1
|
Antono JE, Dang S, Auksztulewicz R, Pooresmaeili A. Distinct Patterns of Connectivity between Brain Regions Underlie the Intra-Modal and Cross-Modal Value-Driven Modulations of the Visual Cortex. J Neurosci 2023; 43:7361-7375. [PMID: 37684031 PMCID: PMC10621764 DOI: 10.1523/jneurosci.0355-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Past reward associations may be signaled from different sensory modalities; however, it remains unclear how different types of reward-associated stimuli modulate sensory perception. In this human fMRI study (female and male participants), a visual target was simultaneously presented with either an intra- (visual) or a cross-modal (auditory) cue that was previously associated with rewards. We hypothesized that, depending on the sensory modality of the cues, distinct neural mechanisms underlie the value-driven modulation of visual processing. Using a multivariate approach, we confirmed that reward-associated cues enhanced the target representation in early visual areas and identified the brain valuation regions. Then, using an effective connectivity analysis, we tested three possible patterns of connectivity that could underlie the modulation of the visual cortex: a direct pathway from the frontal valuation areas to the visual areas, a mediated pathway through the attention-related areas, and a mediated pathway that additionally involved sensory association areas. We found evidence for the third model demonstrating that the reward-related information in both sensory modalities is communicated across the valuation and attention-related brain regions. Additionally, the superior temporal areas were recruited when reward was cued cross-modally. The strongest dissociation between the intra- and cross-modal reward-driven effects was observed at the level of the feedforward and feedback connections of the visual cortex estimated from the winning model. These results suggest that, in the presence of previously rewarded stimuli from different sensory modalities, a combination of domain-general and domain-specific mechanisms are recruited across the brain to adjust the visual perception.SIGNIFICANCE STATEMENT Reward has a profound effect on perception, but it is not known whether shared or disparate mechanisms underlie the reward-driven effects across sensory modalities. In this human fMRI study, we examined the reward-driven modulation of the visual cortex by visual (intra-modal) and auditory (cross-modal) reward-associated cues. Using a model-based approach to identify the most plausible pattern of inter-regional effective connectivity, we found that higher-order areas involved in the valuation and attentional processing were recruited by both types of rewards. However, the pattern of connectivity between these areas and the early visual cortex was distinct between the intra- and cross-modal rewards. This evidence suggests that, to effectively adapt to the environment, reward signals may recruit both domain-general and domain-specific mechanisms.
Collapse
Affiliation(s)
- Jessica Emily Antono
- Perception and Cognition Lab, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Germany, Goettingen, 37077, Germany
| | - Shilpa Dang
- Perception and Cognition Lab, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Germany, Goettingen, 37077, Germany
- School of Artificial Intelligence and Data Science, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| | - Ryszard Auksztulewicz
- Center for Cognitive Neuroscience Berlin, Free University Berlin, Berlin, 14195, Germany
| | - Arezoo Pooresmaeili
- Perception and Cognition Lab, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Germany, Goettingen, 37077, Germany
| |
Collapse
|
2
|
A methodological scoping review of the integration of fMRI to guide dMRI tractography. What has been done and what can be improved: A 20-year perspective. J Neurosci Methods 2022; 367:109435. [PMID: 34915047 DOI: 10.1016/j.jneumeth.2021.109435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
Combining MRI modalities is a growing trend in neurosciences. It provides opportunities to investigate the brain architecture supporting cognitive functions. Integrating fMRI activation to guide dMRI tractography offers potential advantages over standard tractography methods. A quick glimpse of the literature on this topic reveals that this technique is challenging, and no consensus or "best practices" currently exist, at least not within a single document. We present the first attempt to systematically analyze and summarize the literature of 80 studies that integrated task-based fMRI results to guide tractography, over the last two decades. We report 19 findings that cover challenges related to sample size, microstructure modelling, seeding methods, multimodal space registration, false negatives/positives, specificity/validity, gray/white matter interface and more. These findings will help the scientific community (1) understand the strengths and limitations of the approaches, (2) design studies using this integrative framework, and (3) motivate researchers to fill the gaps identified. We provide references toward best practices, in order to improve the overall result's replicability, sensitivity, specificity, and validity.
Collapse
|
3
|
Pearce D, Gould RL, Roughley M, Reynolds G, Ward EV, Bhome R, Reeves S. Paranoid and misidentification subtypes of psychosis in dementia. Neurosci Biobehav Rev 2022; 134:104529. [PMID: 35032536 DOI: 10.1016/j.neubiorev.2022.104529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/22/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022]
Abstract
This study aimed to review the neurobiological and neuropsychological correlates of paranoid (persecutory delusions) and misidentification (misidentification delusions and/or hallucinations) subtypes of psychosis in dementia, to establish if they represent distinct subphenotypes. Nine studies were eligible, all included patients with Alzheimer's disease. Greater global cognitive deficits and an accelerated global cognitive decline were observed in the misidentification subtype. Neuroimaging studies showed more marked volume loss in multiple regions in patients with the misidentification subtype, including those involved in object recognition and the processing of information on spatial and temporal context. A single study found greater impairment in visual sustained attention and object recognition in the misidentification subtype. The small number of studies and methodological heterogeneity limit interpretation of the findings. Nevertheless, these findings would tentatively suggest that there may be additional or accelerated pathological change in functional networks involved in visuoperceptual processing in the misidentification subtype. This should be further explored in prospective studies and the investigation extended to other forms of dementia, to gain a transdiagnostic perspective.
