1
|
Huang H, Luo J, Qi Y, Wu Y, Qi J, Yan X, Xu G, He F, Zheng Y. Comprehensive analysis of circRNA expression profile and circRNA-miRNA-mRNA network susceptibility to very early-onset schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:70. [PMID: 37816766 PMCID: PMC10564922 DOI: 10.1038/s41537-023-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
To explore the potential role of circular RNAs (circRNAs) in children developing very early-onset schizophrenia (VEOS). Total RNA was extracted from the plasma samples of 10 VEOS patients and eight healthy controls. Expression profiles of circRNAs, micro RNAs (miRNAs), and messenger RNAs (mRNAs) were analyzed using RNA-seq. The interaction networks between miRNAs and targets were predicted using the miRanda tool. A differentially expressed circRNA-miRNA-mRNA (ceRNA) network was further constructed. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the target mRNAs in the ceRNA network were performed to predict the potential functions of their host genes. The patient group and the control group were also compared on the regulatory patterns of circRNAs on mRNAs. 1934 circRNAs were identified from the samples and reported for the first time in schizophrenia. The circRNA expression levels were lower in the VEOS group than in the healthy control group, and 1889 circRNAs were expressed only in the control group. Differential expression analysis (i.e., log2fold change > 1.5, p 0.05) identified 235 circRNAs (1 up-regulated, 234 down-regulated), 11 miRNAs (7 up-regulated, 4 down-regulated), and 2,308 mRNAs (1906 up-regulated, 402 down-regulated) respectively. In VEOS, a ceRNA network with 10 down-regulated circRNA targets, 6 up-regulated miRNAs, and 47 down-regulated mRNAs was constructed. The target genes were involved in the membrane, the signal transduction, and the cytoskeleton and transport pathways. Finally, different expression correlation patterns of circRNA and mRNA in the network were observed between the patient group and the control group. The current research is the first to reveal the differentially expressed circRNAs in the plasma of VEOS patients. A circRNA-miRNA-mRNA network was also conducted in this study. It may be implied that the circRNAs in this network are potential diagnostic biomarkers for VEOS and they play an important role in the onset and development of VEOS symptoms.
Collapse
Affiliation(s)
- Huanhuan Huang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Jie Luo
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Yanjie Qi
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Yuanzhen Wu
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Junhui Qi
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Xiuping Yan
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Gaoyang Xu
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China
| | - Fan He
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China.
| | - Yi Zheng
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Guo X, Hu W, Gao Z, Fan Y, Wu Q, Li W. Identification of PLOD3 and LRRN3 as potential biomarkers for Parkinson's disease based on integrative analysis. NPJ Parkinsons Dis 2023; 9:82. [PMID: 37258507 DOI: 10.1038/s41531-023-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent movement disorders and its diagnosis relies heavily on the typical clinical manifestations in the late stages. This study aims to screen and identify biomarkers of PD for earlier intervention. We performed a differential analysis of postmortem brain transcriptome studies. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify biomarkers related to Braak stage. We found 58 genes with significantly different expression in both PD brain tissue and blood samples. PD gene signature and risk score model consisting of nine genes were constructed using least absolute shrinkage and selection operator regression (LASSO) and logistic regression. PLOD3 and LRRN3 in gene signature were identified to serve as key genes as well as potential risk factors in PD. Gene function enrichment analysis and evaluation of immune cell infiltration revealed that PLOD3 was implicated in suppression of cellular metabolic function and inflammatory cell infiltration, whereas LRRN3 exhibited an inverse trend. The cellular subpopulation expression of the PLOD3 and LRRN3 has significant distributional variability. The expression of PLOD3 was more enriched in inflammatory cell subpopulations, such as microglia, whereas LRRN3 was more enriched in neurons and oligodendrocyte progenitor cells clusters (OPC). Additionally, the expression of PLOD3 and LRRN3 in Qilu cohort was verified to be consistent with previous results. Collectively, we screened and identified the functions of PLOD3 and LRRN3 based the integrated study. The combined detection of PLOD3 and LRRN3 expression in blood samples can improve the early detection of PD.
Collapse
Affiliation(s)
- Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China
| | - Wenjun Hu
- Department of General Practice, Central Hospital Affiliated to Shandong First Medical university, 250000, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China
| | - Qianqian Wu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China
| | - Weiguo Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, Shandong, China.
- Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, Shandong, China.
| |
Collapse
|
3
|
Raisi-Estabragh Z, McCracken C, Condurache D, Aung N, Vargas JD, Naderi H, Munroe PB, Neubauer S, Harvey NC, Petersen SE. Left atrial structure and function are associated with cardiovascular outcomes independent of left ventricular measures: a UK Biobank CMR study. Eur Heart J Cardiovasc Imaging 2022; 23:1191-1200. [PMID: 34907415 PMCID: PMC9365306 DOI: 10.1093/ehjci/jeab266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/26/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS We evaluated the associations of left atrial (LA) structure and function with prevalent and incident cardiovascular disease (CVD), independent of left ventricular (LV) metrics, in 25 896 UK Biobank participants. METHODS AND RESULTS We estimated the association of cardiovascular magnetic resonance (CMR) metrics [LA maximum volume (LAV), LA ejection fraction (LAEF), LV mass : LV end-diastolic volume ratio (LVM : LVEDV), global longitudinal strain, and LV global function index (LVGFI)] with vascular risk factors (hypertension, diabetes, high cholesterol, and smoking), prevalent and incident CVDs [atrial fibrillation (AF), stroke, ischaemic heart disease (IHD), myocardial infarction], all-cause mortality, and CVD mortality. We created uncorrelated CMR variables using orthogonal principal component analysis rotation. All five CMR metrics were simultaneously entered into multivariable regression models adjusted for sex, age, ethnicity, deprivation, education, body size, and physical activity. Lower LAEF was associated with diabetes, smoking, and all the prevalent and incident CVDs. Diabetes, smoking, and high cholesterol were associated with smaller LAV. Hypertension, IHD, AF (incident and prevalent), incident stroke, and CVD mortality were associated with larger LAV. LV and LA metrics were both independently informative in associations with prevalent disease, however LAEF showed the most consistent associations with incident CVDs. Lower LVGFI was associated with greater all-cause and CVD mortality. In secondary analyses, compared with LVGFI, LV ejection fraction showed similar but less consistent disease associations. CONCLUSION LA structure and function measures (LAEF and LAV) demonstrate significant associations with key prevalent and incident cardiovascular outcomes, independent of LV metrics. These measures have potential clinical utility for disease discrimination and outcome prediction.
Collapse
Affiliation(s)
- Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, Charterhouse Square, London
EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS
Trust, London EC1A 7BE, UK
| | - Celeste McCracken
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine,
University of Oxford, National Institute for Health Research Oxford Biomedical
Research Centre, Oxford University Hospitals NHS Foundation Trust,
Oxford OX3 9DU, UK
| | - Dorina Condurache
- London North West University Healthcare NHS Trust,
Harrow HA1 3UJ, UK
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, Charterhouse Square, London
EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS
Trust, London EC1A 7BE, UK
| | - Jose D Vargas
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, Charterhouse Square, London
EC1M 6BQ, UK
- MedStar Georgetown University Hospital,
Washington, DC 20007, USA
| | - Hafiz Naderi
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, Charterhouse Square, London
EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS
Trust, London EC1A 7BE, UK
| | - Patricia B Munroe
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, Charterhouse Square, London
EC1M 6BQ, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine,
University of Oxford, National Institute for Health Research Oxford Biomedical
Research Centre, Oxford University Hospitals NHS Foundation Trust,
Oxford OX3 9DU, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton,
Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton,
University Hospital Southampton NHS Foundation Trust,
Southampton, UK
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre,
Queen Mary University of London, Charterhouse Square, London
EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS
Trust, London EC1A 7BE, UK
- Health Data Research UK, London,
UK
- Alan Turing Institute, London,
UK
| |
Collapse
|
4
|
Increased peripheral inflammation in schizophrenia is associated with worse cognitive performance and related cortical thickness reductions. Eur Arch Psychiatry Clin Neurosci 2021; 271:595-607. [PMID: 33760971 DOI: 10.1007/s00406-021-01237-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
While the biological substrates of brain and behavioural changes in persons with schizophrenia remain unclear, increasing evidence implicates that inflammation is involved. In schizophrenia, including first-episode psychosis and anti-psychotic naïve patients, there are numerous reports of increased peripheral inflammation, cognitive deficits and neuropathologies such as cortical thinning. Research defining the relationship between inflammation and schizophrenia symptomatology and neuropathology is needed. Therefore, we analysed the level of C-reactive protein (CRP), a peripheral inflammation marker, and its relationship with cognitive functioning in a cohort of 644 controls and 499 schizophrenia patients. In a subset of individuals who underwent MRI scanning (99 controls and 194 schizophrenia cases), we tested if serum CRP was associated with cortical thickness. CRP was significantly increased in schizophrenia patients compared to controls, co-varying for age, sex, overweight/obesity and diabetes (p < 0.006E-10). In schizophrenia, increased CRP was mildly associated with worse performance in attention, controlling for age, sex and education (R =- 0.15, p = 0.001). Further, increased CRP was associated with reduced cortical thickness in three regions related to attention: the caudal middle frontal, the pars opercularis and the posterior cingulate cortices, which remained significant after controlling for multiple comparisons (all p < 0.05). Together, these findings indicate that increased peripheral inflammation is associated with deficits in cognitive function and brain structure in schizophrenia, especially reduced attention and reduced cortical thickness in associated brain regions. Using CRP as a biomarker of peripheral inflammation in persons with schizophrenia may help to identify vulnerable patients and those that may benefit from adjunctive anti-inflammatory treatments.
