1
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. Wearable fiber-free optical sensor for continuous monitoring of neonatal cerebral blood flow and oxygenation. Pediatr Res 2024; 96:486-493. [PMID: 38503982 DOI: 10.1038/s41390-024-03137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. METHODS DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. RESULTS Significant correlations between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. CONCLUSIONS This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations. IMPACT The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units. Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results. No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events. Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Mehrana Mohtasebi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Pegah Safavi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Faraneh Fathi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Henrietta S Bada
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology and the Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Elie G Abu Jawdeh
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
3
|
Li W, Zhang Z, Li Z, Gui Z, Shang Y. Correlation and asynchronization of electroencephalogram and cerebral blood flow in active and passive stimulations. J Neural Eng 2023; 20:066007. [PMID: 37931297 DOI: 10.1088/1741-2552/ad0a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Objective.Real-time brain monitoring is of importance for intraoperative surgeries and intensive care unit, in order to take timely clinical interventions. Electroencephalogram (EEG) is a conventional technique for recording neural excitations (e.g. brain waves) in the cerebral cortex, and near infrared diffuse correlation spectroscopy (DCS) is an emerging technique that can directly measure the cerebral blood flow (CBF) in microvasculature system. Currently, the relationship between the neural activities and cerebral hemodynamics that reflects the vasoconstriction features of cerebral vessels, especially under both active and passive situation, has not been elucidated thus far, which triggers the motivation of this study.Approach.We used the verbal fluency test as an active cognitive stimulus to the brain, and we manipulated blood pressure changes as a passive challenge to the brain. Under both protocols, the CBF and EEG responses were longitudinally monitored throughout the cerebral stimulus. Power spectrum approaches were applied the EEG signals and compared with CBF responses.Main results.The results show that the EEG response was significantly faster and larger in amplitude during the active cognitive task, when compared to the CBF, but with larger individual variability. By contrast, CBF is more sensitive when response to the passive task, and with better signal stability. We also found that there was a correlation (p< 0.01,r= 0.866,R2= 0.751) between CBF and EEG in initial response during the active task, but no significant correlation (p> 0.05) was found during the passive task. The similar relations were also found between regional brain waves and blood flow.Significance.The asynchronization and correlation between the two measurements indicates the necessity of monitoring both variables for comprehensive understanding of cerebral physiology. Deep exploration of their relationships provides promising implications for DCS/EEG integration in the diagnosis of various neurovascular and psychiatric diseases.
Collapse
Affiliation(s)
- Weilong Li
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| | - Zihao Zhang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Zhiyi Li
- Electronic Information College, Northwestern Polytechnical University, Xian, People's Republic of China
| | - Zhiguo Gui
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| | - Yu Shang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| |
Collapse
|
4
|
Amendola C, Buttafava M, Carteano T, Contini L, Cortese L, Durduran T, Frabasile L, Guadagno CN, Karadeinz U, Lacerenza M, Mesquida J, Parsa S, Re R, Sanoja Garcia D, Konugolu Venkata Sekar S, Spinelli L, Torricelli A, Tosi A, Weigel UM, Yaqub MA, Zanoletti M, Contini D. Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies. BIOMEDICAL OPTICS EXPRESS 2023; 14:5994-6015. [PMID: 38021143 PMCID: PMC10659778 DOI: 10.1364/boe.502618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Cortese
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Turgut Durduran
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Claudia Nunzia Guadagno
- BioPixS Ltd – Biophotonics Standards, IPIC, Tyndall National Institute, Lee Maltings Complex, Cork, Ireland
| | - Umut Karadeinz
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | | | - Jaume Mesquida
- Critical Care Department, Parc Taulí Hospital Universitari. Institut D’Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | | | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | | | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alessandro Torricelli
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milan, Italy
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels, (Barcelona), Spain
| | - M. Atif Yaqub
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Marta Zanoletti
- ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Davide Contini
- Dipartimento di Fisica, Politecnico di Milano, Milan, Italy
| |
Collapse
|
5
|
Park JY, Choi G, Lee K. Pressure stimulus study on acupuncture points with multi-channel multimode-fiber diffuse speckle contrast analysis (MMF-DSCA). BIOMEDICAL OPTICS EXPRESS 2023; 14:5602-5614. [PMID: 38021125 PMCID: PMC10659788 DOI: 10.1364/boe.502447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 12/01/2023]
Abstract
A multi-channel multimode-fiber deep tissue flowmetry system has been constructed based on diffuse speckle contrast analysis (DSCA) for simultaneous blood flow measurements at different locations on the human body. This system has been utilized in an acupuncture study within the field of traditional Chinese medicine (TCM), primarily focusing on acupuncture points along the large intestine meridian. Deep tissue blood flow was monitored at four different acupuncture points (LI1, LI5, LI10, and ST25) with a sampling rate of 60 Hz while applying pressure stimulus on LI4 (hegu or hapgok). Although the blood flow index (BFI) and blood volume (BV) did not exhibit significant changes after the pressure stimulus, an increase in the amplitude and complexity of low-frequency oscillations (LFOs) in microcirculation was observed.
Collapse
Affiliation(s)
- Jae Yoon Park
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Gisoon Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Kijoon Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| |
Collapse
|
6
|
Langri DS, Sunar U. Non-Invasive Continuous Optical Monitoring of Cerebral Blood Flow after Traumatic Brain Injury in Mice Using Fiber Camera-Based Speckle Contrast Optical Spectroscopy. Brain Sci 2023; 13:1365. [PMID: 37891734 PMCID: PMC10605647 DOI: 10.3390/brainsci13101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
Neurocritical care focuses on monitoring cerebral blood flow (CBF) to prevent secondary brain injuries before damage becomes irreversible. Thus, there is a critical unmet need for continuous neuromonitoring methods to quantify CBF within the vulnerable cortex continuously and non-invasively. Animal models and imaging biomarkers can provide valuable insights into the mechanisms and kinetics of head injury, as well as insights for potential treatment strategies. For this purpose, we implemented an optical technique for continuous monitoring of blood flow changes after a closed head injury in a mouse model, which is based on laser speckle contrast imaging and a fiber camera-based approach. Our results indicate a significant decrease (~10%, p-value < 0.05) in blood flow within 30 min of a closed head injury. Furthermore, the low-frequency oscillation analysis also indicated much lower power in the trauma group compared to the control group. Overall, blood flow has the potential to be a biomarker for head injuries in the early phase of a trauma, and the system is useful for continuous monitoring with the potential for clinical translation.
Collapse
Affiliation(s)
- Dharminder S. Langri
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, New York, NY 11794, USA
| |
Collapse
|
7
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Neonatal Cerebral Blood Flow and Oxygenation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295914. [PMID: 37790418 PMCID: PMC10543216 DOI: 10.1101/2023.09.21.23295914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Impact The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units.Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results.No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events.Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury. Background Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. Methods DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. Results Consistent results between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. Conclusions This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations.
Collapse
|
8
|
Zhao M, Zhou W, Aparanji S, Mazumder D, Srinivasan VJ. Interferometric diffusing wave spectroscopy imaging with an electronically variable time-of-flight filter. OPTICA 2023; 10:42-52. [PMID: 37275218 PMCID: PMC10238083 DOI: 10.1364/optica.472471] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/09/2022] [Indexed: 06/07/2023]
Abstract
Diffuse optics (DO) is a light-based technique used to study the human brain, but it suffers from low brain specificity. Interferometric diffuse optics (iDO) promises to improve the quantitative accuracy and depth specificity of DO, and particularly, coherent light fluctuations (CLFs) arising from blood flow. iDO techniques have alternatively achieved either time-of-flight (TOF) discrimination or highly parallel detection, but not both at once. Here, we break this barrier with a single iDO instrument. Specifically, we show that rapid tuning of a temporally coherent laser during the sensor integration time increases the effective linewidth seen by a highly parallel interferometer. Using this concept to create a continuously variable and user-specified TOF filter, we demonstrate a solution to the canonical problem of DO, measuring optical properties. Then, with a deep TOF filter, we reduce scalp sensitivity of CLFs by 2.7 times at 1 cm source-collector separation. With this unique combination of desirable features, i.e., TOF-discrimination, spatial localization, and highly parallel CLF detection, we perform multiparametric imaging of light intensities and CLFs via the human forehead.
Collapse
Affiliation(s)
- Mingjun Zhao
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
| | - Wenjun Zhou
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Santosh Aparanji
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
| | - Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, 660 First Avenue, New York, New York 10016, USA
- Department of Biomedical Engineering, University of California Davis, 1 Shields Ave, Davis, California 95616, USA
- Department of Ophthalmology, New York University Langone Health, 550 First Avenue, New York, New York 10016, USA
- Tech4Health Institute, New York University Langone Health, 433 1st Avenue, New York, New York 10010, USA
| |
Collapse
|
9
|
Becker S, Klein F, König K, Mathys C, Liman T, Witt K. Assessment of dynamic cerebral autoregulation in near-infrared spectroscopy using short channels: A feasibility study in acute ischemic stroke patients. Front Neurol 2022; 13:1028864. [PMID: 36479048 PMCID: PMC9719939 DOI: 10.3389/fneur.2022.1028864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/04/2022] [Indexed: 10/07/2023] Open
Abstract
Introduction In acute ischemic stroke, progressive impairment of cerebral autoregulation (CA) is frequent and associated with unfavorable outcomes. Easy assessment of cerebral blood flow and CA in stroke units bedside tools like near-infrared spectroscopy (NIRS) might improve early detection of CA deterioration. This study aimed to assess dynamic CA with multichannel CW-NIRS in acute ischemic stroke (AIS) patients compared to agematched healthy controls. Methods CA reaction was amplified by changes in head of bed position. Long- and short channels were used to monitor systemic artery pressure- and intracranial oscillations simultaneously. Gain and phase shift in spontaneous low- and very low-frequency oscillations (LFO, VLFO) of blood pressure were assessed. Results A total of 54 participants, 27 with AIS and 27 age-matched controls were included. Gain was significantly lower in the AIS group in the LFO range (i) when the upper body was steadily elevated to 30. and (ii) after its abrupt elevation to 30°. No other differences were found between groups. Discussion This study demonstrates the feasibility of NIRS short channels to measure CA in AIS patients in one single instrument. A lower gain in AIS might indicate decreased CA activity in this pilot study, but further studies investigating the role of NIRS short channels in AIS are needed.
