1
|
Mirmoosavi M, Aminitabar A, Mirfathollahi A, Shalchyan V. Exploring altered oscillatory activity in the anterior cingulate cortex after nerve injury: Insights into mechanisms of neuropathic allodynia. Neurobiol Dis 2024; 190:106381. [PMID: 38114049 DOI: 10.1016/j.nbd.2023.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
While neural oscillations play a critical role in sensory perception, it remains unclear how these rhythms function under conditions of neuropathic allodynia. Recent studies demonstrated that the anterior cingulate cortex (ACC) is associated with the affective-aversive component of pain, and plasticity changes in this region are closely linked to abnormal allodynic sensations. Here, to study the mechanisms of allodynia, we recorded local field potentials (LFPs) in the bilateral ACC of awake-behaving rats and compared the spectral power and center frequency of brain oscillations between healthy and CCI (chronic constriction injury) induced neuropathic pain conditions. Our results indicated that activation of the ACC occurs bilaterally in the presence of neuropathic pain, similar to the healthy condition. Furthermore, CCI affects both spontaneous and stimulus-induced activity of ACC neurons. Specifically, we observed an increase in spontaneous beta activity after nerve injury compared to the healthy condition. By stimulating operated or unoperated paws, we found more intense event-related desynchronization (ERD) responses in the theta, alpha, and beta frequency bands and faster alpha center frequency after CCI compared to before CCI. Although the behavioral manifestation of allodynia was more pronounced in the operated paw than the unoperated paw following CCI, there was no significant difference in the center frequency and ERD responses observed in the ACC between stimulation of the operated and unoperated limbs. Our findings offer evidence supporting the notion that aberrancies in ACC oscillations may contribute to the maintenance and development of neuropathic allodynia.
Collapse
Affiliation(s)
- Mahnoosh Mirmoosavi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Amir Aminitabar
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Alavie Mirfathollahi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran; Institute for Cognitive Science Studies (ICSS), Tehran 16583-44575, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
2
|
Strube A, Horing B, Rose M, Büchel C. Agency affects pain inference through prior shift as opposed to likelihood precision modulation in a Bayesian pain model. Neuron 2023; 111:1136-1151.e7. [PMID: 36731468 PMCID: PMC10109109 DOI: 10.1016/j.neuron.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Agency and expectations play a crucial role in pain perception and treatment. In the Bayesian pain model, somatosensation (likelihood) and expectations (prior) are weighted by their precision and integrated to form a pain percept (posterior). Combining pain treatment with stimulus-related expectations allows the mechanistic assessment of whether agency enters this model as a shift of the prior or a relaxation of the likelihood precision. In two experiments, heat pain was sham treated either externally or by the subject, while a predictive cue was utilized to create high or low treatment expectations. Both experiments revealed additive effects and greater pain relief under self-treatment and high treatment expectations. Formal model comparisons favored a prior shift rather than a modulation of likelihood precision. Electroencephalography revealed a theta-to-alpha effect, temporally associated with expectations, which was correlated with trial-by-trial pain ratings, further supporting a prior shift through which agency exerts its influence in the Bayesian pain model.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Horing
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
3
|
Hewitt D, Byrne A, Henderson J, Wilford K, Chawla R, Sharma ML, Frank B, Fallon N, Brown C, Stancak A. Pulse Intensity Effects of Burst and Tonic Spinal Cord Stimulation on Neural Responses to Brushing in Patients With Neuropathic Pain. Neuromodulation 2022:S1094-7159(22)01349-6. [DOI: 10.1016/j.neurom.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022]
|
4
|
Maddison R, Nazar H, Obara I, Vuong QC. The efficacy of sensory neural entrainment on acute and chronic pain: A systematic review and meta-analysis. Br J Pain 2022; 17:126-141. [PMID: 37057253 PMCID: PMC10088425 DOI: 10.1177/20494637221139472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Changes to the power of neural oscillations in cortical and sub-cortical structures can change pain perception. Rhythmic sensory stimulation is a non-invasive method that can increase power in specific frequencies of neural oscillations. If the stimulation frequency targets those frequencies related to pain perception, such as alpha or theta frequencies, there can be a reduction in perceived pain intensity. Thus, sensory neural entrainment may provide an alternative to pharmacological intervention for acute and chronic pain. This review aimed to identify and critically appraise the evidence on the effectiveness of sensory entrainment methods for pain perception. Methods We undertook a systematic search across Medline, Embase, PsycInfo, Web of Science and Scopus in November 2020 to identify studies investigating the efficacy of sensory entrainment on adults. We assessed studies for their quality using the PRISMA checklist. A random-effects model was used in a meta-analysis to measure the effect of entrainment on pain perception. Results Our systematic review yielded nine studies fitting the search criteria. Studies investigated the effect of visual and auditory entrainment on pain intensity rating, electrophysiological markers of pain and amount of analgesia needed during surgery. The meta-analysis suggests that alpha (8–13 Hz) sensory entrainment is effective for acute pain perception, whereas theta (4–7 Hz) entrainment is effective for chronic pain. Conclusions Although there is heterogeneity in the current evidence, our review highlights the potential use of sensory entrainment to affect acute and chronic pain. Further research is required regarding the timing, duration and frequency of the stimulation to determine the best application for maximum efficacy.
Collapse
Affiliation(s)
- Rhys Maddison
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne, UK
| | - Hamde Nazar
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne, UK
- Population and Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Ilona Obara
- School of Pharmacy, Newcastle University, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Quoc C Vuong
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
- School of Psychology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Demoulin C, Labory C, Marcon C, Micoulau JR, Dardenne N, Vanderthommen M, Kaux JF. Feasibility and Acceptability of a Home-Based Sensory Perception Training Game for Patients with Fibromyalgia: A Pilot Study. Games Health J 2022. [DOI: 10.1089/g4h.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Christophe Demoulin
- Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
- Spine Clinics, Liege University Hospital Center, Liege, Belgium
| | - Cerise Labory
- Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
| | - Cloé Marcon
- Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
| | | | - Nadia Dardenne
- Department of Public Health, University of Liège, Liège, Belgium
| | - Marc Vanderthommen
- Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
| | - Jean-François Kaux
- Department of Sport and Rehabilitation Sciences, University of Liege, Liege, Belgium
- Spine Clinics, Liege University Hospital Center, Liege, Belgium
| |
Collapse
|
6
|
Assessing the specificity of the relationship between brain alpha oscillations and tonic pain. Neuroimage 2022; 255:119143. [PMID: 35378288 DOI: 10.1016/j.neuroimage.2022.119143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Recent research proposed that the slowing of individual alpha frequency (IAF) could be an objective marker of pain. However, it is unclear whether this research can fully address the requirements of specificity and sensitivity of IAF to the pain experience. Here, we sought to develop a robust methodology for assessing the specificity of the relationship between alpha oscillations and acute tonic pain in healthy individuals. We recorded electroencephalography (EEG) of 36 volunteers during consecutive 5-minute sessions of painful hot water immersion, innocuous warm water immersion and aversive, non-painful auditory stimulus, matched by unpleasantness to the painful condition. Participants rated stimulus unpleasantness throughout each condition. We isolated two regions of the scalp displaying peak alpha activity across participants: centro-parietal (CP) and parieto-occipital (PO) ROI. In line with previous research our findings revealed decreased IAF during hot compared with warm stimulation, however the effect was not specific for pain as we found no difference between hot and sound in the CP ROI (compared to baseline). In contrast, the PO ROI reported the same pattern of differences, but their direction was opposite to the CP in that this ROI revealed faster frequency during hot condition than controls. Finally, we show that IAF in both ROIs did not mediate the relationship between the experimental manipulation and the affective experience. Altogether, these findings emphasize the importance of a robust methodological and analytical design to disclose the functional role of alpha oscillations during affective processing. Likewise, they suggest the absence of a causal role of IAF in the generation of acute pain experience in healthy individuals.