Collapse
|
5
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
6
|
Ruisch IH, Dietrich A, Glennon JC, Buitelaar JK, Hoekstra PJ. Interplay between genome-wide implicated genetic variants and environmental factors related to childhood antisocial behavior in the UK ALSPAC cohort. Eur Arch Psychiatry Clin Neurosci 2019; 269:741-752. [PMID: 30569215 PMCID: PMC6689282 DOI: 10.1007/s00406-018-0964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
We investigated gene-environment (G × E) interactions related to childhood antisocial behavior between polymorphisms implicated by recent genome-wide association studies (GWASs) and two key environmental adversities (maltreatment and smoking during pregnancy) in a large population cohort (ALSPAC). We also studied the MAOA candidate gene and addressed comorbid attention-deficit/hyperactivity disorder (ADHD). ALSPAC is a large, prospective, ethnically homogeneous British cohort. Our outcome consisted of mother-rated conduct disorder symptom scores at age 7;9 years. G × E interactions were tested in a sex-stratified way (α = 0.0031) for four GWAS-implicated variants (for males, rs4714329 and rs9471290; for females, rs2764450 and rs11215217), and a length polymorphism near the MAOA-promoter region. We found that males with rs4714329-GG (P = 0.0015) and rs9471290-AA (P = 0.0001) genotypes were significantly more susceptible to effects of smoking during pregnancy in relation to childhood antisocial behavior. Females with the rs11215217-TC genotype (P = 0.0018) were significantly less susceptible to effects of maltreatment, whereas females with the MAOA-HL genotype (P = 0.0002) were more susceptible to maltreatment effects related to antisocial behavior. After adjustment for comorbid ADHD symptomatology, aforementioned G × E's remained significant, except for rs11215217 × maltreatment, which retained only nominal significance. Genetic variants implicated by recent GWASs of antisocial behavior moderated associations of smoking during pregnancy and maltreatment with childhood antisocial behavior in the general population. While we also found a G × E interaction between the candidate gene MAOA and maltreatment, we were mostly unable to replicate the previous results regarding MAOA-G × E's. Future studies should, in addition to genome-wide implicated variants, consider polygenic and/or multimarker analyses and take into account potential sex stratification.
Collapse
Affiliation(s)
- I. Hyun Ruisch
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Andrea Dietrich
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Jeffrey C. Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Reinier Postlaan 12, 6525GC Nijmegen, The Netherlands
| | - Pieter J. Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| |
Collapse
|
7
|
Chen YH, Howell B, Edgar JC, Huang M, Kochunov P, Hunter MA, Wootton C, Lu BY, Bustillo J, Sadek JR, Miller GA, Cañive JM. Associations and Heritability of Auditory Encoding, Gray Matter, and Attention in Schizophrenia. Schizophr Bull 2019; 45:859-870. [PMID: 30099543 PMCID: PMC6581123 DOI: 10.1093/schbul/sby111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Auditory encoding abnormalities, gray-matter loss, and cognitive deficits are all candidate schizophrenia (SZ) endophenotypes. This study evaluated associations between and heritability of auditory network attributes (function and structure) and attention in healthy controls (HC), SZ patients, and unaffected relatives (UR). METHODS Whole-brain maps of M100 auditory activity from magnetoencephalography recordings, cortical thickness (CT), and a measure of attention were obtained from 70 HC, 69 SZ patients, and 35 UR. Heritability estimates (h2r) were obtained for M100, CT at each group-difference region, and the attention measure. RESULTS SZ patients had weaker bilateral superior temporal gyrus (STG) M100 responses than HC and a weaker right frontal M100 response than UR. Abnormally large M100 responses in left superior frontal gyrus were observed in UR and SZ patients. SZ patients showed smaller CT in bilateral STG and right frontal regions. Interrelatedness between 3 putative SZ endophenotypes was demonstrated, although in the left STG the M100 and CT function-structure associations observed in HC and UR were absent in SZ patients. Heritability analyses also showed that right frontal M100 and bilateral STG CT measures are significantly heritable. CONCLUSIONS Present findings indicated that the 3 SZ endophenotypes examined are not isolated markers of pathology but instead are connected. The pattern of auditory encoding group differences and the pattern of brain function-structure associations differ as a function of brain region, indicating the need for regional specificity when studying these endophenotypes, and with the presence of left STG function-structure associations in HC and UR but not in SZ perhaps reflecting disease-associated damage to gray matter that disrupts function-structure relationships in SZ.
