1
|
Nolte C, Michalska KJ, Nelson PM, Demir-Lira ӦE. Interactive roles of preterm-birth and socioeconomic status in cortical thickness of language-related brain structures: Findings from the Adolescent Brain Cognitive Development (ABCD) study. Cortex 2024; 180:1-17. [PMID: 39243745 DOI: 10.1016/j.cortex.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 09/09/2024]
Abstract
Preterm-born (PTB) children are at an elevated risk for neurocognitive difficulties in general and language difficulties more specifically. Environmental factors such as socio-economic status (SES) play a key role for Term children's language development. SES has been shown to predict PTB children's behavioral developmental trajectories, sometimes surpassing its role for Term children. However, the role of SES in the neurocognitive basis of PTB children's language development remains uncharted. Here, we aimed to evaluate the role of SES in the neural basis of PTB children's language performance. Leveraging the Adolescent Brain Cognitive Development (ABCD) Study, the largest longitudinal study of adolescent brain development and behavior to date, we showed that prematurity status (PTB versus Term) and multiple aspects of SES additively predict variability in cortical thickness, which is in turn related to children's receptive vocabulary performance. We did not find evidence to support the differential role of environmental factors for PTB versus Term children, underscoring that environmental factors are significant contributors to development of both Term and PTB children. Taken together, our results suggest that the environmental factors influencing language development might exhibit similarities across the full spectrum of gestational age.
Collapse
Affiliation(s)
- Collin Nolte
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Kalina J Michalska
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Paige M Nelson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States
| | - Ӧ Ece Demir-Lira
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
2
|
Groeschel S, Beerepoot S, Amedick LB, Krӓgeloh-Mann I, Li J, Whiteman DAH, Wolf NI, Port JD. The effect of intrathecal recombinant arylsulfatase A therapy on structural brain magnetic resonance imaging in children with metachromatic leukodystrophy. J Inherit Metab Dis 2024; 47:778-791. [PMID: 38321717 DOI: 10.1002/jimd.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/08/2024]
Abstract
This study aimed to evaluate the effect of intrathecal (IT) recombinant human arylsulfatase A (rhASA) on magnetic resonance imaging (MRI)-assessed brain tissue changes in children with metachromatic leukodystrophy (MLD). In total, 510 MRI scans were collected from 12 intravenous (IV) rhASA-treated children with MLD, 24 IT rhASA-treated children with MLD, 32 children with untreated MLD, and 156 normally developing children. Linear mixed models were fitted to analyze the time courses of gray matter (GM) volume and fractional anisotropy (FA) in the posterior limb of the internal capsule. Time courses for demyelination load and FA in the centrum semiovale were visualized using locally estimated scatterplot smoothing regression curves. All assessed imaging parameters demonstrated structural evidence of neurological deterioration in children with MLD. GM volume was significantly lower at follow-up (median duration, 104 weeks) in IV rhASA-treated versus IT rhASA-treated children. GM volume decline over time was steeper in children receiving low-dose (10 or 30 mg) versus high-dose (100 mg) IT rhASA. Similar effects were observed for demyelination. FA in the posterior limb of the internal capsule showed a higher trend over time in IT rhASA-treated versus children with untreated MLD, but FA parameters were not different between children receiving the low doses versus those receiving the high dose. GM volume in IT rhASA-treated children showed a strong positive correlation with 88-item Gross Motor Function Measure score over time. In some children with MLD, IT administration of high-dose rhASA may delay neurological deterioration (assessed using MRI), offering potential therapeutic benefit.
Collapse
Affiliation(s)
- Samuel Groeschel
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Shanice Beerepoot
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience-Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Lucas Bastian Amedick
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ingeborg Krӓgeloh-Mann
- Department of Pediatric Neurology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Jing Li
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience-Cellular and Molecular Mechanisms, Vrije Universiteit, Amsterdam, Netherlands
| | - John D Port
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Lapidaire W, Clayden JD, Fewtrell MS, Clark CA. Increased white matter fibre dispersion and lower IQ scores in adults born preterm. Hum Brain Mapp 2024; 45:e26545. [PMID: 38070181 PMCID: PMC10789207 DOI: 10.1002/hbm.26545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Preterm birth has been associated with altered microstructural properties of the white matter and lower cognitive ability in childhood and adulthood. Due to methodological limitations of the diffusion tensor model, it is not clear whether alterations in myelination or variation in fibre orientation are driving these differences. Novel models applied to multi-shell diffusion imaging have been used to disentangle these effects, but to date this has not been used to study the preterm brain in adulthood. This study investigated whether novel advanced diffusion MRI metrics such as microscopic anisotropy and orientation dispersion are altered in adults born preterm, and whether this was associated with cognitive performance. Seventy-two preterm born participants (<37 weeks gestational age) were recruited from a 1982-1984 cohort (33 males, mean age 33.5 ± 1.0 years). Seventy-two term born (>37 weeks gestational age) controls (34 males, mean age 30.9 ± 4.0 years) were recruited from the general population. Tensor FA was calculated with FSL, while microscopic FA and orientation dispersion entropy (ODE) were estimated using the Spherical Mean Technique (SMT). Estimated Full Scale IQ (FSIQ), Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) were obtained from the WASI-II (abbreviated) IQ test. Voxel-wise comparisons using FSL's tract-based spatial statistics were performed to test between-group differences in diffusion MRI metrics as well as within-group associations of diffusion MRI metrics and IQ outcomes. The preterm group had significantly lower FSIQ, VCI and PRI scores. Preterm subjects demonstrated widespread decreases in ODE reflecting increased fibre dispersion, but no differences in microscopic FA. Tensor FA was increased in a small area in the anterior corona radiata. Lower FA values in the preterm population were associated with lower FSIQ and PRI scores. An increase in fibre dispersion in white matter and lower IQ scores after preterm birth exist in adulthood. Advanced diffusion MRI metrics such as the orientation dispersion entropy can be used to monitor white matter alterations across the lifespan in preterm born individuals. Although not significantly different between preterm and term groups, tensor FA values in the preterm group were associated with cognitive outcome.
Collapse
Affiliation(s)
- Winok Lapidaire
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of Oxford, John Radcliffe HospitalOxfordUK
| | - Jonathan D. Clayden
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Mary S. Fewtrell
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Christopher A. Clark
- UCL Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| |
Collapse
|
4
|
Anderson JFI, Oehr LE, Chen J, Maller JJ, Seal ML, Yang JYM. The relationship between cognition and white matter tract damage after mild traumatic brain injury in a premorbidly healthy, hospitalised adult cohort during the post-acute period. Front Neurol 2023; 14:1278908. [PMID: 37936919 PMCID: PMC10626495 DOI: 10.3389/fneur.2023.1278908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Recent developments in neuroimaging techniques enable increasingly sensitive consideration of the cognitive impact of damage to white matter tract (WMT) microstructural organisation after mild traumatic brain injury (mTBI). Objective This study investigated the relationship between WMT microstructural properties and cognitive performance. Participants setting and design Using an observational design, a group of 26 premorbidly healthy adults with mTBI and a group of 20 premorbidly healthy trauma control (TC) participants who were well-matched on age, sex, premorbid functioning and a range of physical, psychological and trauma-related variables, were recruited following hospital admission for traumatic injury. Main measures All participants underwent comprehensive unblinded neuropsychological examination and structural neuroimaging as outpatients 6-10 weeks after injury. Neuropsychological examination included measures of speed of processing, attention, memory, executive function, affective state, pain, fatigue and self-reported outcome. The WMT microstructural properties were estimated using both diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) modelling techniques. Tract properties were compared between the corpus callosum, inferior longitudinal fasciculus, uncinate fasciculus, anterior corona radiata and three segmented sections of the superior longitudinal fasciculus. Results For the TC group, in all investigated tracts, with the exception of the uncinate fasciculus, two DTI metrics (fractional anisotropy and apparent diffusion coefficient) and one NODDI metric (intra-cellular volume fraction) revealed expected predictive linear relationships between extent of WMT microstructural organisation and processing speed, memory and executive function. The mTBI group showed a strikingly different pattern relative to the TC group, with no relationships evident between WMT microstructural organisation and cognition on most tracts. Conclusion These findings indicate that the predictive relationship that normally exists in adults between WMT microstructural organisation and cognition, is significantly disrupted 6-10 weeks after mTBI and suggests that WMT microstructural organisation and cognitive function have disparate recovery trajectories.
Collapse
Affiliation(s)
- Jacqueline F. I. Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Psychology, The Alfred Hospital, Melbourne, VIC, Australia
| | - Lucy E. Oehr
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Jerome J. Maller
- General Electric Healthcare, Melbourne, VIC, Australia
- Monash Alfred Psychiatry Research Centre, Melbourne, VIC, Australia
| | - Marc L. Seal
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Neuroscience Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Service (NACIS), The Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Pretzel P, Wilke M, Tournier JD, Goelz R, Lidzba K, Hauser TK, Groeschel S. Reduced structural connectivity in non-motor networks in children born preterm and the influence of early postnatal human cytomegalovirus infection. Front Neurol 2023; 14:1241387. [PMID: 37849834 PMCID: PMC10577195 DOI: 10.3389/fneur.2023.1241387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Preterm birth is increasingly recognized to cause lifelong functional deficits, which often show no correlate in conventional MRI. In addition, early postnatal infection with human cytomegalovirus (hCMV) is being discussed as a possible cause for further impairments. In the present work, we used fixel-based analysis of diffusion-weighted MRI to assess long-term white matter alterations associated with preterm birth and/or early postnatal hCMV infection. Materials and methods 36 former preterms (PT, median age 14.8 years, median gestational age 28 weeks) and 18 healthy term-born controls (HC, median age 11.1 years) underwent high angular resolution DWI scans (1.5 T, b = 2 000 s/mm2, 60 directions) as well as clinical assessment. All subjects showed normal conventional MRI and normal motor function. Early postnatal hCMV infection status (CMV+ and CMV-) had been determined from repeated screening, ruling out congenital infections. Whole-brain analysis was performed, yielding fixel-wise metrics for fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC). Group differences were identified in a whole-brain analysis, followed by an analysis of tract-averaged metrics within a priori selected tracts associated with cognitive function. Both analyses were repeated while differentiating for postnatal hCMV infection status. Results PT showed significant reductions of fixel metrics bilaterally in the cingulum, the genu corporis callosum and forceps minor, the capsula externa, and cerebellar and pontine structures. After including intracranial volume as a covariate, reductions remained significant in the cingulum. The tract-specific investigation revealed further reductions bilaterally in the superior longitudinal fasciculus and the uncinate fasciculus. When differentiating for hCMV infection status, no significant differences were found between CMV+ and CMV-. However, comparing CMV+ against HC, fixel metric reductions were of higher magnitude and of larger spatial extent than in CMV- against HC. Conclusion Preterm birth can lead to long-lasting alterations of WM micro- and macrostructure, not visible on conventional MRI. Alterations are located predominantly in WM structures associated with cognitive function, likely underlying the cognitive deficits observed in our cohort. These observed structural alterations were more pronounced in preterms who suffered from early postnatal hCMV infection, in line with previous studies suggesting an additive effect.
