1
|
Lalancette E, Charlebois-Poirier AR, Agbogba K, Knoth IS, Côté V, Perreault S, Lippé S. Time-frequency analyses of repetition suppression and change detection in children with neurofibromatosis type 1. Brain Res 2023; 1818:148512. [PMID: 37499730 DOI: 10.1016/j.brainres.2023.148512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Children with neurofibromatosis type 1 (NF1) are at increased risk of developing cognitive problems, including attention deficits and learning difficulties. Alterations in brain response to repetition and change have been evidenced in other genetic conditions associated with cognitive dysfunctions. Whether the integrity of these fundamental neural responses is compromised in school-aged children with NF1 is still unknown. In this study, we examined the repetition suppression (RS) and change detection responses in children with NF1 (n = 36) and neurotypical controls (n = 41) aged from 4 to 13 years old, using a simple sequence of vowels. We performed time-frequency analyses to compare spectral power and phase synchronization between groups, in the theta, alpha and beta frequency bands. Correlational analyses were performed between the neural responses and the level of intellectual functioning, as well as with behavioral symptoms of comorbid neurodevelopmental disorders measured through parental questionnaires. Children with NF1 showed preserved RS, but increased spectral power in the change detection response. Correlational analyses performed with measures of change detection revealed a negative association between the alpha-band spectral power and symptoms of inattention and hyperactivity. These findings suggest atypical neural response to change in children with NF1. Further studies should be conducted to clarify the interaction with comorbid neurodevelopmental disorders and the possible role of altered inhibitory mechanisms in this enhanced neural response.
Collapse
Affiliation(s)
- Eve Lalancette
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Audrey-Rose Charlebois-Poirier
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Kristian Agbogba
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Inga Sophia Knoth
- CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Valérie Côté
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada
| | - Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology, CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, Quebec H2V 2S9, Canada; CHU Sainte-Justine Research Center, 3175 Côte Ste-Catherine, Montreal, Qc. H3T 1C5, Canada.
| |
Collapse
|
2
|
Gow DW, Avcu E, Schoenhaut A, Sorensen DO, Ahlfors SP. Abstract representations in temporal cortex support generative linguistic processing. LANGUAGE, COGNITION AND NEUROSCIENCE 2022; 38:765-778. [PMID: 37332658 PMCID: PMC10270390 DOI: 10.1080/23273798.2022.2157029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/21/2022] [Indexed: 06/20/2023]
Abstract
Generativity, the ability to create and evaluate novel constructions, is a fundamental property of human language and cognition. The productivity of generative processes is determined by the scope of the representations they engage. Here we examine the neural representation of reduplication, a productive phonological process that can create novel forms through patterned syllable copying (e.g. ba-mih → ba-ba-mih, ba-mih-mih, or ba-mih-ba). Using MRI-constrained source estimates of combined MEG/EEG data collected during an auditory artificial grammar task, we identified localized cortical activity associated with syllable reduplication pattern contrasts in novel trisyllabic nonwords. Neural decoding analyses identified a set of predominantly right hemisphere temporal lobe regions whose activity reliably discriminated reduplication patterns evoked by untrained, novel stimuli. Effective connectivity analyses suggested that sensitivity to abstracted reduplication patterns was propagated between these temporal regions. These results suggest that localized temporal lobe activity patterns function as abstract representations that support linguistic generativity.
Collapse
Affiliation(s)
- David W. Gow
- Department of Neurology Massachusetts General Hospital and Harvard Medical School; Boston, MA, 02114
- Department of Psychology, Salem State University; Salem, MA, 01970
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital; Charlestown, MA, 02129
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School; Boston, MA 02115
| | - Enes Avcu
- Department of Neurology Massachusetts General Hospital and Harvard Medical School; Boston, MA, 02114
| | - Adriana Schoenhaut
- Department of Neurology Massachusetts General Hospital and Harvard Medical School; Boston, MA, 02114
| | - David O. Sorensen
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School; Boston, MA 02115
| | - Seppo P. Ahlfors
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School; Boston, MA 02115
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School; Boston, MA, 02114
| |
Collapse
|
3
|
Expectations attenuate the negative influence of neural adaptation on the processing of novel stimuli: ERP evidence. Neuroscience 2022; 492:58-66. [DOI: 10.1016/j.neuroscience.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
|
4
|
Knowland VCP, Baker DH, Gaskell MG, van Rijn E, Walker SA, Norbury CF, Henderson LM. Neural Responses to Novel and Existing Words in Children with Autism Spectrum and Developmental Language Disorder. J Cogn 2022; 5:14. [PMID: 36072108 PMCID: PMC9400667 DOI: 10.5334/joc.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
The formation of new phonological representations is key in establishing items in the mental lexicon. Phonological forms become stable with repetition, time and sleep. Atypicality in the establishment of new word forms is characteristic of children with developmental language disorder (DLD) and autism spectrum disorder (ASD), yet neural changes in response to novel word forms over time have not yet been directly compared in these groups. This study measured habituation of event-related-potentials (ERPs) to novel and known words within and between two sessions spaced 24 hours apart in typically developing (TD) children, and their peers with DLD or ASD. We hypothesised that modulation of the auditory N400 amplitude would mark real-time changes in lexical processing with habituation evident within and across sessions in the TD group, while the DLD group would show attenuated habituation within sessions, and the ASD group attenuated habituation between sessions. Twenty-one typically developing children, 19 children with ASD, and 16 children with DLD listened passively to known and novel words on two consecutive days, while ERPs were recorded using dry electrodes. Counter to our hypotheses, no habituation effect emerged within sessions. However, responses did habituate between sessions, with this effect being reduced in the DLD group, indicating less pre-activation of lexical representations in response to words encountered the previous day. No differences in change over time were observed between the TD and ASD groups. These data are in keeping with theories stressing the importance of sleep-related consolidation in word learning.