Collapse
Affiliation(s)
- Sabeth Becker
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Franziska Klein
- Neurocognition and Functional Neurorehabilitation Group, Neuropsychology Lab, Department of Psychology, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Katja König
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
| | - Christian Mathys
- Institute of Radiology and Neuroradiology, Evangelical Hospital, Oldenburg, Germany
- Research Centre Neurosensory Science, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Thomas Liman
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Clinic for Neurology, Evangelical Hospital, Oldenburg, Germany
- Institute of Radiology and Neuroradiology, Evangelical Hospital, Oldenburg, Germany
| |
Collapse
|
10
|
Chen W, Zhang X, Xie H, He Q, Shi Z. Brain Functional Connectivity in Middle-Aged Hong Chuan Tai Chi Players in Resting State. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12232. [PMID: 36231536 PMCID: PMC9565129 DOI: 10.3390/ijerph191912232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Tai Chi is an effective strategy for slowing cognitive decline, although the underlying mechanism remains unclear. We designed a cross-sectional study to examine brain functional connectivity in middle-aged Hong Chuan Tai Chi practitioners. Eighteen middle-aged Hong Chuan Tai Chi practitioners and 22 age-matched Tai Chi-naïve controls completed functional near-infrared spectroscopy (fNIRS) tests to evaluate oxyhemoglobin changes in the prefrontal cortex (PFC), motor cortex (MC), and occipital cortex (OC) in five frequency intervals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz). Wavelet phase coherence was used to analyze the match between the instantaneous phases of the two signals to accurately measure brain functional connectivity. Global cognition was measured using the Montreal Cognitive Assessment scale. Compared with the control group, Hong Chuan Tai Chi practitioners had better global cognition (p < 0.01) and showed higher functional connectivity of the PFC, MC, and OC in intervals I, III, VI, and V in the resting state within the same brain hemispheres or between the left and right hemispheres. Our findings revealed that middle-aged Hong Chuan Tai Chi practitioners had higher functional connectivity of the PFC, MC, and OC across both brain hemispheres in cardiac activity, myogenic activity, sympathetic nervous system, and endothelial cell metabolic activities which may contribute to higher global cognition.
Collapse
Affiliation(s)
- Weiqi Chen
- School of Physical Education, Shandong University, Jinan 250062, China
| | - Xianliang Zhang
- School of Physical Education, Shandong University, Jinan 250062, China
| | - Hui Xie
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Qiang He
- School of Physical Education, Shandong University, Jinan 250062, China
| | - Zhenguo Shi
- School of Physical Education, Shandong University, Jinan 250062, China
| |
Collapse
|
11
|
Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. Int J Mol Sci 2022; 23:ijms231810318. [PMID: 36142225 PMCID: PMC9499323 DOI: 10.3390/ijms231810318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (μa) at 830 nm, and reduced scattering coefficient (μs’) at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and μa at both 690 and 830 nm were found on day 3; and increases in μs’ at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.
Collapse
|
12
|
Poon CS, Langri DS, Rinehart B, Rambo TM, Miller AJ, Foreman B, Sunar U. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. BIOMEDICAL OPTICS EXPRESS 2022; 13:1344-1356. [PMID: 35414986 PMCID: PMC8973196 DOI: 10.1364/boe.448135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/02/2023]
Abstract
Recently proposed time-gated diffuse correlation spectroscopy (TG-DCS) has significant advantages compared to conventional continuous wave (CW)-DCS, but it is still in an early stage and clinical capability has yet to be established. The main challenge for TG-DCS is the lower signal-to-noise ratio (SNR) when gating for the deeper traveling late photons. Longer wavelengths, such as 1064 nm have a smaller effective attenuation coefficient and a higher power threshold in humans, which significantly increases the SNR. Here, we demonstrate the clinical utility of TG-DCS at 1064 nm in a case study on a patient with severe traumatic brain injury admitted to the neuro-intensive care unit (neuroICU). We showed a significant correlation between TG-DCS early (ρ = 0.67) and late (ρ = 0.76) gated against invasive thermal diffusion flowmetry. We also analyzed TG-DCS at high temporal resolution (50 Hz) to elucidate pulsatile flow data. Overall, this study demonstrates the first clinical translation capability of the TG-DCS system at 1064 nm using a superconducting nanowire single-photon detector.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Dharminder S. Langri
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Benjamin Rinehart
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | | | | | - Brandon Foreman
- Dept of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
13
|
Wang X, Ma LC, Shahdadian S, Wu A, Truong NCD, Liu H. Metabolic Connectivity and Hemodynamic-Metabolic Coherence of Human Prefrontal Cortex at Rest and Post Photobiomodulation Assessed by Dual-Channel Broadband NIRS. Metabolites 2022; 12:42. [PMID: 35050164 PMCID: PMC8778041 DOI: 10.3390/metabo12010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Billions of neurons in the human brain form neural networks with oscillation rhythms. Infra-slow oscillation (ISO) presents three main physiological sources: endogenic, neurogenic, and myogenic vasomotions. Having an in vivo methodology for the absolute quantification of ISO from the human brain can facilitate the detection of brain abnormalities in cerebral hemodynamic and metabolic activities. In this study, we introduced a novel measurement-plus-analysis framework for the non-invasive quantification of prefrontal ISO by (1) taking dual-channel broadband near infrared spectroscopy (bbNIRS) measurements from 12 healthy humans during a 6-min rest and 4-min post transcranial photobiomodulation (tPBM) and (2) performing wavelet transform coherence (WTC) analysis on the measured time series data. The WTC indexes (IC, between 0 and 1) enabled the assessment of ipsilateral hemodynamic-metabolic coherence and bilateral functional connectivity in each ISO band of the human prefrontal cortex. At rest, bilateral hemodynamic connectivity was consistent across the three ISO bands (IC ≅ 0.66), while bilateral metabolic connectivity was relatively weaker. For post-tPBM/sham comparison, our analyses revealed three key findings: 8-min, right-forehead, 1064-nm tPBM (1) enhanced the amplitude of metabolic oscillation bilaterally, (2) promoted the bilateral metabolic connectivity of neurogenic rhythm, and (3) made the main effect on endothelial cells, causing alteration of hemodynamic-metabolic coherence on each side of the prefrontal cortex.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (X.W.); (L.-C.M.); (S.S.); (A.W.); (N.C.D.T.)
| |
Collapse
|
14
|
Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021; 27:165. [PMID: 35011400 PMCID: PMC8746599 DOI: 10.3390/molecules27010165] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
In the past decade, wearable biosensors have radically changed our outlook on contemporary medical healthcare monitoring systems. These smart, multiplexed devices allow us to quantify dynamic biological signals in real time through highly sensitive, miniaturized sensing platforms, thereby decentralizing the concept of regular clinical check-ups and diagnosis towards more versatile, remote, and personalized healthcare monitoring. This paradigm shift in healthcare delivery can be attributed to the development of nanomaterials and improvements made to non-invasive biosignal detection systems alongside integrated approaches for multifaceted data acquisition and interpretation. The discovery of new biomarkers and the use of bioaffinity recognition elements like aptamers and peptide arrays combined with the use of newly developed, flexible, and conductive materials that interact with skin surfaces has led to the widespread application of biosensors in the biomedical field. This review focuses on the recent advances made in wearable technology for remote healthcare monitoring. It classifies their development and application in terms of electrochemical, mechanical, and optical modes of transduction and type of material used and discusses the shortcomings accompanying their large-scale fabrication and commercialization. A brief note on the most widely used materials and their improvements in wearable sensor development is outlined along with instructions for the future of medical wearables.
Collapse
Affiliation(s)
- Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Darren Sayson
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| | - Bich Hong Nguyen
- Department of Pediatrics, CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada;
| | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (S.P.); (A.U.); (D.S.)
| |
Collapse
|
15
|
Li W, Liu H, Huo C, Xu G, Zhang T, Li Z. Effects of acupuncture on the relationship between cerebral hemodynamics and arterial blood pressure in patients with hypertension. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Zhao M, Huang C, Mazdeyasna S, Yu G. Extraction of tissue optical property and blood flow from speckle contrast diffuse correlation tomography (scDCT) measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:5894-5908. [PMID: 34692223 PMCID: PMC8515985 DOI: 10.1364/boe.429890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Measurement of blood flow in tissue provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. A noncontact, camera-based, near-infrared speckle contrast diffuse correlation tomography (scDCT) technique has been recently developed for 3D imaging of blood flow index (αDB) distributions in deep tissues up to a centimeter. A limitation with the continuous-wave scDCT measurement of blood flow is the assumption of constant and homogenous tissue absorption coefficient (μ a ). The present study took the advantage of rapid, high-density, noncontact scDCT measurements of both light intensities and diffuse speckle contrast at multiple source-detector distances and developed two-step fitting algorithms for extracting both μ a and αDB. The new algorithms were tested in tissue-simulating phantoms with known optical properties and human forearms. Measurement results were compared against established near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) techniques. The accuracies of our new fitting algorithms with scDCT measurements in phantoms (up to 16% errors) and forearms (up to 23% errors) are comparable to relevant study results (up to 25% errors). Knowledge of μ a not only improved the accuracy in calculating αDB but also provided the potential for quantifying tissue blood oxygenation via spectral measurements. A multiple-wavelength scDCT system with new algorithms is currently developing to fit multi-wavelength and multi-distance data for 3D imaging of both blood flow and oxygenation distributions in deep tissues.