Collapse
Affiliation(s)
- Danielle Pearce
- Division of Psychiatry, University College London, W1T 7NF, UK
| | - Rebecca L Gould
- Division of Psychiatry, University College London, W1T 7NF, UK
| | | | - Gemma Reynolds
- Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Emma V Ward
- Middlesex University, The Burroughs, London, NW4 4BT, UK
| | - Rohan Bhome
- Division of Psychiatry, University College London, W1T 7NF, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, W1T 7NF, UK.
| |
Collapse
|
4
|
Kanjlia S, Feigenson L, Bedny M. Neural basis of approximate number in congenital blindness. Cortex 2021; 142:342-356. [PMID: 34352637 DOI: 10.1016/j.cortex.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 01/06/2021] [Accepted: 06/01/2021] [Indexed: 01/29/2023]
Abstract
Although humans are unique among animals in their ability to manipulate symbolic numbers, we share with other species an approximate number sense that allows us to estimate and compare the number of objects or events in a set, such as the number of apples in a tree. Our ability to discriminate the numerosity of two sets decreases as the ratio between them becomes smaller (e.g., 8 vs 16 items is harder to discriminate than 8 vs 32 items). The intraparietal sulcus (IPS) plays a key role in this numerical approximation. Neuronal populations within the IPS code for numerosity, with stimuli of different numerosities eliciting discriminable spatial patterns of activity. The developmental origins of these IPS number representations are not known. Here, we tested the hypothesis that representations of number in the IPS require visual experience with object sets, by working with individuals blind from birth. While undergoing fMRI, congenitally blind (n = 17) and blindfolded sighted (n = 25) participants judged which of two sequences of beeps was more numerous. In both sighted and blind individuals, patterns of activity in the IPS discriminated among different numerosities (4, 8, 16 vs 32), with better discrimination in the IPS of the blind group. In both groups, decoding performance decreased as the ratio between numerosities decreased (e.g., 8 vs 16 was less discriminable than 8 vs 32). These findings suggest that number representations in the IPS either have innate precursors, or that auditory or tactile experience with sets is sufficient for typical development.
Collapse
Affiliation(s)
- Shipra Kanjlia
- Department of Psychology, Carnegie Mellon University, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, USA.
| | - Lisa Feigenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| | - Marina Bedny
- Department of Psychological and Brain Sciences, Johns Hopkins University, USA
| |
Collapse
|
5
|
Alahmadi AAS. Investigating the sub-regions of the superior parietal cortex using functional magnetic resonance imaging connectivity. Insights Imaging 2021; 12:47. [PMID: 33847819 PMCID: PMC8044280 DOI: 10.1186/s13244-021-00993-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives Traditionally, the superior parietal lobule (SPL) is usually investigated as one region of interest, particularly in functional magnetic resonance imaging (fMRI) studies. However, cytoarchitectonic analysis has shown that the SPL has a complex, heterogeneous topology that comprises more than seven sub-regions. Since previous studies have shown how the SPL is significantly involved in different neurological functions—such as visuomotor, cognitive, sensory, higher order, working memory and attention—this study aims to investigate whether these cytoarchitecturally different sub-regions have different functional connectivity to different functional brain networks. Methods This study examined 198 healthy subjects using resting-state fMRI and investigated the functional connectivity of seven sub-regions of the SPL to eight regional functional networks. Results The findings showed that most of the seven sub-regions were functionally connected to these targeted networks and that there are differences between these sub-regions and their functional connectivity patterns. The most consistent functional connectivity was observed with the visual and attention networks. There were also clear functional differences between Brodmann area (BA) 5 and BA7. BA5, with its three sub-regions, had strong functional connectivity to both the sensorimotor and salience networks. Conclusion These findings have enhanced our understanding of the functional organisations of the complexity of the SPL and its varied topology and also provide clear evidence of the functional patterns and involvements of the SPL in major brain functions.
Collapse
Affiliation(s)
- Adnan A S Alahmadi
- Department of Diagnostic Radiology, College of Applied Medical Science, King Abdulaziz University , Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Identification of a distinct association fiber tract "IPS-FG" to connect the intraparietal sulcus areas and fusiform gyrus by white matter dissection and tractography. Sci Rep 2020; 10:15475. [PMID: 32968114 PMCID: PMC7511306 DOI: 10.1038/s41598-020-72471-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/02/2020] [Indexed: 02/02/2023] Open
Abstract
The intraparietal sulcus (IPS) in the posterior parietal cortex (PPC) is well-known as an interface for sensorimotor integration in visually guided actions. However, our understanding of the human neural network between the IPS and the cortical visual areas has been devoid of anatomical specificity. We here identified a distinctive association fiber tract “IPS-FG” to connect the IPS areas and the fusiform gyrus (FG), a high-level visual region, by white matter dissection and tractography. The major fiber bundles of this tract appeared to arise from the medial bank of IPS, in the superior parietal lobule (SPL), and project to the FG on the ventral temporal cortex (VTC) in post-mortem brains. This tract courses vertically at the temporo-parieto-occipital (TPO) junction where several fiber tracts intersect to connect the dorsal-to-ventral cortical regions, including the vertical occipital fasciculus (VOF). We then analyzed the structural connectivity of this tract with diffusion-MRI (magnetic resonance imaging) tractography. The quantitative tractography analysis revealed the major streamlines of IPS-FG interconnect the posterior IPS areas (e.g., IP1, IPS1) with FG (e.g., TF, FFC, VVC, PHA2, PIT) on the Human Connectome Project multimodal parcellation atlas (HCP MMP 1.0). Since the fronto-parietal network, including the posterior IPS areas, is recruited by multiple cognitive demands, the IPS-FG could play a role in the visuomotor integration as well as the top-down modulation of various cognitive functions reciprocally.