Collapse
Affiliation(s)
| | - Daniel H. Baker
- Department of Psychology, University of York, York, YO10 5DD, UK
| | | | - Elaine van Rijn
- Department of Psychology, University of York, York, YO10 5DD, UK
| | - Sarah A. Walker
- Department of Psychology, University of York, York, YO10 5DD, UK
| | | | | |
Collapse
|
5
|
Kleeva DF, Rebreikina AB, Soghoyan GA, Kostanian DG, Neklyudova AN, Sysoeva OV. Generalization of sustained neurophysiological effects of short-term auditory 13-Hz stimulation to neighboring frequency representation in humans. Eur J Neurosci 2021; 55:175-188. [PMID: 34736295 PMCID: PMC9299826 DOI: 10.1111/ejn.15513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022]
Abstract
A fuller understanding of the effects of auditory tetanization in humans would inform better language and sensory learning paradigms, however, there are still unanswered questions. Here, we probe sustained changes in the event-related potentials (ERPs) to 1020Hz and 980Hz tones following a rapid presentation of 1020Hz tone (every 75 ms, 13.3Hz, tetanization). Consistent with the previous studies (Rygvold, et al., 2021, Mears & Spencer 2012), we revealed the increase in the P2 ERP component after tetanization. Contrary to other studies (Clapp et al., 2005; Lei et al., 2017) we did not observe the expected N1 increase after tetanization even in the experimental sequence identical to Clapp. et al., 2005. We detected a significant N1 decrease after tetanization. Expanding previous research, we showed that P2 increase and N1 decrease is not specific to the stimulus type (tetanized 1020Hz and non-tetanized 980Hz), suggesting the generalizability of tetanization effect to the not-stimulated auditory tones, at least to those of the neighboring frequency. The ERPs tetanization effects were observed for at least 30 min - the most prolonged interval examined, consistent with the duration of long-term potentiation, LTP. In addition, the tetanization effects were detectable in the blocks where the participants watched muted videos, an experimental setting that can be easily used in children and other challenging groups. Thus, auditory 13-Hz stimulation affects brain processing of tones including those of neighboring frequencies.
Collapse
Affiliation(s)
- D F Kleeva
- Center for Cognitive Research, Sirius University of Science and Technology, Sochi, Russia.,Center for Bioelectric Interfaces, National Research University "Higher School of Economics", Moscow, Russia
| | - A B Rebreikina
- Center for Cognitive Research, Sirius University of Science and Technology, Sochi, Russia.,Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - G A Soghoyan
- Center for Cognitive Research, Sirius University of Science and Technology, Sochi, Russia.,Center for Bioelectric Interfaces, National Research University "Higher School of Economics", Moscow, Russia.,V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology 121205, Moscow, Russia
| | - D G Kostanian
- Center for Cognitive Research, Sirius University of Science and Technology, Sochi, Russia.,Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - A N Neklyudova
- Center for Cognitive Research, Sirius University of Science and Technology, Sochi, Russia.,Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - O V Sysoeva
- Center for Cognitive Research, Sirius University of Science and Technology, Sochi, Russia.,Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
6
|
Tempesta AJ, Miller CE, Litvak V, Bowman H, Schofield AJ. The missing N1 or jittered P2: Electrophysiological correlates of pattern glare in the time and frequency domain. Eur J Neurosci 2021; 54:6168-6186. [PMID: 34374142 PMCID: PMC9290835 DOI: 10.1111/ejn.15419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/04/2022]
Abstract
Excessive sensitivity to certain visual stimuli (cortical hyperexcitability) is associated with a number of neurological disorders including migraine, epilepsy, multiple sclerosis, autism and possibly dyslexia. Others show disruptive sensitivity to visual stimuli with no other obvious pathology or symptom profile (visual stress) which can extend to discomfort and nausea. We used event‐related potentials (ERPs) to explore the neural correlates of visual stress and headache proneness. We analysed ERPs in response to thick (0.37 cycles per degree [c/deg]), medium (3 c/deg) and thin (12 c/deg) gratings, using mass univariate analysis, considering three factors in the general population: headache proneness, visual stress and discomfort. We found relationships between ERP features and the headache and discomfort factors. Stimulus main effects were driven by the medium stimulus regardless of participant characteristics. Participants with high discomfort ratings had larger P1 components for the initial presentation of medium stimuli, suggesting initial cortical hyperexcitability that is later suppressed. The participants with high headache ratings showed atypical N1‐P2 components for medium stripes relative to the other stimuli. This effect was present only after repeated stimulus presentation. These effects were also explored in the frequency domain, suggesting variations in intertrial theta band phase coherence. Our results suggest that discomfort and headache in response to striped stimuli are related to different neural processes; however, more exploration is needed to determine whether the results translate to a clinical migraine population.
