homeostasis in metabolic disorders with an impact on brain function.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - Alba M. García-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| | - João M. N. Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden; (Z.R.); (A.M.G.-S.)
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
| |
Collapse
|
30
|
Li Y, Steinberg J, Coleman Z, Wang S, Subramanian C, Li Y, Patay Z, Akers W, Rock CO, Jackowski S, Bagga P. Proton magnetic resonance spectroscopy detects cerebral metabolic derangement in a mouse model of brain coenzyme a deficiency. J Transl Med 2022; 20:103. [PMID: 35197056 PMCID: PMC8867880 DOI: 10.1186/s12967-022-03304-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Pantothenate kinase (PANK) is the first and rate-controlling enzymatic step in the only pathway for cellular coenzyme A (CoA) biosynthesis. PANK-associated neurodegeneration (PKAN), formerly known as Hallervorden–Spatz disease, is a rare, life-threatening neurologic disorder that affects the CNS and arises from mutations in the human PANK2 gene. Pantazines, a class of small molecules containing the pantazine moiety, yield promising therapeutic effects in an animal model of brain CoA deficiency. A reliable technique to identify the neurometabolic effects of PANK dysfunction and to monitor therapeutic responses is needed. Methods We applied 1H magnetic resonance spectroscopy as a noninvasive technique to evaluate the therapeutic effects of the newly developed Pantazine BBP-671. Results 1H MRS reliably quantified changes in cerebral metabolites, including glutamate/glutamine, lactate, and N-acetyl aspartate in a neuronal Pank1 and Pank2 double-knockout (SynCre+Pank1,2 dKO) mouse model of brain CoA deficiency. The neuronal SynCre+Pank1,2 dKO mice had distinct decreases in Glx/tCr, NAA/tCr, and lactate/tCr ratios compared to the wildtype matched control mice that increased in response to BBP-671 treatment. Conclusions BBP-671 treatment completely restored glutamate/glutamine levels in the brains of the mouse model, suggesting that these metabolites are promising clinically translatable biomarkers for future therapeutic trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03304-y.
Collapse
Affiliation(s)
- Yanan Li
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zane Coleman
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shubo Wang
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zoltan Patay
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walter Akers
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Garcia-Serrano AM, Mohr AA, Philippe J, Skoug C, Spégel P, Duarte JMN. Cognitive Impairment and Metabolite Profile Alterations in the Hippocampus and Cortex of Male and Female Mice Exposed to a Fat and Sugar-Rich Diet are Normalized by Diet Reversal. Aging Dis 2022; 13:267-283. [PMID: 35111373 PMCID: PMC8782561 DOI: 10.14336/ad.2021.0720] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes impacts on brain metabolism, structure, and function. Alterations in brain metabolism have been observed in obesity and diabetes models induced by exposure to diets rich in saturated fat and/or sugar and have been linked to memory impairment. However, it remains to be determined whether brain dysfunction induced by obesogenic diets results from permanent brain alterations. We tested the hypothesis that an obesogenic diet (high-fat and high-sucrose diet; HFHSD) causes reversible changes in hippocampus and cortex metabolism and alterations in behavior. Mice were exposed to HFHSD for 24 weeks or for 16 weeks followed by 8 weeks of diet normalization. Development of the metabolic syndrome, changes in behavior, and brain metabolite profiles by magnetic resonance spectroscopy (MRS) were assessed longitudinally. Control mice were fed an ingredient-matched low-fat and low-sugar diet. Mice fed the HFHSD developed obesity, glucose intolerance and insulin resistance, with a more severe phenotype in male than female mice. Relative to controls, both male and female HFHSD-fed mice showed increased anxiety-like behavior, impaired memory in object recognition tasks, but preserved working spatial memory as evaluated by spontaneous alternation in a Y-maze. Alterations in the metabolite profiles were observed both in the hippocampus and cortex but were more distinct in the hippocampus. HFHSD-induced metabolic changes included altered levels of lactate, glutamate, GABA, glutathione, taurine, N-acetylaspartate, total creatine and total choline. Notably, HFHSD-induced metabolic syndrome, anxiety, memory impairment, and brain metabolic alterations recovered upon diet normalization for 8 weeks. In conclusion, cortical and hippocampal derangements induced by long-term HFHSD consumption are reversible rather than being the result of permanent tissue damage.