Collapse
Affiliation(s)
- Yu-Han Chen
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA,To whom correspondence should be addressed; Department of Radiology, The Children’s Hospital of Philadelphia, Seashore House 1F Room 116B, Philadelphia, PA 19104, USA; tel: +1(267)426-0959, fax: +1(267)425-2465, e-mail:
| | - Breannan Howell
- Department of Psychology, The University of New Mexico, Albuquerque, NM,Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, The University of New Mexico, Albuquerque, NM
| | - J Christopher Edgar
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Mingxiong Huang
- Department of Radiology, University of California, San Diego, San Diego, CA,Department of Radiology, VA San Diego Healthcare System, US Department of Veterans Affairs, San Diego, CA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, The University of Maryland, Baltimore, MD
| | - Michael A Hunter
- Department of Psychology, The University of New Mexico, Albuquerque, NM,Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, The University of New Mexico, Albuquerque, NM
| | - Cassandra Wootton
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, The University of New Mexico, Albuquerque, NM
| | - Brett Y Lu
- Department of Psychiatry, University of Hawaii at Manoa, Honolulu, HI
| | - Juan Bustillo
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, The University of New Mexico, Albuquerque, NM
| | - Joseph R Sadek
- Psychiatry Research, New Mexico VA Health Care System, Raymond G. Murphy VA Medical Center, US Department of Veterans Affairs, Albuquerque, NM
| | - Gregory A Miller
- Department of Psychology, University of California, Los Angeles, CA,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - José M Cañive
- Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, The University of New Mexico, Albuquerque, NM,Psychiatry Research, New Mexico VA Health Care System, Raymond G. Murphy VA Medical Center, US Department of Veterans Affairs, Albuquerque, NM
| |
Collapse
|
8
|
Póliska S, Besenyei T, Végh E, Hamar A, Pusztai A, Váncsa A, Bodnár N, Szamosi S, Csumita M, Kerekes G, Szabó Z, Nagy Z, Szűcs G, Szántó S, Zahuczky G, Nagy L, Szekanecz Z. Gene expression analysis of vascular pathophysiology related to anti-TNF treatment in rheumatoid arthritis. Arthritis Res Ther 2019; 21:94. [PMID: 30987671 PMCID: PMC6466794 DOI: 10.1186/s13075-019-1862-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Impaired vascular pathophysiology and increased cardiovascular (CV) mortality are associated with rheumatoid arthritis (RA). To date, no genomic analysis of RA- and RA treatment-related vascular pathophysiology has been published. In this pilot study, we performed gene expression profiling in association with vascular pathophysiology in RA patients. METHODS Sixteen and 19 biologic-naïve RA patients were included in study 1 and study 2, respectively. In study 1, genetic signatures determined by microarray were related to flow-mediated vasodilation (FMD), pulse-wave velocity (PWV), and common carotid intima-media thickness (IMT) of patients. In study 2, clinical response (cR) vs non-response (cNR) to 1-year etanercept (ETN) or certolizumab pegol (CZP) treatment, as well as "vascular" response (vR) vs non-response (vNR) to biologics, were also associated with genomic profiles. Multiple testing could not be performed due to the relatively small number of patients; therefore, our pilot study may lack power. RESULTS In study 1, multiple genes were up- or downregulated in patients with abnormal vs normal FMD, IMT, and PWV. In study 2, there were 13 cR and 6 cNR anti-tumor necrosis factor (TNF)-treated patients. In addition, 10, 9, and 8 patients were FMD-20%, IMT-20%, and PWV-20% responders. Again, vascular responder status was associated with changes of the expression of various genes. The highest number of genes showing significant enrichment were involved in positive regulation of immune effector process, regulation of glucose transport, and Golgi vesicle budding. CONCLUSION Differential expression of multiple genetic profiles may be associated with vascular pathophysiology associated with RA. Moreover, distinct genetic signatures may also be associated with clinical and vascular responses to 1-year anti-TNF treatment.