Collapse
Affiliation(s)
- Austyn J Tempesta
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Claire E Miller
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Howard Bowman
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Computing, University of Kent, Canterbury, UK
| | - Andrew J Schofield
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,School of Psychology, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
7
|
Bednaya E, Pavani F, Ricciardi E, Pietrini P, Bottari D. Oscillatory signatures of Repetition Suppression and Novelty Detection reveal altered induced visual responses in early deafness. Cortex 2021; 142:138-153. [PMID: 34265736 DOI: 10.1016/j.cortex.2021.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022]
Abstract
The ability to differentiate between repeated and novel events represents a fundamental property of the visual system. Neural responses are typically reduced upon stimulus repetition, a phenomenon called Repetition Suppression (RS). On the contrary, following a novel visual stimulus, the neural response is generally enhanced, a phenomenon referred to as Novelty Detection (ND). Here, we aimed to investigate the impact of early deafness on the oscillatory signatures of RS and ND brain responses. To this aim, electrophysiological data were acquired in early deaf and hearing control individuals during processing of repeated and novel visual events unattended by participants. By studying evoked and induced oscillatory brain activities, as well as inter-trial phase coherence, we linked response modulations to feedback and/or feedforward processes. Results revealed selective experience-dependent changes on both RS and ND mechanisms. Compared to hearing controls, early deaf individuals displayed: (i) greater attenuation of the response following stimulus repetition, selectively in the induced theta-band (4-7 Hz); (ii) reduced desynchronization following the onset of novel visual stimuli, in the induced alpha and beta bands (8-12 and 13-25 Hz); (iii) comparable modulation of evoked responses and inter-trial phase coherence. The selectivity of the effects in the induced responses parallels findings observed in the auditory cortex of deaf animal models following intracochlear electric stimulation. The present results support the idea that early deafness alters induced oscillatory activity and the functional tuning of basic visual processing.
Collapse
Affiliation(s)
- Evgenia Bednaya
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
| | - Francesco Pavani
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Italy; Department of Psychology and Cognitive Science, University of Trento, Italy
| | | | - Pietro Pietrini
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy
| | - Davide Bottari
- Molecular Mind Laboratory, IMT School for Advanced Studies Lucca, Italy.
| |
Collapse
|
8
|
Hsu YF, Darriba Á, Waszak F. Attention modulates repetition effects in a context of low periodicity. Brain Res 2021; 1767:147559. [PMID: 34118219 DOI: 10.1016/j.brainres.2021.147559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Stimulus repetition can result in a reduction in neural responses (i.e., repetition suppression) in neuroimaging studies. Predictive coding models of perception postulate that this phenomenon largely reflects the top-down attenuation of prediction errors. Electroencephalography research further demonstrated that repetition effects consist of sequentially ordered attention-independent and attention-dependent components in a context of high periodicity. However, the statistical structure of our auditory environment is richer than that of a fixed pattern. It remains unclear if the attentional modulation of repetition effects can be generalised to a setting which better represents the nature of our auditory environment. Here we used electroencephalography to investigate whether the attention-independent and attention-dependent components of repetition effects previously described in the auditory modality remain in a context of low periodicity where temporary disruption might be absent/present. Participants were presented with repetition trains of various lengths, with/without temporary disruptions. We found attention-independent and attention-dependent repetition effects on, respectively, the P2 and P3a event-related potential components. This pattern of results is in line with previous research, confirming that the attenuation of prediction errors upon stimulus repetition is first registered regardless of attentional state before further attenuation of attended but not unattended prediction errors takes place. However, unlike previous reports, these effects manifested on later components. This divergence from previous studies is discussed in terms of the possible contribution of contextual factors.
Collapse
Affiliation(s)
- Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, 10610 Taipei, Taiwan; Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, 10610 Taipei, Taiwan.
| | - Álvaro Darriba
- Centre National de la Recherche Scientifique (CNRS), Integrative Neuroscience and Cognition Center (INCC), Unité Mixte de Recherche, 8002 75006 Paris, France; Université de Paris, 75006 Paris, France.
| | - Florian Waszak
- Centre National de la Recherche Scientifique (CNRS), Integrative Neuroscience and Cognition Center (INCC), Unité Mixte de Recherche, 8002 75006 Paris, France; Université de Paris, 75006 Paris, France; Fondation Ophtalmologique Rothschild, Paris, France.
| |
Collapse
|
9
|
Hsu YF, Hämäläinen JA. Both contextual regularity and selective attention affect the reduction of precision-weighted prediction errors but in distinct manners. Psychophysiology 2020; 58:e13753. [PMID: 33340115 DOI: 10.1111/psyp.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Predictive coding model of perception postulates that the primary objective of the brain is to infer the causes of sensory inputs by reducing prediction errors (i.e., the discrepancy between expected and actual information). Moreover, prediction errors are weighted by their precision (i.e., inverse variance), which quantifies the degree of certainty about the variables. There is accumulating evidence that the reduction of precision-weighted prediction errors can be affected by contextual regularity (as an external factor) and selective attention (as an internal factor). However, it is unclear whether the two factors function together or separately. Here we used electroencephalography (EEG) to examine the putative interaction of contextual regularity and selective attention on this reduction process. Participants were presented with pairs of regular and irregular quartets in attended and unattended conditions. We found that contextual regularity and selective attention independently modulated the N1/MMN where the repetition effect was absent. On the P2, the two factors respectively interacted with the repetition effect without interacting with each other. The results showed that contextual regularity and selective attention likely affect the reduction of precision-weighted prediction errors in distinct manners. While contextual regularity finetunes our efficiency at reducing precision-weighted prediction errors, selective attention seems to modulate the reduction process following the Matthew effect of accumulated advantage.