Collapse
|
7
|
Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V. The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 2019; 10:5601. [PMID: 31811149 PMCID: PMC6898452 DOI: 10.1038/s41467-019-13634-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
While predominant models of visual word form area (VWFA) function argue for its specific role in decoding written language, other accounts propose a more general role of VWFA in complex visual processing. However, a comprehensive examination of structural and functional VWFA circuits and their relationship to behavior has been missing. Here, using high-resolution multimodal imaging data from a large Human Connectome Project cohort (N = 313), we demonstrate robust patterns of VWFA connectivity with both canonical language and attentional networks. Brain-behavior relationships revealed a striking pattern of double dissociation: structural connectivity of VWFA with lateral temporal language network predicted language, but not visuo-spatial attention abilities, while VWFA connectivity with dorsal fronto-parietal attention network predicted visuo-spatial attention, but not language abilities. Our findings support a multiplex model of VWFA function characterized by distinct circuits for integrating language and attention, and point to connectivity-constrained cognition as a key principle of human brain organization.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA.
- Department of Psychology, Santa Clara University, Santa Clara, CA, 95053, USA.
- Neuroscience Program, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Demian Wassermann
- Parietal, Inria Saclay Île-de-France, CEA, Université Paris-Sud, 1 Rue Honoré d'Estienne d'Orves, 91120, Palaiseau, France
| | - Daniel A Abrams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA
| | - John Kochalka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA
| | - Guillermo Gallardo-Diez
- Athena Project Team, INRIA Sophia Antipolis-Méditerranée, 06902, Sophia Antipolis CEDEX, France
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94394, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94394, USA.
- Stanford Neuroscience Institute, Stanford University, Stanford, CA, 94394, USA.
| |
Collapse
|
8
|
Richter M, Amunts K, Mohlberg H, Bludau S, Eickhoff SB, Zilles K, Caspers S. Cytoarchitectonic segregation of human posterior intraparietal and adjacent parieto-occipital sulcus and its relation to visuomotor and cognitive functions. Cereb Cortex 2019; 29:1305-1327. [PMID: 30561508 PMCID: PMC6373694 DOI: 10.1093/cercor/bhy245] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Human posterior intraparietal sulcus (pIPS) and adjacent posterior wall of parieto-occipital sulcus (POS) are functionally diverse, serving higher motor, visual and cognitive functions. Its microstructural basis, though, is still largely unknown. A similar or even more pronounced architectonical complexity, as described in monkeys, could be assumed. We cytoarchitectonically mapped the pIPS/POS in 10 human postmortem brains using an observer-independent, quantitative parcellation. 3D-probability maps were generated within MNI reference space and used for functional decoding and meta-analytic coactivation modeling based on the BrainMap database to decode the general structural-functional organization of the areas. Seven cytoarchitectonically distinct areas were identified: five within human pIPS, three on its lateral (hIP4-6) and two on its medial wall (hIP7-8); and two (hPO1, hOc6) in POS. Mediocaudal areas (hIP7, hPO1) were predominantly involved in visual processing, whereas laterorostral areas (hIP4-6, 8) were associated with higher cognitive functions, e.g. counting. This shift was mirrored by systematic changes in connectivity, from temporo-occipital to premotor and prefrontal cortex, and in cytoarchitecture, from prominent Layer IIIc pyramidal cells to homogeneous neuronal distribution. This architectonical mosaic within human pIPS/POS represents a structural basis of its functional and connectional heterogeneity. The new 3D-maps of the areas enable dedicated assessments of structure-function relationships.
Collapse
Affiliation(s)
- Monika Richter
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| |
Collapse
|
9
|
Dimond D, Perry R, Iaria G, Bray S. Visuospatial short-term memory and dorsal visual gray matter volume. Cortex 2018; 113:184-190. [PMID: 30660956 DOI: 10.1016/j.cortex.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022]
Abstract
Visual short-term memory (VSTM) is an important cognitive capacity that varies across the healthy adult population and is affected in several neurodevelopmental disorders. It has been suggested that neuroanatomy places limits on this capacity through a map architecture that creates competition for cortical space. This suggestion has been supported by the finding that primary visual (V1) gray matter volume (GMV) is positively associated with VSTM capacity. However, evidence from neurodevelopmental disorders suggests that the dorsal visual stream is more broadly vulnerable and atypical volumes of other map-containing regions may therefore play a role. For example, Turner syndrome is associated with concomitantly reduced volume of the right intraparietal sulcus (IPS) and deficits in VSTM. As posterior IPS regions (IPS0-2) contain topographic maps, together this suggests that posterior IPS volumes may also associate with VSTM. In this study, we assessed VSTM using two tasks, as well as a composite score, and used voxel-based morphometry of T1-weighted magnetic resonance images to assess GMV in V1 and right IPS0-2 in 32 healthy young adults (16 female). For comparison with previous work, we also assessed associations between VSTM and voxel-wise GMV on a whole-brain basis. We found that total brain volume (TBV) significantly correlated with VSTM, and that correlations between VSTM and regional GMV were substantially reduced in strength when controlling for TBV. In our whole-brain analysis, we found that VSTM was associated with GMV of clusters centered around the right putamen and left Rolandic operculum, though only when TBV was not controlled for. Our results suggest that VSTM ability is unlikely to be accounted for by the volume of an individual cortical region, and may instead rely on distributed structural properties.
Collapse
Affiliation(s)
- Dennis Dimond
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada.
| | - Rebecca Perry
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Giuseppe Iaria
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Vaziri-Pashkam M, Taylor J, Xu Y. Spatial Frequency Tolerant Visual Object Representations in the Human Ventral and Dorsal Visual Processing Pathways. J Cogn Neurosci 2018; 31:49-63. [PMID: 30188780 DOI: 10.1162/jocn_a_01335] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Primate ventral and dorsal visual pathways both contain visual object representations. Dorsal regions receive more input from magnocellular system while ventral regions receive inputs from both magnocellular and parvocellular systems. Due to potential differences in the spatial sensitivites of manocellular and parvocellular systems, object representations in ventral and dorsal regions may differ in how they represent visual input from different spatial scales. To test this prediction, we asked observers to view blocks of images from six object categories, shown in full spectrum, high spatial frequency (SF), or low SF. We found robust object category decoding in all SF conditions as well as SF decoding in nearly all the early visual, ventral, and dorsal regions examined. Cross-SF decoding further revealed that object category representations in all regions exhibited substantial tolerance across the SF components. No difference between ventral and dorsal regions was found in their preference for the different SF components. Further comparisons revealed that, whereas differences in the SF component separated object category representations in early visual areas, such a separation was much smaller in downstream ventral and dorsal regions. In those regions, variations among the object categories played a more significant role in shaping the visual representational structures. Our findings show that ventral and dorsal regions are similar in how they represent visual input from different spatial scales and argue against a dissociation of these regions based on differential sensitivity to different SFs.