Collapse
|
7
|
Harjunen VJ, Sjö P, Ahmed I, Saarinen A, Farmer H, Salminen M, Järvelä S, Ruonala A, Jacucci G, Ravaja N. Increasing Self-Other Similarity Modulates Ethnic Bias in Sensorimotor Resonance to Others' Pain. Soc Cogn Affect Neurosci 2021; 17:673-682. [PMID: 34669949 PMCID: PMC9250302 DOI: 10.1093/scan/nsab113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 11/15/2022] Open
Abstract
The tendency to simulate the pain of others within our own sensorimotor systems is a vital component of empathy. However, this sensorimotor resonance is modulated by a multitude of social factors including similarity in bodily appearance, e.g. skin colour. The current study investigated whether increasing self-other similarity via virtual transfer to another colour body reduced ingroup bias in sensorimotor resonance. A sample of 58 white participants was momentarily transferred to either a black or a white body using virtual reality technology. We then employed electroencephalography (EEG) to examine event-related desynchronization (ERD) in the sensorimotor beta (13-23 Hz) oscillations while they viewed black, white, and violet photorealistic virtual agents being touched with a noxious or soft object. While the noxious treatment of a violet agent did not increase beta ERD, amplified beta ERD in response to black agent's noxious vs. soft treatment was found in perceivers transferred to black body. Transfer to the white body dismissed the effect. Further exploratory analysis implied that the pain-related beta ERD occurred only when the agent and the participant were of the same colour. The results suggest that even short-lasting changes in bodily resemblance can modulate sensorimotor resonance to others' perceived pain.
Collapse
Affiliation(s)
- Ville Johannes Harjunen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petja Sjö
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Imtiaj Ahmed
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Aino Saarinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Farmer
- School of Human Sciences, University of Greenwich, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Mikko Salminen
- Gamification Group, Faculty of Information Technology and Communications, Tampere University, Tampere, Finland
| | - Simo Järvelä
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Gamification Group, Faculty of Information Technology and Communications, Tampere University, Tampere, Finland
| | - Antti Ruonala
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Giulio Jacucci
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Niklas Ravaja
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Tabernig CB, Carrere LC, Manresa JB, Spaich EG. Does feedback based on FES-evoked nociceptive withdrawal reflex condition event-related desynchronization? An exploratory study with brain-computer interfaces. Biomed Phys Eng Express 2021; 7. [PMID: 34431480 DOI: 10.1088/2057-1976/ac2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
Introduction.Event-related desynchronization (ERD) is used in brain-computer interfaces (BCI) to detect the user's motor intention (MI) and convert it into a command for an actuator to provide sensory feedback or mobility, for example by means of functional electrical stimulation (FES). Recent studies have proposed to evoke the nociceptive withdrawal reflex (NWR) using FES, in order to evoke synergistic movements of the lower limb and to facilitate the gait rehabilitation of stroke patients. The use of NWR to provide sensorimotor feedback in ERD-based BCI is novel; thererfore, the conditioning effect that nociceptive stimuli might have on MI is still unknown.Objetive.To assess the ERD produced during the MI after FES-evoked NWR, in order to evaluate if nociceptive stimuli condition subsequent ERDs.Methods. Data from 528 electroencephalography trials of 8 healthy volunteers were recorded and analyzed. Volunteers used an ERD-based BCI, which provided two types of feedback: intrisic by the FES-evoked NWR and extrinsic by virtual reality. The electromyogram of the tibialis anterior muscle was also recorded. The main outcome variables were the normalized root mean square of the evoked electromyogram (RMSnorm), the average electroencephalogram amplitude at the ERD frequency during MI (A¯MI) and the percentage decrease ofA¯MIrelative to rest (ERD%) at the first MI subsequent to the activation of the BCI.Results.No evidence of changes of theRMSnormon both theA¯MI(p = 0.663) and theERD%(p = 0.252) of the subsequent MI was detected. A main effect of the type of feedback was found in the subsequentA¯MI(p < 0.001), with intrinsic feedback resulting in a largerA¯MI.Conclusions.No evidence of ERD conditioning was observed using BCI feedback based on FES-evoked NWR .Significance.FES-evoked NWR could constitute a potential feedback modality in an ERD-based BCI to facilitate motor recovery of stroke people.
Collapse
Affiliation(s)
- Carolina B Tabernig
- Laboratory of Rehabilitation Engineering and Neuromuscular and Sensory Research (LIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - L Carolina Carrere
- Laboratory of Rehabilitation Engineering and Neuromuscular and Sensory Research (LIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - José Biurrun Manresa
- Laboratory of Rehabilitation Engineering and Neuromuscular and Sensory Research (LIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| | - Erika G Spaich
- Neurorehabilitation Systems Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D2, 9220 Aalborg, Denmark
| |
Collapse
|
9
|
Wiesman AI, Wilson TW. Posterior Alpha and Gamma Oscillations Index Divergent and Superadditive Effects of Cognitive Interference. Cereb Cortex 2021; 30:1931-1945. [PMID: 31711121 DOI: 10.1093/cercor/bhz214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 01/25/2023] Open
Abstract
Conflicts at various stages of cognition can cause interference effects on behavior. Two well-studied forms of cognitive interference are stimulus-stimulus (e.g., Flanker), where the conflict arises from incongruence between the task-relevant stimulus and simultaneously presented irrelevant stimulus information, and stimulus-response (e.g., Simon), where interference is the result of an incompatibility between the spatial location of the task-relevant stimulus and a prepotent motor mapping of the expected response. Despite substantial interest in the neural and behavioral underpinnings of cognitive interference, it remains uncertain how differing sources of cognitive conflict might interact, and the spectrally specific neural dynamics that index this phenomenon are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate the spectral, temporal, and spatial dynamics of conflict processing in healthy adults (N = 23). We found a double-dissociation such that, in isolation, stimulus-stimulus interference was indexed by alpha (8-14 Hz), but not gamma-frequency (64-76 Hz) oscillations in the lateral occipital regions, while stimulus-response interference was indexed by gamma oscillations in nearby cortices, but not by alpha oscillations. Surprisingly, we also observed a superadditive effect of simultaneously presented interference types (multisource) on task performance and gamma oscillations in superior parietal cortex.
Collapse
Affiliation(s)
- Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE 68198-8440, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440, USA.,Center for Magnetoencephalography, UNMC, Omaha, NE 68198-8440, USA
| |
Collapse
|
10
|
Hewitt D, Byrne A, Henderson J, Newton-Fenner A, Tyson-Carr J, Fallon N, Brown C, Stancak A. Inhibition of cortical somatosensory processing during and after low frequency peripheral nerve stimulation in humans. Clin Neurophysiol 2021; 132:1481-1495. [PMID: 34023628 DOI: 10.1016/j.clinph.2021.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Transcutaneous low-frequency stimulation (LFS) elicits long-term depression-like effects on human pain perception. However, the neural mechanisms underlying LFS are poorly understood. We investigated cortical activation changes occurring during LFS and if changes were associated with reduced nociceptive processing and increased amplitude of spontaneous cortical oscillations post-treatment. METHODS LFS was applied to the radial nerve of 25 healthy volunteers over two sessions using active (1 Hz) or sham (0.02 Hz) frequencies. Changes in resting electroencephalography (EEG) and laser-evoked potentials (LEPs) were investigated before and after LFS. Somatosensory-evoked potentials were recorded during LFS and source analysis was carried out. RESULTS Ipsilateral midcingulate and operculo-insular cortex source activity declined linearly during LFS. Active LFS was associated with attenuated long-latency LEP amplitude in ipsilateral frontocentral electrodes and increased resting alpha (8-12 Hz) and beta (16-24 Hz) band power in electrodes overlying operculo-insular, sensorimotor and frontal cortical regions. Reduced ipsilateral operculo-insular cortex source activity during LFS correlated with a smaller post-treatment alpha-band power increase. CONCLUSIONS LFS attenuated somatosensory processing both during and after stimulation. SIGNIFICANCE Results further our understanding of the attenuation of somatosensory processing both during and after LFS.