Collapse
Affiliation(s)
- Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Côté V, Lalancette È, Knoth IS, Côté L, Agbogba K, Vannasing P, Major P, Barlaam F, Michaud J, Lippé S. Distinct patterns of repetition suppression in Fragile X syndrome, down syndrome, tuberous sclerosis complex and mutations in SYNGAP1. Brain Res 2020; 1751:147205. [PMID: 33189692 DOI: 10.1016/j.brainres.2020.147205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/29/2022]
Abstract
Sensory processing is the gateway to information processing and more complex processes such as learning. Alterations in sensory processing is a common phenotype of many genetic syndromes associated with intellectual disability (ID). It is currently unknown whether sensory processing alterations converge or diverge on brain responses between syndromes. Here, we compare for the first time four genetic conditions with ID using the same basic sensory learning paradigm. One hundred and five participants, aged between 3 and 30 years old, composing four clinical ID groups and one control group, were recruited: Fragile X syndrome (FXS; n = 14), tuberous sclerosis complex (TSC; n = 9), Down syndrome (DS; n = 19), SYNGAP1 mutations (n = 8) and Neurotypical controls (NT; n = 55)). All groups included female and male participants. Brain responses were recorded using electroencephalography (EEG) during an audio-visual task that involved three repetitions of the pronunciation of the phoneme /a/. Event Related Potentials (ERP) were used to: 1) compare peak-to-peak amplitudes between groups, 2) evaluate the presence of repetition suppression within each group and 3) compare the relative repetition suppression between groups. Our results revealed larger overall amplitudes in FXS. A repetition suppression (RS) pattern was found in the NT group, FXS and DS, suggesting spared repetition suppression in a multimodal task in these two ID syndromes. Interestingly, FXS presented a stronger RS on one peak-to-peak value in comparison with the NT. The results of our study reveal the distinctiveness of ERP and RS brain responses in ID syndromes. Further studies should be conducted to understand the molecular mechanisms involved in these patterns of responses.
Collapse
Affiliation(s)
- Valérie Côté
- Psychology Departement, Université de Montréal, Pavillon Marie-Victorin, 90, Avenue Vincent d'Indy, Montréal, QC H2V 2S9, Canada; NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Ève Lalancette
- Psychology Departement, Université de Montréal, Pavillon Marie-Victorin, 90, Avenue Vincent d'Indy, Montréal, QC H2V 2S9, Canada; NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Inga S Knoth
- NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Lucie Côté
- Neurology Program, CHU Sainte-Justine, Montréal, 3175 Chemin de la Côte-Sainte-Catherine, QC H3T 1C5, Canada.
| | - Kristian Agbogba
- NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Phetsamone Vannasing
- Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Philippe Major
- Neurology Program, CHU Sainte-Justine, Montréal, 3175 Chemin de la Côte-Sainte-Catherine, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Fanny Barlaam
- NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada
| | - Jacques Michaud
- Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Sarah Lippé
- Psychology Departement, Université de Montréal, Pavillon Marie-Victorin, 90, Avenue Vincent d'Indy, Montréal, QC H2V 2S9, Canada; NED Laboratory, Office 5.2.43, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Research Center UHC Sainte-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
11
|
Rahman MS, Barnes KA, Crommett LE, Tommerdahl M, Yau JM. Auditory and tactile frequency representations are co-embedded in modality-defined cortical sensory systems. Neuroimage 2020; 215:116837. [PMID: 32289461 PMCID: PMC7292761 DOI: 10.1016/j.neuroimage.2020.116837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022] Open
Abstract
Sensory information is represented and elaborated in hierarchical cortical systems that are thought to be dedicated to individual sensory modalities. This traditional view of sensory cortex organization has been challenged by recent evidence of multimodal responses in primary and association sensory areas. Although it is indisputable that sensory areas respond to multiple modalities, it remains unclear whether these multimodal responses reflect selective information processing for particular stimulus features. Here, we used fMRI adaptation to identify brain regions that are sensitive to the temporal frequency information contained in auditory, tactile, and audiotactile stimulus sequences. A number of brain regions distributed over the parietal and temporal lobes exhibited frequency-selective temporal response modulation for both auditory and tactile stimulus events, as indexed by repetition suppression effects. A smaller set of regions responded to crossmodal adaptation sequences in a frequency-dependent manner. Despite an extensive overlap of multimodal frequency-selective responses across the parietal and temporal lobes, representational similarity analysis revealed a cortical "regional landscape" that clearly reflected distinct somatosensory and auditory processing systems that converged on modality-invariant areas. These structured relationships between brain regions were also evident in spontaneous signal fluctuation patterns measured at rest. Our results reveal that multimodal processing in human cortex can be feature-specific and that multimodal frequency representations are embedded in the intrinsically hierarchical organization of cortical sensory systems.
Collapse
Affiliation(s)
- Md Shoaibur Rahman
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelly Anne Barnes
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA; Department of Behavioral and Social Sciences, San Jacinto College - South, Houston, 13735 Beamer Rd, S13.269, Houston, TX, 77089, USA
| | - Lexi E Crommett
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, CB No. 7575, Chapel Hill, NC, 27599, USA
| | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Dauer T, Nerness B, Fujioka T. Predictability of higher-order temporal structure of musical stimuli is associated with auditory evoked response. Int J Psychophysiol 2020; 153:53-64. [PMID: 32325078 DOI: 10.1016/j.ijpsycho.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Sound predictability resulting from repetitive patterns can be implicitly learned and often neither requires nor captures our conscious attention. Recently, predictive coding theory has been used as a framework to explain how predictable or expected stimuli evoke and gradually attenuate obligatory neural responses over time compared to those elicited by unpredictable events. However, these results were obtained using the repetition of simple auditory objects such as pairs of tones or phonemes. Here we examined whether the same principle would hold for more abstract temporal structures of sounds. If this is the case, we hypothesized that a regular repetition schedule of a set of musical patterns would reduce neural processing over the course of listening compared to stimuli with an irregular repetition schedule (and the same set of musical patterns). Electroencephalography (EEG) was recorded while participants passively listened to 6-8 min stimulus sequences in which five different four-tone patterns with temporally regular or irregular repetition were presented successively in a randomized order. N1 amplitudes in response to the first tone of each musical pattern were significantly less negative at the end of the regular sequence compared to the beginning, while such reduction was absent in the irregular sequence. These results extend previous findings by showing that N1 reflects automatic learning of the predictable higher-order structure of sound sequences, while continuous engagement of preattentive auditory processing is necessary for the unpredictable structure.