Collapse
Affiliation(s)
- Pablo Pretzel
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - Marko Wilke
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Rangmar Goelz
- Department of Neonatology, University Children’s Hospital, Tübingen, Germany
| | - Karen Lidzba
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Samuel Groeschel
- Department of Child Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
- Experimental Pediatric Neuroimaging, Department of Child Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
| |
Collapse
|
6
|
Easson K, Khairy M, Rohlicek CV, Saint-Martin C, Gilbert G, Nguyen KA, Luu TM, Couture É, Nuyt AM, Wintermark P, Deoni SCL, Descoteaux M, Brossard-Racine M. A comparison of altered white matter microstructure in youth born with congenital heart disease or born preterm. Front Neurol 2023; 14:1167026. [PMID: 37251222 PMCID: PMC10213269 DOI: 10.3389/fneur.2023.1167026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Alterations to white matter microstructure as detected by diffusion tensor imaging have been documented in both individuals born with congenital heart disease (CHD) and individuals born preterm. However, it remains unclear if these disturbances are the consequence of similar underlying microstructural disruptions. This study used multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) and neurite orientation dispersion and density imaging (NODDI) to characterize and compare alterations to three specific microstructural elements of white matter - myelination, axon density, and axon orientation - in youth born with CHD or born preterm. Methods Participants aged 16 to 26 years with operated CHD or born ≤33 weeks gestational age and a group of healthy peers of the same age underwent a brain MRI including mcDESPOT and high angular resolution diffusion imaging acquisitions. Using tractometry, average values of myelin water fraction (MWF), neurite density index (NDI), and orientation dispersion index (ODI) were first calculated and compared between groups for 30 white matter bundles. Afterwards, bundle profiling was performed to further characterize the topology of the detected microstructural alterations. Results The CHD and preterm groups both presented with widespread bundles and bundle segments with lower MWF, accompanied by some occurrences of lower NDI, relative to controls. While there were no differences in ODI between the CHD and control groups, the preterm group presented with both higher and lower ODI compared to the control group and lower ODI compared to the CHD group. Discussion While youth born with CHD or born preterm both presented with apparent deficits in white matter myelination and axon density, youth born preterm presented with a unique profile of altered axonal organization. Future longitudinal studies should aim to better understand the emergence of these common and distinct microstructural alterations, which could orient the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kaitlyn Easson
- Advances in Brain and Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - May Khairy
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Charles V. Rohlicek
- Division of Cardiology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Christine Saint-Martin
- Department of Medical Imaging, Division of Pediatric Radiology, Montreal Children’s Hospital, Montreal, QC, Canada
| | | | - Kim-Anh Nguyen
- Division of Neonatology, Department of Pediatrics, Jewish General Hospital, Montreal, QC, Canada
| | - Thuy Mai Luu
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Élise Couture
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Anne-Monique Nuyt
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, Canada
| | - Pia Wintermark
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Sean C. L. Deoni
- Advanced Baby Imaging Lab, Brown University, Providence, RI, United States
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie Brossard-Racine
- Advances in Brain and Child Development (ABCD) Research Laboratory, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of Neonatology, Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Retzler C, Hallam G, Johnson S, Retzler J. Person-centred Approaches to Psychopathology in the ABCD Study: Phenotypes and Neurocognitive Correlates. Res Child Adolesc Psychopathol 2023:10.1007/s10802-023-01065-w. [PMID: 37119331 PMCID: PMC10368562 DOI: 10.1007/s10802-023-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Issues with classifying psychopathology using narrow diagnostic categories have prompted calls for the use of dimensional approaches. Yet questions remain about how closely dimensional approaches reflect the way symptoms cluster in individuals, whether known risk factors (e.g. preterm birth) produce distinct symptom phenotypes, and whether profiles reflecting symptom clusters are associated with neurocognitive factors. To identify distinct profiles of psychopathology, latent class analysis was applied to the syndrome scales of the parent-reported Child Behaviour Checklist for 11,381 9- and 10- year-olds from the Adolescent Brain Cognitive Development study. Four classes were identified, reflecting different profiles, to which children were assigned probabilistically; Class 1 (88.6%) reflected optimal functioning; Class 2 (7.1%), predominantly internalising; Class 3 (2.4%), predominantly externalising; and Class 4 (1.9%), universal difficulties. To investigate the presence of a possible preterm behavioural phenotype, the proportion of participants allocated to each class was cross-tabulated with gestational age category. No profile was specific to preterm birth. Finally, to assess the neurocognitive factors associated with class membership, elastic net regressions were conducted revealing a relatively distinct set of neurocognitive factors associated with each class. Findings support the use of large datasets to identify psychopathological profiles, explore phenotypes, and identify associated neurocognitive factors.
Collapse
Affiliation(s)
- Chris Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK.
| | - Glyn Hallam
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Samantha Johnson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jenny Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
8
|
Niutanen U, Lönnberg P, Wolford E, Metsäranta M, Lano A. Extremely preterm children and relationships of minor neurodevelopmental impairments at 6 years. Front Psychol 2022; 13:996472. [DOI: 10.3389/fpsyg.2022.996472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
AimThis study investigated minor impairments in neurological, sensorimotor, and neuropsychological functioning in extremely preterm-born (EPT) children compared to term-born children. The aim was to explore the most affected domains and to visualize their co-occurrences in relationship maps.MethodsA prospective cohort of 56 EPT children (35 boys) and 37 term-born controls (19 boys) were assessed at a median age of 6 years 7 months with Touwen Neurological Examination, Movement Assessment Battery for Children, 2nd edition (MABC-2), Sensory Integration and Praxis Test (SIPT), and a Developmental Neuropsychological Assessment, 2nd edition (NEPSY-II). Altogether 20 test domains were used to illustrate the frequency of impaired test performances with a bar chart profile and to construct relationship maps of co-occurring impairments.ResultsThe EPT children were more likely to perform inferiorly compared to the term-born controls across all assessments, with a wider variance and more co-occurring impairments. When aggregating all impaired test domains, 45% of the EPT children had more impaired domains than any term-born child (more than five domains, p < 0.001). Relationship maps showed that minor neurological dysfunction (MND), NEPSY-II design copying, and SIPT finger identification constituted the most prominent relationship of co-occurring impairments in both groups. However, it was ten times more likely in the EPT group. Another relationship of co-occurring MND, impairment in NEPSY-II design copying, and NEPSY-II imitation of hand positions was present in the EPT group only.InterpretationMultiple minor impairments accumulate among EPT children at six years, suggesting that EPT children and their families may need support and timely multi-professional interventions throughout infancy and childhood.
Collapse
|
9
|
Neumane S, Gondova A, Leprince Y, Hertz-Pannier L, Arichi T, Dubois J. Early structural connectivity within the sensorimotor network: Deviations related to prematurity and association to neurodevelopmental outcome. Front Neurosci 2022; 16:932386. [PMID: 36507362 PMCID: PMC9732267 DOI: 10.3389/fnins.2022.932386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Consisting of distributed and interconnected structures that interact through cortico-cortical connections and cortico-subcortical loops, the sensorimotor (SM) network undergoes rapid maturation during the perinatal period and is thus particularly vulnerable to preterm birth. However, the impact of prematurity on the development and integrity of the emerging SM connections and their relationship to later motor and global impairments are still poorly understood. In this study we aimed to explore to which extent the early microstructural maturation of SM white matter (WM) connections at term-equivalent age (TEA) is modulated by prematurity and related with neurodevelopmental outcome at 18 months corrected age. We analyzed 118 diffusion MRI datasets from the developing Human Connectome Project (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA and a control group of full-term (FT) neonates paired for age at MRI and sex. We delineated WM connections between the primary SM cortices (S1, M1 and paracentral region) and subcortical structures using probabilistic tractography, and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. To go beyond tract-specific univariate analyses, we computed a maturational distance related to prematurity based on the multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Our results confirmed the presence of microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Maturational distance analyses highlighted that prematurity has a differential effect on SM tracts with higher distances and thus impact on (i) cortico-cortical than cortico-subcortical connections; (ii) projections involving S1 than M1 and paracentral region; and (iii) the most rostral cortico-subcortical tracts, involving the lenticular nucleus. These different alterations at TEA suggested that vulnerability follows a specific pattern coherent with the established WM caudo-rostral progression of maturation. Finally, we highlighted some relationships between NODDI-derived maturational distances of specific tracts and fine motor and cognitive outcomes at 18 months. As a whole, our results expand understanding of the significant impact of premature birth and early alterations on the emerging SM network even in low-risk infants, with possible relationship with neurodevelopmental outcomes. This encourages further exploration of these potential neuroimaging markers for prediction of neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.
Collapse
Affiliation(s)
- Sara Neumane
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Andrea Gondova
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Yann Leprince
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| | - Tomoki Arichi
- School of Biomedical Engineering and Imaging Sciences, Centre for the Developing Brain, King’s College London, London, United Kingdom
- Paediatric Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Jessica Dubois
- Inserm, NeuroDiderot, Université Paris Cité, Paris, France
- CEA, NeuroSpin UNIACT, Université Paris-Saclay, Paris, France
| |
Collapse
|
10
|
A diffusion MRI study of brain white matter microstructure in adolescents and adults with a Fontan circulation: Investigating associations with resting and peak exercise oxygen saturations and cognition. Neuroimage Clin 2022; 36:103151. [PMID: 35994923 PMCID: PMC9402393 DOI: 10.1016/j.nicl.2022.103151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Adolescents and adults with a Fontan circulation are at risk of cognitive dysfunction; Attention and processing speed are notable areas of concern. Underlying mechanisms and brain alterations associated with worse long-term cognitive outcomes are not well determined. This study investigated brain white matter microstructure in adolescents and adults with a Fontan circulation and associations with resting and peak exercise oxygen saturations (SaO2), predicted maximal oxygen uptake during exercise (% pred VO2), and attention and processing speed. METHODS Ninety-two participants with a Fontan circulation (aged 13-49 years, ≥5 years post-Fontan completion) had diffusion MRI. Averaged tract-wise diffusion tensor imaging (DTI) metrics were generated for 34 white matter tracts of interest. Resting and peak exercise SaO2 and % pred VO2 were measured during cardiopulmonary exercise testing (CPET; N = 81). Attention and processing speed were assessed using Cogstate (N = 67 and 70, respectively). Linear regression analyses adjusted for age, sex, and intracranial volume were performed to investigate associations between i) tract-specific DTI metrics and CPET variables, and ii) tract-specific DTI metrics and attention and processing speed z-scores. RESULTS Forty-nine participants were male (53%), mean age was 23.1 years (standard deviation (SD) = 7.8 years). Mean resting and peak exercise SaO2 were 93.1% (SD = 3.6) and 90.1% (SD = 4.7), respectively. Mean attention and processing speed z-scores were -0.63 (SD = 1.07) and -0.72 (SD = 1.44), respectively. Resting SaO2 were positively associated with mean fractional anisotropy (FA) of the left corticospinal tract (CST) and right superior longitudinal fasciculus I (SLF-I) and negatively associated with mean diffusivity (MD) and radial diffusivity (RD) of the right SLF-I (p ≤ 0.01). Peak exercise SaO2 were positively associated with mean FA of the left CST and were negatively associated with mean RD of the left CST, MD of the left frontopontine tract, MD, RD and axial diffusivity (AD) of the right SLF-I, RD of the left SLF-II, MD, RD and AD of the right SLF-II, and MD and RD of the right SLF-III (p ≤ 0.01). Percent predicted VO2 was positively associated with FA of the left uncinate fasciculus (p < 0.01). Negative associations were identified between mean FA of the right arcuate fasciculus, right SLF-II and right SLF-III and processing speed (p ≤ 0.01). No significant associations were identified between DTI-based metrics and attention. CONCLUSION Chronic hypoxemia may have long-term detrimental impact on white matter microstructure in people living with a Fontan circulation. Paradoxical associations between processing speed and tract-specific DTI metrics could be suggestive of compensatory white matter remodeling. Longitudinal investigations focused on the mechanisms and trajectory of altered white matter microstructure and associated cognitive dysfunction in people with a Fontan circulation are required to better understand causal associations.
Collapse
|
11
|
Brignoni-Pérez E, Dubner SE, Ben-Shachar M, Berman S, Mezer AA, Feldman HM, Travis KE. White matter properties underlying reading abilities differ in 8-year-old children born full term and preterm: A multi-modal approach. Neuroimage 2022; 256:119240. [PMID: 35490913 PMCID: PMC9213558 DOI: 10.1016/j.neuroimage.2022.119240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many diffusion magnetic resonance imaging (dMRI) studies document associations between reading skills and fractional anisotropy (FA) within brain white matter, suggesting that efficient transfer of information across the brain contributes to individual differences in reading. Use of complementary imaging methods can determine if these associations relate to myelin content of white matter tracts. Compared to children born at term (FT), children born preterm (PT) are at risk for reading deficits. We used two MRI methods to calculate associations of reading and white matter properties in FT and PT children. Participants (N=79: 36 FT and 43 PT) were administered the Gray's Oral Reading Test at age 8. We segmented three dorsal (left arcuate and bilateral superior longitudinal fasciculus) and four ventral (bilateral inferior longitudinal fasciculus and bilateral uncinate) tracts and quantified (1) FA from dMRI and (2) R1 from quantitative T1 relaxometry. We examined correlations between reading scores and these metrics along the trajectories of the tracts. Reading positively correlated with FA in segments of left arcuate and bilateral superior longitudinal fasciculi in FT children; no FA associations were found in PT children. Reading positively correlated with R1 in segments of the left superior longitudinal, right uncinate, and left inferior longitudinal fasciculi in PT children; no R1 associations were found in FT children. Birth group significantly moderated the associations of reading and white matter metrics. Myelin content of white matter may contribute to individual differences in PT but not FT children.