Collapse
|
17
|
Li W, Zhang M, Huo C, Xu G, Chen W, Wang D, Li Z. Time-evolving coupling functions for evaluating the interaction between cerebral oxyhemoglobin and arterial blood pressure with hypertension. Med Phys 2021; 48:2027-2037. [PMID: 33253413 DOI: 10.1002/mp.14627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSES This study aimed to investigate the network coupling between arterial blood pressure (ABP) and changes in cerebral oxyhemoglobin concentration (Δ [O2 Hb]/Δ [HHb]) oscillations based on dynamical Bayesian inference in hypertensive subjects. METHODS Two groups of subjects, consisting of 30 healthy (Group Control, 55.1 ± 10.6 y), and 32 hypertensive individuals (Group AH, 58.9 ± 8.7 y), participated in this study. A functional near-infrared spectroscopy system was used to measure the Δ [O2 Hb] and Δ [HHb] signals in the bilateral prefrontal cortex (LPFC/RPFC), motor cortex (LMC/RMC), and occipital lobe (LOL/ROL) during the resting state (12 min). Based on continuous wavelet analysis and coupling functions, the directed coupling strength (CS) between ABP and cerebral hemoglobin was identified and analyzed in three frequency intervals (I: 0.6-2 Hz, II: 0.145-0.6 Hz, III: 0.01-0.08 Hz). The Pearson correlations between the CS and blood pressure parameters were calculated in the hypertension group. RESULTS In interval I, Group AH exhibited a significantly higher CS for the coupling from ABP to Δ [O2 Hb] than Group Control in LMC, RMC, LOL, and ROL. In interval III, the CS from ABP to Δ [O2 Hb] in LPFC, RPFC, LMC, RMC, LOL, and ROL was significantly higher in Group AH than in Group Control. For the patients with hypertension, diastolic blood pressure was negatively and pulse pressure was positively related to the CS from ABP to Δ [O2 Hb] oscillations in interval III. CONCLUSIONS The higher CS from ABP to Δ [O2 Hb] in interval I indicated that the components of cardiac activity in cerebral hemoglobin oscillations were more directly responsive to the changes in systematic ABP in patients with hypertension than in healthy subjects. Meanwhile, the higher CS from ABP to Δ [O2 Hb] in interval III indicated that the cerebral hemoglobin oscillations were susceptible to changes in blood pressure in hypertensive subjects. The results may serve as evidence of impairment in cerebral autoregulation after hypertension. The Pearson correlation results showed that diastolic blood pressure and pulse pressure might be regarded as predictors of cerebral autoregulation function in patients with hypertension, and may be useful for hypertension stratification. This study provides novel insights into the interaction mechanism between ABP and cerebral hemodynamics and could help in the development of new assessment techniques for cerebral vascular disease.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Congcong Huo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Gongcheng Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Wei Chen
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| | - Daifa Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China
| | - Zengyong Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China.,Key Laboratory of Neuro-functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Beijing, 100176, China
| |
Collapse
|
18
|
Liu X, Gu Y, Huang C, Zhao M, Cheng Y, Jawdeh EGA, Bada HS, Chen L, Yu G. Simultaneous measurements of tissue blood flow and oxygenation using a wearable fiber-free optical sensor. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200314RR. [PMID: 33515216 PMCID: PMC7846117 DOI: 10.1117/1.jbo.26.1.012705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE There is an essential need to develop wearable multimodality technologies that can continuously measure both blood flow and oxygenation in deep tissues to investigate and manage various vascular/cellular diseases. AIM To develop a wearable dual-wavelength diffuse speckle contrast flow oximetry (DSCFO) for simultaneous measurements of blood flow and oxygenation variations in deep tissues. APPROACH A wearable fiber-free DSCFO probe was fabricated using 3D printing to confine two small near-infrared laser diodes and a tiny CMOS camera in positions for DSCFO measurements. The spatial diffuse speckle contrast and light intensity measurements at the two different wavelengths enable quantification of tissue blood flow and oxygenation, respectively. The DSCFO was first calibrated using tissue phantoms and then tested in adult forearms during artery cuff occlusion. RESULTS Phantom tests determined the largest effective source-detector distance (15 mm) and optimal camera exposure time (10 ms) and verified the accuracy of DSCFO in measuring absorption coefficient variations. The DSCFO detected substantial changes in forearm blood flow and oxygenation resulting from the artery occlusion, which meet physiological expectations and are consistent with previous study results. CONCLUSIONS The wearable DSCFO may be used for continuous and simultaneous monitoring of blood flow and oxygenation variations in freely behaving subjects.
Collapse
Affiliation(s)
- Xuhui Liu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Yutong Gu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Chong Huang
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Mingjun Zhao
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Yanda Cheng
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Elie G. Abu Jawdeh
- University of Kentucky, Department of Pediatrics, College of Medicine, Lexington, Kentucky, United States
| | - Henrietta S. Bada
- University of Kentucky, Department of Pediatrics, College of Medicine, Lexington, Kentucky, United States
| | - Lei Chen
- University of Kentucky, Department of Physiology, Spinal Cord and Brain Injury Research Center, Lexington, Kentucky, United States
| | - Guoqiang Yu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
- Address all correspondence to Guoqiang Yu,
| |
Collapse
|
19
|
Abu Jawdeh EG, Huang C, Mazdeyasna S, Chen L, Chen L, Bada HS, Yu G. Noncontact optical imaging of brain hemodynamics in preterm infants: a preliminary study. Phys Med Biol 2020; 65:245009. [PMID: 33113516 DOI: 10.1088/1361-6560/abc5a7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extremely preterm infants' hemodynamic instability places them at high risk of brain injury. Currently there is no reliable bedside method to continuously monitor cerebral hemodynamics in the neonatal intensive care unit (NICU). This paper reports a feasibility study to adapt and test an innovative speckle contrast diffuse correlation tomography (scDCT) device for noncontact, high-density, 3D imaging of cerebral blood flow (CBF) in preterm infants. The scDCT scans a focused point near-infrared illumination to multiple source positions for deep tissue penetration, and controls an electron multiplying charge-coupled-device camera with thousands of pixels to achieve a high-density sampling. The optimized scDCT for use in preterm infants was first evaluated against an established diffuse correlation spectroscopy in an infant-head-simulating phantom with known properties. The observed significant correlation between the two measurements verified the capability of scDCT for transcranial brain imaging. The insignificant influence of transparent incubator wall on scDCT measurements was then confirmed by comparing adult forearm blood flow responses to artery cuff occlusions measured inside and outside the incubator. Finally, the scDCT device was moved to the NICU to image CBF variations in two preterm infants. Infant #1 with no major organ deficits showed little CBF fluctuation over the first 3 weeks of life. Infant #2 showed a significant CBF increase after the 2 h pharmacotherapy for patent ductus arteriosus closure. While these CBF variations meet physiological expectations, the fact that no significant changes are noted with peripheral monitoring of blood oxygen saturation suggests necessity of direct cerebral monitoring. This feasibility study with timely technology development is an important and necessary step towards larger clinical studies with more subjects to further validate it for continuous monitoring and instant management of cerebral pathologies and interventions in the NICU.
Collapse
Affiliation(s)
- Elie G Abu Jawdeh
- Deparment of Pediatrics/Neonatology, College of Medicine, University of Kentucky, Lexington, KY, United States of America. Contributed equally as co-first authors
| | | | | | | | | | | | | |
Collapse
|
20
|
Song K, Xu Q, Koenig HM, Kong M, Slaughter MS, Huang Y, Clifford SP, Huang J. Validation of a Novel NeurOs Cerebral Oximetry Monitor Against the INVOS Monitor During Cardiac Surgery. J Cardiothorac Vasc Anesth 2020; 35:2009-2018. [PMID: 33218956 DOI: 10.1053/j.jvca.2020.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To compare the performance of a novel NeurOs cerebral oximetry monitor against the INVOS monitor during the entire intraoperative phase of cardiac surgery, including periods of known fluctuation in brain oxygenation, such as preoxygenation, induction, cannulation, and cardiopulmonary bypass. DESIGN This study was a prospective, nonrandomized, healthcare-provider and outcome-assessor blinded study. SETTING Tertiary care university hospital; single institutional study. PARTICIPANTS Twenty-three patients who underwent cardiac surgery with cardiopulmonary bypass. INTERVENTIONS Both self-adhesive INVOS sensors and the assembled NeurOs sensors were placed accordingly when the patient arrived in the operating room. MEASUREMENTS AND MAIN RESULTS Ten out of 13 cases under the normal mode and eight out of the 10 cases under the high- sensitivity mode showed significant correlations between the NeurOs and INVOS groups (p < 0.05, r value from 0.24-0.88). When all cases were combined, NeurOs demonstrated significant correlation with INVOS (r = 0.5, 95% confidence interval [CI] 0.44-0.56, p < 0.01 for normal mode; r = 0.69, 95% CI 0.64 to 0.74, p < 0.01 for high-sensitivity mode) in both modes. To evaluate the data diversity, the authors performed a cluster analysis and found much less variation existed in the NeurOs normal mode when compared with INVOS (standard deviation [SD] 16.6% in INVOS, 4% in NeurOs normal mode) but similar patterns in the high-sensitivity mode (SD 17.6% in INVOS, 15.2% in NeurOs high-sensitivity mode). Bland-Altman plot analysis showed that most of the data fell between ± 1.96 SD lines, which demonstrated good consistency between these two methods under both modes of NeurOs (-28.8 to 30.8 in the normal mode; -36.6 to 32.7 in high-sensitivity mode). In the normal mode of NeurOs monitoring, receiver operating characteristic analysis suggested a 2% cutoff point was most optimal from the baseline for detecting hyperoxia (sensitivity 73%; specificity 66%) and minus 1% (sensitivity 66%; specificity 67%) for detecting hypoxia. Whereas in the high-sensitivity mode, the optimal cutoff point was 3% from baseline for detecting hyperoxia (sensitivity 75%; specificity 68%), and minus 3% for detecting hypoxia (sensitivity 90%; specificity 45%). CONCLUSIONS In conclusion, the novel NeurOs system was found to correlate with INVOS cerebral oximetry measurements during cardiac surgery.