Collapse
Affiliation(s)
- Alba M Garcia-Serrano
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Adélaïde A Mohr
- 3Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Juliette Philippe
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Peter Spégel
- 4Department of Chemistry, Centre for Analysis and Synthesis, Lund University, Lund Sweden
| | - João M N Duarte
- 1Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.,2Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
33
|
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021; 72:101503. [PMID: 34751136 PMCID: PMC8662951 DOI: 10.1016/j.arr.2021.101503] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidence demonstrates that metabolic changes in the brain associated with neuroinflammation, oxidative stress, and mitochondrial dysfunction play an important role in the pathophysiology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neural signatures associated with these metabolic alterations and underlying molecular mechanisms are still elusive. Accordingly, we reviewed the literature on in vivo human brain 1H and 31P-MRS studies and use meta-analyses to identify patterns of brain metabolic alterations in MCI and AD. 40 and 39 studies on MCI and AD, respectively, were classified according to brain regions. Our results indicate decreased N-acetyl aspartate and creatine but increased myo-inositol levels in both MCI and AD, decreased glutathione level in MCI as well as disrupted energy metabolism in AD. In addition, the hippocampus shows the strongest alterations in most of these metabolites. This meta-analysis also illustrates progressive metabolite alterations from MCI to AD. Taken together, it suggests that 1) neuroinflammation and oxidative stress may occur in the early stages of AD, and likely precede neuron loss in its progression; 2) the hippocampus is a sensitive region of interest for early diagnosis and monitoring the response of interventions; 3) targeting bioenergetics associated with neuroinflammation/oxidative stress is a promising approach for treating AD.
Collapse
Affiliation(s)
- Tao Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenyawen Zhu
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA
| | - Regan Patrick
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Department of Neuropsychology, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Miranda Skurla
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | | | - Morgan Green
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - David Harper
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Boyu Ren
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
34
|
Kubota M, Kimura Y, Shimojo M, Takado Y, Duarte JMN, Takuwa H, Seki C, Shimada H, Shinotoh H, Takahata K, Kitamura S, Moriguchi S, Tagai K, Obata T, Nakahara J, Tomita Y, Tokunaga M, Maeda J, Kawamura K, Zhang MR, Ichise M, Suhara T, Higuchi M. Dynamic alterations in the central glutamatergic status following food and glucose intake: in vivo multimodal assessments in humans and animal models. J Cereb Blood Flow Metab 2021; 41:2928-2943. [PMID: 34039039 PMCID: PMC8545038 DOI: 10.1177/0271678x211004150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
Fluctuations of neuronal activities in the brain may underlie relatively slow components of neurofunctional alterations, which can be modulated by food intake and related systemic metabolic statuses. Glutamatergic neurotransmission plays a major role in the regulation of excitatory tones in the central nervous system, although just how dietary elements contribute to the tuning of this system remains elusive. Here, we provide the first demonstration by bimodal positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) that metabotropic glutamate receptor subtype 5 (mGluR5) ligand binding and glutamate levels in human brains are dynamically altered in a manner dependent on food intake and consequent changes in plasma glucose levels. The brain-wide modulations of central mGluR5 ligand binding and glutamate levels and profound neuronal activations following systemic glucose administration were further proven by PET, MRS, and intravital two-photon microscopy, respectively, in living rodents. The present findings consistently support the notion that food-associated glucose intake is mechanistically linked to glutamatergic tones in the brain, which are translationally accessible in vivo by bimodal PET and MRS measurements in both clinical and non-clinical settings.
Collapse
Affiliation(s)
- Manabu Kubota
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuyuki Kimura
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Joao MN Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Soichiro Kitamura
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Department of Psychiatry, Nara Medical University, Nara, Japan
| | - Sho Moriguchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Tomita Hospital, Aichi, Japan
| | - Masaki Tokunaga
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazunori Kawamura
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masanori Ichise
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
35
|
Vezzoli E, Calì C, De Roo M, Ponzoni L, Sogne E, Gagnon N, Francolini M, Braida D, Sala M, Muller D, Falqui A, Magistretti PJ. Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-Dependent Synaptic Stabilization. Cereb Cortex 2021; 30:2114-2127. [PMID: 31807747 PMCID: PMC7174989 DOI: 10.1093/cercor/bhz226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term memory formation (LTM) is a process accompanied by energy-demanding structural changes at synapses and increased spine density. Concomitant increases in both spine volume and postsynaptic density (PSD) surface area have been suggested but never quantified in vivo by clear-cut experimental evidence. Using novel object recognition in mice as a learning task followed by 3D electron microscopy analysis, we demonstrate that LTM induced all aforementioned synaptic changes, together with an increase in the size of astrocytic glycogen granules, which are a source of lactate for neurons. The selective inhibition of glycogen metabolism in astrocytes impaired learning, affecting all the related synaptic changes. Intrahippocampal administration of l-lactate rescued the behavioral phenotype, along with spine density within 24 hours. Spine dynamics in hippocampal organotypic slices undergoing theta burst-induced long-term potentiation was similarly affected by inhibition of glycogen metabolism and rescued by l-lactate. These results suggest that learning primes astrocytic energy stores and signaling to sustain synaptic plasticity via l-lactate.