Collapse
Affiliation(s)
- Szilárd Póliska
- Department of Biochemistry and Molecular Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary.,Department of Sports Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Timea Besenyei
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.,Department of Internal Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Edit Végh
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Attila Hamar
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Anita Pusztai
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Andrea Váncsa
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Nóra Bodnár
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Szilvia Szamosi
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Mária Csumita
- Department of Biochemistry and Molecular Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary.,Department of Sports Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - György Kerekes
- Department of Angiology, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Zoltán Szabó
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Zoltán Nagy
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Gabriella Szűcs
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary
| | - Sándor Szántó
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.,Department of Sports Medicine, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | | | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, University of Debrecen Faculty of Medicine, Nagyerdei str 98, Debrecen, 4032, Hungary.
| |
Collapse
|
9
|
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet 2018; 137:865-879. [DOI: 10.1007/s00439-018-1955-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
10
|
Alizadeh F, Tavakkoly-Bazzaz J, Bozorgmehr A, Azarnezhad A, Tabrizi M, Shahsavand Ananloo E. Association of transcription factor 4 (TCF4) gene mRNA level with schizophrenia, its psychopathology, intelligence and cognitive impairments. J Neurogenet 2017; 31:344-351. [DOI: 10.1080/01677063.2017.1396330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fatemeh Alizadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Bozorgmehr
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Asa’ad Azarnezhad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mina Tabrizi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Esmaeil Shahsavand Ananloo
- Department of Genomic Psychiatry and Behavioral Genomics (DGPBG), Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
11
|
Chan GG, Koch CM, Connors LH. Blood Proteomic Profiling in Inherited (ATTRm) and Acquired (ATTRwt) Forms of Transthyretin-Associated Cardiac Amyloidosis. J Proteome Res 2017; 16:1659-1668. [PMID: 28196416 DOI: 10.1021/acs.jproteome.6b00998] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transthyretin-associated forms of cardiac amyloidosis are fatal protein misfolding diseases that can be inherited (ATTRm) or acquired (ATTRwt). An accurate diagnosis of ATTR amyloidosis can be challenging as biopsy evidence, usually from the affected organ, is required. Precise biomarkers for ATTR disease identification and monitoring are undiscovered, disease-specific therapeutic options are needed, and the current understanding of ATTR molecular pathogenesis is limited. The aim of this study was to investigate and compare the serum proteomes in ATTRm and ATTRwt cardiac amyloidosis to identify differentially expressed blood proteins that were disease-specific. Using multiple-reaction monitoring mass spectrometry (MRM-MS), the concentrations of 160 proteins were analyzed in serum samples from ATTRm and ATTRwt patients, and a healthy control group. Patient and control sera were matched to age (≥60 years), gender (male), and race (Caucasian). The circulating concentrations of 123/160 proteins were significantly different in patient vs control sera; TTR and retinol-binding protein (RBP4) levels were significantly decreased (p < 0.03) in ATTRm compared to controls. In ATTRm, 14/123 proteins were identified as unique to that group and found generally to be lower than controls; moreover, the concentrations of RBP4 and 6 other proteins in this group were significantly different (p < 0.04) compared to ATTRwt. Predicted interactions among the 14 proteins unique to ATTRm were categorized as reaction and binding associations. Alternatively, 27 proteins were found to be unique to ATTRwt with associated interactions defined as activation, catalysis, and inhibition, in addition to reaction and binding. This study demonstrates significant proteomic differences between ATTR patient and control sera, and disease-associated variations in circulating levels of several proteins including TTR and RBP4. The identification of serum proteins unique to ATTRm and ATTRwt cardiac amyloidosis may have diagnostic and prognostic utility, and may provide important clues about disease mechanisms.