Collapse
Affiliation(s)
- Kaicheng Song
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY; Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Qian Xu
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY
| | - Heidi M Koenig
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, KY
| | - Mark S Slaughter
- Department of Cardiovascular & Thoracic Surgery, University of Louisville, Louisville, KY
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Sean P Clifford
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY
| | - Jiapeng Huang
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, Louisville, KY; Department of Cardiovascular & Thoracic Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
21
|
Bahrani AA, Kong W, Shang Y, Huang C, Smith CD, Powell DK, Jiang Y, Rayapati AO, Jicha GA, Yu G. Diffuse optical assessment of cerebral-autoregulation in older adults stratified by cerebrovascular risk. JOURNAL OF BIOPHOTONICS 2020; 13:e202000073. [PMID: 32533642 PMCID: PMC8824485 DOI: 10.1002/jbio.202000073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 05/04/2023]
Abstract
Diagnosis of cerebrovascular disease (CVD) at early stages is essential for preventing sequential complications. CVD is often associated with abnormal cerebral microvasculature, which may impact cerebral-autoregulation (CA). A novel hybrid near-infrared diffuse optical instrument and a finger plethysmograph were used to simultaneously detect low-frequency oscillations (LFOs) of cerebral blood flow (CBF), oxy-hemoglobin concentration ([HbO2 ]), deoxy-hemoglobin concentration ([Hb]) and mean arterial pressure (MAP) in older adults before, during and after 70° head-up-tilting (HUT). The participants with valid data were divided based on Framingham risk score (FRS, 1-30 points) into low-risk (FRS ≤15, n = 13) and high-risk (FRS >15, n = 11) groups for developing CVD. The LFO gains were determined by transfer function analyses with MAP as the input, and CBF, [HbO2 ] and [Hb] as the outputs (CA ∝ 1/Gain). At resting-baseline, LFO gains in the high-risk group were relatively lower compared to the low-risk group. The lower baseline gains in the high-risk group may attribute to compensatory mechanisms to maintain stronger steady-state CAs. However, HUT resulted in smaller gain reductions in the high-risk group compared to the low-risk group, suggesting weaker dynamic CAs. LFO gains are potentially valuable biomarkers for early detection of CVD based on associations with CAs.
Collapse
Affiliation(s)
- Ahmed A. Bahrani
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Weikai Kong
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Yu Shang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Shanxi, China
| | - Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Charles D. Smith
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Magnetic Resonance Imaging and Spectroscopy Center (MRISC), University of Kentucky, Lexington, Kentucky
- Department of Neurology, University of Kentucky, Lexington, Kentucky
| | - David K. Powell
- Magnetic Resonance Imaging and Spectroscopy Center (MRISC), University of Kentucky, Lexington, Kentucky
- Neuroscience Department, University of Kentucky, Lexington, Kentucky
| | - Yang Jiang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Magnetic Resonance Imaging and Spectroscopy Center (MRISC), University of Kentucky, Lexington, Kentucky
- Department of Behavioral Science, University of Kentucky, Lexington, Kentucky
| | - Abner O. Rayapati
- Department of Psychiatry, University of Kentucky, Lexington, Kentucky
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Magnetic Resonance Imaging and Spectroscopy Center (MRISC), University of Kentucky, Lexington, Kentucky
- Department of Neurology, University of Kentucky, Lexington, Kentucky
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
- Correspondence: Guoqiang Yu, Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506,
| |
Collapse
|
22
|
Bai J, Zhu Q, Liu Y, Zhou Y, Shi T, Gui Z, Shang Y. PV-MBLL algorithm for extraction of absolute tissue oxygenation information by diffuse optical spectroscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105456. [PMID: 32305645 DOI: 10.1016/j.cmpb.2020.105456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Tissue blood oxygenation contains critical information for biomedical studies and healthcare. The primary approach to extract the absolute value of tissue blood oxygenation (e.g., oxygen saturation) is spatial-resolved algorithm for near-infrared diffuse optical spectroscopy with continues-wave (CW) light, which require acquisition of the optical signals from multiple pairs of sources and detectors (S-D). This study reports the first attempt for absolute oxygenation measurement with single S-D pair of optical signals. METHODS A novel algorithm, namely, phantom-validation modified Beer-Lambert law (PV-MBLL), was created to fully utilize the optical signals from single S-D pair. This algorithm is combined with two-step phantom measurement to extract the absolute value of tissue oxygenation in CW system. The proposed PV-MBLL algorithm was compared with the conventional spatial-resolved algorithm on both step-varied liquid phantom and human experiment of cuff occlusion on arms. The one-way ANOVA analysis was performed to investigate the difference between the two algorithms. RESULTS By using the PV-MBLL algorithm, the reconstructed tissue absorption coefficient is highly accurate (not larger than 5.35% in error) over a wide range (0.02-0.20 cm-1). By contrast, the spatial-resolved algorithm leads to much larger errors (up to 37.57% in error). Moreover, the responses of oxygen saturation to cuff occlusion differ significantly (p < 0.005) with the two algorithms. CONCLUSIONS The proposed PV-MBLL algorithm has promising potential for accurate acquisition of oxygenation information. Additionally, the single S-D pair greatly reduces the size of optical probe and instrument cost, thus it is highly appropriate for the tissues with small size and large curvature.
Collapse
Affiliation(s)
- Jing Bai
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Qisen Zhu
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Yinqiu Liu
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Yihang Zhou
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Tianlei Shi
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China
| | - Yu Shang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, No.3 Xueyuan Road, Taiyuan 030051, China.
| |
Collapse
|
23
|
Zhu Y, Rodriguez-Paras C, Rhee J, Mehta RK. Methodological Approaches and Recommendations for Functional Near-Infrared Spectroscopy Applications in HF/E Research. HUMAN FACTORS 2020; 62:613-642. [PMID: 31107601 DOI: 10.1177/0018720819845275] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
OBJECTIVE The objective of this study was to systematically document current methods and protocols employed when using functional near-infrared spectroscopy (fNIRS) techniques in human factors and ergonomics (HF/E) research and generate recommendations for conducting and reporting fNIRS findings in HF/E applications. METHOD A total of 1,687 articles were identified through Ovid-MEDLINE, PubMed, Web of Science, and Scopus databases, of which 37 articles were included in the review based on review inclusion/exclusion criteria. RESULTS A majority of the HF/E fNIRS investigations were found in transportation, both ground and aviation, and in assessing cognitive (e.g., workload, working memory) over physical constructs. There were large variations pertaining to data cleaning, processing, and analysis approaches across the studies that warrant standardization of methodological approaches. The review identified major challenges in transparency and reporting of important fNIRS data collection and analyses specifications that diminishes study replicability, introduces potential biases, and increases likelihood of inaccurate results. As such, results reported in existing fNIRS studies need to be cautiously approached. CONCLUSION To improve the quality of fNIRS investigations and/or to facilitate its adoption and integration in different HF/E applications, such as occupational ergonomics and rehabilitation, recommendations for fNIRS data collection, processing, analysis, and reporting are provided.
Collapse
Affiliation(s)
- Yibo Zhu
- 14736 Texas A&M University, College Station, USA
| | | | - Joohyun Rhee
- 14736 Texas A&M University, College Station, USA
| | | |
Collapse
|
24
|
Chen T, Chen Y, Yuan M, Gerstein M, Li T, Liang H, Froehlich T, Lu L. The Development of a Practical Artificial Intelligence Tool for Diagnosing and Evaluating Autism Spectrum Disorder: Multicenter Study. JMIR Med Inform 2020; 8:e15767. [PMID: 32041690 PMCID: PMC7244998 DOI: 10.2196/15767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/01/2019] [Accepted: 02/09/2020] [Indexed: 01/28/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with an unknown etiology. Early diagnosis and intervention are key to improving outcomes for patients with ASD. Structural magnetic resonance imaging (sMRI) has been widely used in clinics to facilitate the diagnosis of brain diseases such as brain tumors. However, sMRI is less frequently used to investigate neurological and psychiatric disorders, such as ASD, owing to the subtle, if any, anatomical changes of the brain. Objective This study aimed to investigate the possibility of identifying structural patterns in the brain of patients with ASD as potential biomarkers in the diagnosis and evaluation of ASD in clinics. Methods We developed a novel 2-level histogram-based morphometry (HBM) classification framework in which an algorithm based on a 3D version of the histogram of oriented gradients (HOG) was used to extract features from sMRI data. We applied this framework to distinguish patients with ASD from healthy controls using 4 datasets from the second edition of the Autism Brain Imaging Data Exchange, including the ETH Zürich (ETH), NYU Langone Medical Center: Sample 1, Oregon Health and Science University, and Stanford University (SU) sites. We used a stratified 10-fold cross-validation method to evaluate the model performance, and we applied the Naive Bayes approach to identify the predictive ASD-related brain regions based on classification contributions of each HOG feature. Results On the basis of the 3D HOG feature extraction method, our proposed HBM framework achieved an area under the curve (AUC) of >0.75 in each dataset, with the highest AUC of 0.849 in the ETH site. We compared the 3D HOG algorithm with the original 2D HOG algorithm, which showed an accuracy improvement of >4% in each dataset, with the highest improvement of 14% (6/42) in the SU site. A comparison of the 3D HOG algorithm with the scale-invariant feature transform algorithm showed an AUC improvement of >18% in each dataset. Furthermore, we identified ASD-related brain regions based on the sMRI images. Some of these regions (eg, frontal gyrus, temporal gyrus, cingulate gyrus, postcentral gyrus, precuneus, caudate, and hippocampus) are known to be implicated in ASD in prior neuroimaging literature. We also identified less well-known regions that may play unrecognized roles in ASD and be worth further investigation. Conclusions Our research suggested that it is possible to identify neuroimaging biomarkers that can distinguish patients with ASD from healthy controls based on the more cost-effective sMRI images of the brain. We also demonstrated the potential of applying data-driven artificial intelligence technology in the clinical setting of neurological and psychiatric disorders, which usually harbor subtle anatomical changes in the brain that are often invisible to the human eye.
Collapse
Affiliation(s)
- Tao Chen
- School of Information Management, Wuhan University, Wuhan, China.,School of Information Technology, Shangqiu Normal University, Shangqiu, China
| | - Ye Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mengxue Yuan
- School of Information Management, Wuhan University, Wuhan, China
| | - Mark Gerstein
- Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States.,Department of Computer Science, Yale University, New Haven, CT, United States
| | - Tingyu Li
- Children Nutrition Research Center, Chongqing, China.,Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China
| | - Huiying Liang
- Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Tanya Froehlich
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan, China.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
25
|
Blaney G, Sassaroli A, Pham T, Fernandez C, Fantini S. Phase dual-slopes in frequency-domain near-infrared spectroscopy for enhanced sensitivity to brain tissue: First applications to human subjects. JOURNAL OF BIOPHOTONICS 2020; 13:e201960018. [PMID: 31479582 PMCID: PMC9219023 DOI: 10.1002/jbio.201960018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/05/2023]
Abstract
We present a first in vivo application of phase dual-slopes (DSϕ), measured with frequency-domain near-infrared spectroscopy on four healthy human subjects, to demonstrate their enhanced sensitivity to cerebral hemodynamics. During arterial blood pressure oscillations elicited at a frequency of 0.1 Hz, we compare three different ways to analyze either intensity (I) or phase (ϕ) data collected on the subject's forehead at multiple source-detector distances: Single-distance, single-slope and DS. Theoretical calculations based on diffusion theory show that the method with the deepest maximal sensitivity (at about 11 mm) is DSϕ. The in vivo results indicate a qualitative difference of phase data (especially DSϕ) and intensity data (especially single-distance intensity [SDI]), which we assign to stronger contributions from scalp hemodynamics to SDI and from cortical hemodynamics to DSϕ. Our findings suggest that scalp hemodynamic oscillations may be dominated by blood volume dynamics, whereas cortical hemodynamics may be dominated by blood flow velocity dynamics.