Collapse
Affiliation(s)
- Danielle Hewitt
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK.
| | - Adam Byrne
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Jessica Henderson
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Alice Newton-Fenner
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Christopher Brown
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| |
Collapse
|
11
|
De Pascalis V, Scacchia P, Vecchio A. Influences of hypnotic suggestibility, contextual factors, and EEG alpha on placebo analgesia. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2021; 63:302-328. [PMID: 33999775 DOI: 10.1080/00029157.2020.1863182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We tested the role of hypnotic suggestibility, involuntariness, pain expectation, and subjective hypnotic depth in the prediction of placebo analgesia (PA) responsiveness. We also tested the link of lower and upper alpha sub-band (i.e., 'alpha1' and 'alpha2') power changes with tonic PA responding during waking and hypnosis conditions. Following an initial PA manipulation condition, we recorded EEG activity during waking and hypnosis under two treatments: (1) painful stimulation (Pain); (2) painful stimulation after application of a PA cream. Alpha1 and alpha2 power were derived using the individual alpha frequency method. We found that (1) PA in both waking and hypnosis conditions significantly reduced relative pain perception; (2) during waking, all the above mentioned contextual measures were associated with pain reduction, while involuntariness alone was associated with pain reduction within hypnosis. Enhanced alpha2 power at the left-parietal lead was solely associated with pain reduction in waking, but not in hypnosis condition. Using multiple regression and mediation analyses we found that: (i) during waking, the enhancement of relative left-parietal alpha2 power, directly influenced the enhancement in pain reduction, and, indirectly, through the mediating positive effect of involuntariness; (j) during hypnosis, the enhancement of left-temporoparietal alpha2 power, through the mediation of involuntariness, influenced pain reduction. Current findings obtained during waking suggest that enhanced alpha2 power may serve as a direct-objective measure of the subjective reduction of tonic pain in response to PA treatment. Overall, our findings suggest that placebo analgesia during waking and hypnosis involves different processes of top-down regulation.
Collapse
|
12
|
Chouchou F, Perchet C, Garcia-Larrea L. EEG changes reflecting pain: is alpha suppression better than gamma enhancement? Neurophysiol Clin 2021; 51:209-218. [PMID: 33741256 DOI: 10.1016/j.neucli.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Suppression of alpha and enhancement of gamma electroencephalographic (EEG) power have both been suggested as objective indicators of cortical pain processing. While gamma activity has been emphasized as the best potential marker, its spectral overlap with pain-related muscular responses is a potential drawback. Since muscle contractions are almost universal concomitants of physical pain, here we investigated alpha and gamma scalp-recorded activities during either tonic pain or voluntary facial grimaces mimicking those triggered by pain. METHODS High-density EEG (128 electrodes) was recorded while 14 healthy participants either underwent a cold pressor test (painful hand immersion in 10 °C water) or produced stereotyped facial/nuchal contractions (grimaces) mimicking those evoked by pain. The scalp distribution of spectral EEG changes was quantified via vector-transformation of maps and compared between the pain and grimacing conditions by calculating the cosine of the angle between the two corresponding topographies. RESULTS Painful stimuli significantly enhanced gamma power bilaterally in fronto-temporal regions and decreased alpha power in the contralateral central scalp. Sustained cervico-facial contractions (grimaces) gave also rise to significant gamma power increase in fronto-temporal regions but did not decrease central scalp alpha. While changes in alpha topography significantly differed between the pain and grimace situations, the scalp topography of gamma power was statistically indistinguishable from that occurring during grimaces. CONCLUSION Gamma power induced by painful stimuli or voluntary facial-cervical muscle contractions had overlapping topography. Pain-related alpha decrease in contralateral central scalp was less disturbed by muscle activity and may therefore prove more discriminant as an ancillary pain biomarker.
Collapse
Affiliation(s)
- Florian Chouchou
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France; IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion, Le Tampon, France.
| | - Caroline Perchet
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France
| | - Luis Garcia-Larrea
- NeuroPain Lab, Lyon Neuroscience Research Centre, CRNL - Inserm U 1028/CNRS UMR 5292, University of Lyon, France
| |
Collapse
|
13
|
Blohm S, Schlesewsky M, Menninghaus W, Scharinger M. Text type attribution modulates pre-stimulus alpha power in sentence reading. BRAIN AND LANGUAGE 2021; 214:104894. [PMID: 33477059 DOI: 10.1016/j.bandl.2020.104894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 10/28/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Prior knowledge and context-specific expectations influence the perception of sensory events, e.g., speech, as well as complex higher-order cognitive operations like text reading. Here, we focused on pre-stimulus neural activity during sentence reading to examine text type-dependent attentional bias in anticipation of written stimuli, capitalizing on the functional relevance of brain oscillations in the alpha (8-12 Hz) frequency range. Two sex- and age-matched groups of participants (n = 24 each) read identical sentences on a screen at a fixed per-constituent presentation rate while their electroencephalogram was recorded; the groups were differentially instructed to read "sentences" (genre-neutral condition) or "verses from poems" (poetry condition). Relative alpha power (pre-cue vs. post-cue) in pre-stimulus time windows was greater in the poetry condition than in the genre-neutral condition. This finding constitutes initial evidence for genre-specific cognitive adjustments that precede processing proper, and potentially links current theories of discourse comprehension to current theories of brain function.
Collapse
Affiliation(s)
- Stefan Blohm
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Department of English and Linguistics, University of Mainz, Germany
| | - Matthias Schlesewsky
- Department of English and Linguistics, University of Mainz, Germany; University of South Australia, Adelaide, Australia.
| | - Winfried Menninghaus
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Mathias Scharinger
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Phonetics Research Group, Department of German Linguistics & Marburg Center for Mind, Brain and Behavior, Marburg, Germany
| |
Collapse
|
14
|
Strube A, Rose M, Fazeli S, Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. eLife 2021; 10:62809. [PMID: 33594976 PMCID: PMC7924946 DOI: 10.7554/elife.62809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model but could not establish its temporal aspects. Here, we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated, predictions.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Arendsen LJ, Henshaw J, Brown CA, Sivan M, Taylor JR, Trujillo-Barreto NJ, Casson AJ, Jones AKP. Entraining Alpha Activity Using Visual Stimulation in Patients With Chronic Musculoskeletal Pain: A Feasibility Study. Front Neurosci 2020; 14:828. [PMID: 32973429 PMCID: PMC7468433 DOI: 10.3389/fnins.2020.00828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Entraining alpha activity with rhythmic visual, auditory, and electrical stimulation can reduce experimentally induced pain. However, evidence for alpha entrainment and pain reduction in patients with chronic pain is limited. This feasibility study investigated whether visual alpha stimulation can increase alpha power in patients with chronic musculoskeletal pain and, secondarily, if chronic pain was reduced following stimulation. In a within-subject design, 20 patients underwent 4-min periods of stimulation at 10 Hz (alpha), 7 Hz (high-theta, control), and 1 Hz (control) in a pseudo-randomized order. Patients underwent stimulation both sitting and standing and verbally rated their pain before and after each stimulation block on a 0-10 numerical rating scale. Global alpha power was significantly higher during 10 Hz compared to 1 Hz stimulation when patients were standing (t = -6.08, p < 0.001). On a more regional level, a significant increase of alpha power was found for 10 Hz stimulation in the right-middle and left-posterior region when patients were sitting. With respect to our secondary aim, no significant reduction of pain intensity and unpleasantness was found. However, only the alpha stimulation resulted in a minimal clinically important difference in at least 50% of participants for pain intensity (50%) and unpleasantness ratings (65%) in the sitting condition. This study provides initial evidence for the potential of visual stimulation as a means to enhance alpha activity in patients with chronic musculoskeletal pain. The brief period of stimulation was insufficient to reduce chronic pain significantly. This study is the first to provide evidence that a brief period of visual stimulation at alpha frequency can significantly increase alpha power in patients with chronic musculoskeletal pain. A further larger study is warranted to investigate optimal dose and individual stimulation parameters to achieve pain relief in these patients.