Collapse
Affiliation(s)
- Edith Brignoni-Pérez
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States
| | - Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University, 3145 Porter Drive, MC 5395, Palo Alto, CA 94304, United States.
| |
Collapse
|
12
|
Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, Nemoto K, Taniike M, Kagitani-Shimono K. Abnormal White Matter Microstructure in the Limbic System Is Associated With Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders. Front Neurol 2022; 13:782479. [PMID: 35359647 PMCID: PMC8963953 DOI: 10.3389/fneur.2022.782479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTuberous sclerosis complex (TSC) is a genetic disease that arises from TSC1 or TSC2 abnormalities and induces the overactivation of the mammalian/mechanistic target of rapamycin pathways. The neurological symptoms of TSC include epilepsy and tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Although TAND affects TSC patients' quality of life, the specific region in the brain associated with TAND remains unknown. We examined the association between white matter microstructural abnormalities and TAND, using diffusion tensor imaging (DTI).MethodsA total of 19 subjects with TSC and 24 age-matched control subjects were enrolled. Tract-based spatial statistics (TBSS) were performed to assess group differences in fractional anisotropy (FA) between the TSC and control groups. Atlas-based association analysis was performed to reveal TAND-related white matter in subjects with TSC. Multiple linear regression was performed to evaluate the association between TAND and the DTI parameters; FA and mean diffusivity in seven target regions and projection fibers.ResultsThe TBSS showed significantly reduced FA in the right hemisphere and particularly in the inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus (UF), and genu of corpus callosum (CC) in the TSC group relative to the control group. In the association analysis, intellectual disability was widely associated with all target regions. In contrast, behavioral problems and autistic features were associated with the limbic system white matter and anterior limb of the internal capsule (ALIC) and CC.ConclusionThe disruption of white matter integrity may induce underconnectivity between cortical and subcortical regions. These findings suggest that TANDs are not the result of an abnormality in a specific brain region, but rather caused by connectivity dysfunction as a network disorder. This study indicates that abnormal white matter connectivity including the limbic system is relevant to TAND. The analysis of brain and behavior relationship is a feasible approach to reveal TAND related white matter and neural networks. TAND should be carefully assessed and treated at an early stage.
Collapse
Affiliation(s)
- Akemi Sato
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Iwatani
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoko Kato
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Wataya-Kaneda
- Division of Health Science, Department of Neurocutaneous Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kai Makita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Kiyotaka Nemoto
- Division of Clinical Medicine, Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
- *Correspondence: Kuriko Kagitani-Shimono
| |
Collapse
|
13
|
Hua J, Barnett AL, Lin Y, Guan H, Sun Y, Williams GJ, Fu Y, Zhou Y, Du W. Association of Gestational Age at Birth With Subsequent Neurodevelopment in Early Childhood: A National Retrospective Cohort Study in China. Front Pediatr 2022; 10:860192. [PMID: 35712637 PMCID: PMC9194570 DOI: 10.3389/fped.2022.860192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The association between preterm birth and neurodevelopmental delays have been well examined, however, reliable estimates for the full range of gestational age (GA) are limited, and few studies explored the impact of post-term birth on child development. OBJECTIVE This study aimed to examine the long-term neuropsychological outcomes of children born in a full range of GA with a national representative sample in China. METHODS In this retrospective population-based cohort study, a total of 137,530 preschoolers aged 3-5 years old (65,295/47.5% females and 72,235/52.5% males) were included in the final analysis. The Ages and Stages Questionnaires-Third Edition (ASQ-3) was completed by parents to evaluate children's neurodevelopment. The associations between GA and neurodevelopment were analyzed by a generalized additive mixed model with thin plate regression splines. Logistic regression was also conducted to examine the differences in children's development with different GAs. RESULTS There was a non-linear relationship between GA and children's neurodevelopmental outcomes with the highest scores at 40 weeks gestational age. The adjusted risks of GAs (very and moderately preterm, late-preterm, early-term, and post-term groups) on suspected developmental delays were observed in communication (OR were 1.83, 1.28, 1.13, and 1.21 respectively, each p < 0.05), gross motor skill (OR were 1.67, 1.38, 1.10, and 1.05 respectively, each p < 0.05), and personal social behavior (OR were 1.01, 1.36, 1.12, and 1.18 respectively, each p < 0.05). The adjusted OR of very and moderately preterm, late-preterm, and early-term were observed in fine motor skills (OR were 1.53, 1.22, and 1.09 respectively, each p < 0.05) and problem-solving (OR were 1.33, 1.12, and 1.06 respectively, each p < 0.05). CONCLUSION GAs is a risk factor for neurodevelopmental delays in preschoolers after controlling for a wide range of covariates, and 40-41 weeks may be the ideal delivery GA for optimal neurodevelopmental outcomes. Close observation and monitoring should be considered for early- and post-term born children as well as pre-term children.
Collapse
Affiliation(s)
- Jing Hua
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Anna L Barnett
- Centre for Psychological Research, Oxford Brookes University, Oxford, United Kingdom
| | - Yao Lin
- Haikou Hospital of the Maternal and Child Health, Hainai, China
| | | | - Yuanjie Sun
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gareth J Williams
- School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Yuxuan Fu
- KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Yingchun Zhou
- KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Wenchong Du
- NTU Psychology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
14
|
Viher PV, Stegmayer K, Bracht T, Federspiel A, Bohlhalter S, Strik W, Wiest R, Walther S. Neurological Soft Signs Are Associated With Altered White Matter in Patients With Schizophrenia. Schizophr Bull 2021; 48:220-230. [PMID: 34355246 PMCID: PMC8781326 DOI: 10.1093/schbul/sbab089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurological soft signs (NSS) are related to grey matter and functional brain abnormalities in schizophrenia. Studies in healthy subjects suggest, that NSS are also linked to white matter. However, the association between NSS and white matter abnormalities in schizophrenia remains to be elucidated. The present study investigated, if NSS are related to white matter alterations in patients with schizophrenia. The total sample included 42 healthy controls and 41 patients with schizophrenia. We used the Neurological Evaluation Scale (NES), and we acquired diffusion weighted magnetic resonance imaging to assess white matter on a voxel-wise between subject statistic. In patients with schizophrenia, linear associations between NES with fractional anisotropy (FA), radial, axial, and mean diffusivity were analyzed with tract-based spatial statistics while controlling for age, medication dose, the severity of the disease, and motion. The main pattern of results in patients showed a positive association of NES with all diffusion measures except FA in important motor pathways: the corticospinal tract, internal capsule, superior longitudinal fascicle, thalamocortical radiations and corpus callosum. In addition, exploratory tractography analysis revealed an association of the right aslant with NES in patients. These results suggest that specific white matter alterations, that is, increased diffusivity might contribute to NSS in patients with schizophrenia.
Collapse
Affiliation(s)
- Petra Verena Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland,To whom correspondence should be addressed; Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; tel: +41-31-930-97-57, fax: +41-31-930-94-04, e-mail:
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Stephan Bohlhalter
- Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland,Neurocenter, Luzerner Kantonsspital, Switzerland
| | - Werner Strik
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Neuroradiology, University of Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Switzerland
| |
Collapse
|
15
|
Kimpton JA, Batalle D, Barnett ML, Hughes EJ, Chew ATM, Falconer S, Tournier JD, Alexander D, Zhang H, Edwards AD, Counsell SJ. Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates. Neuroradiology 2020; 63:573-583. [PMID: 33123752 PMCID: PMC7966229 DOI: 10.1007/s00234-020-02584-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023]
Abstract
Purpose Diffusion magnetic resonance imaging (dMRI) studies report altered white matter (WM) development in preterm infants. Neurite orientation dispersion and density imaging (NODDI) metrics provide more realistic estimations of neurite architecture in vivo compared with standard diffusion tensor imaging (DTI) metrics. This study investigated microstructural maturation of WM in preterm neonates scanned between 25 and 45 weeks postmenstrual age (PMA) with normal neurodevelopmental outcomes at 2 years using DTI and NODDI metrics. Methods Thirty-one neonates (n = 17 male) with median (range) gestational age (GA) 32+1 weeks (24+2–36+4) underwent 3 T brain MRI at median (range) post menstrual age (PMA) 35+2 weeks (25+3–43+1). WM tracts (cingulum, fornix, corticospinal tract (CST), inferior longitudinal fasciculus (ILF), optic radiations) were delineated using constrained spherical deconvolution and probabilistic tractography in MRtrix3. DTI and NODDI metrics were extracted for the whole tract and cross-sections along each tract to assess regional development. Results PMA at scan positively correlated with fractional anisotropy (FA) in the CST, fornix and optic radiations and neurite density index (NDI) in the cingulum, CST and fornix and negatively correlated with mean diffusivity (MD) in all tracts. A multilinear regression model demonstrated PMA at scan influenced all diffusion measures, GA and GAxPMA at scan influenced FA, MD and NDI and gender affected NDI. Cross-sectional analyses revealed asynchronous WM maturation within and between WM tracts.). Conclusion We describe normal WM maturation in preterm neonates with normal neurodevelopmental outcomes. NODDI can enhance our understanding of WM maturation compared with standard DTI metrics alone. Supplementary Information The online version of this article (10.1007/s00234-020-02584-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Kimpton
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - D Batalle
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M L Barnett
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - E J Hughes
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - A T M Chew
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - S Falconer
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - J D Tournier
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - D Alexander
- Department of Computer Science and Centre for Medical Imaging Computing, University College London, London, UK
| | - H Zhang
- Department of Computer Science and Centre for Medical Imaging Computing, University College London, London, UK
| | - A D Edwards
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
16
|
Mito R, Dhollander T, Xia Y, Raffelt D, Salvado O, Churilov L, Rowe CC, Brodtmann A, Villemagne VL, Connelly A. In vivo microstructural heterogeneity of white matter lesions in healthy elderly and Alzheimer's disease participants using tissue compositional analysis of diffusion MRI data. Neuroimage Clin 2020; 28:102479. [PMID: 33395971 PMCID: PMC7652769 DOI: 10.1016/j.nicl.2020.102479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
White matter hyperintensities (WMH) are regions of high signal intensity typically identified on fluid attenuated inversion recovery (FLAIR). Although commonly observed in elderly individuals, they are more prevalent in Alzheimer's disease (AD) patients. Given that WMH appear relatively homogeneous on FLAIR, they are commonly partitioned into location- or distance-based classes when investigating their relevance to disease. Since pathology indicates that such lesions are often heterogeneous, probing their microstructure in vivo may provide greater insight than relying on such arbitrary classification schemes. In this study, we investigated WMH in vivo using an advanced diffusion MRI method known as single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD), which models white matter microstructure while accounting for grey matter and CSF compartments. Diffusion MRI data and FLAIR images were obtained from AD (n = 48) and healthy elderly control (n = 94) subjects. WMH were automatically segmented, and classified: (1) as either periventricular or deep; or (2) into three distance-based contours from the ventricles. The 3-tissue profile of WMH enabled their characterisation in terms of white matter-, grey matter-, and fluid-like characteristics of the diffusion signal. Our SS3T-CSD findings revealed substantial heterogeneity in the 3-tissue profile of WMH, both within lesions and across the various classes. Moreover, this heterogeneity information indicated that the use of different commonly used WMH classification schemes can result in different disease-based conclusions. We conclude that future studies of WMH in AD would benefit from inclusion of microstructural information when characterising lesions, which we demonstrate can be performed in vivo using SS3T-CSD.
Collapse
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thijs Dhollander
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Ying Xia
- CSIRO, Health & Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - David Raffelt
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Olivier Salvado
- CSIRO, Health & Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, Australia; CSIRO Data61, Sydney, New South Wales, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| | - Christopher C Rowe
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; Eastern Clinical Research Unit, Monash University, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Victor L Villemagne
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia; Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Heidelberg, Victoria, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Abstract
OBJECTIVE The long-term effects of pediatric concussion on white matter microstructure are poorly understood. This study investigated long-term changes in white matter diffusion properties of the corpus callosum in youth several years after concussion. METHODS Participants were 8-19 years old with a history of concussion (n = 36) or orthopedic injury (OI) (n = 21). Mean time since injury for the sample was 2.6 years (SD = 1.6). Participants underwent diffusion magnetic resonance imaging, completed cognitive testing, and rated their post-concussion symptoms. Measures of diffusivity (fractional anisotropy, mean, axial, and radial diffusivity) were extracted from white matter tracts in the genu, body, and splenium regions of the corpus callosum. The genu and splenium tracts were further subdivided into 21 equally spaced regions along the tract and diffusion values were extracted from each of these smaller regions. RESULTS White matter tracts in the genu, body, and splenium did not differ in diffusivity properties between youth with a history of concussion and those with a history of OI. No significant group differences were found in subdivisions of the genu and splenium after correcting for multiple comparisons. Diffusion metrics did not significantly correlate with symptom reports or cognitive performance. CONCLUSIONS These findings suggest that at approximately 2.5 years post-injury, youth with prior concussion do not have differences in their corpus callosum microstructure compared to youth with OI. Although these results are promising from the perspective of long-term recovery, further research utilizing longitudinal study designs is needed to confirm the long-term effects of pediatric concussion on white matter microstructure.