Collapse
Affiliation(s)
| | | | - Yaoda Xu
- Harvard University.,Yale University
| |
Collapse
|
11
|
Visuomotor Prediction Errors Modulate EEG Activity Over Parietal Cortex. Sci Rep 2018; 8:12513. [PMID: 30131580 PMCID: PMC6104041 DOI: 10.1038/s41598-018-30609-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
The parietal cortex is thought to be involved in visuomotor adaptation, yet it remains unclear whether it is specifically modulated by visuomotor prediction errors (i.e. PEs; mismatch between the predicted and actual visual consequences of the movement). One reason for this is that PEs tend to be associated with task errors, as well as changes in motor output and visual input, making them difficult to isolate. Here this issue is addressed using electroencephalography. A strategy (STR) condition, in which participants were instructed on how to counter a 45° visuomotor rotation, was compared to a condition in which participants had adapted to the rotation (POST). Both conditions were matched for task errors and movement kinematics, with the only difference being the presence of PEs in STR. Results revealed strong parietal modulations in current source density and low theta (2–4 Hz) power shortly after movement onset in STR vs. POST, followed by increased alpha/low beta (8–18 Hz) power during much of the post-movement period. Given recent evidence showing that feedforward and feedback information is respectively carried by theta and alpha/beta oscillations, the observed power modulations may reflect the bottom-up propagation of PEs and the top-down revision of predictions.
Collapse
|
12
|
Xu Y. A Tale of Two Visual Systems: Invariant and Adaptive Visual Information Representations in the Primate Brain. Annu Rev Vis Sci 2018; 4:311-336. [PMID: 29949722 DOI: 10.1146/annurev-vision-091517-033954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual information processing contains two opposite needs. There is both a need to comprehend the richness of the visual world and a need to extract only pertinent visual information to guide thoughts and behavior at a given moment. I argue that these two aspects of visual processing are mediated by two complementary visual systems in the primate brain-specifically, the occipitotemporal cortex (OTC) and the posterior parietal cortex (PPC). The role of OTC in visual processing has been documented extensively by decades of neuroscience research. I review here recent evidence from human imaging and monkey neurophysiology studies to highlight the role of PPC in adaptive visual processing. I first document the diverse array of visual representations found in PPC. I then describe the adaptive nature of visual representation in PPC by contrasting visual processing in OTC and PPC and by showing that visual representations in PPC largely originate from OTC.
Collapse
Affiliation(s)
- Yaoda Xu
- Visual Sciences Laboratory, Psychology Department, Harvard University, Cambridge, Massachusetts 02138, USA;
| |
Collapse
|
13
|
Rohr CS, Vinette SA, Parsons KAL, Cho IYK, Dimond D, Benischek A, Lebel C, Dewey D, Bray S. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls. Cereb Cortex 2018; 27:4350-4360. [PMID: 27522072 DOI: 10.1093/cercor/bhw236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
Early childhood is a period of profound neural development and remodeling during which attention skills undergo rapid maturation. Attention networks have been extensively studied in the adult brain, yet relatively little is known about changes in early childhood, and their relation to cognitive development. We investigated the association between age and functional connectivity (FC) within the dorsal attention network (DAN) and the association between FC and attention skills in early childhood. Functional magnetic resonance imaging data was collected during passive viewing in 44 typically developing female children between 4 and 7 years whose sustained, selective, and executive attention skills were assessed. FC of the intraparietal sulcus (IPS) and the frontal eye fields (FEF) was computed across the entire brain and regressed against age. Age was positively associated with FC between core nodes of the DAN, the IPS and the FEF, and negatively associated with FC between the DAN and regions of the default-mode network. Further, controlling for age, FC between the IPS and FEF was significantly associated with selective attention. These findings add to our understanding of early childhood development of attention networks and suggest that greater FC within the DAN is associated with better selective attention skills.
Collapse
Affiliation(s)
- Christiane S Rohr
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Sarah A Vinette
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Kari A L Parsons
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Ivy Y K Cho
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Dennis Dimond
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alina Benischek
- Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Catherine Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8
| | - Deborah Dewey
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada T2N 4Z6
| | - Signe Bray
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4.,Child and Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada T3B 6A8.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada, T3B 6A8.,Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
14
|
Schel MA, Klingberg T. Specialization of the Right Intraparietal Sulcus for Processing Mathematics During Development. Cereb Cortex 2018; 27:4436-4446. [PMID: 27566976 DOI: 10.1093/cercor/bhw246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/11/2016] [Indexed: 11/14/2022] Open
Abstract
Mathematical ability, especially perception of numbers and performance of arithmetics, is known to rely on the activation of intraparietal sulcus (IPS). However, reasoning ability and working memory, 2 highly associated abilities also activate partly overlapping regions. Most studies aimed at localizing mathematical function have used group averages, where individual variability is averaged out, thus confounding the anatomical specificity when localizing cognitive functions. Here, we analyze the functional anatomy of the intraparietal cortex by using individual analysis of subregions of IPS based on how they are structurally connected to frontal, parietal, and occipital cortex. Analysis of cortical thickness showed that the right anterior IPS, defined by its connections to the frontal lobe, was associated with both visuospatial working memory, and mathematics in 6-year-old children. This region specialized during development to be specifically related to mathematics, but not visuospatial working memory in adolescents and adults. This could be an example of interactive specialization, where interacting with the environment in combination with interactions between cortical regions leads from a more general role of right anterior IPS in spatial processing, to a specialization of this region for mathematics.