Collapse
Affiliation(s)
- Laura J. Arendsen
- Division of Functional and Restorative Neurosurgery, Eberhart Karls University of Tübingen, Tübingen, Germany
| | - James Henshaw
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Christopher A. Brown
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Manoj Sivan
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Leeds Institute of Rheumatology and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Jason R. Taylor
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Nelson J. Trujillo-Barreto
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Alexander J. Casson
- Department of Electrical and Electronic Engineering, University of Manchester, Manchester, United Kingdom
| | - Anthony K. P. Jones
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Locke HN, Brooks J, Arendsen LJ, Jacob NK, Casson A, Jones AKP, Sivan M. Acceptability and usability of smartphone-based brainwave entrainment technology used by individuals with chronic pain in a home setting. Br J Pain 2020; 14:161-170. [PMID: 32922777 PMCID: PMC7453483 DOI: 10.1177/2049463720908798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Brainwave entrainment (BWE) using rhythmic visual or auditory stimulation has many potential clinical applications, including the management of chronic pain, where there is a pressing need for novel, safe and effective treatments. The aim of this study was to gain qualitative feedback on the acceptability and usability of a novel BWE smartphone application, to ensure it meets the needs and wishes of end users. METHODS Fifteen participants with chronic pain used the application at home for 4 weeks. Semi-structured telephone interviews were then carried out. A template analysis approach was used to interpret the findings, with an initial coding template structured around the constructs of a theoretical framework for assessing acceptability of healthcare interventions. Structured data analysis generated a final modified coding structure, capturing themes generated across participants' accounts. RESULTS The four main themes were 'approach to trying out the app: affective attitude and ethicality', 'perceived effectiveness', 'opportunity costs and burden' and 'intervention coherence and self-efficacy'. All participants were willing to engage with the technology and welcomed it as an alternative approach to medications. Participants appreciated the simplicity of design and the ability to choose between visual or auditory stimulation. All the participants felt confident in using the application. CONCLUSION The findings demonstrate preliminary support for the acceptability and usability of the BWE application. This is the first qualitative study of BWE to systematically assess these issues.
Collapse
Affiliation(s)
- Helen N Locke
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatology and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Community Healthcare NHS Trust and Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Joanna Brooks
- Manchester Centre for Health Psychology, The University of Manchester, Manchester, UK
| | - Laura J Arendsen
- Division of Functional and Restorative Neurosurgery, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nikhil Kurian Jacob
- Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK
| | - Alex Casson
- Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK
| | - Anthony KP Jones
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Manoj Sivan
- Academic Department of Rehabilitation Medicine, Leeds Institute of Rheumatology and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Community Healthcare NHS Trust and Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Human Pain Research Group, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Zhou L, Bi Y, Liang M, Kong Y, Tu Y, Zhang X, Song Y, Du X, Tan S, Hu L. A modality-specific dysfunction of pain processing in schizophrenia. Hum Brain Mapp 2020; 41:1738-1753. [PMID: 31868305 PMCID: PMC7267942 DOI: 10.1002/hbm.24906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Clinical observations showed that schizophrenia (SCZ) patients reported little or no pain under various conditions that are commonly associated with intense painful sensations, leading to a higher risk of morbidity and mortality. However, this phenomenon has received little attention and its underlying neural mechanisms remain unclear. Here, we conducted two experiments combining psychophysics, electroencephalography (EEG), and functional magnetic resonance imaging (fMRI) techniques to investigate neural mechanisms of pain insensitivity in SCZ patients. Specifically, we adopted a stimulus-response paradigm with brief stimuli of different sensory modalities (i.e., nociceptive, non-nociceptive somatosensory, and auditory) to test whether pain insensitivity in SCZ patients is supra-modal or modality-specific, and used EEG and fMRI techniques to clarify its neural mechanisms. We observed that perceived intensities to nociceptive stimuli were significantly smaller in SCZ patients than healthy controls, whereas perceived intensities to non-nociceptive somatosensory and auditory stimuli were not significantly different. The behavioral results were confirmed by stimulus-evoked brain responses sampled by EEG and fMRI techniques, thus verifying the modality-specific nature of the modulation of nociceptive information processing in SCZ patients. Additionally, significant group differences were observed in the spectral power of alpha oscillations in prestimulus EEG and the seed-based functional connectivity in resting-state fMRI (seeds: the thalamus and periaqueductal gray that are key nodes in ascending and descending pain pathways respectively), suggesting a possible contribution of cortical-subcortical dysfunction to the phenomenon. Overall, our study provides insight into the neural mechanisms of pain insensitivity in SCZ and highlights a need for systematic assessments of their pain-related diseases.
Collapse
Affiliation(s)
- Lili Zhou
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanzhi Bi
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional ImagingTianjin Medical UniversityTianjinChina
| | - Yazhuo Kong
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Behavioural ScienceInstitute of Psychology, Chinese Academy of SciencesBeijingChina
| | - Yiheng Tu
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusetts
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Yanying Song
- Psychiatry Research CentreBeijing Huilonguan HospitalBeijingChina
| | - Xia Du
- Psychiatry Research CentreBeijing Huilonguan HospitalBeijingChina
| | - Shuping Tan
- Psychiatry Research CentreBeijing Huilonguan HospitalBeijingChina
| | - Li Hu
- CAS Key Laboratory of Mental HealthInstitute of Psychology, Chinese Academy of SciencesBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
- Department of Pain ManagementThe State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
18
|
Ahmed H, Jones A, Sivan M. The brain alpha rhythm in the perception and modulation of pain. ADVANCES IN CLINICAL NEUROSCIENCE & REHABILITATION 2020. [DOI: 10.47795/gbpd9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Rustamov N, Northon S, Tessier J, Leblond H, Piché M. Integration of bilateral nociceptive inputs tunes spinal and cerebral responses. Sci Rep 2019; 9:7143. [PMID: 31073138 PMCID: PMC6509112 DOI: 10.1038/s41598-019-43567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/27/2019] [Indexed: 01/19/2023] Open
Abstract
Together with the nociceptive system, pain protects the body from tissue damage. For instance, when the RIII-reflex is evoked by sural nerve stimulation, nociceptive inputs activate flexor muscles and inhibit extensor muscles of the affected lower limb while producing the opposite effects on the contralateral muscles. But how do the spinal cord and brain integrate concurrent sensorimotor information originating from both limbs? This is critical for evoking coordinated responses to nociceptive stimuli, but has been overlooked. Here we show that the spinal cord integrates spinal inhibitory and descending facilitatory inputs during concurrent bilateral foot stimulation, resulting in facilitation of the RIII-reflex and bilateral flexion. In these conditions, high-gamma oscillation power was also increased in the dorsolateral prefrontal, anterior cingulate and sensorimotor cortex, in accordance with the involvement of these regions in cognitive, motor and pain regulation. We propose that the brain and spinal cord can fine-tune nociceptive and pain responses when nociceptive inputs arise from both lower limbs concurrently, in order to allow adaptable behavioural responses.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Stéphane Northon
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Jessica Tessier
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada. .,CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
20
|
Ahn S, Prim JH, Alexander ML, McCulloch KL, Fröhlich F. Identifying and Engaging Neuronal Oscillations by Transcranial Alternating Current Stimulation in Patients With Chronic Low Back Pain: A Randomized, Crossover, Double-Blind, Sham-Controlled Pilot Study. THE JOURNAL OF PAIN 2019; 20:277.e1-277.e11. [PMID: 30268803 PMCID: PMC6382517 DOI: 10.1016/j.jpain.2018.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/23/2018] [Accepted: 09/23/2018] [Indexed: 01/29/2023]
Abstract
Chronic pain is associated with maladaptive reorganization of the central nervous system. Recent studies have suggested that disorganization of large-scale electrical brain activity patterns, such as neuronal network oscillations in the thalamocortical system, plays a key role in the pathophysiology of chronic pain. Yet, little is known about whether and how such network pathologies can be targeted with noninvasive brain stimulation as a nonpharmacological treatment option. We hypothesized that alpha oscillations, a prominent thalamocortical activity pattern in the human brain, are impaired in chronic pain and can be modulated with transcranial alternating current stimulation (tACS). We performed a randomized, crossover, double-blind, sham-controlled study in patients with chronic low back pain (CLBP) to investigate how alpha oscillations relate to pain symptoms for target identification and whether tACS can engage this target and thereby induce pain relief. We used high-density electroencephalography to measure alpha oscillations and found that the oscillation strength in the somatosensory region at baseline before stimulation was negatively correlated with pain symptoms. Stimulation with alpha-tACS compared to sham (placebo) stimulation significantly enhanced alpha oscillations in the somatosensory region. The stimulation-induced increase of alpha oscillations in the somatosensory region was correlated with pain relief. Given these findings of successful target identification and engagement, we propose that modulating alpha oscillations with tACS may represent a target-specific, nonpharmacological treatment approach for CLBP. This trial has been registered in ClinicalTrials.gov (NCT03243084). PERSPECTIVE: This study suggests that a rational design of transcranial alternating current stimulation, which is target identification, engagement, and validation, could be a nonpharmacological treatment approach for patients with CLBP.