Collapse
Affiliation(s)
- Gloria G Chan
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Clarissa M Koch
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Lawreen H Connors
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| |
Collapse
|
12
|
Hui L, Rao WW, Yu Q, Kou C, Wu JQ, He JC, Ye MJ, Liu JH, Xu XJ, Zheng K, Ruan LN, Liu HY, Hu WM, Shao TN, AngRabanes MB, Soares JC, Zhang XY. TCF4 gene polymorphism is associated with cognition in patients with schizophrenia and healthy controls. J Psychiatr Res 2015; 69:95-101. [PMID: 26343600 DOI: 10.1016/j.jpsychires.2015.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cognitive deficits have been identified as an important core feature of schizophrenia. Single nucleotide polymorphisms in the transcription factor 4 (TCF4) gene have been reported to be involved in the susceptibility to schizophrenia and be significantly related to cognitive deficits of schizophrenia and controls. This study examines whether the TCF4 rs2958182 polymorphism influences cognitive functions in chronic schizophrenia and controls. METHODS The presence of the TCF4 rs2958182 was determined in 976 patients and 420 controls using a case-control design. We assessed all the patients' psychopathology using the Positive and Negative Syndrome Scale (PANSS). Cognition was assessed in 777 patients and 399 controls by using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS There were marginally significant differences in the TCF4 rs2958182 allelic and genotypic distributions between patients and controls (χ2 = 3.48, p = 0.062 and χ2 = 0.036, p = 0.036, respectively). Cognitive test scores were significantly lower in patients than in controls on all scales (all p < 0.001) except for the visuospatial/constructional index (p > 0.05). There were significant genotype effects on delayed memory score (p = 0.013), the RBANS total score (p = 0.028) and language score (p = 0.034). Further analysis showed that the language score significantly differed according to the genotypic groups (A/A+T/A group versus T/T group) (p = 0.007) in patients but not in controls (p > 0.05), and the delayed memory score also significantly differed according to the genotypic groups (A/A+T/A group versus T/T group) (p = 0.021) in controls but not in patients (p > 0.05). CONCLUSIONS This study found that the A allele of the TCF4 rs2958182 polymorphism was the risk allele of schizophrenia, and was associated with lower cognitive performance in language in schizophrenia and delayed memory in controls. In contrast, the T allele of this polymorphism was found to be the schizophrenia risk allele in another study in Han Chinese people.
Collapse
Affiliation(s)
- Li Hui
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wen-Wang Rao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, PR China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, PR China
| | - Changgui Kou
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, PR China
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, Faculty of Health, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Biological Psychiatry Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China
| | - Jin Cai He
- Department of Neurology, The First Affiliated of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Min Jie Ye
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jia Hong Liu
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiao Jun Xu
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ke Zheng
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Li Na Ruan
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Hong Yang Liu
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wei Ming Hu
- Institute of Wenzhou Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Tian Nan Shao
- Department of Neurology, The First Affiliated of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Michael B AngRabanes
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiang Yang Zhang
- Biological Psychiatry Center, Beijing HuiLongGuan Hospital, Peking University, Beijing, PR China; Department of Psychiatry and Behavioral Sciences, Harris County Psychiatric Center, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Genetic Interactions Explain Variance in Cingulate Amyloid Burden: An AV-45 PET Genome-Wide Association and Interaction Study in the ADNI Cohort. BIOMED RESEARCH INTERNATIONAL 2015; 2015:647389. [PMID: 26421299 PMCID: PMC4573220 DOI: 10.1155/2015/647389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Using discrete disease status as the phenotype and computing statistics at the single marker level may not be able to address the underlying biological interactions that contribute to disease mechanism and may contribute to the issue of “missing heritability.” We performed a genome-wide association study (GWAS) and a genome-wide interaction study (GWIS) of an amyloid imaging phenotype, using the data from Alzheimer's Disease Neuroimaging Initiative. We investigated the genetic main effects and interaction effects on cingulate amyloid-beta (Aβ) load in an effort to better understand the genetic etiology of Aβ deposition that is a widely studied AD biomarker. PLINK was used in the single marker GWAS, and INTERSNP was used to perform the two-marker GWIS, focusing only on SNPs with p ≤ 0.01 for the GWAS analysis. Age, sex, and diagnosis were used as covariates in both analyses. Corrected p values using the Bonferroni method were reported. The GWAS analysis revealed significant hits within or proximal to APOE, APOC1, and TOMM40 genes, which were previously implicated in AD. The GWIS analysis yielded 8 novel SNP-SNP interaction findings that warrant replication and further investigation.