Collapse
Affiliation(s)
- Giles Blaney
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| | - Angelo Sassaroli
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| | - Thao Pham
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| | | | - Sergio Fantini
- Department of Biomedical Engineering Tufts University, Medford MA, USA
| |
Collapse
|
26
|
Müller M, Österreich M. Cerebral Microcirculatory Blood Flow Dynamics During Rest and a Continuous Motor Task. Front Physiol 2019; 10:1355. [PMID: 31708802 PMCID: PMC6821676 DOI: 10.3389/fphys.2019.01355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: To examine the brain’s microcirculatory response over the course of a continuous 5-min elbow movement task in order to estimate its potential role in grading vaso-neural coupling compared to the macrocirculatory response. Methods: We simultaneously recorded cerebral blood flow velocity (CBFV), changes in oxygenated/deoxygenated hemoglobin concentrations ([oxHb], [deoxHb]), blood pressure (BP), and end-tidal CO2 over 5-min periods of rest and left elbow movements in 24 healthy persons (13 women and 11 men of mean age ± SD, 38 ± 11 years). A low frequency range (0.07–0.15 Hz) was used for analysis by transfer function estimates of phase and gain. Results: Elbow movement led to a small BP increase (mean BP at rest 83 mm Hg, at movement 87; p < 0.01) and a small ETCO2 decrease (at rest 44.6 mm Hg, at movement 41.7 mm Hg; p < 0.01). Further, it increased BP-[oxHb] phase from 55° (both sides) to 74° (right; p < 0.05)/69° (left; p < 0.05), and BP-[deoxHb] phase from 264° (right)/270° (left) to 288° (right; p < 0.05)/297° (left; p = 0.09). The cerebral mean transit time at 0.1 Hz of 5.6 s of rest remained unchanged by movement. Elbow movement significantly decreased BP-CBFV gain on both sides, and BP-CBFV phase only on the right side (p = 0.05). Conclusion: Elbow movement leads to an increased time delay between BP and [oxHb]/[deoxHb] while leaving the cerebral mean transit time unchanged. Phase shifting is usually the more robust parameter when using a transfer function to estimate dynamic cerebral autoregulation; phase shifting at the microcirculatory level seems to be a better marker of VNC-induced changes than phase shifting between BP and CBFV.
Collapse
Affiliation(s)
- Martin Müller
- Neurovascular Laboratory, Neurocenter, Lucerne Kantonsspital, Lucerne, Switzerland
| | - Mareike Österreich
- Neurovascular Laboratory, Neurocenter, Lucerne Kantonsspital, Lucerne, Switzerland
| |
Collapse
|
27
|
Huang C, Mazdeyasna S, Chen L, Abu Jawdeh EG, Bada HS, Saatman KE, Chen L, Yu G. Noninvasive noncontact speckle contrast diffuse correlation tomography of cerebral blood flow in rats. Neuroimage 2019; 198:160-169. [DOI: 10.1016/j.neuroimage.2019.05.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
|
28
|
Nuamah JK, Mantooth W, Karthikeyan R, Mehta RK, Ryu SC. Neural Efficiency of Human-Robotic Feedback Modalities Under Stress Differs With Gender. Front Hum Neurosci 2019; 13:287. [PMID: 31543765 PMCID: PMC6729110 DOI: 10.3389/fnhum.2019.00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023] Open
Abstract
Sensory feedback, which can be presented in different modalities - single and combined, aids task performance in human-robotic interaction (HRI). However, combining feedback modalities does not always lead to optimal performance. Indeed, it is not known how feedback modalities affect operator performance under stress. Furthermore, there is limited information on how feedback affects neural processes differently for males and females and under stress. This is a critical gap in the literature, particularly in the domain of surgical robotics, where surgeons are under challenging socio-technical environments that burden them physiologically. In the present study, we posited operator performance as the summation of task performance and neurophysiological cost of maintaining that performance. In a within-subject design, we used functional near-infrared spectroscopy to assess cerebral activations of 12 participants who underwent a 3D manipulation task within a virtual environment with concurrent feedback (visual and visual + haptic) in the presence and absence of a cognitive stressor. Cognitive stress was induced with the serial-7 subtraction test. We found that while task performance was higher with visual than visual + haptic feedback, it degraded under stress. The two feedback modalities were found to be associated with varying neural activities and neural efficiencies, and these were stress- and gender-dependent. Our findings engender further investigation into effectiveness of feedback modalities on males and females under stressful conditions in HRI.
Collapse
Affiliation(s)
- Joseph K. Nuamah
- NeuroErgonomics Laboratory, Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Whitney Mantooth
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, United States
| | - Rohith Karthikeyan
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Ranjana K. Mehta
- NeuroErgonomics Laboratory, Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, United States
| | - Seok Chang Ryu
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
29
|
Portable Near-Infrared Technologies and Devices for Noninvasive Assessment of Tissue Hemodynamics. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:3750495. [PMID: 30891170 PMCID: PMC6390246 DOI: 10.1155/2019/3750495] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Abstract
Tissue hemodynamics, including the blood flow, oxygenation, and oxygen metabolism, are closely associated with many diseases. As one of the portable optical technologies to explore human physiology and assist in healthcare, near-infrared diffuse optical spectroscopy (NIRS) for tissue oxygenation measurement has been developed for four decades. In recent years, a dynamic NIRS technology, namely, diffuse correlation spectroscopy (DCS), has been emerging as a portable tool for tissue blood flow measurement. In this article, we briefly describe the basic principle and algorithms for static NIRS and dynamic NIRS (i.e., DCS). Then, we elaborate on the NIRS instrumentation, either commercially available or custom-made, as well as their applications to physiological studies and clinic. The extension of NIRS/DCS from spectroscopy to imaging was depicted, followed by introductions of advanced algorithms that were recently proposed. The future prospective of the NIRS/DCS and their feasibilities for routine utilization in hospital is finally discussed.
Collapse
|
30
|
Huang C, Gu Y, Chen J, Bahrani AA, Abu Jawdeh EG, Bada HS, Saatman K, Yu G, Chen L. A Wearable Fiberless Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Mice. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:6900108. [PMID: 31666792 PMCID: PMC6821394 DOI: 10.1109/jstqe.2018.2854597] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Continuous and longitudinal monitoring of cerebral blood flow (CBF) in animal models provides information for studying the mechanisms and interventions of various cerebral diseases. Since anesthesia may affect brain hemodynamics, researchers have been seeking wearable devices for use in conscious animals. We present a wearable diffuse speckle contrast flowmeter (DSCF) probe for monitoring CBF variations in mice. The DSCF probe consists of a small low-power near-infrared laser diode as a point source and an ultra-small low-power CMOS camera as a 2D detector array, which can be affixed on a mouse head. The movement of red blood cells in brain cortex (i.e., CBF) produces spatial fluctuations of laser speckles, which are captured by the camera. The DSCF system was calibrated using tissue phantoms and validated in a human forearm and mouse brains for continuous monitoring of blood flow increases and decreases against the established technologies. Significant correlations were observed among these measurements (R2 ≥ 0.80, p < 10-5). This small fiberless probe has the potential to be worn by a freely moving conscious mouse. Moreover, the flexible source-detector configuration allows for varied probing depths up to ~8 mm, which is sufficient for transcranially detecting CBF in the cortices of rodents and newborn infants.
Collapse
Affiliation(s)
- Chong Huang
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Yutong Gu
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089 USA
| | - Jing Chen
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Ahmed A. Bahrani
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506 USA
| | - Elie G. Abu Jawdeh
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Henrietta S. Bada
- Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Kathryn Saatman
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536 USA
| | | | | |
Collapse
|
31
|
Khaksari K, Blaney G, Sassaroli A, Krishnamurthy N, Pham T, Fantini S. Depth dependence of coherent hemodynamics in the human head. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30444084 PMCID: PMC6318717 DOI: 10.1117/1.jbo.23.12.121615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/29/2018] [Indexed: 05/03/2023]
Abstract
We report a near-infrared spectroscopy (NIRS) study of coherent hemodynamic oscillations measured on the human forehead at multiple source-detector distances (1 to 4 cm). The physiological source of the coherent hemodynamics is arterial blood pressure oscillations at a frequency of 0.1 Hz, induced by cyclic inflation (to a pressure of 200 mmHg) and deflation of two thigh cuffs wrapped around the subject's thighs. To interpret our results, we use a recently developed hemodynamic model and a phasor representation of the oscillations of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations in the tissue (phasors O, D, and T, respectively). The increase in the phase angle between D and O at larger source-detector separations is assigned to greater flow versus volume contributions and to a stronger blood flow autoregulation in deeper tissue (brain cortex) with respect to superficial tissue (scalp and skull). The relatively constant phase lag of T versus arterial blood pressure oscillations at all source-detector distances was assigned to competing effects from stronger autoregulation and smaller arterial-to-venous contributions in deeper tissue with respect to superficial tissue. We demonstrate the application of a hemodynamic model to interpret coherent hemodynamics measured with NIRS and to assess the different nature of shallow (extracerebral) versus deep (cerebral) tissue hemodynamics.