Collapse
Affiliation(s)
- Tysen Dauer
- Department of Music, Stanford University, United States.
| | - Barbara Nerness
- Department of Music, Stanford University, United States; Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, United States
| | - Takako Fujioka
- Department of Music, Stanford University, United States; Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, United States; Wu Tsai Neurosciences Institute, Stanford University, United States
| |
Collapse
|
13
|
Hsu YF, Xu W, Parviainen T, Hämäläinen JA. Context-dependent minimisation of prediction errors involves temporal-frontal activation. Neuroimage 2020; 207:116355. [DOI: 10.1016/j.neuroimage.2019.116355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022] Open
|
14
|
Abstract
Abstract. Previous research suggests that individuals with increased awareness of internal bodily states (i.e., high interoceptive awareness) are more sensitive to emotional stimuli, particularly stimuli that are negative or threatening. Concurrently, there is increasing evidence that words that are more body-referent (e.g., bonehead) are processed faster, perceived more accurately, and generate larger neuroelectrical signals than those that are less body-referent (e.g., idiot). The present study examined individual differences in interoceptive awareness (IA) to these more embodied words. While electroencephalogram (EEG) was recorded, participants passively viewed insults, compliments, and neutral stimuli, half of which were more embodied (e.g., bonehead, beautiful) and half of which were less embodied (e.g., idiot, friendly). Results showed that the high perceivers generated a larger P2 to embodied compliments than less embodied compliments while average perceivers generated a larger P2 to embodied insults than to less embodied insults. The results provide preliminary evidence that good cardiac awareness is not only associated with increased sensitivity to negative stimuli, but to stimuli pertaining to the body itself.
Collapse
Affiliation(s)
- Erik M. Benau
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| | - Ruth Ann Atchley
- Department of Psychology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
15
|
Neural adaptation and cognitive inflexibility in repeated problem-solving behaviors. Cortex 2019; 119:470-479. [PMID: 31505438 DOI: 10.1016/j.cortex.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/21/2019] [Accepted: 08/04/2019] [Indexed: 01/04/2023]
Abstract
Repeated stimulus processing is often associated with a reduction in neural activity, known as neural adaptation. Therefore, people are more sensitive to novelty detection but likely lose flexibility in subsequent novelty processing after detection. To demonstrate the dynamic changes in neural adaption in repeated problem-solving behaviors and test its negative influence on subsequent nonrepetitive problem-solving behaviors, we adopted a Chinese character decomposition task in this fMRI study. Participants were asked to repeatedly perform 3-5 practice problems that could be solved by the same loose chunk decomposition (LCD) solution followed by a test problem that could be solved by a tight chunk decomposition (TCD) solution in the enhanced-set condition. The practice problem gradually elicited lower percent signal changes within the cuneus, superior parietal lobule (SPL), inferior frontal gyrus (IFG) and medial prefrontal cortex (mPFC) in serial positions -1, -2 and -3 of a set, implying that neural adaptation occurred in repeated practice. Both the test problem and the practice problem that following it recruited greater activation of the SPL and IFG in the enhanced-set condition than in the base-set condition when the practice problem and test problem alternately appeared, implying that the task switching cost from a more dominant task to a less dominant task and vice versa was increased after neural adaptation occurred. In other words, repeatedly solving a set of similar problems with the same solution likely leads to neural adaptation and cognitive inflexibility, which in turn have an undifferentiated impact on task switching. This finding expands existing knowledge about the neurocognitive mechanism underlying the formation of the mental set and sheds light on the influence of neural adaptation on subsequent processing.
Collapse
|
16
|
Hsu YF, Waszak F, Hämäläinen JA. Prior Precision Modulates the Minimization of Auditory Prediction Error. Front Hum Neurosci 2019; 13:30. [PMID: 30828293 PMCID: PMC6385564 DOI: 10.3389/fnhum.2019.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/21/2019] [Indexed: 11/21/2022] Open
Abstract
The predictive coding model of perception proposes that successful representation of the perceptual world depends upon canceling out the discrepancy between prediction and sensory input (i.e., prediction error). Recent studies further suggest a distinction to be made between prediction error triggered by non-predicted stimuli of different prior precision (i.e., inverse variance). However, it is not fully understood how prediction error with different precision levels is minimized in the predictive process. Here, we conducted a magnetoencephalography (MEG) experiment which orthogonally manipulated prime-probe relation (for contextual precision) and stimulus repetition (for perceptual learning which decreases prediction error). We presented participants with cycles of tone quartets which consisted of three prime tones and one probe tone of randomly selected frequencies. Within each cycle, the three prime tones remained identical while the probe tones changed once at some point (e.g., from repetition of 123X to repetition of 123Y). Therefore, the repetition of probe tones can reveal the development of perceptual inferences in low and high precision contexts depending on their position within the cycle. We found that the two conditions resemble each other in terms of N1m modulation (as both were associated with N1m suppression) but differ in terms of N2m modulation. While repeated probe tones in low precision context did not exhibit any modulatory effect, repeated probe tones in high precision context elicited a suppression and rebound of the N2m source power. The differentiation suggested that the minimization of prediction error in low and high precision contexts likely involves distinct mechanisms.