Collapse
Affiliation(s)
- Margot A Schel
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
15
|
Meier K, Partanen M, Giaschi D. Neural Correlates of Speed-Tuned Motion Perception in Healthy Adults. Perception 2018; 47:660-683. [PMID: 29683390 DOI: 10.1177/0301006618771463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been suggested that slow and medium-to-fast speeds of motion may be processed by at least partially separate mechanisms. The purpose of this study was to establish the cortical areas activated during motion-defined form and global motion tasks as a function of speed, using functional magnetic resonance imaging. Participants performed discrimination tasks with random dot stimuli at high coherence, at coherence near their own thresholds, and for random motion. Stimuli were moving at 0.1 or 5 deg/s. In the motion-defined form task, lateral occipital complex, V5/MT+ and intraparietal sulcus showed greater activation by high or near-threshold coherence than by random motion stimuli; V5/MT+ and intraparietal sulcus demonstrated greater activation for 5 than 0.1 deg/s dot motion. In the global motion task, only high coherence stimuli elicited significant activation over random motion; this activation was primarily in nonclassical motion areas. V5/MT+ was active for all motion conditions and showed similar activation for coherent and random motion. No regions demonstrated speed-tuning effects for global motion. These results suggest that similar cortical systems are activated by slow- and medium-speed stimuli during these tasks in healthy adults.
Collapse
Affiliation(s)
- Kimberly Meier
- Department of Psychology, 8166 University of British Columbia , Vancouver, British Columbia, Canada
| | - Marita Partanen
- Department of Education and Counselling Psychology and Special Education, 8166 University of British Columbia , Vancouver, British Columbia, Canada
| | - Deborah Giaschi
- Department of Ophthalmology and Visual Sciences, 8166 University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Abstract
This chapter summarizes current knowledge on the structural segregation of the parietal lobe based on cyto-, myelo-, and receptorarchitectonic studies, as well as the connectivity of this brain region with other cortical and subcortical structures. The anterior part of the human parietal cortex comprises the somatosensory areas 3a, 3b, 1, and 2, whereas the posterior part contains seven multimodal areas in both the superior and inferior parietal lobules. Available cytoarchitectonic maps of the human intraparietal sulcus do not provide a complete picture yet. Myelo- and receptorarchitectonic analyses largely confirm but also further differentiate the cytoarchitectonic maps. With the advent of diffusion imaging and functional connectivity studies, further insight into the structural and functional organization has been achieved. It shows that the posterior parietal cortex is a key node in anatomic networks connecting visual with (pre)frontal cortices, and temporal with parts of frontal cortices. Here, the superior longitudinal fascicle and its components play a major role, together with the arcuate and middle longitudinal fascicles. Major connections with subcortical structures, particularly the basal ganglia and thalamic nuclei, are discussed. Finally, the importance of precise maps of parietal areas for defining seed regions in structural and functional connectivity studies is emphasized.
Collapse
Affiliation(s)
- Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Kanayet FJ, Mattarella-Micke A, Kohler PJ, Norcia AM, McCandliss BD, McClelland JL. Distinct Representations of Magnitude and Spatial Position within Parietal Cortex during Number-Space Mapping. J Cogn Neurosci 2017; 30:200-218. [PMID: 29040015 DOI: 10.1162/jocn_a_01199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mapping numbers onto space is foundational to mathematical cognition. These cognitive operations are often conceptualized in the context of a "mental number line" and involve multiple brain regions in or near the intraparietal sulcus (IPS) that have been implicated both in numeral and spatial cognition. Here we examine possible differentiation of function within these brain areas in relating numbers to spatial positions. By isolating the planning phase of a number line task and introducing spatiotopic mapping tools from fMRI into mental number line task research, we are able to focus our analysis on the neural activity of areas in anterior IPS (aIPS) previously associated with number processing and on spatiotopically organized areas in and around posterior IPS (pIPS), while participants prepare to place a number on a number line. Our results support the view that the nonpositional magnitude of a numerical symbol is coded in aIPS, whereas the position of a number in space is coded in posterior areas of IPS. By focusing on the planning phase, we are able to isolate activation related to the cognitive, rather than the sensory-motor, aspects of the task. Also, to allow the separation of spatial position from magnitude, we tested both a standard positive number line (0 to 100) and a zero-centered mixed number line (-100 to 100). We found evidence of a functional dissociation between aIPS and pIPS: Activity in aIPS was associated with a landmark distance effect not modulated by spatial position, whereas activity in pIPS revealed a contralateral preference effect.
Collapse
|
18
|
Sours C, Raghavan P, Foxworthy WA, Meredith MA, El Metwally D, Zhuo J, Gilmore JH, Medina AE, Gullapalli RP. Cortical multisensory connectivity is present near birth in humans. Brain Imaging Behav 2017; 11:1207-1213. [PMID: 27581715 PMCID: PMC5332431 DOI: 10.1007/s11682-016-9586-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
How the newborn brain adapts to its new multisensory environment has been a subject of debate. Although an early theory proposed that the brain acquires multisensory features as a result of postnatal experience, recent studies have demonstrated that the neonatal brain is already capable of processing multisensory information. For multisensory processing to be functional, it is a prerequisite that multisensory convergence among neural connections occur. However, multisensory connectivity has not been examined in human neonates nor are its location(s) or afferent sources understood. We used resting state functional MRI (fMRI) in two independent cohorts of infants to examine the functional connectivity of two cortical areas known to be multisensory in adults: the intraparietal sulcus (IPS) and the superior temporal sulcus (STS). In the neonate, the IPS was found to demonstrate significant functional connectivity with visual association and somatosensory association areas, while the STS showed significant functional connectivity with the visual association areas, primary auditory cortex, and somatosensory association areas. Our findings establish that each of these areas displays functional communication with cortical regions representing various sensory modalities. This demonstrates the presence of cortical areas with converging sensory inputs, representing that the functional architecture needed for multisensory processing is already present within the first weeks of life.