Collapse
Affiliation(s)
- Sangtae Ahn
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Julianna H Prim
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Morgan L Alexander
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Karen L McCulloch
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599..
| |
Collapse
|
21
|
Electroencephalography and magnetoencephalography in pain research-current state and future perspectives. Pain 2019; 159:206-211. [PMID: 29944612 DOI: 10.1097/j.pain.0000000000001087] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Zhou R, Wang J, Qi W, Liu FY, Yi M, Guo H, Wan Y. Elevated Resting State Gamma Oscillatory Activities in Electroencephalogram of Patients With Post-herpetic Neuralgia. Front Neurosci 2018; 12:750. [PMID: 30405337 PMCID: PMC6205978 DOI: 10.3389/fnins.2018.00750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/28/2018] [Indexed: 11/23/2022] Open
Abstract
In acute and ongoing pain, the spontaneous oscillatory activity of electroencephalogram (EEG) has been characterized by suppression of alpha band oscillations and enhancement of gamma band oscillations. In pathological chronic pain which is more severe and common in clinic practice, it is of great interest to investigate the oscillatory activity especially at the broad gamma frequency bands. Our present study explored the resting state oscillatory activities of EEG in patients with post-herpetic neuralgia (PHN) over 3 months which is a typical neuropathic pain model in clinical researches. It was found that the PHN patients showed anxiety and depression revealed by Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) examinations. Power spectrum analysis revealed that the power at gamma frequency band (from 40 to 70 Hz) of EEG was significantly higher in the PHN patients, and positively correlated with pain intensity, anxiety, and depression indexes. Further, increased gamma activity derived from the prefrontal cortex and the cerebellum were revealed by cluster-based sensor level and the beamforming source level analyses. These results suggest the enhanced gamma oscillatory activity in the prefrontal cortex and cerebellum is a characteristic marker in chronic neuropathic pain patients.
Collapse
Affiliation(s)
- Rui Zhou
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Institute For Brain Disorders, Capital Medical University, Beijing, China
| | - Wenjing Qi
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Huailian Guo
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
23
|
Wöstmann M, Vosskuhl J, Obleser J, Herrmann CS. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention. Brain Stimul 2018; 11:752-758. [PMID: 29656907 DOI: 10.1016/j.brs.2018.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/15/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spatial attention relatively increases the power of neural 10-Hz alpha oscillations in the hemisphere ipsilateral to attention, and decreases alpha power in the contralateral hemisphere. For gamma oscillations (>40 Hz), the opposite effect has been observed. The functional roles of lateralised oscillations for attention are currently unclear. HYPOTHESIS If lateralised oscillations are functionally relevant for attention, transcranial stimulation of alpha versus gamma oscillations in one hemisphere should differentially modulate the accuracy of spatial attention to the ipsi-versus contralateral side. METHODS 20 human participants performed a dichotic listening task under continuous transcranial alternating current stimulation (tACS, vs sham) at alpha (10 Hz) or gamma (47 Hz) frequency. On each trial, participants attended to four spoken numbers on the left or right ear, while ignoring numbers on the other ear. In order to stimulate a left temporo-parietal cortex region, which is known to show marked modulations of alpha power during auditory spatial attention, tACS (1 mA peak-to-peak amplitude) was applied at electrode positions TP7 and FC5 over the left hemisphere. RESULTS As predicted, unihemispheric alpha-tACS relatively decreased the recall of targets contralateral to stimulation, but increased recall of ipsilateral targets. Importantly, this spatial pattern of results was reversed for gamma-tACS. CONCLUSIONS Results provide a proof of concept that transcranially stimulated oscillations can enhance spatial attention and facilitate attentional selection of speech. Furthermore, opposite effects of alpha versus gamma stimulation support the view that states of high alpha are incommensurate with active neural processing as reflected by states of high gamma.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany.
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Center for Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
24
|
Chien JH, Korzeniewska A, Hillis AE, Kim JH, Emerson N, Greenspan JD, Campbell CM, Meeker TJ, Markman TM, Lenz FA. Vigilance behaviors and EEG activity in sustained attention may affect acute pain. ACTA ACUST UNITED AC 2017; 3. [PMID: 34295543 PMCID: PMC8294460 DOI: 10.15761/jsin.1000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During Sustained Attention to stimuli across many modalities neural activity often decreases over time on task, while Errors in task performance increase (Vigilance Decrement). Sustained Attention to pain has rarely been investigated experimentally despite its clinical significance. We have employed a Sustained Attention protocol (Continuous Performance Task, CPT) in which the subject counts painful laser stimuli (targets) when they occur randomly in a prolonged train of nonpainful nontargets. We hypothesize that the magnitude of the poststimulus oscillatory power divided by baseline power (Event-Related Spectral Perturbation, ERSP - scalp EEG) over Frontoparietal structures will decrease at all frequencies with time on task, while Beta ERSP (14-30Hz) will be correlated with Error Rates in performance of the CPT. During the CPT with a painful target ERSP was found in four separate Windows, as defined by both their frequency band and the time after the stimulus. A Vigilance Decrement was found which confirms that Sustained Attention to pain was produced by this CPT. In addition, Error Rates was correlated inversely with laser energy, and with ratings of pain unpleasantness and salience. Error Rates also were related directly to the Beta ERSP Window at scalp EEG electrodes over the central sulcus. Over time on task, the ERSP magnitude decreased in Alpha (8-14Hz) Window, was unchanged in early and late Delta/Theta Windows (0-8Hz), and increased in the Beta Window. The increase in Beta ERSP and a decrease in the Alpha ERSP occurred at the same EEG electrode over the parietal lobe to a significant degree across subjects. Overall, Beta activity increases with time on task, and with higher Error Rates as in the case of other modalities. In the case of pain increased Errors correspond to misidentification of painful and nonpainful stimuli and so modulate the sensation of pain under the influence of Sustained Attention.