Collapse
Affiliation(s)
- Kosar Khaksari
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Nishanth Krishnamurthy
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Thao Pham
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| |
Collapse
|
32
|
Sassaroli A, Tgavalekos K, Fantini S. The meaning of "coherent" and its quantification in coherent hemodynamics spectroscopy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11:1850036. [PMID: 31762798 PMCID: PMC6874396 DOI: 10.1142/s1793545818500360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We have recently introduced a new technique, coherent hemodynamics spectroscopy (CHS), which aims at characterizing a specific kind of tissue hemodynamics that feature a high level of covariation with a given physiological quantity. In this study, we carry out a detailed analysis of the significance of coherence and phase synchronization between oscillations of arterial blood pressure (ABP) and total hemoglobin concentration ([Hbt]), measured with near-infrared spectroscopy (NIRS) during a typical protocol for CHS, based on a cyclic thigh cuff occlusion and release. Even though CHS is based on a linear time invariant model between ABP (input) and NIRS measurands (outputs), for practical reasons in a typical CHS protocol, we induce finite "groups" of ABP oscillations, in which each group is characterized by a different frequency. For this reason, ABP (input) and NIRS measurands (output) are not stationary processes, and we have used wavelet coherence and phase synchronization index (PSI), as a metric of coherence and phase synchronization, respectively. PSI was calculated by using both the wavelet cross spectrum and the Hilbert transform. We have also used linear coherence (which requires stationary process) for comparison with wavelet coherence. The method of surrogate data is used to find critical values for the significance of covariation between ABP and [Hbt]. Because we have found similar critical values for wavelet coherence and PSI by using five of the most used methods of surrogate data, we propose to use the data-independent Gaussian random numbers (GRNs), for CHS. By using wavelet coherence and wavelet cross spectrum, and GRNs as surrogate data, we have found the same results for the significance of coherence and phase synchronization between ABP and [Hbt]: on a total set of 20 periods of cuff oscillations, we have found 17 coherent oscillations and 17 phase synchronous oscillations. Phase synchronization assessed with Hilbert transform yielded similar results with 14 phase synchronous oscillations. Linear coherence and wavelet coherence overall yielded similar number of significant values. We discuss possible reasons for this result. Despite the similarity of linear and wavelet coherence, we argue that wavelet coherence is preferable, especially if one wants to use baseline spontaneous oscillations, in which phase locking and coherence between signals might be only temporary.
Collapse
|
33
|
Selb J, Wu KC, Sutin J, Lin PY(I, Farzam P, Bechek S, Shenoy A, Patel AB, Boas DA, Franceschini MA, Rosenthal ES. Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients. NEUROPHOTONICS 2018; 5:045005. [PMID: 30450363 PMCID: PMC6233866 DOI: 10.1117/1.nph.5.4.045005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/24/2018] [Indexed: 05/13/2023]
Abstract
Monitoring of cerebral blood flow (CBF) and autoregulation are essential components of neurocritical care, but continuous noninvasive methods for CBF monitoring are lacking. Diffuse correlation spectroscopy (DCS) is a noninvasive diffuse optical modality that measures a CBF index ( CBF i ) in the cortex microvasculature by monitoring the rapid fluctuations of near-infrared light diffusing through moving red blood cells. We tested the feasibility of monitoring CBF i with DCS in at-risk patients in the Neurosciences Intensive Care Unit. DCS data were acquired continuously for up to 20 h in six patients with aneurysmal subarachnoid hemorrhage, as permitted by clinical care. Mean arterial blood pressure was recorded synchronously, allowing us to derive autoregulation curves and to compute an autoregulation index. The autoregulation curves suggest disrupted cerebral autoregulation in most patients, with the severity of disruption and the limits of preserved autoregulation varying between subjects. Our findings suggest the potential of the DCS modality for noninvasive, long-term monitoring of cerebral perfusion, and autoregulation.
Collapse
Affiliation(s)
- Juliette Selb
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Kuan-Cheng Wu
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Jason Sutin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Pei-Yi (Ivy) Lin
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Parisa Farzam
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Sophia Bechek
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Apeksha Shenoy
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - Aman B. Patel
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Optics at Martinos, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to: Maria Angela Franceschini, E-mail:
| | - Eric S. Rosenthal
- Massachusetts General Hospital, Department of Neurology, Boston, Massachusetts, United States
| |
Collapse
|
34
|
He L, Baker WB, Milej D, Kavuri VC, Mesquita RC, Busch DR, Abramson K, Jiang JY, Diop M, St. Lawrence K, Amendolia O, Quattrone F, Balu R, Kofke WA, Yodh AG. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. NEUROPHOTONICS 2018; 5:045006. [PMID: 30480039 PMCID: PMC6251207 DOI: 10.1117/1.nph.5.4.045006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/29/2018] [Indexed: 05/18/2023]
Abstract
We investigate a scheme for noninvasive continuous monitoring of absolute cerebral blood flow (CBF) in adult human patients based on a combination of time-resolved dynamic contrast-enhanced near-infrared spectroscopy (DCE-NIRS) and diffuse correlation spectroscopy (DCS) with semi-infinite head model of photon propogation. Continuous CBF is obtained via calibration of the DCS blood flow index (BFI) with absolute CBF obtained by intermittent intravenous injections of the optical contrast agent indocyanine green. A calibration coefficient ( γ ) for the CBF is thus determined, permitting conversion of DCS BFI to absolute blood flow units at all other times. A study of patients with acute brain injury ( N = 7 ) is carried out to ascertain the stability of γ . The patient-averaged DCS calibration coefficient across multiple monitoring days and multiple patients was determined, and good agreement between the two calibration coefficients measured at different times during single monitoring days was found. The patient-averaged calibration coefficient of 1.24 × 10 9 ( mL / 100 g / min ) / ( cm 2 / s ) was applied to previously measured DCS BFI from similar brain-injured patients; in this case, absolute CBF was underestimated compared with XeCT, an effect we show is primarily due to use of semi-infinite homogeneous models of the head.
Collapse
Affiliation(s)
- Lian He
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- Address all correspondence to: Lian He, E-mail:
| | - Wesley B. Baker
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Daniel Milej
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Venkaiah C. Kavuri
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | | | - David R. Busch
- University of Texas Southwestern, Department of Neurology and Neurotherapeutics, Dallas, Texas, United States
- University of Texas Southwestern, Department of Anesthesiology and Pain Management, Dallas, Texas, United States
| | - Kenneth Abramson
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Jane Y. Jiang
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Mamadou Diop
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Keith St. Lawrence
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Division, London, Ontario, Canada
| | - Olivia Amendolia
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Francis Quattrone
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Ramani Balu
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - W. Andrew Kofke
- University of Pennsylvania, Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Neurosurgery, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Anesthesiology and Critical Care, Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
35
|
Aqil M, Jeong MY. Critical bounds on noise and SNR for robust estimation of real-time brain activity from functional near infra-red spectroscopy. Neuroimage 2018; 176:321-353. [PMID: 29698730 DOI: 10.1016/j.neuroimage.2018.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022] Open
Abstract
The robust characterization of real-time brain activity carries potential for many applications. However, the contamination of measured signals by various instrumental, environmental, and physiological sources of noise introduces a substantial amount of signal variance and, consequently, challenges real-time estimation of contributions from underlying neuronal sources. Functional near infra-red spectroscopy (fNIRS) is an emerging imaging modality whose real-time potential is yet to be fully explored. The objectives of the current study are to (i) validate a time-dependent linear model of hemodynamic responses in fNIRS, and (ii) test the robustness of this approach against measurement noise (instrumental and physiological) and mis-specification of the hemodynamic response basis functions (amplitude, latency, and duration). We propose a linear hemodynamic model with time-varying parameters, which are estimated (adapted and tracked) using a dynamic recursive least square algorithm. Owing to the linear nature of the activation model, the problem of achieving robust convergence to an accurate estimation of the model parameters is recast as a problem of parameter error stability around the origin. We show that robust convergence of the proposed method is guaranteed in the presence of an acceptable degree of model misspecification and we derive an upper bound on noise under which reliable parameters can still be inferred. We also derived a lower bound on signal-to-noise-ratio over which the reliable parameters can still be inferred from a channel/voxel. Whilst here applied to fNIRS, the proposed methodology is applicable to other hemodynamic-based imaging technologies such as functional magnetic resonance imaging.
Collapse
Affiliation(s)
- Muhammad Aqil
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. 45650, Islamabad, Pakistan.
| | - Myung Yung Jeong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
36
|
Andersen AV, Simonsen SA, Schytz HW, Iversen HK. Assessing low-frequency oscillations in cerebrovascular diseases and related conditions with near-infrared spectroscopy: a plausible method for evaluating cerebral autoregulation? NEUROPHOTONICS 2018; 5:030901. [PMID: 30689678 PMCID: PMC6156398 DOI: 10.1117/1.nph.5.3.030901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/02/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cerebral autoregulation (CA) is the brain's ability to always maintain an adequate and relatively constant blood supply, which is often impaired in cerebrovascular diseases. Near-infrared spectroscopy (NIRS) examines oxygenated hemoglobin (OxyHb) in the cerebral cortex. Low- and very low-frequency oscillations ( LFOs ≈ 0.1 Hz and VLFOs ≈ 0.05 to 0.01 Hz) in OxyHb have been proposed to reflect CA. AIM To systematically review published results on OxyHb LFOs and VLFOs in cerebrovascular diseases and related conditions measured with NIRS. APPROACH A systematic search was performed in the MEDLINE database, which generated 36 studies relevant for inclusion. RESULTS Healthy people have relatively stable LFOs. LFO amplitude seems to reflect myogenic CA being decreased by vasomotor paralysis in stroke, by smooth muscle damage or as compensatory action in other conditions but can also be influenced by the sympathetic tone. VLFO amplitude is believed to reflect neurogenic and metabolic CA and is lower in stroke, atherosclerosis, and with aging. Both LFO and VLFO synchronizations appear disturbed in stroke, while the former is also altered in internal carotid stenosis and hypertension. CONCLUSION We conclude that amplitudes of LFOs and VLFOs are relatively robust measures for evaluating mechanisms of CA and synchronization analyses can show temporal disruption of CA. Further research and more coherent methodologies are needed.