Collapse
Affiliation(s)
- E Vezzoli
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.,Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - C Calì
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - M De Roo
- Department of Basic Neuroscience, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - E Sogne
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - N Gagnon
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - M Francolini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20133 Milano, Italy
| | - M Sala
- CNR, Institute of Neuroscience, 20129 Milano, Italy
| | - D Muller
- Department of Basic Neuroscience, University of Geneva Medical School, 1206 Geneva, Switzerland
| | - A Falqui
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - P J Magistretti
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
36
|
Baranovicova E, Kalenska D, Grendar M, Lehotsky J. Metabolomic Recovery as a Result of Ischemic Preconditioning Was More Pronounced in Hippocampus than in Cortex That Appeared More Sensitive to Metabolomic Blood Components. Metabolites 2021; 11:metabo11080516. [PMID: 34436457 PMCID: PMC8398863 DOI: 10.3390/metabo11080516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
The study of an organism's response to ischemia at different levels is essential to understand the mechanism of the injury as well as protection. We used the occlusion of four vessels as an animal model of global cerebral ischemia to investigate metabolic alterations in cerebral cortex, hippocampus, blood plasma, as well as in a remote organ, the heart, in rats undergoing 24 h postischemic reperfusion. By inducing sublethal ischemic stimuli, we focused on endogenous phenomena known as ischemic tolerance that is currently the best known and most effective way of protecting against ischemic injury. NMR spectroscopy was used to analyze relative metabolite levels in homogenates from rats' cerebral cortex, hippocampus, and heart together with deproteinized blood plasma. In individual animals subjected to global cerebral ischemia, relative concentrations of the essential amino acids isoleucine, valine, phenylalanine, and tyrosine in cerebral cortex correlated with those in blood plasma (p < 0.05, or boundary significant p < 0.09). This did not apply for the hippocampus, suggesting a closer relation between ischemic cortex and metabolomic blood components. Hippocampal non-participation on correlation with blood components may emphasize the observed partial or full normalization the post-ischemically altered levels of a number of metabolites in the preconditioned animals. Remarkably, that was observed for cortex to a lesser extent. As a response to the global cerebral ischemia in heart tissue, we observed decreased glutamate and increased 3-hydroxybutyrate. Ischemically induced semi-ketotic state and other changes found in blood plasma partially normalized when ischemic preconditioning was introduced. Some metabolomic changes were so strong that even individual metabolites were able to differentiate between ischemic, ischemically preconditioned, and control brain tissues.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Marian Grendar
- Biomedical Center BioMed, Bioinformatical Unit, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia;
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia
- Correspondence: ; Tel.: +421-43-2633-442
| |
Collapse
|
37
|
Zhang H, Chiu PW, Ip I, Liu T, Wong GHY, Song YQ, Wong SWH, Herrup K, Mak HKF. Asymmetric left-right hippocampal glutamatergic modulation of cognitive control in ApoE-isoform subjects is unrelated to neuroinflammation. Eur J Neurosci 2021; 54:5310-5326. [PMID: 34309092 PMCID: PMC9290961 DOI: 10.1111/ejn.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
The glutamatergic cycle is essential in modulating memory processing by the hippocampal circuitry. Our combined proton magnetic resonance spectroscopy (1H‐MRS) and task‐based functional magnetic resonance imaging (fMRI) study (using face‐name paired‐associates encoding and retrieval task) of a cognitively normal cohort of 67 healthy adults (18 ApoE4 carriers and 49 non‐ApoE4 carriers) found altered patterns of relationships between glutamatergic‐modulated synaptic signalling and neuronal activity or functional hyperaemia in the ApoE4 isoforms. Our study highlighted the asymmetric left–right hippocampal glutamatergic system in modulating neuronal activities in ApoE4 carriers versus non‐carriers. Such brain differentiation might be developmental cognitive advantages or compensatory due to impaired synaptic integrity and plasticity in ApoE4 carriers. As there was no difference in myoinositol levels measured by MRS between the ApoE4 and non‐ApoE4 subgroups, the mechanism is unlikely to be a response to neuroinflammation.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong
| | - Pui Wai Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Isaac Ip
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Tianyin Liu
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - Gloria Hoi Yan Wong
- Department of Social Work and Administration, The University of Hong Kong, Hong Kong
| | - You-Qiang Song
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Savio Wai Ho Wong
- Department of Educational Psychology, Chinese University of Hong Kong, Hong Kong
| | - Karl Herrup
- Alzheimer Disease Research Centre, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Henry Ka Fung Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong.,Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
38
|
Fowler CF, Madularu D, Dehghani M, Devenyi GA, Near J. Longitudinal quantification of metabolites and macromolecules reveals age- and sex-related changes in the healthy Fischer 344 rat brain. Neurobiol Aging 2021; 101:109-122. [PMID: 33610061 DOI: 10.1016/j.neurobiolaging.2020.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/16/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
Normal aging is associated with numerous biological changes, including altered brain metabolism and tissue chemistry. In vivo characterization of the neurochemical profile during aging is possible using magnetic resonance spectroscopy, a powerful noninvasive technique capable of quantifying brain metabolites involved in physiological processes that become impaired with age. A prominent macromolecular signal underlies those of brain metabolites and is particularly visible at high fields; parameterization of this signal into components improves quantification and expands the number of biomarkers comprising the neurochemical profile. The present study reports, for the first time, the simultaneous absolute quantification of brain metabolites and individual macromolecules in aging male and female Fischer 344 rats, measured longitudinally using proton magnetic resonance spectroscopy at 7 T. We identified age- and sex-related changes in neurochemistry, with prominent differences in metabolites implicated in anaerobic energy metabolism, antioxidant defenses, and neuroprotection, as well as numerous macromolecule changes. These findings contribute to our understanding of the neurobiological processes associated with healthy aging, critical for the proper identification and management of pathologic aging trajectories. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect athttps://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Caitlin F Fowler
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada.