Collapse
Affiliation(s)
- J H Chien
- Institute of Biomedical Engineering - Nanomedicine, National Health Research Institutions, Taiwan, Republic of China
| | - A Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - A E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, USA
| | - J H Kim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA.,Department of Neurosurgery, Korea University Guro Hospital, Seoul, Korea
| | - N Emerson
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - J D Greenspan
- Department of Pain and Neural Sciences, Dental School, University of Maryland, Baltimore, USA
| | - C M Campbell
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - T J Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - T M Markman
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - F A Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
25
|
Valentini E, Nicolardi V, Aglioti SM. Painful engrams: Oscillatory correlates of working memory for phasic nociceptive laser stimuli. Brain Cogn 2017; 115:21-32. [PMID: 28390217 DOI: 10.1016/j.bandc.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/28/2017] [Accepted: 03/23/2017] [Indexed: 11/15/2022]
Abstract
Research suggests that working memory (WM) is impaired in chronic pain. Yet, information on how potentially noxious stimuli are maintained in memory is limited in patients as well as in healthy people. We recorded electroencephalography (EEG) in healthy volunteers during a modified delayed match-to-sample task where maintenance in memory of relevant attributes of nociceptive laser stimuli was essential for subsequent cued-discrimination. Participants performed in high and low load conditions (i.e. three vs. two stimuli to keep in WM). Modulation of EEG oscillations in the beta band during the retention interval and in the alpha band during the pre-retention interval reflected performance in the WM task. Importantly, both a non-verbal and a verbal neuropsychological WM test predicted oscillatory modulations. Moreover, these two neuropsychological tests and self-reported personality measures predicted the performance in the nociceptive WM task. Results demonstrate (i) that beta and alpha EEG oscillations can represent WM for nociceptive stimuli; (ii) the association between neuropsychological measures of WM and the brain representation of phasic nociceptive painful stimuli; and (iii) that personality factors can predict memory for nociceptive stimuli at the behavioural level. Altogether, our findings offer a promising approach for investigating cortical correlates of nociceptive memory in clinical pain conditions.
Collapse
Affiliation(s)
- Elia Valentini
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy; Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico, Italy.
| | - Valentina Nicolardi
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology and Centre for Brain Science, University of Essex, England, UK; Sapienza Università di Roma, Dipartimento di Psicologia, Italy
| |
Collapse
|
26
|
Abstract
Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain.
Collapse
Affiliation(s)
- Markus Ploner
- Department of Neurology and TUMNeuroimaging Center, Technische Universität München, Munich, Germany.
| | - Christian Sorg
- Departments of Neuroradiology and Psychiatry and TUMNeuroimaging Center, Technische Universität München, Munich, Germany
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
27
|
Abstract
The perception of pain is highly variable. It depends on bottom-up-mediated factors like stimulus intensity and top-down-mediated factors like expectations. In the brain, pain is associated with a complex pattern of neuronal responses including evoked potentials and induced responses at alpha and gamma frequencies. Although they all covary with stimulus intensity and pain perception, responses at gamma frequencies can be particularly closely related to the perception of pain. It is, however, unclear whether this association holds true across all types of pain modulation. Here, we used electroencephalography to directly compare bottom-up- and top-down-mediated modulations of pain, which were implemented by changes in stimulus intensity and placebo analgesia, respectively. The results show that stimulus intensity modulated pain-evoked potentials and pain-induced alpha and gamma responses. In contrast, placebo analgesia was associated with changes of evoked potentials, but not of alpha and gamma responses. These findings reveal that pain-related neuronal responses are differentially sensitive to bottom-up and top-down modulations of pain, indicating that they provide complementary information about pain perception. The results further show that pain-induced gamma oscillations do not invariably encode pain perception but may rather represent a marker of sensory processing whose influence on pain perception varies with behavioral context.
Collapse
|
28
|
Anticipation of electric shocks modulates low beta power and event-related fields during memory encoding. Neurobiol Learn Mem 2015; 123:196-204. [PMID: 26119254 DOI: 10.1016/j.nlm.2015.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022]
Abstract
In humans, the temporal and oscillatory dynamics of pain anticipation and its effects on long-term memory are largely unknown. Here, we investigated this open question by using a previously established behavioral paradigm in combination with magnetoencephalography (MEG). Healthy human subjects encoded a series of scene images, which was combined with cues predicting an aversive electric shock with different probabilities (0.2, 0.5 or 0.8). After encoding, memory for the studied images was tested using a remember/know recognition task. Behaviorally, pain anticipation did not modulate recollection-based recognition memory per se, but interacted with the perceived unpleasantness of the electric shock [visual analogue scale rating from 1 (not unpleasant) to 10 (highly unpleasant)]. More precisely, the relationship between pain anticipation and recollection followed an inverted u-shaped function the more unpleasant the shocks were rated by a subject. At the physiological level, this quadratic effect was mimicked in the event-related magnetic fields associated with successful memory formation ('DM-effect') ∼450ms after image onset at left frontal sensors. Importantly, across all subjects, shock anticipation modulated oscillatory power in the low beta frequency range (13-20Hz) in a linear fashion at left temporal sensors. Taken together, our findings indicate that beta oscillations provide a generic mechanism underlying pain anticipation; the effect on subsequent long-term memory, on the other hand, is much more variable and depends on the level of individual pain perception. As such, our findings give new and important insights into how aversive motivational states can drive memory formation.
Collapse
|
29
|
Peng W, Babiloni C, Mao Y, Hu Y. Subjective pain perception mediated by alpha rhythms. Biol Psychol 2015; 109:141-50. [PMID: 26026894 DOI: 10.1016/j.biopsycho.2015.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/23/2015] [Accepted: 05/23/2015] [Indexed: 01/26/2023]
Abstract
Suppression of spontaneous alpha oscillatory activities, interpreted as cortical excitability, was observed in response to both transient and tonic painful stimuli. The changes of alpha rhythms induced by pain could be modulated by painful sensory inputs, experimental tasks, and top-down cognitive regulations such as attention. The temporal and spatial characteristics, as well as neural functions of pain induced alpha responses, depend much on how these factors contribute to the observed alpha event-related desynchronization/synchronization (ERD/ERS). How sensory-, task-, and cognitive-related changes of alpha oscillatory activities interact in pain perception process is reviewed in the current study, and the following conclusions are made: (1) the functional inhibition hypothesis that has been proposed in auditory and visual modalities could be applied also in pain modality; (2) the neural functions of pain induced alpha ERD/ERS were highly dependent on the cortical regions where it is observed, e.g., somatosensory cortex alpha ERD/ERS in pain perception for painful stimulus processing; (3) the attention modulation of pain perception, i.e., influences on the sensory and affective dimensions of pain experience, could be mediated by changes of alpha rhythms. Finally, we propose a model regarding the determinants of pain related alpha oscillatory activity, i.e., sensory-discriminative, affective-motivational, and cognitive-modulative aspects of pain experience, would affect and determine pain related alpha oscillatory activities in an integrated way within the distributed alpha system.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy
| | - Yanhui Mao
- Department of Developmental and Social Process Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Schulz E, May ES, Postorino M, Tiemann L, Nickel MM, Witkovsky V, Schmidt P, Gross J, Ploner M. Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cereb Cortex 2015; 25:4407-14. [PMID: 25754338 PMCID: PMC4816790 DOI: 10.1093/cercor/bhv043] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Under physiological conditions, momentary pain serves vital protective functions. Ongoing pain in chronic pain states, on the other hand, is a pathological condition that causes widespread suffering and whose treatment remains unsatisfactory. The brain mechanisms of ongoing pain are largely unknown. In this study, we applied tonic painful heat stimuli of varying degree to healthy human subjects, obtained continuous pain ratings, and recorded electroencephalograms to relate ongoing pain to brain activity. Our results reveal that the subjective perception of tonic pain is selectively encoded by gamma oscillations in the medial prefrontal cortex. We further observed that the encoding of subjective pain intensity experienced by the participants differs fundamentally from that of objective stimulus intensity and from that of brief pain stimuli. These observations point to a role for gamma oscillations in the medial prefrontal cortex in ongoing, tonic pain and thereby extend current concepts of the brain mechanisms of pain to the clinically relevant state of ongoing pain. Furthermore, our approach might help to identify a brain marker of ongoing pain, which may prove useful for the diagnosis and therapy of chronic pain.