Collapse
Affiliation(s)
- Chandler Sours
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Prashant Raghavan
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - W Alex Foxworthy
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Dina El Metwally
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Jiachen Zhuo
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Alexandre E Medina
- Department of Pediatrics, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA.
| | - Rao P Gullapalli
- Magnetic Resonance Research Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Sours C, Raghavan P, Medina AE, Roys S, Jiang L, Zhuo J, Gullapalli RP. Structural and Functional Integrity of the Intraparietal Sulcus in Moderate and Severe Traumatic Brain Injury. J Neurotrauma 2017; 34:1473-1481. [PMID: 27931179 DOI: 10.1089/neu.2016.4570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Severe and moderate traumatic brain injury (sTBI) often results in long-term cognitive deficits such as reduced processing speed and attention. The intraparietal sulcus (IPS) is a neocortical structure that plays a crucial role in the deeply interrelated processes of multi-sensory processing and top down attention. Therefore, we hypothesized that disruptions in the functional and structural connections of the IPS may play a role in the development of such deficits. To examine these connections, we used resting state magnetic resonance imaging (rsfMRI and diffusion kurtosis imaging (DKI) in a cohort of 27 patients with sTBI (29.3 ± 8.9 years) and 27 control participants (29.8 ± 10.3 years). Participants were prospectively recruited and received rsfMRI and neuropsychological assessments including the Automated Neuropsychological Assessment Metrics (ANAM) at greater than 6 months post-injury. A subset of participants received a DKI scan. Results suggest that patients with sTBI performed worse than control participants on multiple subtests of the ANAM suggesting reduced cognitive performance. Reduced resting state functional connectivity between the IPS and cortical regions associated with multi-sensory processing and the dorsal attention network was observed in the patients with sTBI. The patients also showed reduced structural integrity of the superior longitudinal fasciculus (SLF), a key white matter tract connecting the IPS to anterior frontal areas, as measured by reduced mean kurtosis (MK) and fractional anisotropy (FA) and increased mean diffusivity (MD). Further, this reduced structural integrity of the SLF was associated with a reduction in overall cognitive performance. These findings suggest that disruptions in the structural and functional connectivity of the IPS may contribute to chronic cognitive deficits experienced by these patients.
Collapse
Affiliation(s)
- Chandler Sours
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Prashant Raghavan
- 2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Alexandre E Medina
- 3 Department of Pediatrics, University of Maryland School of Medicine , Baltimore, Maryland
| | | | - Li Jiang
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jiachen Zhuo
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Rao P Gullapalli
- 1 Magnetic Resonance Research Center, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
20
|
Dombert PL, Kuhns A, Mengotti P, Fink GR, Vossel S. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems. Neuroimage 2016; 142:553-564. [PMID: 27523448 DOI: 10.1016/j.neuroimage.2016.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022] Open
Abstract
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations.
Collapse
Affiliation(s)
- Pascasie L Dombert
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany.
| | - Anna Kuhns
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany
| | - Paola Mengotti
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany; Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Simone Vossel
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany; Department of Psychology, University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
21
|
Motor Skill Acquisition Promotes Human Brain Myelin Plasticity. Neural Plast 2016; 2016:7526135. [PMID: 27293906 PMCID: PMC4884808 DOI: 10.1155/2016/7526135] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Experience-dependent structural changes are widely evident in gray matter. Using diffusion weighted imaging (DWI), the neuroplastic effect of motor training on white matter in the brain has been demonstrated. However, in humans it is not known whether specific features of white matter relate to motor skill acquisition or if these structural changes are associated to functional network connectivity. Myelin can be objectively quantified in vivo and used to index specific experience-dependent change. In the current study, seventeen healthy young adults completed ten sessions of visuomotor skill training (10,000 total movements) using the right arm. Multicomponent relaxation imaging was performed before and after training. Significant increases in myelin water fraction, a quantitative measure of myelin, were observed in task dependent brain regions (left intraparietal sulcus [IPS] and left parieto-occipital sulcus). In addition, the rate of motor skill acquisition and overall change in myelin water fraction in the left IPS were negatively related, suggesting that a slower rate of learning resulted in greater neuroplastic change. This study provides the first evidence for experience-dependent changes in myelin that are associated with changes in skilled movements in healthy young adults.
Collapse
|
22
|
Neale C, Johnston P, Hughes M, Scholey A. Functional Activation during the Rapid Visual Information Processing Task in a Middle Aged Cohort: An fMRI Study. PLoS One 2015; 10:e0138994. [PMID: 26488289 PMCID: PMC4619344 DOI: 10.1371/journal.pone.0138994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
The Rapid Visual Information Processing (RVIP) task, a serial discrimination task where task performance believed to reflect sustained attention capabilities, is widely used in behavioural research and increasingly in neuroimaging studies. To date, functional neuroimaging research into the RVIP has been undertaken using block analyses, reflecting the sustained processing involved in the task, but not necessarily the transient processes associated with individual trial performance. Furthermore, this research has been limited to young cohorts. This study assessed the behavioural and functional magnetic resonance imaging (fMRI) outcomes of the RVIP task using both block and event-related analyses in a healthy middle aged cohort (mean age = 53.56 years, n = 16). The results show that the version of the RVIP used here is sensitive to changes in attentional demand processes with participants achieving a 43% accuracy hit rate in the experimental task compared with 96% accuracy in the control task. As shown by previous research, the block analysis revealed an increase in activation in a network of frontal, parietal, occipital and cerebellar regions. The event related analysis showed a similar network of activation, seemingly omitting regions involved in the processing of the task (as shown in the block analysis), such as occipital areas and the thalamus, providing an indication of a network of regions involved in correct trial performance. Frontal (superior and inferior frontal gryi), parietal (precuenus, inferior parietal lobe) and cerebellar regions were shown to be active in both the block and event-related analyses, suggesting their importance in sustained attention/vigilance. These networks and the differences between them are discussed in detail, as well as implications for future research in middle aged cohorts.