| | - Dan Madularu
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada; Department of Psychology, Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Psychiatry, McGill University, Montreal, Canada
| | - Masoumeh Dehghani
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Gabriel A Devenyi
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Canada; Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, Verdun, Canada; Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
39
|
Just N. Proton functional magnetic resonance spectroscopy in rodents. NMR IN BIOMEDICINE 2021; 34:e4254. [PMID: 31967711 DOI: 10.1002/nbm.4254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Proton functional magnetic resonance spectroscopy (1 H-fMRS) in the human brain is able to assess and quantify the metabolic response due to localized brain activity. Currently, 1 H-fMRS of the human brain is complementary to functional magnetic resonance imaging (fMRI) and a recommended technique at high field strengths (>7 T) for the investigation of neurometabolic couplings, thereby providing insight into the mechanisms underlying brain activity and brain connectivity. Understanding typical healthy brain metabolism during a task is expected to provide a baseline from which to detect and characterize neurochemical alterations associated with various neurological or psychiatric disorders and diseases. It is of paramount importance to resolve fundamental questions related to the regulation of neurometabolic processes. New techniques such as optogenetics may be coupled to fMRI and fMRS to bring more specificity to investigations of brain cell populations during cerebral activation thus enabling a higher link to molecular changes and therapeutic advances. These rather novel techniques are mainly available for rodent applications and trigger renewed interest in animal fMRS. However, rodent fMRS remains fairly confidential due to its inherent low signal-to-noise ratio and its dependence on anesthesia. For instance, the accurate determination of metabolic concentration changes during stimulation requires robust knowledge of the physiological environment of the measured region of interest linked to anesthesia in most cases. These factors may also have a strong influence on B0 homogeneity. Therefore, a degree of calibration of the stimulus strength and duration may be needed for increased knowledge of the underpinnings of cerebral activity. Here, we propose an early review of the current status of 1 H-fMRS in rodents and summarize current difficulties and future perspectives.
Collapse
Affiliation(s)
- Nathalie Just
- Department of Clinical Radiology, University Hospital Münster, Germany
- INRAE, Centre, Tours Val de Loire, France
| |
Collapse
|
40
|
Repeated fluoxetine treatment induces transient and long-term astrocytic plasticity in the medial prefrontal cortex of normal adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110252. [PMID: 33484756 DOI: 10.1016/j.pnpbp.2021.110252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Fluoxetine (Flx)-induced neuronal plasticity plays an important role in the effective treatment of depression and mood disorders. It is less understood whether repeated Flx treatment induces astrocytic plasticity that outlasts the presence of the drug in the body. We showed previously that Flx-induced neuronal plasticity in the medial prefrontal cortex (mPFC) persisted up to 20 days after the treatment. In this study, adult rats were subjected to a 15-day repeated Flx treatment at a daily dose of 20 mg/kg body weight. Astrocytic metabolites and markers were assessed in the mPFC at day 1 (d1) and day 20 (d20) after the treatment. Significant transient reductions in the concentrations of astrocytic metabolites taurine and myo-inositol and the expressions of glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) were observed in the mPFC of Flx-treated rats at d1, which recovered to the control levels at d20. Further, Flx treatment resulted in long-lasting changes in Kir4.1 expression in the mPFC, which remained downregulated at d20. The expression of 5-HT1A receptor in the mPFC of Flx-treated rats was downregulated at d1 but became upregulated at d20. In summary, repeated Flx treatment induces both transient and long-term astrocytic plasticity in the mPFC of adult rats. The changes observed at d1 are consistent with disturbed water homeostasis and astrocytic de-maturation in the mPFC. The persistent changes in the expressions of Kir4.1 and 5-HT1A at d20, presumably of the astrocytic origin, might have contributed to the long-term neurotrophic effects of repeated Flx treatment in the mPFC.