Collapse
Affiliation(s)
- Adam Vittrup Andersen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
- Address all correspondence to: Adam Vittrup Andersen, E-mail:
| | - Sofie Amalie Simonsen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Henrik Winther Schytz
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Helle Klingenberg Iversen
- Rigshospitalet, Department of Neurology, Glostrup, Denmark
- University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| |
Collapse
|
37
|
Alterations in the coupling functions between cerebral oxyhaemoglobin and arterial blood pressure signals in post-stroke subjects. PLoS One 2018; 13:e0195936. [PMID: 29668713 PMCID: PMC5905974 DOI: 10.1371/journal.pone.0195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/03/2018] [Indexed: 11/19/2022] Open
Abstract
Cerebral autoregulation (CA) is the complex homeostatic regulatory relationship between blood pressure (BP) and cerebral blood flow (CBF). This study aimed to analyze the frequency-specific coupling function between cerebral oxyhemoglobin concentrations (delta [HbO2]) and mean arterial pressure (MAP) signals based on a model of coupled phase oscillators and dynamical Bayesian inference. Delta [HbO2] was measured by 24-channel near-infrared spectroscopy (NIRS) and arterial BP signals were obtained by simultaneous resting-state measurements in patients with stroke, that is, 9 with left hemiparesis (L–H group), 8 with right hemiparesis (R–H group), and 17 age-matched healthy individuals as control (healthy group). The coupling functions from MAP to delta [HbO2] oscillators were identified and analyzed in four frequency intervals (I, 0.6–2 Hz; II, 0.145–0.6 Hz; III, 0.052–0.145 Hz; and IV, 0.021–0.052 Hz). In L–H group, the CS from MAP to delta [HbO2] in interval III in channel 8 was significantly higher than that in healthy group (p = 0.003). Compared with the healthy controls, the coupling in MAP→delta [HbO2] showed higher amplitude in interval I and IV in patients with stroke. The increased CS and coupling amplitude may be an evidence of impairment in CA, thereby confirming the presence of impaired CA in patients with stroke. In interval III, the CS in L–H group from MAP to delta [HbO2] in channel 16 (p = 0.001) was significantly lower than that in healthy controls, which might indicate the compensatory mechanism in CA of the unaffected side in patients with stroke. No significant difference in region-wise CS between affected and unaffected sides was observed in stroke groups, indicating an evidence of globally impaired CA. These findings provide a method for the assessment of CA and will contribute to the development of therapeutic interventions in stroke patients.
Collapse
|
38
|
Liu Q, Wang B, Liu Y, Lv Z, Li W, Li Z, Fan Y. Frequency-specific Effective Connectivity in Subjects with Cerebral Infarction as Revealed by NIRS Method. Neuroscience 2018; 373:169-181. [PMID: 29337235 DOI: 10.1016/j.neuroscience.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
Abstract
A connectivity-based approach can highlight the network reorganization in the chronic phases after stroke and contributes to the development of therapeutic interventions. Using dynamic Bayesian inference, this study aimed to assess the effective connectivity (EC) in various frequency bands through the near-infrared spectroscopy (NIRS) method in subjects with cerebral infarction (CI). A phase-coupling model was established based on phase information extracted using the wavelet transform of NIRS signals. Coupling strength and the main coupling direction were estimated using dynamic Bayesian inference. Wilcoxon test and chi-square test were used to determine the significant difference in EC between two groups. Results showed that the coupling strength of the EC in the CI group significantly decreased relative to that in the healthy group. The decrease was most significant in the frequency intervals IV (0.021 Hz-0.052 Hz; p = 0.0006) and VI (0.005 Hz-0.095 Hz; p = 0.0028). The main coupling direction changed from the right prefrontal cortex to the right motor cortex and left motor cortex in the frequency intervals IV (p1 = 0.041, p2 = 0.047) and II (p1 = 0.0017, p2 = 0.0036), respectively. The EC decreased or was even lost significantly in the EC map of the CI group. Experimental results indicated that information propagation was blocked in the CI group than in the healthy group and resulted in the decreased coupling strength and connectivity loss. The main coupling direction of the motor section changed from driving into being driven because of the degradation of limb movement function.
Collapse
Affiliation(s)
- Qianying Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China
| | - Bitian Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China
| | - Ying Liu
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Zeping Lv
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Wenhao Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China
| | - Zengyong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China; Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing 100176, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100086 Beijing, China; Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
39
|
Xu J, Li C, Zhang H, Li J, Jin H, Qu W, Sun L. A Pilot Study Based on Cerebral Hemoglobin Information to Classify the Desired Walking Speed. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2017.2765002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
An effective model of cerebrovascular pressure reactivity and blood flow autoregulation. Microvasc Res 2017; 115:34-43. [PMID: 28847705 DOI: 10.1016/j.mvr.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/12/2017] [Accepted: 08/19/2017] [Indexed: 10/19/2022]
Abstract
Understanding cerebral blood flow dynamics is crucial for the care of patients at risk of poor cerebral perfusion. We describe an effective model of cerebral hemodynamics designed to reveal important macroscopic features of cerebral blood flow without having to resolve the detailed microvasculature of the brain. Based on principles of fluid and elastic dynamics and vascular pressure-reactivity, the model quantifies the physical means by which the vasculature executes autoregulatory reflexes. We demonstrate that the frequency response of the proposed model matches experimental measurements and explains the influence of mechanical factors on the autoregulatory performance. Analysis of the model indicates the existence of an optimal mean arterial pressure which minimizes the sensitivity of the flow to changes in perfusion pressure across the frequency spectrum of physiological oscillations. We highlight the simplicity of the model and its potential to improve monitoring of brain perfusion via real-time computational simulations of cerebro- and cardio-vascular interventions.
Collapse
|
41
|
Baker WB, Parthasarathy AB, Gannon KP, Kavuri VC, Busch DR, Abramson K, He L, Mesquita RC, Mullen MT, Detre JA, Greenberg JH, Licht DJ, Balu R, Kofke WA, Yodh AG. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. J Cereb Blood Flow Metab 2017; 37:2691-2705. [PMID: 28541158 PMCID: PMC5536813 DOI: 10.1177/0271678x17709166] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP - CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
Collapse
Affiliation(s)
- Wesley B Baker
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| | - Ashwin B Parthasarathy
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,3 Department of Electrical Engineering, University of South Florida, Tampa, USA
| | - Kimberly P Gannon
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Venkaiah C Kavuri
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - David R Busch
- 5 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kenneth Abramson
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Lian He
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | | | - Michael T Mullen
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - John A Detre
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Joel H Greenberg
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Daniel J Licht
- 5 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ramani Balu
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - W Andrew Kofke
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| | - Arjun G Yodh
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
42
|
Yazdi HS, O’Sullivan TD, Leproux A, Hill B, Durkin A, Telep S, Lam J, Yazdi SS, Police AM, Carroll RM, Combs FJ, Strömberg T, Yodh AG, Tromberg BJ. Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45003. [PMID: 28384703 PMCID: PMC5381696 DOI: 10.1117/1.jbo.22.4.045003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/13/2017] [Indexed: 05/18/2023]
Abstract
Diffuse optical spectroscopic imaging (DOSI) and diffuse correlation spectroscopy (DCS) are model-based near-infrared (NIR) methods that measure tissue optical properties (broadband absorption, ? a , and reduced scattering, ? s ? ) and blood flow (blood flow index, BFI), respectively. DOSI-derived ? a values are used to determine composition by calculating the tissue concentration of oxy- and deoxyhemoglobin ( HbO 2 , HbR), water, and lipid. We developed and evaluated a combined, coregistered DOSI/DCS handheld probe for mapping and imaging these parameters. We show that uncertainties of 0.3 ?? mm ? 1 (37%) in ? s ? and 0.003 ?? mm ? 1 (33%) in ? a lead to ? 53 % and 9% errors in BFI, respectively. DOSI/DCS imaging of a solid tissue-simulating flow phantom and
Collapse
MESH Headings
- Adult
- Carcinoma, Ductal, Breast/blood supply
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/drug therapy
- Diffusion
- Female
- Hemoglobins/analysis
- Humans
- Lipids/blood
- Models, Theoretical
- Neoadjuvant Therapy
- Oxyhemoglobins/analysis
- Phantoms, Imaging
- Spectrophotometry/methods
- Spectroscopy, Near-Infrared/methods
- Tomography, Optical/methods
Collapse
Affiliation(s)
- Hossein S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Thomas D. O’Sullivan
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Anais Leproux
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Brian Hill
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Amanda Durkin
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Seraphim Telep
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Jesse Lam
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Siavash S. Yazdi
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Alice M. Police
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Robert M. Carroll
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Freddie J. Combs
- University of California, Chao Family Comprehensive Cancer Center, Orange, California, United States
| | - Tomas Strömberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Linköping University, Department of Biomedical Engineering, Linköping, Sweden
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Bruce J. Tromberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
- Address all correspondence to: Bruce J. Tromberg, E-mail:
| |
Collapse
|
43
|
Shang Y, Li T, Yu G. Clinical applications of near-infrared diffuse correlation spectroscopy and tomography for tissue blood flow monitoring and imaging. Physiol Meas 2017; 38:R1-R26. [PMID: 28199219 PMCID: PMC5726862 DOI: 10.1088/1361-6579/aa60b7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. APPROACH Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). MAIN RESULTS This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. SIGNIFICANCE Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring.
Collapse
Affiliation(s)
- Yu Shang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, No.3 Xueyuan Road, Taiyuan, Shanxi 030051, China
| | - Ting Li
- State Key Lab Elect Thin Film & Integrated Device, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, China
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, 514C RMB, 143 Graham Avenue, Lexington, KY 40506-0108, USA
| |
Collapse
|
44
|
Xu L, Wang B, Xu G, Wang W, Liu Z, Li Z. Functional connectivity analysis using fNIRS in healthy subjects during prolonged simulated driving. Neurosci Lett 2017; 640:21-28. [PMID: 28087436 DOI: 10.1016/j.neulet.2017.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
Noninvasive and accurate assessment of driving fatigue in relation to brain activity during long-term driving can contribute to traffic safety and accident prevention. This study evaluated functional connectivity (FC) in relevant brain regions. Synergistic mechanisms in different brain regions were detected by a novel simulator, which combined semi-immersive virtual reality technology and functional near-infrared spectroscopy. Each subject was instructed to complete driving tasks coupled with a mental calculation task. Wavelet coherence (WCO) and wavelet phase coherence (WPCO) were calculated and assessed in frequency intervals (I) 0.6-2 and (II) 0.145-0.6Hz as global connectivity measures; (III) 0.052-0.145, (IV) 0.021-0.052, (V) 0.0095-0.021 and (VI) 0.005-0.0095Hz as FC. WCO and WPCO revealed the strength and synchronization of cerebral connectivity, respectively. Significantly low WCO levels were found in intervals I and III in prefrontal cortex (PFC) and IV in motor cortex (MC) at the end of the driving task. Furthermore, significantly low WPCO were found in intervals I, and III in PFC and interval IV in MC. Experimental findings suggested that progressive mental fatigue adversely influences the cognitive function in the PFC and the cooperative mechanism between the PFC and MC.