Collapse
Affiliation(s)
- Chris Neale
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, 3122, Australia
- Stockholm Environment Institute, University of York, York, YO10 5DD, England
- * E-mail:
| | - Patrick Johnston
- School of Psychology, University of York, York, YO10 5DD, England
- School of Psychology & Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew Hughes
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, 3122, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC, 3122, Australia
| |
Collapse
|
23
|
Vinette SA, Bray S. Variation in functional connectivity along anterior-to-posterior intraparietal sulcus, and relationship with age across late childhood and adolescence. Dev Cogn Neurosci 2015; 13:32-42. [PMID: 25951196 PMCID: PMC6989812 DOI: 10.1016/j.dcn.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 11/23/2022] Open
Abstract
The intraparietal sulcus (IPS), a region in the dorsal attention network (DAN), has been implicated in multi-sensory attention and working memory. Working memory and attention develop across childhood; changes in functional connectivity within the DAN may relate to this maturation. Previous findings regarding fronto-parietal intrinsic functional connectivity age-effects were mixed. Our study aimed to circumvent limitations of previous work using a large cross-sectional sample, 183 typically developing participants 6.5-20 years, from the Autism Brain Imaging Data Exchange, and seed regions along the anterior-to-posterior axis of the IPS. These seeds, IPS0-4, were entered into functional connectivity models. Group-level models investigated differential connectivity along the IPS and relationships with age. Anterior IPS3/4 exhibited greater connectivity with sensorimotor/pre-motor regions. Posterior IPS0/1 demonstrated greater connectivity with dorsal and ventral visual regions. Positive age-effects were found between IPS3-4 and visual regions. Negative age-effects were found between IPS and superior parietal and medial orbitofrontal cortices. Follow-up region of interest analyses were used to estimate age-effects for DAN and anticorrelated default mode network regions. Results suggest age-effects on IPS functional connectivity are relatively modest, and may differ pre- and across-adolescence. Studying typical age-related connectivity variability within this network may help to understand neurodevelopmental disorders marked by impaired attention.
Collapse
Affiliation(s)
- Sarah A Vinette
- Alberta Children's Hospital Research Institute, Room 293, Heritage Medical Research Building, 3330 Hospital Drive, NW, Calgary, AB, Canada T2N 4N1; Department of Radiology, Cumming School of Medicine, University of Calgary, Room 812, North Tower, Foothills Medical Centre, 1403 - 29th Street NW, Calgary, AB, Canada T2N 2T9; Child and Adolescent Imaging Research Program, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8.
| | - Signe Bray
- Alberta Children's Hospital Research Institute, Room 293, Heritage Medical Research Building, 3330 Hospital Drive, NW, Calgary, AB, Canada T2N 4N1; Department of Radiology, Cumming School of Medicine, University of Calgary, Room 812, North Tower, Foothills Medical Centre, 1403 - 29th Street NW, Calgary, AB, Canada T2N 2T9; Department of Paediatrics, Cumming School of Medicine, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8; Child and Adolescent Imaging Research Program, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8.
| |
Collapse
|
24
|
Dissociable cortical pathways for qualitative and quantitative mechanisms in the face inversion effect. J Neurosci 2015; 35:4268-79. [PMID: 25762673 DOI: 10.1523/jneurosci.3960-14.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Humans' ability to recognize objects is remarkably robust across a variety of views unless faces are presented upside-down. Whether this face inversion effect (FIE) results from qualitative (distinct mechanisms) or quantitative processing differences (a matter of degree within common mechanisms) between upright and inverted faces has been intensely debated. Studies have focused on preferential responses to faces in face-specific brain areas, although face recognition also involves nonpreferential responses in non-face-specific brain areas. By using dynamic causal modeling with Bayesian model selection, here we show that dissociable cortical pathways are responsible for qualitative and quantitative mechanisms in the FIE in the distributed network for face recognition. When faces were upright, the early visual cortex (VC) and occipital and fusiform face areas (OFA, FFA) suppressed couplings to the lateral occipital cortex (LO), a primary locus of object processing. In contrast, they did not inhibit the LO when faces were inverted but increased couplings to the intraparietal sulcus, which has been associated with visual working memory. Furthermore, we found that upright and inverted face processing together involved the face network consisting of the VC, OFA, FFA, and inferior frontal gyrus. Specifically, modulatory connectivity within the common pathways (VC-OFA), implicated in the parts-based processing of faces, strongly correlated with behavioral FIE performance. The orientation-dependent dynamic reorganization of effective connectivity indicates that the FIE is mediated by both qualitative and quantitative differences in upright and inverted face processing, helping to resolve a central debate over the mechanisms of the FIE.