Collapse
|
18
|
Rheault F, De Benedictis A, Daducci A, Maffei C, Tax CMW, Romascano D, Caverzasi E, Morency FC, Corrivetti F, Pestilli F, Girard G, Theaud G, Zemmoura I, Hau J, Glavin K, Jordan KM, Pomiecko K, Chamberland M, Barakovic M, Goyette N, Poulin P, Chenot Q, Panesar SS, Sarubbo S, Petit L, Descoteaux M. Tractostorm: The what, why, and how of tractography dissection reproducibility. Hum Brain Mapp 2020; 41:1859-1874. [PMID: 31925871 PMCID: PMC7267902 DOI: 10.1002/hbm.24917] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Investigative studies of white matter (WM) brain structures using diffusion MRI (dMRI) tractography frequently require manual WM bundle segmentation, often called "virtual dissection." Human errors and personal decisions make these manual segmentations hard to reproduce, which have not yet been quantified by the dMRI community. It is our opinion that if the field of dMRI tractography wants to be taken seriously as a widespread clinical tool, it is imperative to harmonize WM bundle segmentations and develop protocols aimed to be used in clinical settings. The EADC-ADNI Harmonized Hippocampal Protocol achieved such standardization through a series of steps that must be reproduced for every WM bundle. This article is an observation of the problematic. A specific bundle segmentation protocol was used in order to provide a real-life example, but the contribution of this article is to discuss the need for reproducibility and standardized protocol, as for any measurement tool. This study required the participation of 11 experts and 13 nonexperts in neuroanatomy and "virtual dissection" across various laboratories and hospitals. Intra-rater agreement (Dice score) was approximately 0.77, while inter-rater was approximately 0.65. The protocol provided to participants was not necessarily optimal, but its design mimics, in essence, what will be required in future protocols. Reporting tractometry results such as average fractional anisotropy, volume or streamline count of a particular bundle without a sufficient reproducibility score could make the analysis and interpretations more difficult. Coordinated efforts by the diffusion MRI tractography community are needed to quantify and account for reproducibility of WM bundle extraction protocols in this era of open and collaborative science.
Collapse
Affiliation(s)
- Francois Rheault
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeSherbrookeCanada
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience and NeurorehabilitationBambino Gesù Children's Hospital, IRCCSRomeItaly
| | | | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMA
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - David Romascano
- Signal Processing Lab (LTS5)École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | | | | | - Franco Pestilli
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIN
| | - Gabriel Girard
- Signal Processing Lab (LTS5)École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeSherbrookeCanada
| | | | - Janice Hau
- Brain Development Imaging Laboratories, Department of PsychologySan Diego State UniversitySan DiegoCAUSA
| | - Kelly Glavin
- Learning Research & Development Center (LRDC)University of PittsburghPittsburghPAUSA
| | | | - Kristofer Pomiecko
- Learning Research & Development Center (LRDC)University of PittsburghPittsburghPAUSA
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Muhamed Barakovic
- Signal Processing Lab (LTS5)École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - Philippe Poulin
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeSherbrookeCanada
| | | | | | - Silvio Sarubbo
- Division of Neurosurgery, Emergency Department, "S. Chiara" HospitalAzienda Provinciale per i Servizi Sanitari (APSS)TrentoItaly
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives ‐ UMR 5293, CNRSCEA University of BordeauxBordeauxFrance
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL)Université de SherbrookeSherbrookeCanada
| |
Collapse
|
19
|
Zhong J, Wang Y, Li J, Xue X, Liu S, Wang M, Gao X, Wang Q, Yang J, Li X. Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development. Biomed Eng Online 2020; 19:4. [PMID: 31941515 PMCID: PMC6964111 DOI: 10.1186/s12938-020-0748-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Site-specific variations are challenges for pooling analyses in multi-center studies. This work aims to propose an inter-site harmonization method based on dual generative adversarial networks (GANs) for diffusion tensor imaging (DTI) derived metrics on neonatal brains. Results DTI-derived metrics (fractional anisotropy, FA; mean diffusivity, MD) are obtained on age-matched neonates without magnetic resonance imaging (MRI) abnormalities: 42 neonates from site 1 and 42 neonates from site 2. Significant inter-site differences of FA can be observed. The proposed harmonization approach and three conventional methods (the global-wise scaling, the voxel-wise scaling, and the ComBat) are performed on DTI-derived metrics from two sites. During the tract-based spatial statistics, inter-site differences can be removed by the proposed dual GANs method, the voxel-wise scaling, and the ComBat. Among these methods, the proposed method holds the lowest median values in absolute errors and root mean square errors. During the pooling analysis of two sites, Pearson correlation coefficients between FA and the postmenstrual age after harmonization are larger than those before harmonization. The effect sizes (Cohen’s d between males and females) are also maintained by the harmonization procedure. Conclusions The proposed dual GANs-based harmonization method is effective to harmonize neonatal DTI-derived metrics from different sites. Results in this study further suggest that the GANs-based harmonization is a feasible pre-processing method for pooling analyses in multi-center studies.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.,School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Ying Wang
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China.
| | - Jie Li
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Xuetong Xue
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Simin Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinbo Gao
- School of Electronic Engineering, Xidian University, Xi'an, 710071, China
| | - Quan Wang
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
20
|
Pflanz CP, Charquero-Ballester M, Majid DSA, Winkler AM, Vallée E, Aron AR, Jenkinson M, Douaud G. One-year changes in brain microstructure differentiate preclinical Huntington's disease stages. NEUROIMAGE-CLINICAL 2019; 25:102099. [PMID: 31865023 PMCID: PMC6931230 DOI: 10.1016/j.nicl.2019.102099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To determine whether brain imaging markers of tissue microstructure can detect the effect of disease progression across the preclinical stages of Huntington's disease. METHODS Longitudinal microstructural changes in diffusion imaging metrics (mean diffusivity and fractional anisotropy) were investigated in participants with presymptomatic Huntington's disease (N = 35) stratified into three preclinical subgroups according to their estimated time until onset of symptoms, compared with age- and gender-matched healthy controls (N = 19) over a 1y period. RESULTS Significant differences were found over the four groups in change of mean diffusivity in the posterior basal ganglia and the splenium of the corpus callosum. This overall effect was driven by significant differences between the group far-from-onset (FAR) of symptoms and the groups midway- (MID) and near-the-onset (NEAR) of symptoms. In particular, an initial decrease of mean diffusivity in the FAR group was followed by a subsequent increase in groups closer to onset of symptoms. The seemingly counter-intuitive decrease of mean diffusivity in the group furthest from onset of symptoms might be an early indicator of neuroinflammatory process preceding the neurodegenerative phase. In contrast, the only clinical measure that was able to capture a difference in 1y changes between the preclinical stages was the UHDRS confidence in motor score. CONCLUSIONS With sensitivity to longitudinal changes in brain microstructure within and between preclinical stages, and potential differential response to distinct pathophysiological mechanisms, diffusion imaging is a promising state marker for monitoring treatment response and identifying the optimal therapeutic window of opportunity in preclinical Huntington's disease.
Collapse
Affiliation(s)
- Chris Patrick Pflanz
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Marina Charquero-Ballester
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| | - D S Adnan Majid
- Department of Psychology, University of California, San Diego (UCSD), San Diego, California, USA
| | - Anderson M Winkler
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Emmanuel Vallée
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Adam R Aron
- Department of Psychology, University of California, San Diego (UCSD), San Diego, California, USA
| | - Mark Jenkinson
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Gwenaëlle Douaud
- Oxford Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| |
Collapse
|
21
|
Zaidi AH, Newburger JW, Wypij D, Stopp C, Watson CG, Friedman KG, Rivkin MJ, Rollins CK. Ascending Aorta Size at Birth Predicts White Matter Microstructure in Adolescents Who Underwent Fontan Palliation. J Am Heart Assoc 2019; 7:e010395. [PMID: 30561261 PMCID: PMC6405606 DOI: 10.1161/jaha.118.010395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background In neonates with single ventricle, smaller ascending aorta diameter is associated with cerebral white matter ( WM ) microstructural abnormalities. We sought to determine whether this association persists into adolescence. Methods and Results Ascending aorta Z scores were obtained from first postnatal echocardiogram. Brain magnetic resonance imaging with diffusion tensor imaging was acquired in adolescence and used to obtain fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity in 33 WM tract regions of interest. Partial Pearson correlation coefficients were evaluated for associations between ascending aorta Z scores and WM microstructure measures, adjusting for sex, age at magnetic resonance imaging, scanner field strength, and Norwood status. Among 42 single ventricle patients aged 10 to 19 years, 31 had undergone the Norwood procedure as neonates. Lower ascending aorta Z scores were associated with lower fractional anisotropy in bilateral pontine crossing tracts ( P=0.02), inferior fronto-occipital fasciculus ( P=0.02), and inferior longitudinal fasciculus ( P=0.01); left cingulum-cingulate bundle ( P=0.01), superior longitudinal fasciculus ( P=0.04), and superior longitudinal fasciculus-temporal component ( P=0.01); and right cingulum-hippocampal bundle (P=0.009) and inferior cerebellar peduncle ( P=0.01). Lower ascending aorta Z scores were associated with higher radial diffusivity and mean diffusivity in a similar regional pattern but not with axial diffusivity. Conclusions In adolescents with single ventricle, smaller aorta diameter at birth is associated with abnormalities of WM microstructure in a subset of WM tracts, mostly those located in deeper brain regions. Our findings suggest that despite multiple intervening medical or surgical procedures, prenatal cerebral blood flow may have a lasting influence on WM microstructure in single-ventricle patients.
Collapse
Affiliation(s)
- Abbas H Zaidi
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA
| | - Jane W Newburger
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA
| | - David Wypij
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA.,7 Department of Biostatistics Harvard T.H. Chan School of Public Health Boston MA
| | - Christian Stopp
- 1 Department of Cardiology Boston Children's Hospital Boston MA
| | | | - Kevin G Friedman
- 1 Department of Cardiology Boston Children's Hospital Boston MA.,5 Department of Pediatrics Harvard Medical School Boston MA
| | - Michael J Rivkin
- 2 Department of Neurology Boston Children's Hospital Boston MA.,3 Department of Psychiatry Boston Children's Hospital Boston MA.,4 Department of Radiology Boston Children's Hospital Boston MA.,6 Department of Neurology Harvard Medical School Boston MA
| | - Caitlin K Rollins
- 2 Department of Neurology Boston Children's Hospital Boston MA.,6 Department of Neurology Harvard Medical School Boston MA
| |
Collapse
|
22
|
Gerner GJ, Newman EI, Burton VJ, Roman B, Cristofalo EA, Leppert M, Johnston MV, Northington FJ, Huisman TA, Poretti A. Correlation Between White Matter Injury Identified by Neonatal Diffusion Tensor Imaging and Neurodevelopmental Outcomes Following Term Neonatal Asphyxia and Therapeutic Hypothermia: An Exploratory Pilot Study. J Child Neurol 2019; 34:556-566. [PMID: 31070085 PMCID: PMC7318916 DOI: 10.1177/0883073819841717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AIM Hypoxic-ischemic encephalopathy is associated with damage to deep gray matter; however, white matter involvement has become recognized. This study explored differences between patients and clinical controls on diffusion tensor imaging, and relationships between diffusion tensor imaging and neurodevelopmental outcomes. METHOD Diffusion tensor imaging was obtained for 31 neonates after hypoxic-ischemic encephalopathy treated with therapeutic hypothermia and 10 clinical controls. A subgroup of patients with hypoxic-ischemic encephalopathy (n = 14) had neurodevelopmental outcomes correlated with diffusion tensor imaging scalars. RESULTS Group differences in diffusion tensor imaging scalars were observed in the putamen, anterior and posterior centrum semiovale, and the splenium of the corpus callosum. Differences in these regions of interest were correlated with neurodevelopmental outcomes between ages 20 and 32 months. CONCLUSION Therapeutic hypothermia may not be a complete intervention for hypoxic-ischemic encephalopathy, as neonatal white matter changes may continue to be evident, but further research is warranted. Patterns of white matter change on neonatal diffusion tensor imaging correlated with neurodevelopmental outcomes in this exploratory pilot study.
Collapse
Affiliation(s)
- Gwendolyn J. Gerner
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD USA
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Eric I. Newman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science
| | - V. Joanna Burton
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD USA
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Brenton Roman
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD USA
| | - Elizabeth A. Cristofalo
- Frederick Memorial Hospital, Department of Neonatology, Frederick, MD, USA
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mary Leppert
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD USA
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Michael V. Johnston
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD USA
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD USA
- Hugo Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD USA
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Frances J. Northington
- Department of Perinatal-Neonatal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Thierry A.G.M. Huisman
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Andrea Poretti
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD USA
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science
- Neurosciences Intensive Care Nursery, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
23
|
Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain. Neuroimage 2019; 200:89-100. [PMID: 31228638 PMCID: PMC6711466 DOI: 10.1016/j.neuroimage.2019.06.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Various diffusion MRI (dMRI) measures have been proposed for characterising tissue microstructure over the last 15 years. Despite the growing number of experiments using different dMRI measures in assessments of white matter, there has been limited work on: 1) examining their covariance along specific pathways; and on 2) combining these different measures to study tissue microstructure. Indeed, it quickly becomes intractable for existing analysis pipelines to process multiple measurements at each voxel and at each vertex forming a streamline, highlighting the need for new ways to visualise or analyse such high-dimensional data. In a sample of 36 typically developing children aged 8–18 years, we profiled various commonly used dMRI measures across 22 brain pathways. Using a data-reduction approach, we identified two biologically-interpretable components that capture 80% of the variance in these dMRI measures. The first derived component captures properties related to hindrance and restriction in tissue microstructure, while the second component reflects characteristics related to tissue complexity and orientational dispersion. We then demonstrate that the components generated by this approach preserve the biological relevance of the original measurements by showing age-related effects across developmentally sensitive pathways. In summary, our findings demonstrate that dMRI analyses can benefit from dimensionality reduction techniques, to help disentangling the neurobiological underpinnings of white matter organisation.