Collapse
|
41
|
Bednarik P, Spurny B, Silberbauer LR, Svatkova A, Handschuh PA, Reiter B, Konadu ME, Stimpfl T, Spies M, Bogner W, Lanzenberger R. Effect of Ketamine on Human Neurochemistry in Posterior Cingulate Cortex: A Pilot Magnetic Resonance Spectroscopy Study at 3 Tesla. Front Neurosci 2021; 15:609485. [PMID: 33841073 PMCID: PMC8024494 DOI: 10.3389/fnins.2021.609485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine is a powerful glutamatergic long-lasting antidepressant, efficient in intractable major depression. Whereas ketamine's immediate psychomimetic side-effects were linked to glutamate changes, proton MRS (1H-MRS) showed an association between the ratio of glutamate and glutamine and delayed antidepressant effect emerging ∼2 h after ketamine administration. While most 1H-MRS studies focused on anterior cingulate, recent functional MRI connectivity studies revealed an association between ketamine's antidepressant effect and disturbed connectivity patterns to the posterior cingulate cortex (PCC), and related PCC dysfunction to rumination and memory impairment involved in depressive pathophysiology. The current study utilized the state-of-the-art single-voxel 3T sLASER 1H-MRS methodology optimized for reproducible measurements. Ketamine's effects on neurochemicals were assessed before and ∼3 h after intravenous ketamine challenge in PCC. Concentrations of 11 neurochemicals, including glutamate (CRLB ∼ 4%) and glutamine (CRLB ∼ 13%), were reliably quantified with the LCModel in 12 healthy young men with between-session coefficients of variation (SD/mean) <8%. Also, ratios of glutamate/glutamine and glutamate/aspartate were assessed as markers of synaptic function and activated glucose metabolism, respectively. Pairwise comparison of metabolite profiles at baseline and 193 ± 4 min after ketamine challenge yielded no differences. Minimal detectable concentration differences estimated with post hoc power analysis (power = 80%, alpha = 0.05) were below 0.5 μmol/g, namely 0.39 μmol/g (∼4%) for glutamate, 0.28 μmol/g (∼10%) for Gln, ∼14% for glutamate/glutamine and ∼8% for glutamate/aspartate. Despite the high sensitivity to detect between-session differences in glutamate and glutamine concentrations, our study did not detect delayed glutamatergic responses to subanesthetic ketamine doses in PCC.
Collapse
Affiliation(s)
- Petr Bednarik
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Benjamin Spurny
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Leo R. Silberbauer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Alena Svatkova
- Department of Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Patricia A. Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Birgit Reiter
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Melisande E. Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Stimpfl
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Andres-Mach M, Szewczyk A, Zagaja M, Szala-Rycaj J, Lemieszek MK, Maj M, Abram M, Kaminski K. Preclinical Assessment of a New Hybrid Compound C11 Efficacy on Neurogenesis and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Int J Mol Sci 2021; 22:ijms22063240. [PMID: 33810180 PMCID: PMC8004689 DOI: 10.3390/ijms22063240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) is a frequent medical emergency that can lead to a variety of neurological disorders, including cognitive impairment and abnormal neurogenesis. The aim of the presented study was the in vitro evaluation of potential neuroprotective properties of a new pyrrolidine-2,5-dione derivatives compound C11, as well as the in vivo assessment of the impact on the neurogenesis and cognitive functions of C11 and levetiracetam (LEV) after pilocarpine (PILO)-induced SE in mice. The in vitro results indicated a protective effect of C11 (500, 1000, and 2500 ng/mL) on astrocytes under trophic stress conditions in the MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) test. The results obtained from the in vivo studies, where mice 72 h after PILO SE were treated with C11 (20 mg/kg) and LEV (10 mg/kg), indicated markedly beneficial effects of C11 on the improvement of the neurogenesis compared to the PILO control and PILO LEV mice. Moreover, this beneficial effect was reflected in the Morris Water Maze test evaluating the cognitive functions in mice. The in vitro confirmed protective effect of C11 on astrocytes, as well as the in vivo demonstrated beneficial impact on neurogenesis and cognitive functions, strongly indicate the need for further advanced molecular research on this compound to determine the exact neuroprotective mechanism of action of C11.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
- Correspondence: ; Tel.: +48-81-718-4488
| | - Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Joanna Szala-Rycaj
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | | | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-090 Lublin, Poland;
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.A.); (K.K.)
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.A.); (K.K.)
| |
Collapse
|
43
|
Bagnato F, Gauthier SA, Laule C, Moore GRW, Bove R, Cai Z, Cohen-Adad J, Harrison DM, Klawiter EC, Morrow SA, Öz G, Rooney WD, Smith SA, Calabresi PA, Henry RG, Oh J, Ontaneda D, Pelletier D, Reich DS, Shinohara RT, Sicotte NL. Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. J Neuroimaging 2021; 30:251-266. [PMID: 32418324 DOI: 10.1111/jon.12700] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinicians involved with different aspects of the care of persons with multiple sclerosis (MS) and scientists with expertise on clinical and imaging techniques convened in Dallas, TX, USA on February 27, 2019 at a North American Imaging in Multiple Sclerosis Cooperative workshop meeting. The aim of the workshop was to discuss cardinal pathobiological mechanisms implicated in the progression of MS and novel imaging techniques, beyond brain atrophy, to unravel these pathologies. Indeed, although brain volume assessment demonstrates changes linked to disease progression, identifying the biological mechanisms leading up to that volume loss are key for understanding disease mechanisms. To this end, the workshop focused on the application of advanced magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging techniques to assess and measure disease progression in both the brain and the spinal cord. Clinical translation of quantitative MRI was recognized as of vital importance, although the need to maintain a relatively short acquisition time mandated by most radiology departments remains the major obstacle toward this effort. Regarding PET, the panel agreed upon its utility to identify ongoing pathological processes. However, due to costs, required expertise, and the use of ionizing radiation, PET was not considered to be a viable option for ongoing care of persons with MS. Collaborative efforts fostering robust study designs and imaging technique standardization across scanners and centers are needed to unravel disease mechanisms leading to progression and discovering medications halting neurodegeneration and/or promoting repair.