Collapse
|
14
|
Luo C, Sun L, Ma J, Wang J, Qu H, Shu D. Association of single nucleotide polymorphisms in the microRNA miR-1596 locus with residual feed intake in chickens. Anim Genet 2015; 46:265-71. [PMID: 25818998 DOI: 10.1111/age.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 02/04/2023]
Abstract
MicroRNAs are an abundant class of small non-coding RNAs that regulate gene expression. Genetic variations in microRNA sequences may be associated with phenotype differences by influencing the expression of microRNAs and/or their targets. This study identified two single nucleotide polymorphisms (SNPs) in the genomic region of the microRNA miR-1596 locus of chicken. Of the two SNPs, one was 95 bp upstream of miR-1596 (g.5678784A>T) and the other was in the middle of the sequence producing the mature microRNA gga-miR-1596-3p (g.5678944A>G). Genotypic distribution of the two SNPs had large differences among 12 chicken breeds (lines), especially between the fast-growing commercial lines and the slow-growing Chinese indigenous breeds for the g.5678784A>T SNP. Only the g.5678784A>T SNP was significantly associated with residual feed intake (RFI) in the F2 population derived from a fast-growing and a slow-growing broiler as well as in the pure Huiyang bearded chicken. The birds with the AA genotype of the g.5678784A>T SNP had lower RFI and higher expression of the mature gga-miR-1596-3p microRNA of miR-1596 than did those with the other genotypes of the same SNP. We also found that the expression of the mature gga-miR-1596-3p microRNA of miR-1596 was significantly associated with RFI. These findings suggest that miR-1596 can become a candidate gene related to RFI, and its genetic variation may contribute to changes in RFI by altering expression levels of the mature gga-miR-1596-3p microRNA in chicken.
Collapse
Affiliation(s)
- C Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | | | | | | | | | | |
Collapse
|
15
|
Spieker EA, Kochunov P, Rowland LM, Sprooten E, Winkler AM, Olvera RL, Almasy L, Duggirala R, Fox PT, Blangero J, Glahn DC, Curran JE. Shared genetic variance between obesity and white matter integrity in Mexican Americans. Front Genet 2015; 6:26. [PMID: 25763009 PMCID: PMC4327744 DOI: 10.3389/fgene.2015.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023] Open
Abstract
Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18–81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m2) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h2 = 0.58), WC (h2 = 0.57), and FA (h2 = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = −0.25), body (ρG = −0.30), and splenium (ρG = −0.26) of the corpus callosum, internal capsule (ρG = −0.29), and thalamic radiation (ρG = −0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = −0.39, p = 0.020; ρG = −0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors.
Collapse
Affiliation(s)
- Elena A Spieker
- Department of Family Medicine, Madigan Army Medical Center Tacoma, WA, USA ; Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine Baltimore, MD, USA
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Physics, University of Maryland Baltimore, MD, USA ; South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Laura M Rowland
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine Baltimore, MD, USA
| | - Emma Sprooten
- Department of Psychiatry, Yale University New Haven, CT, USA ; Olin Neuropsychiatry Research Center, Institute of Living Hartford, CT, USA
| | - Anderson M Winkler
- Department of Psychiatry, Yale University New Haven, CT, USA ; Department of Clinical Neurosciences, Oxford Centre for Functional MRI of the Brain, University of Oxford Oxford, UK
| | - Rene L Olvera
- Department of Psychiatry, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Ravi Duggirala
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University New Haven, CT, USA ; Olin Neuropsychiatry Research Center, Institute of Living Hartford, CT, USA ; Research Imaging Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
16
|
Quednow BB, Brzózka MM, Rossner MJ. Transcription factor 4 (TCF4) and schizophrenia: integrating the animal and the human perspective. Cell Mol Life Sci 2014; 71:2815-35. [PMID: 24413739 PMCID: PMC11113759 DOI: 10.1007/s00018-013-1553-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a genetically complex disease considered to have a neurodevelopmental pathogenesis and defined by a broad spectrum of positive and negative symptoms as well as cognitive deficits. Recently, large genome-wide association studies have identified common alleles slightly increasing the risk for schizophrenia. Among the few schizophrenia-risk genes that have been consistently replicated is the basic Helix-Loop-Helix (bHLH) transcription factor 4 (TCF4). Haploinsufficiency of the TCF4 (formatting follows IUPAC nomenclature: TCF4 protein/protein function, Tcf4 rodent gene cDNA mRNA, TCF4 human gene cDNA mRNA) gene causes the Pitt-Hopkins syndrome-a neurodevelopmental disease characterized by severe mental retardation. Accordingly, Tcf4 null-mutant mice display developmental brain defects. TCF4-associated risk alleles are located in putative coding and non-coding regions of the gene. Hence, subtle changes at the level of gene expression might be relevant for the etiopathology of schizophrenia. Behavioural phenotypes obtained with a mouse model of slightly increased gene dosage and electrophysiological investigations with human risk-allele carriers revealed an overlapping spectrum of schizophrenia-relevant endophenotypes. Most prominently, early information processing and higher cognitive functions appear to be associated with TCF4 risk genotypes. Moreover, a recent human study unravelled gene × environment interactions between TCF4 risk alleles and smoking behaviour that were specifically associated with disrupted early information processing. Taken together, TCF4 is considered as an integrator ('hub') of several bHLH networks controlling critical steps of various developmental, and, possibly, plasticity-related transcriptional programs in the CNS and changes of TCF4 expression also appear to affect brain networks important for information processing. Consequently, these findings support the neurodevelopmental hypothesis of schizophrenia and provide a basis for identifying the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Boris B. Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Experimental and Clinical Pharmacopsychology, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Magdalena M. Brzózka
- Department of Psychiatry, Molecular and Behavioral Neurobiology, Ludwig-Maximillians-University, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Department of Psychiatry, Molecular and Behavioral Neurobiology, Ludwig-Maximillians-University, Nussbaumstr. 7, 80336 Munich, Germany
- Research Group Gene Expression, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Goettingen, 37075 Germany
| |
Collapse
|
17
|
Using sulcal and gyral measures of brain structure to investigate benefits of an active lifestyle. Neuroimage 2014; 91:353-9. [PMID: 24434675 DOI: 10.1016/j.neuroimage.2014.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Physical activity is associated with brain and cognitive health in ageing. Higher levels of physical activity are linked to larger cerebral volumes, lower rates of atrophy, better cognitive function and a lower risk of cognitive decline and dementia. Neuroimaging studies have traditionally focused on volumetric brain tissue measures to test associations between factors of interest (e.g. physical activity) and brain structure. However, cortical sulci may provide additional information to these more standard measures. METHOD Associations between physical activity, brain structure, and cognition were investigated in a large, community-based sample of cognitively healthy individuals (N=317) using both sulcal and volumetric measures. RESULTS Physical activity was associated with narrower width of the Left Superior Frontal Sulcus and the Right Central Sulcus, while volumetric measures showed no association with physical activity. In addition, Left Superior Frontal sulcal width was associated with processing speed and executive function. DISCUSSION These findings suggest sulcal measures may be a sensitive index of physical activity related to cerebral health and cognitive function in healthy older individuals. Further research is required to confirm these findings and to examine how sulcal measures may be most effectively used in neuroimaging.
Collapse
|
18
|
Albanna A, Choudhry Z, Harvey PO, Fathalli F, Cassidy C, Sengupta SM, Iyer SN, Rho A, Lepage M, Malla A, Joober R. TCF4 gene polymorphism and cognitive performance in patients with first episode psychosis. Schizophr Res 2014; 152:124-9. [PMID: 24275585 DOI: 10.1016/j.schres.2013.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/17/2013] [Accepted: 10/28/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Single nucleotide polymorphisms in TCF4 gene have been consistently associated with schizophrenia in genome wide association studies, including the C allele of rs9960767. However, its exact role in modulating the schizophrenia phenotype is not known. AIMS To comprehensively investigate the relationship between rs9960767 risk allele (C) of TCF4 and cognitive performance in patients with first episode psychosis (FEP). METHODS 173 patients with FEP received a comprehensive neurocognitive evaluation and were genotyped for rs9960767. Carriers of the risk allele (CA/CC) were compared to non-carriers (AA) using Multivariate Analysis of Covariance MANCOVA. Ethnicity, negative symptoms and substance abuse were included as covariates. RESULTS Carriers of the risk allele had a statistically significant lower performance in the cognitive domain of Reasoning/Problem-Solving compared to non-carriers (F1,172=4.4, p=.038). There were no significant genotype effects on the other cognitive domains or general cognition. This effect on the Reasoning/Problem-Solving domain remained significant even when controlling for IQ (F1,172=4.3, p=.039). CONCLUSIONS rs9960767 (C) of TCF4 appears to be associated with neurocognitive deficits in the Reasoning/Problem-Solving cognitive domain, in patients with FEP. A confirmation of this finding in a larger sample and including other TCF4 polymorphisms will be needed to gain further validity of this result.
Collapse
Affiliation(s)
| | - Zia Choudhry
- Douglas Mental Health University Institute, Canada; Department of Human Genetics, McGill University, Canada
| | | | - Ferid Fathalli
- Douglas Mental Health University Institute, Canada; Department of Psychiatry, McGill University, Canada
| | | | | | | | - Aldanie Rho
- Douglas Mental Health University Institute, Canada
| | - Martin Lepage
- Douglas Mental Health University Institute, Canada; Department of Psychiatry, McGill University, Canada
| | - Ashok Malla
- Douglas Mental Health University Institute, Canada; Department of Psychiatry, McGill University, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Canada; Department of Human Genetics, McGill University, Canada; Department of Psychiatry, McGill University, Canada; Integrated Program in Neuroscience, McGill University, Canada.
| |
Collapse
|