Collapse
Affiliation(s)
- Enrico Schulz
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| | - Elisabeth S May
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| | - Martina Postorino
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| | - Laura Tiemann
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| | - Moritz M Nickel
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, 84219 Bratislava, Slovak Republic
| | - Paul Schmidt
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, Department of Psychology, University of Glasgow, Glasgow G12 8QB, UK
| | - Markus Ploner
- Department of Neurology, Technische Universität München, 81675 Munich, Germany TUM - Neuroimaging Center, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
31
|
Language-motor interference reflected in MEG beta oscillations. Neuroimage 2015; 109:438-48. [PMID: 25576646 DOI: 10.1016/j.neuroimage.2014.12.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022] Open
Abstract
The involvement of the brain's motor system in action-related language processing can lead to overt interference with simultaneous action execution. The aim of the current study was to find evidence for this behavioural interference effect and to investigate its neurophysiological correlates using oscillatory MEG analysis. Subjects performed a semantic decision task on single action verbs, describing actions executed with the hands or the feet, and abstract verbs. Right hand button press responses were given for concrete verbs only. Therefore, longer response latencies for hand compared to foot verbs should reflect interference. We found interference effects to depend on verb imageability: overall response latencies for hand verbs did not differ significantly from foot verbs. However, imageability interacted with effector: while response latencies to hand and foot verbs with low imageability were equally fast, those for highly imageable hand verbs were longer than for highly imageable foot verbs. The difference is reflected in motor-related MEG beta band power suppression, which was weaker for highly imageable hand verbs compared with highly imageable foot verbs. This provides a putative neuronal mechanism for language-motor interference where the involvement of cortical hand motor areas in hand verb processing interacts with the typical beta suppression seen before movements. We found that the facilitatory effect of higher imageability on action verb processing time is perturbed when verb and motor response relate to the same body part. Importantly, this effect is accompanied by neurophysiological effects in beta band oscillations. The attenuated power suppression around the time of movement, reflecting decreased cortical excitability, seems to result from motor simulation during action-related language processing. This is in line with embodied cognition theories.
Collapse
|
32
|
Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biol 2014; 12:e1001965. [PMID: 25333286 PMCID: PMC4205112 DOI: 10.1371/journal.pbio.1001965] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
A simultaneous EEG-fMRI study demonstrates that alpha-band activity in early visual cortex is associated with gating visual information to downstream regions, boosting attended information and suppressing distraction. Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity. In complex environments, our sensory systems are bombarded with information. Only a fraction of this information is processed, whereas most is ignored. As such, our brain must rely on powerful mechanisms to filter the relevant information. It has been proposed that alpha band oscillations (8–13 Hz) gate task-relevant visual information to downstream areas and supress irrelevant visual information. We tested this hypothesis in a study that combined electroencephalography (EEG) and functional MRI (fMRI) recordings. From the EEG, we directly measured alpha band oscillations in early visual regions. Using fMRI, we quantified neuronal activity in downstream regions. The participants performed a spatial working memory task that required them to encode pictures of objects presented in the left field of view while ignoring objects in the right field (or vice versa). We found that suppression of alpha band activity in visual areas opened the gate for relevant visual information to be routed to downstream regions. Conversely, an increase in alpha oscillations suppressed visual information that was irrelevant to the task. These findings suggest that alpha band oscillations are directly involved in boosting attended information and suppressing distraction in the ventral visual stream.
Collapse
|
33
|
Grasping hand verbs: oscillatory beta and alpha correlates of action-word processing. PLoS One 2014; 9:e108059. [PMID: 25248152 PMCID: PMC4172661 DOI: 10.1371/journal.pone.0108059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/22/2014] [Indexed: 12/04/2022] Open
Abstract
The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns accompanying voluntary movements, we expected a somatotopically distributed suppression of beta and alpha frequencies in the motor cortex during processing of body-related action verbs. Magnetoencephalographic data were collected during presentation of verbs that express actions performed using the hands (H) or feet (F). Verbs denoting no bodily movement (N) were used as a control. Between 150 and 500 msec after visual word onset, beta rhythms were suppressed in H and F in comparison with N in the left hemisphere. Similarly, alpha oscillations showed left-lateralized power suppression in the H-N contrast, although at a later stage. The cortical oscillatory activity that typically occurs during voluntary movements is therefore found to somatotopically accompany the processing of body-related verbs. The combination of a localizer task with the oscillatory investigation applied to verb reading as in the present study provides further methodological possibilities of tracking language processing in the brain.
Collapse
|
34
|
Lange J, Keil J, Schnitzler A, van Dijk H, Weisz N. The role of alpha oscillations for illusory perception. Behav Brain Res 2014; 271:294-301. [PMID: 24931795 PMCID: PMC4111906 DOI: 10.1016/j.bbr.2014.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Alpha oscillations are a prominent electrophysiological signal measured across a wide range of species and cortical and subcortical sites. Alpha oscillations have been viewed for a long time as an "idling" rhythm, purely reflecting inactive sites. Despite earlier evidence from neurophysiology, awareness that alpha oscillations can substantially influence perception and behavior has grown only recently in cognitive neuroscience. Evidence for an active role of alpha for perception comes mainly from several visual, near-threshold experiments. In the current review, we extend this view by summarizing studies showing how alpha-defined brain states relate to illusory perception, i.e. cases of perceptual reports that are not "objectively" verifiable by distinct stimuli or stimulus features. These studies demonstrate that ongoing or prestimulus alpha oscillations substantially influence the perception of auditory, visual or multisensory illusions.
Collapse
Affiliation(s)
- Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Julian Keil
- Department of Psychiatry and Psychotherapy, Charité University Hospital, St. Hedwig Hospital, Große Hamburger Straße 5-11, 10115 Berlin, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Hanneke van Dijk
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nathan Weisz
- CIMeC - Center for Mind/Brain Sciences, University of Trento, via delle Regole, 101, 38060 Mattarello, TN, Italy
| |
Collapse
|
35
|
Lötsch J, Oertel BG, Ultsch A. Human models of pain for the prediction of clinical analgesia. Pain 2014; 155:2014-21. [PMID: 25020003 DOI: 10.1016/j.pain.2014.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022]
Abstract
Human experimental pain models are widely used to study drug effects under controlled conditions. However, efforts to improve both animal and human experimental model selection, on the basis of increased understanding of the underlying pathophysiological pain mechanisms, have been disappointing, with poor translation of results to clinical analgesia. We have developed an alternative approach to the selection of suitable pain models that can correctly predict drug efficacy in particular clinical settings. This is based on the analysis of successful or unsuccessful empirical prediction of clinical analgesia using experimental pain models. We analyzed statistically the distribution of published mutual agreements or disagreements between drug efficacy in experimental and clinical pain settings. Significance limits were derived by random permutations of agreements. We found that a limited subset of pain models predicts a large number of clinically relevant pain settings, including efficacy against neuropathic pain for which novel analgesics are particularly needed. Thus, based on empirical evidence of agreement between drugs for their efficacy in experimental and clinical pain settings, it is possible to identify pain models that reliably predict clinical analgesic drug efficacy in cost-effective experimental settings.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt am Main, Germany; Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany.
| | - Bruno G Oertel
- Fraunhofer Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, Germany
| | - Alfred Ultsch
- Data Bionics Research Group, University of Marburg, Marburg, Germany
| |
Collapse
|
36
|
Event-related alpha suppression in response to facial motion. PLoS One 2014; 9:e89382. [PMID: 24586735 PMCID: PMC3929715 DOI: 10.1371/journal.pone.0089382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 01/20/2014] [Indexed: 11/23/2022] Open
Abstract
While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors.