Collapse
|
24
|
Tournier JD. Diffusion MRI in the brain - Theory and concepts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:1-16. [PMID: 31481155 DOI: 10.1016/j.pnmrs.2019.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 06/10/2023]
Abstract
Over the past two decades, diffusion MRI has become an essential tool in neuroimaging investigations. This is due to its sensitivity to the motion of water molecules as they diffuse through the microstructural environment, allowing diffusion MRI to be used as a 'probe' of tissue microstructure. Furthermore, this sensitivity is strongly direction-dependent, notably in brain white matter, due to the alignment of structures that restrict or hinder the motion of water molecules, notably axonal membranes. This provides a means of inferring the orientation of fibres in vivo, and by use of appropriate fibre-tracking algorithms, of delineating the path of white matter tracts in the brain. The ability to perform so-called tractography in humans in vivo non-invasively is unique to diffusion MRI, and is now used in applications such as neurosurgery planning and more broadly within investigations of brain connectomics. This review describes the theory and concepts of diffusion MRI and describes its most important areas of application in the brain, with a strong focus on tractography.
Collapse
Affiliation(s)
- J-Donald Tournier
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, UK; Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
25
|
Bruckert L, Borchers LR, Dodson CK, Marchman VA, Travis KE, Ben-Shachar M, Feldman HM. White Matter Plasticity in Reading-Related Pathways Differs in Children Born Preterm and at Term: A Longitudinal Analysis. Front Hum Neurosci 2019; 13:139. [PMID: 31139064 PMCID: PMC6519445 DOI: 10.3389/fnhum.2019.00139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
Children born preterm (PT) are at risk for white matter injuries based on complications of prematurity. They learn to read but on average perform below peers born full term (FT). Studies have yet to establish whether properties of white matter pathways at the onset of learning to read are associated with individual variation later in reading development in PT children. Here, we asked whether fractional anisotropy (FA) at age 6 years is associated with reading outcome at age 8 years in PT children in the same pathways as previously demonstrated in a sample of FT children. PT (n = 34, mean gestational age = 29.5 weeks) and FT children (n = 37) completed diffusion MRI and standardized measures of non-verbal IQ, language, and phonological awareness at age 6 years. Reading skills were assessed at age 8 years. Mean tract-FA was extracted from pathways that predicted reading outcome in children born FT: left arcuate fasciculus (Arc), bilateral superior longitudinal fasciculus (SLF), and left inferior cerebellar peduncle (ICP). We explored associations in additional pathways in the PT children: bilateral inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus. Linear regression models examined whether the prediction of reading outcome at age 8 years based on mean tract-FA at age 6 years was moderated by birth group. Children born PT and FT did not differ significantly in tract-FA at age 6 years or in reading at age 8 years. Sex, socioeconomic status, and non-verbal IQ at age 6 years were associated with reading outcome and were included as covariates in all models. Birth group status significantly moderated associations between reading outcome and mean tract-FA only in the left Arc, right SLF, and left ICP, before and after consideration of pre-literacy skills. Microstructural properties of these cerebral and cerebellar pathways predicted later reading outcome in FT but not in PT children. Children born PT may rely on alternative pathways to achieve fluent reading. These findings have implications for plasticity of neural organization after early white matter injury.
Collapse
Affiliation(s)
- Lisa Bruckert
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Lauren R Borchers
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Cory K Dodson
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Virginia A Marchman
- Language Learning Lab, Center for Infant Studies, Department of Psychology, Stanford University, Stanford, CA, United States
| | - Katherine E Travis
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.,Department of English Literature and Linguistics, Bar-Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Groeschel S, Holmström L, Northam G, Tournier JD, Baldeweg T, Latal B, Caflisch J, Vollmer B. Motor Abilities in Adolescents Born Preterm Are Associated With Microstructure of the Corpus Callosum. Front Neurol 2019; 10:367. [PMID: 31040815 PMCID: PMC6476930 DOI: 10.3389/fneur.2019.00367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Preterm birth is associated with increased risk of neuromotor impairment. Rates of major neuromotor impairment (cerebral palsy) have decreased; however, in a large proportion of those who do not develop cerebral palsy impaired neuromotor function is observed and this often has implications for everyday life. The aim of this study was to investigate motor performance in preterm born adolescents without cerebral palsy, and to examine associations with alterations of motor system pathway structure. Design/Methods: Thirty-two adolescents (12 males) without cerebral palsy, born before 33 weeks of gestation (mean 27.4 weeks, SD 2.4; birth weight mean 1,084.5 g; SD 387.2), treated at a single tertiary unit, were assessed (median age 16 years; min 14, max 18). Timed performance and quality of movements were assessed with the Zürich Neuromotor Assessment. Neuroimaging included Diffusion Magnetic Resonance Imaging for tractography of the major motor tracts and measurement of fractional anisotropy as a measure of microstructure of the tracts along the major motor pathways. Separate analyses were conducted for areas with predominantly single and predominantly crossing fiber regions. Results: Motor performance in both tasks assessing timed performance and quality of movements, was poorer than expected in the preterm group in relation to norm population. The strongest significant correlations were seen between performance in tasks assessing movement quality and fractional anisotropy in corpus callosum fibers connecting primary motor, primary somatosensory and premotor areas. In addition, timed motor performance was significantly related to fractional anisotropy in the cortico-spinal and thalamo-cortical to premotor area fibers, and the corpus callosum. Conclusions: Impairments in motor abilities are present in preterm born adolescents without major neuromotor impairment and in the absence of focal brain injury. Altered microstructure of the corpus callosum microstructure appears a crucial factor, in particular for movement quality.
Collapse
Affiliation(s)
- Samuel Groeschel
- Department of Child Neurology, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Linda Holmström
- Neuropaediatric Research Unit, Department of Women's and Children's Health, Karolinska Institutet Stockholm, Stockholm, Sweden
| | - Gemma Northam
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - J-Donald Tournier
- Division of Imaging Sciences and Biomedical Engineering, Department of Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences Programme, UCL Institute of Child Health, London, United Kingdom
| | - Beatrice Latal
- Child Development Center and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Jon Caflisch
- Child Development Center and Children's Research Centre, University Children's Hospital Zürich, Zurich, Switzerland
| | - Brigitte Vollmer
- Neuropaediatric Research Unit, Department of Women's and Children's Health, Karolinska Institutet Stockholm, Stockholm, Sweden.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
27
|
Dubner SE, Dodson CK, Marchman VA, Ben-Shachar M, Feldman HM, Travis KE. White matter microstructure and cognitive outcomes in relation to neonatal inflammation in 6-year-old children born preterm. NEUROIMAGE-CLINICAL 2019; 23:101832. [PMID: 31075555 PMCID: PMC6603335 DOI: 10.1016/j.nicl.2019.101832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive outcomes in preterm (PT) children have been associated with microstructural properties of white matter. PT children who experienced neonatal inflammatory conditions have poorer cognitive outcomes than those who did not. The goal of this study was to contrast white matter microstructure and cognitive outcomes after preterm birth in relation to the presence or absence of severe inflammatory conditions in the neonatal period. METHODS PT children (n = 35), born at gestational age 22-32 weeks, were classified as either PT+ (n = 12) based on a neonatal history of inflammatory conditions, including bronchopulmonary dysplasia, necrotizing enterocolitis or culture positive sepsis, or PT- (n = 23) based on the absence of the three inflammatory conditions. Full term (FT) children (n = 43) served as controls. Participants underwent diffusion MRI and cognitive testing (intelligence, reading, and executive function) at age 6 years. The corpus callosum was segmented into 7 regions using deterministic tractography and based on the cortical projection zones of the callosal fibers. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for each segment. General linear models with planned contrasts assessed group differences in FA, MD and cognitive outcomes. Pearson correlations assessed associations of white matter metrics and cognitive outcome measures. RESULTS FA was significantly lower and MD was significantly higher in PT+ compared to PT- or FT groups in multiple callosal segments, even after adjusting for gestational age. Executive function scores, but not intelligence or reading scores, were less favorable in PT+ than in PT- groups. Among the entire sample, occipital FA was significantly correlated with IQ (r = 0.25, p < 0.05), reading (r = 0.32, p < 0.01), and executive function (r = -0.28, p < 0.05) measures. Anterior frontal FA and superior parietal FA were significantly correlated with executive function (r = -0.25, r = 0.23, respectively, p < 0.05). CONCLUSIONS We observed differences in the white matter microstructure of the corpus callosum and in the cognitive skills of 6-year-old PT children based on their history of neonatal inflammation. Neonatal inflammation is one medical factor that may contribute to variation in long-term neurobiological and neuropsychological outcomes in PT samples.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory K Dodson
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Dell'Acqua F, Tournier J. Modelling white matter with spherical deconvolution: How and why? NMR IN BIOMEDICINE 2019; 32:e3945. [PMID: 30113753 PMCID: PMC6585735 DOI: 10.1002/nbm.3945] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/18/2018] [Accepted: 04/24/2018] [Indexed: 05/30/2023]
Abstract
Since the realization that diffusion MRI can probe the microstructural organization and orientation of biological tissue in vivo and non-invasively, a multitude of diffusion imaging methods have been developed and applied to study the living human brain. Diffusion tensor imaging was the first model to be widely adopted in clinical and neuroscience research, but it was also clear from the beginning that it suffered from limitations when mapping complex configurations, such as crossing fibres. In this review, we highlight the main steps that have led the field of diffusion imaging to move from the tensor model to the adoption of diffusion and fibre orientation density functions as a more effective way to describe the complexity of white matter organization within each brain voxel. Among several techniques, spherical deconvolution has emerged today as one of the main approaches to model multiple fibre orientations and for tractography applications. Here we illustrate the main concepts and the reasoning behind this technique, as well as the latest developments in the field. The final part of this review provides practical guidelines and recommendations on how to set up processing and acquisition protocols suitable for spherical deconvolution.
Collapse
Affiliation(s)
- Flavio Dell'Acqua
- Institute of Psychiatry Psychology and Neuroscience, King's College LondonDepartment of NeuroimagingUK
- Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry Psychology and Neuroscience, King's College LondonDepartment of Forensic and Neurodevelopmental SciencesUK
| | - J.‐Donald Tournier
- King's College LondonDivision of Imaging Sciences and Biomedical EngineeringUK
| |
Collapse
|
29
|
Pascoe MJ, Melzer TR, Horwood LJ, Woodward LJ, Darlow BA. Altered grey matter volume, perfusion and white matter integrity in very low birthweight adults. NEUROIMAGE-CLINICAL 2019; 22:101780. [PMID: 30925384 PMCID: PMC6438988 DOI: 10.1016/j.nicl.2019.101780] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
This study examined the long-term effects of being born very-low-birth-weight (VLBW, <1500 g) on adult cerebral structural development using a multi-method neuroimaging approach. The New Zealand VLBW study cohort comprised 413 individuals born VLBW in 1986. Of the 338 who survived to discharge, 229 were assessed at age 27–29 years. Of these, 150 had a 3 T MRI scan alongside 50 healthy term-born controls. The VLBW group included 53/57 participants born <28 weeks gestation. MRI analyses included: a) structural MRI to assess grey matter (GM) volume and cortical thickness; b) arterial spin labelling (ASL) to quantify GM perfusion; and c) diffusion tensor imaging (DTI) to measure white matter (WM) integrity. Compared to controls, VLBW adults had smaller GM volumes within frontal, temporal, parietal and occipital cortices, bilateral cingulate gyri and left caudate, as well as greater GM volumes in frontal, temporal and occipital areas. Thinner cortex was observed within frontal, temporal and parietal cortices. VLBW adults also had less GM perfusion within limited temporal areas, bilateral hippocampi and thalami. Finally, lower fractional anisotropy (FA) and axial diffusivity (AD) within principal WM tracts was observed in VLBW subjects. Within the VLBW group, birthweight was positively correlated with GM volume and perfusion in cortical and subcortical regions, as well as FA and AD across numerous principal WM tracts. Between group differences within temporal cortices were evident across all imaging modalities, suggesting that the temporal lobe may be particularly susceptible to disruption in development following preterm birth. Overall, findings reveal enduring and pervasive effects of preterm birth on brain structural development, with individuals born at lower birthweights having greater long-term neuropathology. Very-low-birth-weight adults had smaller GM volumes and thinner cortex than controls. VLBW adults also showed regions of larger grey matter volumes and thicker cortex. Several small regions showed lower cerebral perfusion in VLBW adults than in controls. Diffusion tensor MRI suggested poorer WM integrity in VLBW adults than in controls. Within VLBW adults, all MRI measures showed positive associations with birthweight.