Collapse
|
25
|
Killebrew K, Mruczek R, Berryhill ME. Intraparietal regions play a material general role in working memory: Evidence supporting an internal attentional role. Neuropsychologia 2015; 73:12-24. [PMID: 25940098 DOI: 10.1016/j.neuropsychologia.2015.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Abstract
Determining the role of intraparietal sulcus (IPS) regions in working memory (WM) remains a topic of considerable interest and lack of clarity. One group of hypotheses, the internal attention view, proposes that the IPS plays a material general role in maintaining information in WM. An alternative viewpoint, the pure storage account, proposes that the IPS in each hemisphere maintains material specific (e.g., left--phonological; right--visuospatial) information. Yet, adjudication between competing theoretical perspectives is complicated by divergent findings from different methodologies and their use of different paradigms, perhaps most notably between functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). For example, fMRI studies typically use full field stimulus presentations and report bilateral IPS activation, whereas EEG studies direct attention to a single hemifield and report a contralateral bias in both hemispheres. Here, we addressed this question by applying a regions-of-interest fMRI approach to elucidate IPS contributions to WM. Importantly, we manipulated stimulus type (verbal, visuospatial) and the cued hemifield to assess the degree to which IPS activations reflect stimulus specific or stimulus general processing consistent with the pure storage or internal attention hypotheses. These data revealed significant contralateral bias along regions IPS0-5 regardless of stimulus type. Also present was a weaker stimulus-based bias apparent in stronger left lateralized activations for verbal stimuli and stronger right lateralized activations for visuospatial stimuli. However, there was no consistent stimulus-based lateralization of activity. Thus, despite the observation of stimulus-based modulation of spatial lateralization this pattern was bilateral. As such, although it is quantitatively underspecified, our results are overall more consistent with an internal attention view that the IPS plays a material general role in refreshing the contents of WM.
Collapse
Affiliation(s)
| | - Ryan Mruczek
- University of Nevada, Reno, NV 89557, USA; Worcester State University, Worcester, MA 01602, USA
| | | |
Collapse
|
26
|
Abstract
Human frontoparietal cortex has long been implicated as a source of attentional control. However, the mechanistic underpinnings of these control functions have remained elusive due to limitations of neuroimaging techniques that rely on anatomical landmarks to localize patterns of activation. The recent advent of topographic mapping via functional magnetic resonance imaging (fMRI) has allowed the reliable parcellation of the network into 18 independent subregions in individual subjects, thereby offering unprecedented opportunities to address a wide range of empirical questions as to how mechanisms of control operate. Here, we review the human neuroimaging literature that has begun to explore space-based, feature-based, object-based and category-based attentional control within the context of topographically defined frontoparietal cortex.
Collapse
|
27
|
Domin M, Langner S, Hosten N, Lotze M. Comparison of parameter threshold combinations for diffusion tensor tractography in chronic stroke patients and healthy subjects. PLoS One 2014; 9:e98211. [PMID: 24853163 PMCID: PMC4031143 DOI: 10.1371/journal.pone.0098211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/30/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Although quantitative evaluation of diffusion tensor imaging (DTI) data seemed to be extremely important for clinical research its application is under debate. Besides fractional anisotropy (FA) the quantitative comparison between hemispheres of the number of fibers reconstructed by means of diffusion tensor tractography (DTT) is commonly used. However, the tractography-related parameters FA, minimum tract length (LENGTH) and the angle between two contiguous tracking steps (ANGLE) are inconsistently applied. Using 18 combinations we tested for the influence of parameter thresholds on the amount of reconstructed fibers for the posterior pyramidal tract in both hemispheres in order to obtain meaningful thresholds for DTT. RESULTS In 14 chronic stroke patients with unilateral lesions of the pyramidal tract around the height of the internal capsule and considerable motor deficits a 3-way repeated-measures ANOVA showed a significant interaction between the effects of FA and ANGLE level on reconstructed fiber lateralization, F (2.9, 37.67) = 3.01, p = 0.044, and a significant main effect FA, F (1.4, 18.1) = 11.58, p = 0.001. Post-hoc pairwise comparisons showed that this interaction was completely driven by FA. In 22 right-handed healthy subjects no significant interactions or main effects could be found. CONCLUSION The parameter threshold combinations with highest FA showed highest effect. ANGLE and LENGTH insofar influenced the lateralization effect when selected as liberal as possible, short LENGTH and large ANGLE thresholds. The DTT approach should be used with great care since results are highly dependent on the thresholds applied.
Collapse
Affiliation(s)
- Martin Domin
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Sönke Langner
- Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Norbert Hosten
- Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology and Neuroradiology, University Medicine, Greifswald, M/V, Germany
| |
Collapse
|
28
|
Bray S, Almas R, Arnold AEGF, Iaria G, MacQueen G. Intraparietal Sulcus Activity and Functional Connectivity Supporting Spatial Working Memory Manipulation. Cereb Cortex 2013; 25:1252-64. [DOI: 10.1093/cercor/bht320] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Hanslmayr S, Volberg G, Wimber M, Dalal SS, Greenlee MW. Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Curr Biol 2013; 23:2273-2278. [PMID: 24184106 DOI: 10.1016/j.cub.2013.09.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/23/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
Although we have the impression that visual information flows continuously from our sensory channels, recent studies indicate that this is likely not the case. Rather, we sample visual stimuli rhythmically, oscillating at 5-10 Hz. Electroencephalography (EEG) studies have demonstrated that this rhythmicity is reflected by the phase of ongoing brain oscillations in the same frequency. Theoretically, brain oscillations could underlie the rhythmic nature of perception by providing transient time windows for information exchange, but this question has not yet been systematically addressed. We recorded simultaneous EEG-fMRI while human participants performed a contour integration task and show that ongoing brain oscillations prior to stimulus onset predict functional connectivity between higher and lower level visual processing regions. Specifically, our results demonstrate that the phase of a 7 Hz oscillation prior to stimulus onset predicts perceptual performance and the bidirectional information flow between the left lateral occipital cortex and right intraparietal sulcus, as indicated by psychophysiological interaction and dynamic causal modeling. These findings suggest that human brain oscillations periodically gate visual perception at around 7 Hz by providing transient time windows for long-distance cortical information transfer. Such gating might be a general mechanism underlying the rhythmic nature of human perception.
Collapse
Affiliation(s)
- Simon Hanslmayr
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany; Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany; School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gregor Volberg
- Department of Experimental Psychology, University of Regensburg, 93053 Regensburg, Germany.
| | - Maria Wimber
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; MRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Sarang S Dalal
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany; Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Mark W Greenlee
- Department of Experimental Psychology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|