Collapse
|
37
|
Höfle M, Pomper U, Hauck M, Engel AK, Senkowski D. Spectral signatures of viewing a needle approaching one's body when anticipating pain. Eur J Neurosci 2013; 38:3089-98. [PMID: 23859421 DOI: 10.1111/ejn.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022]
Abstract
When viewing the needle of a syringe approaching your skin, anticipation of a painful prick may lead to increased arousal. How this anticipation is reflected in neural oscillatory activity and how it relates to activity within the autonomic nervous system is thus far unknown. Recently, we found that viewing needle pricks compared with Q-tip touches increases the pupil dilation response (PDR) and perceived unpleasantness of electrical stimuli. Here, we used high-density electroencephalography to investigate whether anticipatory oscillatory activity predicts the unpleasantness of electrical stimuli and PDR while viewing a needle approaching a hand that is perceived as one's own. We presented video clips of needle pricks and Q-tip touches, and delivered spatiotemporally aligned painful and nonpainful intracutaneous electrical stimuli. The perceived unpleasantness of electrical stimuli and the PDR were enhanced when participants viewed needle pricks compared with Q-tip touches. Source reconstruction using linear beamforming revealed reduced alpha-band activity in the posterior cingulate cortex (PCC) and fusiform gyrus before the onset of electrical stimuli when participants viewed needle pricks compared with Q-tip touches. Moreover, alpha-band activity in the PCC predicted PDR on a single trial level. The anticipatory reduction of alpha-band activity in the PCC may reflect a neural mechanism that serves to protect the body from forthcoming harm by facilitating the preparation of adequate defense responses.
Collapse
Affiliation(s)
- Marion Höfle
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| | - Ulrich Pomper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| | - Michael Hauck
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Senkowski
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Psychiatry and Psychotherapy, St. Hedwig Hospital, Charité - Universitätsmedizin Berlin, St Hedwig Hospital, Berlin, Germany
| |
Collapse
|
38
|
Hu L, Peng W, Valentini E, Zhang Z, Hu Y. Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. THE JOURNAL OF PAIN 2013; 14:89-99. [PMID: 23273836 DOI: 10.1016/j.jpain.2012.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 11/15/2022]
Abstract
UNLABELLED Nociceptive stimuli can induce a transient suppression of electroencephalographic oscillations in the alpha frequency band (ie, alpha event-related desynchronization, α-ERD). Here we investigated whether α-ERD could be functionally distinguished in 2 temporally and spatially segregated subcomponents as suggested by previous studies. In addition, we tested whether the degree of dependence of nociceptive-induced α-ERD magnitude on the prestimulus α-power would have been larger than the degree of dependence on the poststimulus α-power. Our findings confirmed the dissociation between a sensory-related α-ERD maximally distributed over contralateral central electrodes, and a task-related α-ERD (possibly affected by motor-related activity), maximally distributed at posterior parietal and occipital electrodes. The cortical sources of these activities were estimated to be located at the level of sensorimotor and bilateral occipital cortices, respectively. Importantly, the time course of the α-ERD revealed that functional segregation emerged only at late latencies (400 to 750 ms) whereas topographic similarity was observed at earlier latencies (250 to 350 ms). Furthermore, the nociceptive-induced α-ERD magnitude was significantly more dependent on prestimulus than poststimulus α-power. Altogether these findings provide direct evidence that the nociceptive-induced α-ERD reflects the summation of sensory-related and task-related cortical processes, and that prestimulus fluctuations can remarkably influence the non-phase-locked nociceptive α-ERD. PERSPECTIVE Present results extend the functional understanding of α-oscillation suppression during pain perception and demonstrate the influence of prestimulus variability on this cortical phenomenon. This work has the potential to guide pain clinicians in a more accurate interpretation on physiological and psychological modulations of α-oscillations.
Collapse
Affiliation(s)
- Li Hu
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China
| | | | | | | | | |
Collapse
|
39
|
Kerr CE, Sacchet MD, Lazar SW, Moore CI, Jones SR. Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Front Hum Neurosci 2013; 7:12. [PMID: 23408771 PMCID: PMC3570934 DOI: 10.3389/fnhum.2013.00012] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022] Open
Abstract
Using a common set of mindfulness exercises, mindfulness based stress reduction (MBSR) and mindfulness based cognitive therapy (MBCT) have been shown to reduce distress in chronic pain and decrease risk of depression relapse. These standardized mindfulness (ST-Mindfulness) practices predominantly require attending to breath and body sensations. Here, we offer a novel view of ST-Mindfulness's somatic focus as a form of training for optimizing attentional modulation of 7-14 Hz alpha rhythms that play a key role in filtering inputs to primary sensory neocortex and organizing the flow of sensory information in the brain. In support of the framework, we describe our previous finding that ST-Mindfulness enhanced attentional regulation of alpha in primary somatosensory cortex (SI). The framework allows us to make several predictions. In chronic pain, we predict somatic attention in ST-Mindfulness "de-biases" alpha in SI, freeing up pain-focused attentional resources. In depression relapse, we predict ST-Mindfulness's somatic attention competes with internally focused rumination, as internally focused cognitive processes (including working memory) rely on alpha filtering of sensory input. Our computational model predicts ST-Mindfulness enhances top-down modulation of alpha by facilitating precise alterations in timing and efficacy of SI thalamocortical inputs. We conclude by considering how the framework aligns with Buddhist teachings that mindfulness starts with "mindfulness of the body." Translating this theory into neurophysiology, we hypothesize that with its somatic focus, mindfulness' top-down alpha rhythm modulation in SI enhances gain control which, in turn, sensitizes practitioners to better detect and regulate when the mind wanders from its somatic focus. This enhanced regulation of somatic mind-wandering may be an important early stage of mindfulness training that leads to enhanced cognitive regulation and metacognition.
Collapse
Affiliation(s)
| | - Matthew D. Sacchet
- Neurosciences Program, Stanford University School of MedicineStanford, CA, USA
- Department of Psychology, Stanford UniversityStanford, CA, USA
| | - Sara W. Lazar
- Athinoula A. Martinos Center For Biomedical Imaging, Mass General HospitalCharlestown, MA, USA
| | | | - Stephanie R. Jones
- Athinoula A. Martinos Center For Biomedical Imaging, Mass General HospitalCharlestown, MA, USA
- Department of Neuroscience, Brown UniversityProvidence, RI, USA
| |
Collapse
|
40
|
Volberg G, Wutz A, Greenlee MW. Top-down control in contour grouping. PLoS One 2013; 8:e54085. [PMID: 23326575 PMCID: PMC3542329 DOI: 10.1371/journal.pone.0054085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022] Open
Abstract
Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of 'good continuation'. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15–21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11–12 Hz) and in fronto-posterior theta (4–5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.
Collapse
Affiliation(s)
- Gregor Volberg
- Institut für Psychologie, Universität Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|