Collapse
Affiliation(s)
- Yi-Fang Hsu
- Department of Educational Psychology and Counselling, National Taiwan Normal University, Taipei, Taiwan.,Institute for Research Excellence in Learning Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Florian Waszak
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,CNRS, Laboratoire Psychologie de la Perception, UMR 8242, Paris, France
| | - Jarmo A Hämäläinen
- Jyväskylä Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
17
|
Dogge M, Hofman D, Custers R, Aarts H. Exploring the role of motor and non-motor predictive mechanisms in sensory attenuation: Perceptual and neurophysiological findings. Neuropsychologia 2019; 124:216-225. [DOI: 10.1016/j.neuropsychologia.2018.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 12/01/2022]
|
18
|
Kolesnik A, Begum Ali J, Gliga T, Guiraud J, Charman T, Johnson MH, Jones EJH. Increased cortical reactivity to repeated tones at 8 months in infants with later ASD. Transl Psychiatry 2019; 9:46. [PMID: 30700699 PMCID: PMC6353960 DOI: 10.1038/s41398-019-0393-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 11/12/2018] [Accepted: 01/01/2019] [Indexed: 02/08/2023] Open
Abstract
Dysregulation of cortical excitation/inhibition (E/I) has been proposed as a neuropathological mechanism underlying core symptoms of autism spectrum disorder (ASD). Determining whether dysregulated E/I could contribute to the emergence of behavioural symptoms of ASD requires evidence from human infants prior to diagnosis. In this prospective longitudinal study, we examine differences in neural responses to auditory repetition in infants later diagnosed with ASD. Eight-month-old infants with (high-risk: n = 116) and without (low-risk: n = 27) an older sibling with ASD were tested in a non-linguistic auditory oddball paradigm. Relative to high-risk infants with typical development (n = 44), infants with later ASD (n = 14) showed reduced repetition suppression of 40-60 Hz evoked gamma and significantly greater 10-20 Hz inter-trial coherence (ITC) for repeated tones. Reduced repetition suppression of cortical gamma and increased phase-locking to repeated tones are consistent with cortical hyper-reactivity, which could in turn reflect disturbed E/I balance. Across the whole high-risk sample, a combined index of cortical reactivity (cortical gamma amplitude and ITC) was dimensionally associated with reduced growth in language skills between 8 months and 3 years, as well as elevated levels of parent-rated social communication symptoms at 3 years. Our data show that cortical 'hyper-reactivity' may precede the onset of behavioural traits of ASD in development, potentially affecting experience-dependent specialisation of the developing brain.
Collapse
Affiliation(s)
- Anna Kolesnik
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK.
| | - Jannath Begum Ali
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Teodora Gliga
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| | - Jeanne Guiraud
- Core CAMHS (Child and Adolescent Mental Health Service), Brookside Family Consultation Clinic, Cambridge, UK
| | - Tony Charman
- Psychology Department, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Emily J H Jones
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK.
| |
Collapse
|
19
|
Prior Expectation Modulates Repetition Suppression without Perceptual Awareness. Sci Rep 2018; 8:5055. [PMID: 29568041 PMCID: PMC5864919 DOI: 10.1038/s41598-018-23467-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/13/2018] [Indexed: 11/23/2022] Open
Abstract
Stimulus repetition induces attenuated brain responses. This phenomenon, termed repetition suppression (RS), is classically held to stem from bottom-up neuronal adaptation. However, recent studies suggest that RS is driven by top-down predictive mechanisms. It remains controversial whether these top-down mechanisms of RS rely on conscious strategies, or if they represent a more fundamental aspect of perception, coding for physical properties of the repeated feature. The presence of top-down effects in the absence of perceptual awareness would indicate that conscious strategies are not sufficient to explain top-down mechanisms of RS. We combined an unconscious priming paradigm with EEG recordings and tested whether RS can be modulated by the probability of encountering a repetition, even in the absence of awareness. Our results show that both behavioural priming and RS near occipital areas are modulated by repetition probability, regardless of prime awareness. This contradicts previous findings that have argued that RS modulation is a by-product of conscious strategies. In contrast, we found that the increase in theta-band power following unrepeated trials – an index of conflict detection – is modulated only by expectations during conscious primes, implicating the use of conscious strategies. Together, our results suggest that the influence of predictions on RS can be either automatic in sensory brain regions or dependent on conscious strategies.
Collapse
|
20
|
The processing of mispredicted and unpredicted sensory inputs interact differently with attention. Neuropsychologia 2018; 111:85-91. [DOI: 10.1016/j.neuropsychologia.2018.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/20/2022]
|
21
|
de Boer J, Krumbholz K. Auditory Attention Causes Gain Enhancement and Frequency Sharpening at Successive Stages of Cortical Processing-Evidence from Human Electroencephalography. J Cogn Neurosci 2018; 30:785-798. [PMID: 29488851 DOI: 10.1162/jocn_a_01245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous findings have suggested that auditory attention causes not only enhancement in neural processing gain, but also sharpening in neural frequency tuning in human auditory cortex. The current study was aimed to reexamine these findings. Specifically, we aimed to investigate whether attentional gain enhancement and frequency sharpening emerge at the same or different processing levels and whether they represent independent or cooperative effects. For that, we examined the pattern of attentional modulation effects on early, sensory-driven cortical auditory-evoked potentials occurring at different latencies. Attention was manipulated using a dichotic listening task and was thus not selectively directed to specific frequency values. Possible attention-related changes in frequency tuning selectivity were measured with an adaptation paradigm. Our results show marked disparities in attention effects between the earlier N1 deflection and the subsequent P2 deflection, with the N1 showing a strong gain enhancement effect, but no sharpening, and the P2 showing clear evidence of sharpening, but no independent gain effect. They suggest that gain enhancement and frequency sharpening represent successive stages of a cooperative attentional modulation mechanism that increases the representational bandwidth of attended versus unattended sounds.