Collapse
Affiliation(s)
- Liwei Xu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Bitian Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Gongcheng Xu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Wei Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Zhian Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan, 250061, PR China
| | - Zengyong Li
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, PR China.
| |
Collapse
|
45
|
Pulsation-limited oxygen diffusion in the tumour microenvironment. Sci Rep 2017; 7:39762. [PMID: 28045083 PMCID: PMC5206636 DOI: 10.1038/srep39762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is central to tumour evolution, growth, invasion and metastasis. Mathematical models of hypoxia based on reaction-diffusion equations provide seemingly incomplete descriptions as they fail to predict the measured oxygen concentrations in the tumour microenvironment. In an attempt to explain the discrepancies, we consider both the inhomogeneous distribution of oxygen-consuming cells in solid tumours and the dynamics of blood flow in the tumour microcirculation. We find that the low-frequency oscillations play an important role in the establishment of tumour hypoxia. The oscillations interact with consumption to inhibit oxygen diffusion in the microenvironment. This suggests that alpha-blockers-a class of drugs used to treat hypertension and stress disorders, and known to lower or even abolish low-frequency oscillations of arterial blood flow -may act as adjuvant drugs in the radiotherapy of solid tumours by enhancing the oxygen effect.
Collapse
|
46
|
Blanc JJ, Benditt DG. Vasovagal Syncope: Hypothesis Focusing on Its Being a Clinical Feature Unique to Humans. J Cardiovasc Electrophysiol 2016; 27:623-9. [PMID: 26840192 DOI: 10.1111/jce.12945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 11/28/2022]
Abstract
Humans live primarily in the upright position; as a result, there is a constant struggle between gravity and needed supply of blood flow to the brain. In certain circumstances brain blood supply may become temporarily insufficient, resulting in syncope. Among the numerous causes of syncope in humans, vasovagal syncope (VVS) is by far the most common. However, despite intensive research, many aspects of the pathophysiology of VVS remain unknown; among these, one of the least well understood is the basis for why VVS is restricted, among vertebrates, to Homo sapiens. In this manuscript we review proposals that have been offered in an attempt to address the issue of the origin of VVS and, although highly speculative, we suggest a new hypothesis (the "brain theory") to try to address the question of why humans, to the exclusion of other species, remain susceptible to VVS. This theory suggests that VVS evolved to offer protection to the brain's functional integrity under certain conditions of severe threat. Although seemingly a disadvantageous evolutionary adaptation, the faint causes the body to take on a gravitationally neutral position, and thereby provides a better chance of restoring brain blood supply and preserving long-term brain function.
Collapse
Affiliation(s)
| | - David G Benditt
- The Cardiac Arrhythmia Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
47
|
Wang D, Parthasarathy AB, Baker WB, Gannon K, Kavuri V, Ko T, Schenkel S, Li Z, Li Z, Mullen MT, Detre JA, Yodh AG. Fast blood flow monitoring in deep tissues with real-time software correlators. BIOMEDICAL OPTICS EXPRESS 2016; 7:776-97. [PMID: 27231588 PMCID: PMC4866455 DOI: 10.1364/boe.7.000776] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 05/19/2023]
Abstract
We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 - 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance.
Collapse
Affiliation(s)
- Detian Wang
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900,
China
| | | | - Wesley B. Baker
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Kimberly Gannon
- Div. of Stroke and Neurocritical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Venki Kavuri
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Tiffany Ko
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Steven Schenkel
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Zhe Li
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072,
China
| | - Zeren Li
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900,
China
| | - Michael T. Mullen
- Div. of Stroke and Neurocritical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
USA
| | - John A. Detre
- Div. of Stroke and Neurocritical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
USA
| | - Arjun G. Yodh
- Dept. of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
USA
| |
Collapse
|
48
|
Sutoko S, Sato H, Maki A, Kiguchi M, Hirabayashi Y, Atsumori H, Obata A, Funane T, Katura T. Tutorial on platform for optical topography analysis tools. NEUROPHOTONICS 2016; 3:010801. [PMID: 26788547 PMCID: PMC4707558 DOI: 10.1117/1.nph.3.1.010801] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/02/2015] [Indexed: 05/15/2023]
Abstract
Optical topography/functional near-infrared spectroscopy (OT/fNIRS) is a functional imaging technique that noninvasively measures cerebral hemoglobin concentration changes caused by neural activities. The fNIRS method has been extensively implemented to understand the brain activity in many applications, such as neurodisorder diagnosis and treatment, cognitive psychology, and psychiatric status evaluation. To assist users in analyzing fNIRS data with various application purposes, we developed a software called platform for optical topography analysis tools (POTATo). We explain how to handle and analyze fNIRS data in the POTATo package and systematically describe domain preparation, temporal preprocessing, functional signal extraction, statistical analysis, and data/result visualization for a practical example of working memory tasks. This example is expected to give clear insight in analyzing data using POTATo. The results specifically show the activated dorsolateral prefrontal cortex is consistent with previous studies. This emphasizes analysis robustness, which is required for validating decent preprocessing and functional signal interpretation. POTATo also provides a self-developed plug-in feature allowing users to create their own functions and incorporate them with established POTATo functions. With this feature, we continuously encourage users to improve fNIRS analysis methods. We also address the complications and resolving opportunities in signal analysis.
Collapse
Affiliation(s)
- Stephanie Sutoko
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Hiroki Sato
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Atsushi Maki
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Masashi Kiguchi
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Yukiko Hirabayashi
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Hirokazu Atsumori
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Akiko Obata
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Tsukasa Funane
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
| | - Takusige Katura
- Hitachi Ltd., Research and Development Group, 2520 Akanuma, Hatoyama, Saitama 350-0395, Japan
- Address all correspondence to: Takusige Katura, E-mail:
| |
Collapse
|
49
|
Tan Q, Zhang M, Wang Y, Zhang M, Wang Y, Xin Q, Wang B, Li Z. Frequency-specific functional connectivity revealed by wavelet-based coherence analysis in elderly subjects with cerebral infarction using NIRS method. Med Phys 2015; 42:5391-403. [PMID: 26328988 DOI: 10.1118/1.4928672] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Resting-state functional connectivity in subjects with cerebral infarction (CI) was assessed using wavelet-based coherence analysis of near-infrared spectroscopy (NIRS) signals. METHODS Continuous recordings of NIRS signals were measured from the prefrontal cortex and sensorimotor cortical areas of 12 subjects with CI (CI group) and 16 healthy subjects (healthy group) during the resting state. The channels in these areas were divided into four connection types: homologous connectivity, frontoposterior connectivity, contralateral connectivity, and homolateral connectivity. Wavelet coherence (WCO) and wavelet phase coherence (WPCO) were calculated in six frequency intervals in each channel pair: I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; V, 0.0095-0.021 Hz; and VI, 0.005-0.0095 Hz. RESULTS WCO in the six frequency intervals was significant for all channels in the healthy group. By contrast, WCO in frequency intervals II-VI showed weakened connectivity in the CI group, especially in terms of frontoposterior connectivity. WCO was significantly lower in the CI group than in the healthy group in the following connectivities and frequency intervals: front-posterior, IV-VI (p < 0.05); homologous, III-V (p < 0.01); motor-contralateral, III-V (p < 0.05); and motor-homolateral, III-V (p < 0.05). WPCO in frequency intervals III (F = 5.032, p = 0.033) and IV (F = 11.95, p = 0.002) in frontoposterior connectivity, as well as in intervals III-V in homologous, motor-contralateral and motor-homolateral connectivities were significantly lower (p < 0.05) in the CI group than in the healthy group. However, WPCO in interval I showed significantly higher levels in motor-homolateral connectivity in the CI group than in the healthy group (F = 4.241, p = 0.049). CONCLUSIONS The authors' results suggest that CI causes a frequency-specific disruption in resting-state connectivity. This may be useful for assessing the effectiveness of functional recovery after CI.
Collapse
Affiliation(s)
- Qitao Tan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Ming Zhang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Yi Wang
- Ji'nan Central Hospital, Jinan 250013, China
| | - Manyu Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yan Wang
- Interdisciplinary Division of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, China
| | - Bitan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
50
|
Han Q, Li Z, Gao Y, Li W, Xin Q, Tan Q, Zhang M, Zhang Y. Phase synchronization analysis of prefrontal tissue oxyhemoglobin oscillations in elderly subjects with cerebral infarction. Med Phys 2015; 41:102702. [PMID: 25281981 DOI: 10.1118/1.4896113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This study aims to assess the phase relationship of prefrontal tissue oxyhemoglobin oscillations using wavelet phase coherence analysis of cerebral Delta [HbO₂] signals in cerebral infarction (CI) patients during the resting state. METHODS Continuous recordings of near-infrared spectroscopy signals were obtained from the left and right prefrontal lobes in 21 subjects with CI (Group CI, age: 76.6 ± 8.5 yr) and 21 healthy elderly subjects (Group Healthy, age: 69.0 ± 7.4 yr) during the resting state. The Group CI was further divide into two groups: CI with hypertension and CI without hypertension. The phase synchronization between left and right prefrontal Delta [HbO₂] oscillations in four frequency intervals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; and IV, 0.021-0.052 Hz) was analyzed using wavelet phase coherence method. RESULTS The phase coherences in intervals III and IV were significantly lower in CI with hypertension than in healthy elderly subjects (F = 12.974, p = 0.001 for III and F = 10.073, p = 0.004 for interval IV). The phase coherence of CI without hypertension in interval III was significantly lower than in healthy elderly subjects (F = 9.909, p = 0.004). Also, the phase coherence in interval IV was significantly lower in CI with hypertension than in CI without hypertension (F = 5.665, p = 0.028). Also, the phase agreement in interval IV showed evident difference between Group CI with hypertension and without hypertension. CONCLUSIONS The difference in phase characteristics of prefrontal tissue oxyhemoglobin oscillations between the CI patients and healthy elderly indicates altered phase synchronization. Moreover, the CI combined with hypertension would aggravate this process. This study provides new insight into the phase dynamics of cerebral oxygenation and may be useful in assessing the risk for stroke.
Collapse
Affiliation(s)
- Qingyu Han
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zengyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yuanjin Gao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Wenhao Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Qing Xin
- Hospital of Shandong University, Jinan 250061, China
| | - Qitao Tan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Manyu Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yixun Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|