Collapse
Affiliation(s)
- Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Susan A Gauthier
- Judith Jaffe Multiple Sclerosis Center, Department of Neurology, Feil Family Brain and Mind Institute, and Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Cornelia Laule
- Department of Radiology, Pathology, and Laboratory Medicine, Department of Physics and Astronomy, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - George R Wayne Moore
- Department of Pathology and Laboratory Medicine, and International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Riley Bove
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University, New Haven, CT
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal and Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, Quebec, Canada
| | - Daniel M Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Eric C Klawiter
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sarah A Morrow
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Gülin Öz
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - William D Rooney
- Advanced Imaging Research Center, Departments of Biomedical Engineering, Neurology, and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Seth A Smith
- Radiology and Radiological Sciences and Vanderbilt University Imaging Institute, Vanderbilt University Medical Center, and Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roland G Henry
- Departments of Neurology, Radiology and Biomedical Imaging, and the UC San Francisco & Berkeley Bioengineering Graduate Group, University of California San Francisco, San Francisco, CA
| | - Jiwon Oh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Division of Neurology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel Pelletier
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| | -
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
44
|
Hsu CH, Lin S, Ho AC, Johnson TD, Wang PC, Scafidi J, Tu TW. Comparison of in vivo and in situ detection of hippocampal metabolites in mouse brain using 1 H-MRS. NMR IN BIOMEDICINE 2021; 34:e4451. [PMID: 33258202 PMCID: PMC8214416 DOI: 10.1002/nbm.4451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
The study of cerebral metabolites relies heavily on detection methods and sample preparation. Animal experiments in vivo require anesthetic agents that can alter brain metabolism, whereas ex vivo experiments demand appropriate fixation methods to preserve the tissue from rapid postmortem degradation. In this study, the metabolic profiles of mouse hippocampi using proton magnetic resonance spectroscopy (1 H-MRS) were compared in vivo and in situ with or without focused beam microwave irradiation (FBMI) fixation. Ten major brain metabolites, including lactate (Lac), N-acetylaspartate (NAA), total choline (tCho), myo-inositol (mIns), glutamine (Gln), glutamate (Glu), aminobutyric acid (GABA), glutathione (GSH), total creatine (tCr) and taurine (Tau), were analyzed using LCModel. After FBMI fixation, the concentrations of Lac, tCho and mIns were comparable with those obtained in vivo under isoflurane, whereas other metabolites were significantly lower. Except for a decrease in NAA and an increase in Tau, all the other metabolites remained stable over 41 hours in FBMI-fixed brains. Without FBMI, the concentrations of mIns (before 2 hours), tCho and GABA were close to those measured in vivo. However, higher Lac (P < .01) and lower NAA, Gln, Glu, GSH, tCr and Tau were observed (P < .01). NAA, Gln, Glu, GSH, tCr and Tau exhibited good temporal stability for at least 20 hours in the unfixed brain, whereas a linear increase of tCho, mIns and GABA was observed. Possible mechanisms of postmortem degradation are discussed. Our results indicate that a proper fixation method is required for in situ detection depending on the targeted metabolites of specific interests in the brain.
Collapse
Affiliation(s)
- Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Ai-Chen Ho
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - T. Derek Johnson
- Center for Neuroscience Research, Department of Neurology, Children’s National Hospital, Washington, DC, USA
| | - Paul C. Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph Scafidi
- Center for Neuroscience Research, Department of Neurology, Children’s National Hospital, Washington, DC, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| |
Collapse
|
45
|
Häni A, Diserens G, Oevermann A, Vermathen P, Precht C. Sampling Method Affects HR-MAS NMR Spectra of Healthy Caprine Brain Biopsies. Metabolites 2021; 11:metabo11010038. [PMID: 33419191 PMCID: PMC7825498 DOI: 10.3390/metabo11010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The metabolic profiling of tissue biopsies using high-resolution–magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy may be influenced by experimental factors such as the sampling method. Therefore, we compared the effects of two different sampling methods on the metabolome of brain tissue obtained from the brainstem and thalamus of healthy goats by 1H HR-MAS NMR spectroscopy—in vivo-harvested biopsy by a minimally invasive stereotactic approach compared with postmortem-harvested sample by dissection with a scalpel. Lactate and creatine were elevated, and choline-containing compounds were altered in the postmortem compared to the in vivo-harvested samples, demonstrating rapid changes most likely due to sample ischemia. In addition, in the brainstem samples acetate and inositols, and in the thalamus samples ƴ-aminobutyric acid, were relatively increased postmortem, demonstrating regional differences in tissue degradation. In conclusion, in vivo-harvested brain biopsies show different metabolic alterations compared to postmortem-harvested samples, reflecting less tissue degradation. Sampling method and brain region should be taken into account in the analysis of metabolic profiles. To be as close as possible to the actual situation in the living individual, it is desirable to use brain samples obtained by stereotactic biopsy whenever possible.