Collapse
|
22
|
Darriba Á, Waszak F. Predictions through evidence accumulation over time. Sci Rep 2018; 8:494. [PMID: 29323172 PMCID: PMC5765034 DOI: 10.1038/s41598-017-18802-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
It has been proposed that the brain specializes in predicting future states of the environment. These predictions are probabilistic, and must be continuously updated on the basis of their mismatch with actual evidence. Although electrophysiological data disclose neural activity patterns in relation to predictive processes, little is known about how this activity supports prediction build-up through evidence accumulation. Here we addressed this gap. Participants were required to make moment-by-moment predictions about stimuli presented in sequences in which gathering evidence from previous items as they were presented was either possible or not. Two event-related potentials (ERP), a frontocentral P2 and a central P3, were sensitive to information accumulation throughout the sequence. Time-frequency (TF) analyses revealed that prediction build-up process also modulated centrally distributed theta activity, and that alpha power was suppressed in anticipation to fully predictable stimuli. Results are in agreement with the notion of predictions as probability distributions and highlight the ability of observers to extract those probabilities in a changing environment and to adjust their predictions consequently.
Collapse
Affiliation(s)
- Álvaro Darriba
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France. .,Centre National de la Recherche Scientifique, Laboratoire Psychologie de la Perception, Unité Mixte de Recherche 8242, 75006, Paris, France.
| | - Florian Waszak
- Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France.,Centre National de la Recherche Scientifique, Laboratoire Psychologie de la Perception, Unité Mixte de Recherche 8242, 75006, Paris, France
| |
Collapse
|
23
|
Dürschmid S, Reichert C, Kuhn J, Freund HJ, Hinrichs H, Heinze HJ. Deep brain stimulation of the nucleus basalis of Meynert attenuates early EEG components associated with defective sensory gating in patients with Alzheimer disease - a two-case study. Eur J Neurosci 2017; 51:1201-1209. [PMID: 29055119 DOI: 10.1111/ejn.13749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with deterioration of memory and cognitive function and a degeneration of neurons of the nucleus basalis of Meynert (NBM). The NBM is the major input source of acetylcholine (ACh) to the cortex. The decreasing cholinergic innervation of the cortex due to degeneration of the NBM might be the cause of loss of memory function. NBM-Deep brain stimulation (NBM-DBS) is considered to serve as a potential therapeutic option for patients with AD by supporting residual cholinergic transmission to stabilize oscillatory activity in memory-relevant circuits. However, whether DBS could improve sensory memory functions in patients with AD is not clear. Here, in a passive auditory oddball paradigm, patients with AD (N = 2) listened to repetitive background tones (standard tones) randomly interrupted by frequency deviants in two blocks with NBM-DBS OFF and then NBM-DBS ON, while age-matched healthy controls (N = 6) repeated the experiment twice. The mismatch negativity in NBM-DBS OFF significantly differed from controls in both blocks, but not under NBM-DBS, which was likely due to a pronounced P50 increase overlapping with the N1 in NBM-DBS OFF. This early complex of EEG components recovered under stimulation to a normal level as defined by responses in controls. In this temporal interval, we found in patients with NBM-DBS ON (but not with NBM-DBS OFF) and in controls a strong repetition suppression effect to standard tones - with more attenuated responses to frequently repeated standard tones. This highlights the role of NBM-DBS for sensory gating of familiar auditory information into sensory memory.
Collapse
Affiliation(s)
- Stefan Dürschmid
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany.,Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | | | - Hermann Hinrichs
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39120, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Juxtaposing the real-time unfolding of subjective experience and ERP neuromarker dynamics. Conscious Cogn 2017; 54:3-19. [DOI: 10.1016/j.concog.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
25
|
Wiltshire TJ, Euler MJ, McKinney TL, Butner JE. Changes in Dimensionality and Fractal Scaling Suggest Soft-Assembled Dynamics in Human EEG. Front Physiol 2017; 8:633. [PMID: 28919862 PMCID: PMC5585189 DOI: 10.3389/fphys.2017.00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/14/2017] [Indexed: 01/20/2023] Open
Abstract
Humans are high-dimensional, complex systems consisting of many components that must coordinate in order to perform even the simplest of activities. Many behavioral studies, especially in the movement sciences, have advanced the notion of soft-assembly to describe how systems with many components coordinate to perform specific functions while also exhibiting the potential to re-structure and then perform other functions as task demands change. Consistent with this notion, within cognitive neuroscience it is increasingly accepted that the brain flexibly coordinates the networks needed to cope with changing task demands. However, evaluation of various indices of soft-assembly has so far been absent from neurophysiological research. To begin addressing this gap, we investigated task-related changes in two distinct indices of soft-assembly using the established phenomenon of EEG repetition suppression. In a repetition priming task, we assessed evidence for changes in the correlation dimension and fractal scaling exponents during stimulus-locked event-related potentials, as a function of stimulus onset and familiarity, and relative to spontaneous non-task-related activity. Consistent with predictions derived from soft-assembly, results indicated decreases in dimensionality and increases in fractal scaling exponents from resting to pre-stimulus states and following stimulus onset. However, contrary to predictions, familiarity tended to increase dimensionality estimates. Overall, the findings support the view from soft-assembly that neural dynamics should become increasingly ordered as external task demands increase, and support the broader application of soft-assembly logic in understanding human behavior and electrophysiology.