Collapse
Affiliation(s)
- Maddie J Pascoe
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand.
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand; Department of Medicine, University of Otago, Christchurch 8011, New Zealand.
| | - L John Horwood
- Department of Psychological Medicine, University of Otago, Christchurch 8011, New Zealand.
| | - Lianne J Woodward
- School of Health Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Brian A Darlow
- Department of Paediatrics, University of Otago, Christchurch 8011, New Zealand.
| |
Collapse
|
30
|
Travis KE, Castro MRH, Berman S, Dodson CK, Mezer AA, Ben-Shachar M, Feldman HM. More than myelin: Probing white matter differences in prematurity with quantitative T1 and diffusion MRI. Neuroimage Clin 2019; 22:101756. [PMID: 30901711 PMCID: PMC6428958 DOI: 10.1016/j.nicl.2019.101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We combined diffusion MRI (dMRI) with quantitative T1 (qT1) relaxometry in a sample of school-aged children born preterm and full term to determine whether reduced fractional anisotropy (FA) within the corpus callosum of the preterm group could be explained by a reduction in myelin content, as indexed by R1 (1/T1) from qT1 scans. METHODS 8-year-old children born preterm (n = 29; GA 22-32 weeks) and full term (n = 24) underwent dMRI and qT1 scans. Four subdivisions of the corpus callosum were segmented in individual native space according to cortical projection zones (occipital, temporal, motor and anterior-frontal). Fractional anisotropy (FA) and R1 were quantified along the tract trajectory of each subdivision and compared across two birth groups. RESULTS Compared to controls, preterm children demonstrated significantly decreased FA in 3 of 4 analyzed corpus callosum subdivisions (temporal, motor, and anterior frontal segments) and decreased R1 in only 2 of 4 corpus callosum subdivisions (temporal and motor segments). FA and RD were significantly associated with R1 within temporal but not anterior frontal subdivisions of the corpus callosum in the term group; RD correlated with R1 in the anterior subdivision in the preterm group only. CONCLUSIONS Myelin content, as indexed by R1, drives some but not all of the differences in white matter between preterm and term born children. Other factors, such as axonal diameter and directional coherence, likely contributed to FA differences in the anterior frontal segment of the corpus callosum that were not well explained by R1.
Collapse
Affiliation(s)
- Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria R H Castro
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Reduced white matter fractional anisotropy mediates cortical thickening in adults born preterm with very low birthweight. Neuroimage 2019; 188:217-227. [DOI: 10.1016/j.neuroimage.2018.11.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
|
32
|
Northam GB, Morgan AT, Fitzsimmons S, Baldeweg T, Liégeois FJ. Corticobulbar Tract Injury, Oromotor Impairment and Language Plasticity in Adolescents Born Preterm. Front Hum Neurosci 2019; 13:45. [PMID: 30837853 PMCID: PMC6389783 DOI: 10.3389/fnhum.2019.00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
Children born preterm are at risk of impairments in oromotor control, with implications for early feeding and speech development. In this study, we aimed to identify (a) neuroanatomical markers of persistent oromotor deficits using diffusion-weighted imaging (DWI) tractography and (b) evidence of compensatory neuroplasticity using functional MRI (fMRI) during a language production task. In a cross-sectional study of 36 adolescents born very preterm (<33 weeks' gestation) we identified persistent difficulties in oromotor control in 31% of cases, but no clinical diagnoses of speech-sound disorder (e.g., dysarthria, dyspraxia). We used DWI-tractography to examine the microstructure (fractional anisotropy, FA) of the corticospinal and corticobulbar tracts. Compared to the unimpaired group, the oromotor-impaired group showed (i) reduced FA within the dorsal portion of the left corticobulbar tract (containing fibres associated with movements of the lips, tongue, and larynx) and (ii) greater recruitment of right hemisphere language regions on fMRI. We conclude that, despite the development of apparently normal everyday speech, early injury to the corticobulbar tract leads to persistent subclinical problems with voluntary control of the face, lips, jaw, and tongue. Furthermore, we speculate that early speech problems may be ameliorated by cerebral plasticity - in particular, recruitment of right hemisphere language areas.
Collapse
Affiliation(s)
- Gemma B. Northam
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Sophie Fitzsimmons
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Torsten Baldeweg
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Frédérique J. Liégeois
- Great Ormond Street Hospital for Children NHS Trust, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
33
|
Obtaining Representative Core Streamlines for White Matter Tractometry of the Human Brain. COMPUTATIONAL DIFFUSION MRI 2019. [DOI: 10.1007/978-3-030-05831-9_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Saadani-Makki F, Hagmann C, Balédent O, Makki MI. Early assessment of lateralization and sex influences on the microstructure of the white matter corticospinal tract in healthy term neonates. J Neurosci Res 2018; 97:480-491. [PMID: 30548647 DOI: 10.1002/jnr.24359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/04/2018] [Accepted: 11/08/2018] [Indexed: 11/12/2022]
Abstract
We assessed the sex and the lateralization differences in the corticospinal tract (CST) during the early postnatal period. Twenty-five healthy term neonates (13 girls, aged 39.2 ± 1.2 weeks, and 12 boys aged 38.6 ± 3.0 weeks) underwent Diffusion Tensor Imaging (DTI). Fiber tracking was performed to extract bilaterally the CST pathways and to quantify the parallel (E1 ) and perpendicular (E23 ) diffusions, the apparent diffusion coefficient (ADC), and fractional anisotropy (FA). The measurements were performed on the entire CST fibers and on four segments: base of the pons (CST-Po), cerebral peduncles (CST-CP), posterior limb of the internal capsule (CST-PLIC), and corona-radiata (CST-CR). Significantly higher E1 , lower E23, and higher FA in the right compared to the left were noted in the CST-PLIC of the girls. Significantly lower E23 and lower ADC with higher FA in the right compared to left were observed in the CST-CP of the boys. Moreover, the CST-PLIC of the boys had significantly higher E1 in the right compared to the left. There was a significant increase in left CST E1 of boys when compared with girls. Girls had a significantly lower E1 , lower E23 and, lower ADC in the left CST-CP compared with boys. In addition, girls had a significantly lower E23 and higher FA in the right CST-PLIC compared with boys. Sex differences and lateralization in structure-based segments of the CST were found in healthy term infants during early postnatal period. These findings are vital to understanding motor development of healthy term born neonates to better interpret newborn infants with abnormal neurodevelopment.
Collapse
Affiliation(s)
- Fadoua Saadani-Makki
- Unite de Traitement de l'Image, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, Université de Picardie Jules Vernes, Amiens, France
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Olivier Balédent
- Unite de Traitement de l'Image, CHU Amiens-Picardie, Amiens, France.,CHIMERE EA 7516, Université de Picardie Jules Vernes, Amiens, France
| | - Malek I Makki
- MRI Research, CHU Amiens-Picardie, Amiens, France.,MRI Research, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Hyde C, Fuelscher I, Enticott PG, Jones DK, Farquharson S, Silk TJ, Williams J, Caeyenberghs K. White matter organization in developmental coordination disorder: A pilot study exploring the added value of constrained spherical deconvolution. NEUROIMAGE-CLINICAL 2018; 21:101625. [PMID: 30552074 PMCID: PMC6411781 DOI: 10.1016/j.nicl.2018.101625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022]
Abstract
Previous studies of white matter organization in sensorimotor tracts in developmental coordination disorder (DCD) have adopted diffusion tensor imaging (DTI), a method unable to reconcile pathways with ‘crossing fibres’. In response to limitations of the commonly adopted DTI approach, the present study employed a framework that can reconcile the ‘crossing fibre’ problem (i.e., constrained spherical deconvolution- CSD) to characterize white matter tissue organization of sensorimotor tracts in young adults with DCD. Participants were 19 healthy adults aged 18–46: 7 met diagnostic criteria for DCD (4 females) and 12 were controls (3 females). All underwent high angular diffusion MRI. After preprocessing, the left and right corticospinal tracts (CST) and superior longitudinal fasciculi (SLF) were delineated and all tracts were then generated using both CSD and DTI tractography respectively. Based on the CSD model, individuals with DCD demonstrated significantly decreased mean apparent fibre density (AFD) in the left SLF relative to controls (with large effect size, Cohen's d = 1.32) and a trend for decreased tract volume of the right SLF (with medium-large effect size, Cohen's d = 0.73). No differences in SLF microstructure were found between groups using DTI, nor were differences in CST microstructure observed across groups regardless of hemisphere or diffusion model. Our data are consistent with the view that motor impairment characteristic of DCD may be subserved by white matter abnormalities in sensorimotor tracts, specifically the left and right SLF. Our data further highlight the benefits of higher order diffusion MRI (e.g. CSD) relative to DTI for clarifying earlier inconsistencies in reports speaking to white matter organization in DCD, and its contribution to poor motor skill in DCD. All previous diffusion studies of white matter in DCD have employed a tensor model We employed a non-tensor model to characterize microstructure in adults with DCD The non-tensor model showed atypical white matter organization in the SLF in DCD The tensor model failed to detect microstructural group differences for any tract Motor impairment characteristic of DCD may be subserved by white matter abnormalities
We need to move beyond the tensor model in characterizing white matter in DCD
Collapse
Affiliation(s)
- Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Shawna Farquharson
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia; Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia
| | - Tim J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
36
|
Quezada S, Castillo-Melendez M, Walker DW, Tolcos M. Development of the cerebral cortex and the effect of the intrauterine environment. J Physiol 2018; 596:5665-5674. [PMID: 30325048 DOI: 10.1113/jp277151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The human brain is one of the most complex structures currently under study. Its external shape is highly convoluted, with folds and valleys over the entire surface of the cortex. Disruption of the normal pattern of folding is associated with a number of abnormal neurological outcomes, some serious for the individual. Most of our knowledge of the normal development and folding of the cerebral cortex (gyrification) focuses on the internal, biological (i.e. genetically driven) mechanisms of the brain that drive gyrification. However, the impact of an adverse intrauterine and maternal physiological environment on cortical folding during fetal development has been understudied. Accumulating evidence suggests that the state of the intrauterine and maternal environment can have a significant impact on gyrification of the fetal cerebral cortex. This review summarises our current knowledge of how development in a suboptimal intrauterine and maternal environment can affect the normal development of the folded cerebral cortex.
Collapse
Affiliation(s)
- Sebastian Quezada
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - Margie Castillo-Melendez
- Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3168.,The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright St, Clayton, Melbourne, Australia, 3168
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Plenty Rd., Bundoora, Melbourne, Australia, 3083
| |
Collapse
|
37
|
Altered transcallosal inhibition evidenced by transcranial magnetic stimulation highlights neurophysiological consequences of premature birth in early adulthood. J Neurol Sci 2018; 393:18-23. [PMID: 30098499 DOI: 10.1016/j.jns.2018.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND OBJECTIVE A very preterm birth can induce deleterious neurophysiological consequences beyond childhood; alterations of the corpus callosum (CC) are reported in adolescents born very preterm along with cognitive impairments. The question remains whether neurophysiological alterations are still detectable in adulthood such as an alteration in CC inhibitory function. The aim of the present study was thus to examine transcallosal inhibition in young adults born very preterm compared to counterparts born at term. STUDY PARTICIPANTS & METHODS Transcallosal inhibition was probed by measuring the ipsilateral silent period (iSP) using transcranial magnetic stimulation (TMS) in 13 young adults born at 33w of gestation or less (20 ± 3. 2y) and 12 young adults born at term (22 ± 1. 75y). Single high-intensity TMS were delivered to the primary motor cortex (M1) ipsilateral to the preactivated first dorsal interosseous (FDI) muscle. Occurrence, latency, and duration of iSP were measured in the FDI EMG activity, for both hemispheres alternatively (10-12 trials each) along with their resting motor threshold (RMT). RESULTS In individuals born very preterm as compared to individuals born at term, ISP occurred less frequently (p < .0001), its latency was longer (p = .004), especially in the non-dominant hemisphere, its duration shorter (p < .0001), and RMT was higher in the non-dominant M1 than in the dominant. CONCLUSIONS Impairment of transcallosal inhibition along with asymmetry of M1 excitability in young adults born very preterm as compared to those born at term underline that neurophysiological consequences of a preterm birth can still be detected in early adulthood.