Collapse
Affiliation(s)
- Annakatrin Häni
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
| | - Gaëlle Diserens
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Anna Oevermann
- NeuroCenter, Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bremgartenstr. 109a, 3012 Bern, Switzerland;
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG, Freiburgstr. 3, 3010 Bern, Switzerland; (G.D.); (P.V.)
| | - Christina Precht
- Clinical Radiology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Länggassstr. 124, 3012 Bern, Switzerland;
- Correspondence: ; Tel.: +41-31-631-2918
| |
Collapse
|
46
|
Abstract
RATIONALE Proton magnetic resonance spectroscopy (1H-MRS) is a cross-species neuroimaging technique that can measure concentrations of several brain metabolites, including glutamate and GABA. This non-invasive method has promise in developing centrally acting drugs, as it can be performed repeatedly within-subjects and be used to translate findings from the preclinical to clinical laboratory using the same imaging biomarker. OBJECTIVES This review focuses on the utility of single-voxel 1H-MRS in developing novel glutamatergic or GABAergic drugs for the treatment of psychiatric disorders and includes research performed in rodent models, healthy volunteers and patient cohorts. RESULTS Overall, these studies indicate that 1H-MRS is able to detect the predicted pharmacological effects of glutamatergic or GABAergic drugs on voxel glutamate or GABA concentrations, although there is a shortage of studies examining dose-related effects. Clinical studies have applied 1H-MRS to better understand drug therapeutic mechanisms, including the glutamatergic effects of ketamine in depression and of acamprosate in alcohol dependence. There is an emerging interest in identifying patient subgroups with 'high' or 'low' brain regional 1H-MRS glutamate levels for more targeted drug development, which may require ancillary biomarkers to improve the accuracy of subgroup discrimination. CONCLUSIONS Considerations for future research include the sensitivity of single-voxel 1H-MRS in detecting drug effects, inter-site measurement reliability and the interpretation of drug-induced changes in 1H-MRS metabolites relative to the known pharmacological molecular mechanisms. On-going technological development, in single-voxel 1H-MRS and in related complementary techniques, will further support applications within CNS drug discovery.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
47
|
Izuhara M, Miura S, Otsuki K, Nagahama M, Hayashida M, Hashioka S, Asou H, Kitagaki H, Inagaki M. Magnetic Resonance Spectroscopy in the Ventral Tegmental Area Distinguishes Responders to Suvorexant Prior to Treatment: A 4-Week Prospective Cohort Study. Front Psychiatry 2021; 12:714376. [PMID: 34497544 PMCID: PMC8419448 DOI: 10.3389/fpsyt.2021.714376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The ventral tegmental area (VTA; a dopaminergic nucleus) plays an important role in the sleep-wake regulation system including orexin system. In addition to neuronal activity, there is increasing evidence for an important role of glial cells (i.e., astrocytes and microglia) in these systems. The present study examined the utility of magnetic resonance spectroscopy (MRS) for detecting neural and/or glial changes in the VTA to distinguish responders from non-responders before treatment with the orexin receptor antagonist suvorexant. Methods: A total of 50 patients were screened and 9 patients were excluded. The remaining 41 patients with insomnia who have or not a psychiatric disease who were expected to receive suvorexant treatment were included in this study. We compared MRS signals in the VTA between responders to suvorexant and non-responders before suvorexant use. Based on previous reports, suvorexant responders were defined as patients who improved ≥3 points on the Pittsburgh Sleep Quality Index after 4 weeks of suvorexant use. MRS data included choline (reflects non-specific cell membrane breakdown, including of glial cells) and N-acetylaspartate (a decrease reflects neuronal degeneration). Results: Among 41 examined patients, 20 patients responded to suvorexant and 21 patients did not. By MRS, the choline/creatine and phosphorylcreatine ratio in the VTA was significantly high in non-responders compared with responders (p = 0.039) before suvorexant treatment. There was no difference in the N-acetylaspartate/creatine and phosphorylcreatine ratio (p = 0.297) between the two groups. Conclusions: Changes in glial viability in the VTA might be used to distinguish responders to suvorexant from non-responders before starting treatment. These findings may help with more appropriate selection of patients for suvorexant treatment in clinical practice. Further, we provide novel possible evidence for a relationship between glial changes in the VTA and the orexin system, which may aid in the development of new hypnotics focusing on the VTA and/or glial cells.