Collapse
Affiliation(s)
- Travis J Wiltshire
- Department of Psychology, University of UtahSalt Lake City, UT, United States.,Department of Language and Communication, Centre for Human Interactivity, University of Southern DenmarkOdense, Denmark
| | - Matthew J Euler
- Department of Psychology, University of UtahSalt Lake City, UT, United States
| | - Ty L McKinney
- Department of Psychology, University of UtahSalt Lake City, UT, United States
| | - Jonathan E Butner
- Department of Psychology, University of UtahSalt Lake City, UT, United States
| |
Collapse
|
26
|
Hsu YF, Hämäläinen JA, Waszak F. The auditory N1 suppression rebounds as prediction persists over time. Neuropsychologia 2016; 84:198-204. [DOI: 10.1016/j.neuropsychologia.2016.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 11/27/2022]
|
27
|
Distinctive Representation of Mispredicted and Unpredicted Prediction Errors in Human Electroencephalography. J Neurosci 2016; 35:14653-60. [PMID: 26511253 DOI: 10.1523/jneurosci.2204-15.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The predictive coding model of perception proposes that neuronal responses are modulated by the amount of sensory input that the internal prediction cannot account for (i.e., prediction error). However, there is little consensus on what constitutes nonpredicted stimuli. Conceptually, whereas mispredicted stimuli may induce both prediction error generated by prediction that is not perceived and prediction error generated by sensory input that is not anticipated, unpredicted stimuli involves no top-down, only bottom-up, propagation of information in the system. Here, we examined the possibility that the processing of mispredicted and unpredicted stimuli are dissociable at the neurophysiological level using human electroencephalography. We presented participants with sets of five tones in which the frequency of the fifth tones was predicted, mispredicted, or unpredicted. Participants were required to press a key when they detected a softer fifth tone to maintain their attention. We found that mispredicted and unpredicted stimuli are associated with different amount of cortical activity, probably reflecting differences in prediction error. Moreover, relative to predicted stimuli, the mispredicted prediction error manifested as neuronal enhancement and the unpredicted prediction error manifested as neuronal attenuation on the N1 event-related potential component. These results highlight the importance of differentiating between the two nonpredicted stimuli in theoretical work on predictive coding.
Collapse
|
28
|
Grotheer M, Kovács G. Can predictive coding explain repetition suppression? Cortex 2016; 80:113-24. [PMID: 26861559 DOI: 10.1016/j.cortex.2015.11.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
Abstract
While in earlier work various local or bottom-up neural mechanisms were proposed to give rise to repetition suppression (RS), current theories suggest that top-down processes play a role in determining the repetition related reduction of the neural responses. In the current review we summarise those results, which support the role of these top-down processes, concentrating on the Bayesian models of predictive coding (PC). Such models assume that RS is related to the statistical probabilities of prior stimulus occurrences and to the future predictability of these stimuli. Here we review the current results that support or argue against this explanation. We point out that the heterogeneity of experimental manipulations that are thought to reflect predictive processes are likely to measure different processing steps, making their direct comparison difficult. In addition we emphasize the importance of identifying these sub-processes and clarifying their role in explaining RS. Finally, we propose a two-stage model for explaining the relationships of repetition and expectation phenomena in the human cortex.
Collapse
Affiliation(s)
- Mareike Grotheer
- Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany; DFG Research Unit Person Perception, Friedrich Schiller University Jena, Jena, Germany.
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany; DFG Research Unit Person Perception, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
29
|
Optimistic, pessimistic, realistic: Event-related potential evidence for how depressive symptoms influences expectation formation in the Human brain. Brain Res 2015; 1618:91-9. [PMID: 26032739 DOI: 10.1016/j.brainres.2015.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/15/2015] [Accepted: 05/24/2015] [Indexed: 11/23/2022]
Abstract
Recent research suggested a link between the prediction mechanism and depressive symptoms. While healthy people tend to maintain unrealistic optimism in the face of reality challenging their beliefs, depressed people show systematic pessimism. However, it remains unclear at which stage these individual differences in optimism/pessimism arise in the brain. In the current study we designed a simple gambling task with two difficulty levels, the easy game and the hard game. Participants were required to press one of four keys to gain a bonus signalled by a sinusoidal tone. For three of the four keys, the probability of getting a large bonus was 80% in the easy game and 8% in the hard game. In both games, the fourth key, randomly determined in each trial, yielded a large bonus with a probability of 100%. This arrangement allowed us to observe less/more depressed participants׳ optimistic/pessimistic expectations about hitting the key that guarantees a large bonus. The opposite expectation patterns of less/more depressed participants were reflected on the N1 amplitude. Meanwhile, all participants were well aware of the true probability of obtaining certain bonus in each game as reflected on the P3 amplitude. The results suggest that the subjective system (tracking subjective beliefs) and the objective system (tracking objective evidence) are dissociable in the human brain, with the former feeding information into sensory areas and the latter representing prediction errors on a higher level. Moreover, individual differences arise from variability in the former rather than the latter.
Collapse
|