Collapse
|
38
|
Altered White Matter Microstructure Correlates with IQ and Processing Speed in Children and Adolescents Post-Fontan. J Pediatr 2018; 200:140-149.e4. [PMID: 29934026 DOI: 10.1016/j.jpeds.2018.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare white matter microstructure in children and adolescents with single ventricle who underwent the Fontan procedure with healthy controls, and to explore the association of white matter injury with cognitive performance as well as patient and medical factors. STUDY DESIGN Fontan (n = 102) and control subjects (n = 47) underwent diffusion tensor imaging (DTI) at ages 10-19 years. Mean DTI measures (fractional anisotropy, radial diffusivity, axial diffusivity, and mean diffusivity) were calculated for 33 fiber tracts from standard white matter atlases. Voxel-wise group differences in DTI measures were assessed using Tract-Based Spatial Statistics. Associations of regional fractional anisotropy with IQ and processing speed as well as medical characteristics were examined. RESULTS Subjects with Fontan, compared with controls, had reduced bilateral regional and voxel-wise fractional anisotropy in multiple white matter tracts along with increased regional radial diffusivity in several overlapping tracts; regional mean diffusivity differed in 2 tracts. The groups did not differ in voxel-wise radial diffusivity or mean diffusivity. Among subjects with Fontan, fractional anisotropy in many tracts correlated positively with Full-Scale Intelligence Quotient and processing speed, although similar findings were absent in controls. Lower mean fractional anisotropy in various tracts was associated with more complications in the first operation, a greater number of total operations, and history of neurologic event. CONCLUSIONS Children and adolescents who have undergone the Fontan procedure have widespread abnormalities in white matter microstructure. Furthermore, white matter microstructure in several tracts is associated with cognitive performance and operative and medical history characteristics.
Collapse
|
39
|
de Manzano Ö, Ullén F. Same Genes, Different Brains: Neuroanatomical Differences Between Monozygotic Twins Discordant for Musical Training. Cereb Cortex 2018; 28:387-394. [PMID: 29136105 DOI: 10.1093/cercor/bhx299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Indexed: 12/26/2022] Open
Abstract
Numerous cross-sectional and observational longitudinal studies show associations between expertise and regional brain anatomy. However, since these designs confound training with genetic predisposition, the causal role of training remains unclear. Here, we use a discordant monozygotic (identical) twin design to study expertise-dependent effects on neuroanatomy using musical training as model behavior, while essentially controlling for genetic factors and shared environment of upbringing. From a larger cohort of monozygotic twins, we were able to recruit 18 individuals (9 pairs) that were highly discordant for piano practice. We used structural and diffusion magnetic resonance imaging to analyze the auditory-motor network and within-pair differences in cortical thickness, cerebellar regional volumes and white-matter microstructure/fractional anisotropy. The analyses revealed that the musically active twins had greater cortical thickness in the auditory-motor network of the left hemisphere and more developed white matter microstructure in relevant tracts in both hemispheres and the corpus callosum. Furthermore, the volume of gray matter in the left cerebellar region of interest comprising lobules I-IV + V, was greater in the playing group. These findings provide the first clear support for that a significant portion of the differences in brain anatomy between experts and nonexperts depend on causal effects of training.
Collapse
Affiliation(s)
- Örjan de Manzano
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Fredrik Ullén
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
40
|
Broström L, Vollmer B, Bolk J, Eklöf E, Ådén U. Minor neurological dysfunction and associations with motor function, general cognitive abilities, and behaviour in children born extremely preterm. Dev Med Child Neurol 2018; 60:826-832. [PMID: 29573402 DOI: 10.1111/dmcn.13738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 11/28/2022]
Abstract
AIM To study the prevalence of minor neurological dysfunction (MND) at 6 years of age in a cohort of children born extremely preterm without cerebral palsy (CP) and to investigate associations with motor function, cognitive abilities, and behaviour. METHOD This study assessed 80 children born at less than 27 weeks of gestation and 90 children born at term age between 2004 and 2007 at a mean age of 6 years 6 months. The assessments included a simplified version of the Touwen Infant Neurological Examination, the Movement Assessment Battery for Children, Second Edition (MABC-2), Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV), the Strengths and Difficulties Questionnaire (SDQ), and the parent version of the Five to Fifteen questionnaire. RESULTS Fifty-one of the children born preterm had normal neurology, 23 had simple MND, and six had complex MND compared with 88 who had normal neurology and two simple MND in the term-born group (p<0.001). There were significant differences between the children with normal neurology and MND in the preterm group in MABC-2-assessed motor function (p<0.001), general cognitive abilities with WISC-IV (p=0.005), and SDQ overall behavioural problems and peer problems reported by the parents (p=0.021 and p=0.003 respectively). SDQ teacher-reported overall behavioural and hyperactivity problems were significantly different between children with normal and simple MND (p=0.036 and p=0.019). INTERPRETATION Children born extremely preterm, in the absence of CP, are at risk of MND and this is associated with motor function, cognitive ability, and behaviour. WHAT THIS PAPER ADDS Extremely preterm birth carries a risk of minor neurological dysfunction (MND). MND in children born extremely preterm is associated with impaired motor function and cognitive abilities, and behavioural problems. Male sex is associated with MND in children born extremely preterm.
Collapse
Affiliation(s)
- Lina Broström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Brigitte Vollmer
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jenny Bolk
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Stockholm, Sweden
| | - Eva Eklöf
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Ådén
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Glozman T, Bruckert L, Pestilli F, Yecies DW, Guibas LJ, Yeom KW. Framework for shape analysis of white matter fiber bundles. Neuroimage 2018; 167:466-477. [PMID: 29203454 PMCID: PMC5845796 DOI: 10.1016/j.neuroimage.2017.11.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/26/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain.
Collapse
Affiliation(s)
- Tanya Glozman
- Electrical Engineering, Stanford University, Stanford, CA, USA.
| | | | - Franco Pestilli
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Derek W Yecies
- Pediatric Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| |
Collapse
|
42
|
Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp Neurol 2017; 302:1-13. [PMID: 29288070 DOI: 10.1016/j.expneurol.2017.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities in fractional anisotropy and radial diffusivity in multiple regions, consistent with improved structural integrity and recovery of myelination. Taken together, these results show behavioral and memory deficits from perinatal brain injury are reversible. Furthermore, resolution of DTI abnormalities may predict responsiveness to emerging interventions, and serve as a biomarker of CNS injury and recovery.
Collapse
|
43
|
White matter alterations and their associations with motor function in young adults born preterm with very low birth weight. NEUROIMAGE-CLINICAL 2017; 17:241-250. [PMID: 29159041 PMCID: PMC5683190 DOI: 10.1016/j.nicl.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/08/2023]
Abstract
Very low birth weight (VLBW: ≤ 1500 g) individuals have an increased risk of white matter alterations and neurodevelopmental problems, including fine and gross motor problems. In this hospital-based follow-up study, the main aim was to examine white matter microstructure and its relationship to fine and gross motor function in 31 VLBW young adults without cerebral palsy compared with 31 term-born controls, at mean age 22.6 ± 0.7 years. The participants were examined with tests of fine and gross motor function (Trail Making Test-5: TMT-5, Grooved Pegboard, Triangle from Movement Assessment Battery for Children-2: MABC-2 and High-level Mobility Assessment Tool: HiMAT) and diffusion tensor imaging (DTI). Probabilistic tractography of motor pathways of the corticospinal tract (CST) and corpus callosum (CC) was performed. Fractional anisotropy (FA) was calculated in non-crossing (capsula interna in CST, body of CC) and crossing (centrum semiovale) fibre regions along the tracts and examined for group differences. Associations between motor test scores and FA in the CST and CC were investigated with linear regression. Tract-based spatial statistics (TBSS) was used to examine group differences in DTI metrics in all major white matter tracts. The VLBW group had lower scores on all motor tests compared with controls, however, only statistically significant for TMT-5. Based on tractography, FA in the VLBW group was lower in non-crossing fibre regions and higher in crossing fibre regions of the CST compared with controls. Within the VLBW group, poorer fine motor function was associated with higher FA in crossing fibre regions of the CST, and poorer bimanual coordination was additionally associated with lower FA in crossing fibre regions of the CC. Poorer gross motor function was associated with lower FA in crossing fibre regions of the CST and CC. There were no associations between motor function and FA in non-crossing fibre regions of the CST and CC within the VLBW group. In the TBSS analysis, the VLBW group had lower FA and higher mean diffusivity compared with controls in all major white matter tracts. The findings in this study may indicate that the associations between motor function and FA are caused by other tracts crossing the CST and CC, and/or by alterations in the periventricular white matter in the centrum semiovale. Some of the associations were in the opposite direction than hypothesized, thus higher FA does not always indicate better function. Furthermore, widespread white matter alterations in VLBW individuals persist into young adulthood. Motor function was associated with FA in crossing fibre regions of CST and CC in VLBW young adults In crossing fibre regions of CST, FA was higher in VLBW than in control young adults TBSS showed lower FA and higher MD in white matter tracts in VLBW than in control young adults
Collapse
Key Words
- AD, axial diffusivity
- Brain
- CC, corpus callosum
- CST, corticospinal tract
- DTI, diffusion tensor imaging
- Diffusion tensor imaging
- FA, fractional anisotropy
- HiMAT, high-level mobility assessment tool
- MABC-2, movement assessment battery for children-2
- MD, mean diffusivity
- MNI, Montreal neurological institute
- MRI, magnetic resonance imaging
- Motor function
- NICU, neonatal intensive care unit
- Preterm
- RD, radial diffusivity
- ROI, region-of-interest
- SES, socioeconomic status
- TBSS, tract-based spatial statistics
- TMT-5, Trail Making Test-5
- Tractography
- VLBW, very low birth weight
- VOI, volume-of-interest
- Young adulthood
Collapse
|
44
|
Groeschel S, Hertz-Pannier L, Delion M, Loustau S, Husson B, Kossorotoff M, Renaud C, Nguyen The Tich S, Chabrier S, Dinomais M. Association of transcallosal motor fibres with function of both hands after unilateral neonatal arterial ischemic stroke. Dev Med Child Neurol 2017; 59:1042-1048. [PMID: 28815625 DOI: 10.1111/dmcn.13517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
AIM The objective of this study was to investigate the involvement of the motor fibres of the corpus callosum after unilateral neonatal arterial ischemic stroke (NAIS) of the middle cerebral artery territory and the relationship to both ipsilesional and contralesional hand function. METHOD Using high-resolution structural magnetic resonance imaging (MRI), functional MRI, and magnetic resonance diffusion-tractography, we compared the midsagittal area of the motor part of the corpus callosum (defined by the fibres connecting the precentral gyri) between 33 7-year-old children after unilateral NAIS and 31 typically developing 7-year-old children. Hand motor performance was assessed by the box and blocks test. RESULTS Children after NAIS showed on average significantly smaller motor corpus callosum area compared to typically developing children (p<0.001, without differences of the non-motor corpus callosum area). In addition, there was a significant positive association between the motor part of the corpus callosum and both contralesional (Pr(>|t|)=0.034) and ipsilesional hand motor performance (Pr(>|t|)=0.006) after controlling for lesion volume and sex. In a post-hoc analysis the additional contribution of corticospinal tract damage was evaluated. INTERPRETATION Compared to typically developing children, children after NAIS exhibited a smaller motor part of their corpus callosum associated with reduced contralesional but also ipsilesional manual dexterity. These results indicate that the affection of transcallosal motor fibres in unilateral NAIS might be of functional relevance and an important part of the involved structural network that should be elucidated in further studies.
Collapse
Affiliation(s)
- Samuel Groeschel
- Experimental Pediatric Neuroimaging, Department of Child Neurology, University Hospital Tübingen, Tuebingen, Germany
| | | | - Matthieu Delion
- Département de neurochirurgie and Laboratoire d'anatomie, Faculté de médecine Angers, LUNAM Université d'Angers, Angers, France
| | - Sébastien Loustau
- Laboratoire Angevin de Recherche en Maths (LAREMA), LUNAM Université d'Angers, Angers, France
| | - Béatrice Husson
- Pediatric Radiology Department, University Hospital Bicêtre, Assistance-Publique-Hopitaux de Paris, Paris-Sud University, Paris, France
| | - Manoelle Kossorotoff
- Paediatric Neurology Department, French Center for Paediatric Stroke, University Hospital Necker-Enfants-Malades, AP-HP, Paris, France
| | - Cyrille Renaud
- CHU Saint-Étienne, Inserm, Univ Lyon, Centre national de référence de l'AVC de L'Enfant, Service de médecine physique et de réadaption pédiatrique, Saint-Étienne, France
| | - Sylvie Nguyen The Tich
- Pediatric Neurology Department and Environment Périnatale et Santé, University Hospital, Lille, France
| | - Stéphane Chabrier
- CHU Saint-Étienne, Inserm, Univ Lyon, Centre national de référence de l'AVC de L'Enfant, Service de médecine physique et de réadaption pédiatrique, Saint-Étienne, France
| | - Mickael Dinomais
- CHU Angers, Département de Médecine Physique et de Réadaption and LUNAM, Université d'Angers, Laboratoire Angevin de Rechereche en Ingénierie des Systèmes (LARIS), Angers, France
| | | |
Collapse
|
45
|
Dodson CK, Travis KE, Ben-Shachar M, Feldman HM. White matter microstructure of 6-year old children born preterm and full term. NEUROIMAGE-CLINICAL 2017; 16:268-275. [PMID: 28840098 PMCID: PMC5558468 DOI: 10.1016/j.nicl.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023]
Abstract
AIM We previously observed a complex pattern of differences in white matter (WM) microstructure between preterm-born (PT) and full-term-born (FT) children and adolescents age 9-17 years. The aim of this study was to determine if the same differences exist as early as age 6 years. METHOD We obtained diffusion MRI (dMRI) scans in children born PT at age 6 years (n = 20; 11 males) and FT (n = 38; 14 males), using two scanning protocols: 30 diffusion directions (b = 1000 s/mm2) and 96 diffusion directions (b = 2500 s/mm2). We used deterministic tractography and analyzed fractional anisotropy (FA) along bilateral cerebral WM pathways that demonstrated differences in the older sample. RESULTS Compared to the FT group, the PT group showed (1) significantly decreased FA in the uncinate fasciculi and forceps major and (2) significantly increased FA in the right anterior thalamic radiation, inferior fronto-occipital fasciculi, and inferior longitudinal fasciculi. This pattern of group differences resembles findings in the previous study of older PT and FT participants. Group differences were similar across dMRI acquisition protocols. INTERPRETATION The underlying neurobiology driving the pattern of PT-FT differences in FA is present as early as age 6 years. Generalization across dMRI acquisition protocols demonstrates the robustness of group differences in FA. Future studies will use quantitative neuroimaging techniques to understand the tissue properties that give rise to this consistent pattern of WM differences after PT birth.