Collapse
Affiliation(s)
- Muneto Izuhara
- Department of Clinical Laboratory, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shoko Miura
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Koji Otsuki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Michiharu Nagahama
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Maiko Hayashida
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Sadayuki Hashioka
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroya Asou
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hajime Kitagaki
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Masatoshi Inagaki
- Department of Psychiatry, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
48
|
Henriques RN, Palombo M, Jespersen SN, Shemesh N, Lundell H, Ianuş A. Double diffusion encoding and applications for biomedical imaging. J Neurosci Methods 2020; 348:108989. [PMID: 33144100 DOI: 10.1016/j.jneumeth.2020.108989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
Diffusion Magnetic Resonance Imaging (dMRI) is one of the most important contemporary non-invasive modalities for probing tissue structure at the microscopic scale. The majority of dMRI techniques employ standard single diffusion encoding (SDE) measurements, covering different sequence parameter ranges depending on the complexity of the method. Although many signal representations and biophysical models have been proposed for SDE data, they are intrinsically limited by a lack of specificity. Advanced dMRI methods have been proposed to provide additional microstructural information beyond what can be inferred from SDE. These enhanced contrasts can play important roles in characterizing biological tissues, for instance upon diseases (e.g. neurodegenerative, cancer, stroke), aging, learning, and development. In this review we focus on double diffusion encoding (DDE), which stands out among other advanced acquisitions for its versatility, ability to probe more specific diffusion correlations, and feasibility for preclinical and clinical applications. Various DDE methodologies have been employed to probe compartment sizes (Section 3), decouple the effects of microscopic diffusion anisotropy from orientation dispersion (Section 4), probe displacement correlations, study exchange, or suppress fast diffusing compartments (Section 6). DDE measurements can also be used to improve the robustness of biophysical models (Section 5) and study intra-cellular diffusion via magnetic resonance spectroscopy of metabolites (Section 7). This review discusses all these topics as well as important practical aspects related to the implementation and contrast in preclinical and clinical settings (Section 9) and aims to provide the readers a guide for deciding on the right DDE acquisition for their specific application.
Collapse
Affiliation(s)
- Rafael N Henriques
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Marco Palombo
- Centre for Medical Image Computing and Dept. of Computer Science, University College London, London, UK
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Andrada Ianuş
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
49
|
Lizarbe B, Campillo B, Guadilla I, López-Larrubia P, Cerdán S. Magnetic resonance assessment of the cerebral alterations associated with obesity development. J Cereb Blood Flow Metab 2020; 40:2135-2151. [PMID: 32703110 PMCID: PMC7585928 DOI: 10.1177/0271678x20941263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/28/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a current threat to health care systems, affecting approximately 13% of the world's adult population, and over 18% children and adolescents. The rise of obesity is fuelled by inadequate life style habits, as consumption of diets rich in fats and sugars which promote, additionally, the development of associated comorbidities. Obesity results from a neuroendocrine imbalance in the cerebral mechanisms controlling food intake and energy expenditure, including the hypothalamus and the reward and motivational centres. Specifically, high-fat diets are known to trigger an early inflammatory response in the hypothalamus that precedes weight gain, is time-dependent, and eventually extends to the remaining appetite regulating regions in the brain. Multiple magnetic resonance imaging (MRI) and spectroscopy (MRS) methods are currently available to characterize different features of cerebral obesity, including diffusion weighted, T2 and volumetric imaging and 1H and 13C spectroscopic evaluations. In particular, consistent evidences have revealed increased water diffusivity and T2 values, decreased grey matter volumes, and altered metabolic profiles and fluxes, in the brain of animal models and in obese humans. This review provides an integrative interpretation of the physio-pathological processes associated with obesity development in the brain, and the MRI and MRS methods implemented to characterize them.
Collapse
Affiliation(s)
- Blanca Lizarbe
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Basilio Campillo
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | - Irene Guadilla
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| | | | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, Madrid, Spain
| |
Collapse
|
50
|
Weger M, Alpern D, Cherix A, Ghosal S, Grosse J, Russeil J, Gruetter R, de Kloet ER, Deplancke B, Sandi C. Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress. Sci Rep 2020; 10:18308. [PMID: 33110158 PMCID: PMC7591539 DOI: 10.1038/s41598-020-75326-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction was highlighted as a crucial vulnerability factor for the development of depression. However, systemic studies assessing stress-induced changes in mitochondria-associated genes in brain regions relevant to depression symptomatology remain scarce. Here, we performed a genome-wide transcriptomic study to examine mitochondrial gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of mice exposed to multimodal chronic restraint stress. We identified mitochondria-associated gene pathways as most prominently affected in the PFC and with lesser significance in the NAc. A more detailed mitochondrial gene expression analysis revealed that in particular mitochondrial DNA-encoded subunits of the oxidative phosphorylation complexes were altered in the PFC. The comparison of our data with a reanalyzed transcriptome data set of chronic variable stress mice and major depression disorder subjects showed that the changes in mitochondrial DNA-encoded genes are a feature generalizing to other chronic stress-protocols as well and might have translational relevance. Finally, we provide evidence for changes in mitochondrial outputs in the PFC following chronic stress that are indicative of mitochondrial dysfunction. Collectively, our work reinforces the idea that changes in mitochondrial gene expression are key players in the prefrontal adaptations observed in individuals with high behavioral susceptibility and resilience to chronic stress.
Collapse
Affiliation(s)
- Meltem Weger
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Antoine Cherix
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, England, UK
| | - Sriparna Ghosal
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - E Ronald de Kloet
- Departement of Endocrinology and Metabolic Disease, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|