Collapse
Affiliation(s)
- Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road X119, Stanford, CA 94305, USA
| |
Collapse
|
46
|
Lenfeldt N, Johansson AM, Domellöf E, Riklund K, Rönnqvist L. Alterations in white matter microstructure are associated with goal-directed upper-limb movement segmentation in children born extremely preterm. Hum Brain Mapp 2017; 38:5051-5068. [PMID: 28685893 DOI: 10.1002/hbm.23714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Altered white matter microstructure is commonly found in children born preterm (PT), especially those born at an extremely low gestational age (GA). These children also commonly show disturbed motor function. This study explores the relation between white matter alterations and upper-limb movement segmentation in 41 children born PT (19 girls), and 41 children born at term (18 girls) at 8 years. The PT group was subdivided into extremely PT (E-PT; GA = 25-27 weeks, N = 10), very PT (V-PT; GA = 28-32 weeks, N = 13), and moderately PT (M-PT; GA = 33-35 weeks, N = 18). Arm/hand preference (preferred/non-preferred) was determined through object interactions and the brain hemispheres were designated accordingly. White matter alterations were assessed using diffusion tensor imaging in nine areas, and movement segmentation of the body-parts head, shoulder, elbow, and wrist were registered during a unimanual goal-directed task. Increased movement segmentation was demonstrated consistently on the preferred side in the E-PT group compared with the term born group. Also compared with the term born peers, the E-PT group demonstrated reduced fractional anisotropy (FA) in the cerebral peduncle (targeting the corticospinal tract) in the hemisphere on the non-preferred side and in the splenium of corpus callosum. In contrast, in the anterior internal capsule on the preferred side, the E-PT group had increased FA. Lower FA in the cerebral peduncle, but higher FA in the anterior internal capsule, was associated with increased movement segmentation across body-parts in a contralateral manner. The results suggest that impaired development of sensorimotor tracts in E-PT children could explain a sub-optimal spatiotemporal organization of upper-limb movements. Hum Brain Mapp 38:5051-5068, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niklas Lenfeldt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anna-Maria Johansson
- Department of Psychology, , Umeå University, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotheraphy, Umeå University, Umeå, Sweden
| | - Erik Domellöf
- Department of Psychology, , Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
47
|
Vollmer B, Lundequist A, Mårtensson G, Nagy Z, Lagercrantz H, Smedler AC, Forssberg H. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents. PLoS One 2017; 12:e0178893. [PMID: 28594884 PMCID: PMC5464584 DOI: 10.1371/journal.pone.0178893] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/19/2017] [Indexed: 12/04/2022] Open
Abstract
Main objectives Executive functions are frequently a weakness in children born preterm. We examined associations of executive functions and general cognitive abilities with brain structure in preterm born adolescents who were born with appropriate weight for gestational age and who have no radiological signs of preterm brain injury on neuroimaging. Methods The Stockholm Neonatal Project (SNP) is a longitudinal, population-based study of children born preterm (<36 weeks of gestation) with very low birth weight (<1501g) between 1988–1993. At age 18 years (mean 18 years, SD 2 weeks) 134 preterm born and 94 full term participants underwent psychological assessment (general intelligence, executive function measures). Of these, 71 preterm and 63 full term participants underwent Magnetic Resonance Imaging (MRI) at mean 15.2 years (range 12–18 years), including 3D T1-weighted images for volumetric analyses and Diffusion Tensor Imaging (DTI) for assessment of white matter microstructure. Group comparisons of regional grey and white matter volumes and fractional anisotropy (FA, as a measure of white matter microstructure) and, within each group, correlation analyses of cognitive measures with MRI metrics were carried out. Results Significant differences in grey and white matter regional volumes and widespread differences in FA were seen between the two groups. No significant correlations were found between cognitive measures and brain volumes in any group after correction for multiple comparisons. However, there were significant correlations between FA in projection fibres and long association fibres, linking frontal, temporal, parietal, and occipital lobes, and measures of executive function and general cognitive abilities in the preterm born adolescents, but not in the term born adolescents. Overall significance of the study In persons born preterm, in the absence of perinatal brain injury on visual inspection of MRI, widespread alterations in regional brain tissue volumes and microstructure are present in adolescence/young adulthood. Importantly, these alterations in WM tracts are correlated with measures of executive function and general cognitive abilities. Our findings suggest that disturbance of neural pathways, rather than changes in regional brain volumes, are involved in the impaired cognitive functions.
Collapse
Affiliation(s)
- Brigitte Vollmer
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Aiko Lundequist
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | - Gustaf Mårtensson
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | - Zoltan Nagy
- Department of Economics, University of Zürich, Zürich, Switzerland
| | - Hugo Lagercrantz
- Neonatal Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | | | - Hans Forssberg
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Li X, Gao J, Wang M, Zheng J, Li Y, Hui ES, Wan M, Yang J. Characterization of Extensive Microstructural Variations Associated with Punctate White Matter Lesions in Preterm Neonates. AJNR Am J Neuroradiol 2017; 38:1228-1234. [PMID: 28450434 PMCID: PMC7960104 DOI: 10.3174/ajnr.a5226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Punctate white matter lesions are common in preterm neonates. Neurodevelopmental outcomes of the neonates are related to the degree of extension. This study aimed to characterize the extent of microstructural variations for different punctate white matter lesion grades. MATERIALS AND METHODS Preterm neonates with punctate white matter lesions were divided into 3 grades (from mild to severe: grades I-III). DTI-derived fractional anisotropy, axial diffusivity, and radial diffusivity between patients with punctate white matter lesions and controls were compared with Tract-Based Spatial Statistics and tract-quantification methods. RESULTS Thirty-three preterm neonates with punctate white matter lesions and 33 matched controls were enrolled. There were 15, 9, and 9 patients, respectively, in grades I, II, and III. Punctate white matter lesions were mainly located in white matter adjacent to the lateral ventricles, especially regions lateral to the trigone, posterior horns, and centrum semiovale and/or corona radiata. Extensive microstructural changes were observed in neonates with grade III punctate white matter lesions, while no significant changes in DTI metrics were found for grades I and II. A pattern of increased axial diffusivity, increased radial diffusivity, and reduced/unchanged fractional anisotropy was found in regions adjacent to punctate white matter lesion sites seen on T1WI and T2WI. Unchanged axial diffusivity, increased radial diffusivity, and reduced/unchanged fractional anisotropy were observed in regions distant from punctate white matter lesion sites. CONCLUSIONS White matter microstructural variations were different across punctate white matter lesion grades. Extensive change patterns varied according to the distance to the lesion sites in neonates with severe punctate white matter lesions. These findings may help in determining the outcomes of punctate white matter lesions and selecting treatment strategies.
Collapse
Affiliation(s)
- X Li
- From the Department of Radiology (X.L., J.G., M. Wang, Y.L., J.Y.)
- Department of Biomedical Engineering (X.L., M. Wan, J.Y.), the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Gao
- From the Department of Radiology (X.L., J.G., M. Wang, Y.L., J.Y.)
| | - M Wang
- From the Department of Radiology (X.L., J.G., M. Wang, Y.L., J.Y.)
| | - J Zheng
- Clinical Research Center (J.Z.), the First Affiliated Hospital, Xi'an, Shaanxi, China
| | - Y Li
- From the Department of Radiology (X.L., J.G., M. Wang, Y.L., J.Y.)
| | - E S Hui
- Department of Diagnostic Radiology (E.S.H.), University of Hong Kong, Hong Kong, China
| | - M Wan
- Department of Biomedical Engineering (X.L., M. Wan, J.Y.), the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - J Yang
- From the Department of Radiology (X.L., J.G., M. Wang, Y.L., J.Y.)
- Department of Biomedical Engineering (X.L., M. Wan, J.Y.), the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
49
|
Pecheva D, Yushkevich P, Batalle D, Hughes E, Aljabar P, Wurie J, Hajnal JV, Edwards AD, Alexander DC, Counsell SJ, Zhang H. A tract-specific approach to assessing white matter in preterm infants. Neuroimage 2017; 157:675-694. [PMID: 28457976 PMCID: PMC5607355 DOI: 10.1016/j.neuroimage.2017.04.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022] Open
Abstract
Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for studying brain development. DWI analyses relying on manually-drawn regions of interest and tractography using manually-placed waypoints are considered to provide the most accurate characterisation of the underlying brain structure. However, these methods are labour-intensive and become impractical for studies with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis (TSA) is an alternative WM analysis method applicable to large-scale studies that offers potential benefits. TSA produces a skeleton representation of WM tracts and projects the group's diffusion data onto the skeleton for statistical analysis. In this work we evaluate the performance of TSA in analysing preterm infant data against results obtained from native space tractography and tract-based spatial statistics. We evaluate TSA's registration accuracy of WM tracts and assess the agreement between native space data and template space data projected onto WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA registration provides better WM tract alignment than a previous protocol optimised for neonatal spatial normalisation, and that TSA projects FA values that match well with values derived from native space tractography. We apply TSA for the first time to a preterm neonatal population to study the effects of age at scan on WM tracts around term equivalent age. We demonstrate the effects of age at scan on DTI metrics in commissural, projection and association fibres. We demonstrate the potential of TSA for WM analysis and its suitability for infant studies involving multiple tracts. Evaluation of tract-specific analysis (TSA) for white matter studies in infants. TSA improves white matter tract alignment over scalar-based registration. TSA closely approximates native space tractography DTI values. The first application of TSA to a neonatal population.
Collapse
Affiliation(s)
- Diliana Pecheva
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK; Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Paul Yushkevich
- Penn Image Computing and Science Laboratory (PISCL), Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Dafnis Batalle
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Emer Hughes
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Julia Wurie
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK
| | - Daniel C Alexander
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, UK.
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, UK
| |
Collapse
|
50
|
Pujar SS, Seunarine KK, Martinos MM, Neville BGR, Scott RC, Chin RFM, Clark CA. Long-term white matter tract reorganization following prolonged febrile seizures. Epilepsia 2017; 58:772-780. [PMID: 28332711 PMCID: PMC5484997 DOI: 10.1111/epi.13724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Objective Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer‐term evolution is unknown. We investigated a population‐based cohort to determine white matter diffusion properties 8 years after PFS. Methods We used diffusion tensor imaging (DTI) and applied Tract‐Based Spatial Statistics for voxel‐wise comparison of white matter microstructure between 26 children with PFS and 27 age‐matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel‐wise analysis. Results Mean duration between the episode of PFS and follow‐up was 8.2 years (range 6.7–9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel‐wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late‐maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. Significance In this homogeneous, population‐based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late‐maturing peripheral white matter tracts 8 years post‐PFS. We propose disruption in white matter maturation secondary to seizure‐induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation.
Collapse
Affiliation(s)
- Suresh S Pujar
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Young Epilepsy, Lingfield, Surrey, United Kingdom
| | - Kiran K Seunarine
- Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marina M Martinos
- Developmental Cognitive Neuroscience Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Brian G R Neville
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Young Epilepsy, Lingfield, Surrey, United Kingdom
| | - Rod C Scott
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Young Epilepsy, Lingfield, Surrey, United Kingdom.,Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, U.S.A
| | - Richard F M Chin
- Neurosciences Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Muir Maxwell Epilepsy Centre, Department of Child Life and Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chris A Clark
- Imaging and Biophysics Unit, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|