1
|
Gosti G, Milanetti E, Folli V, de Pasquale F, Leonetti M, Corbetta M, Ruocco G, Della Penna S. A recurrent Hopfield network for estimating meso-scale effective connectivity in MEG. Neural Netw 2024; 170:72-93. [PMID: 37977091 DOI: 10.1016/j.neunet.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The architecture of communication within the brain, represented by the human connectome, has gained a paramount role in the neuroscience community. Several features of this communication, e.g., the frequency content, spatial topology, and temporal dynamics are currently well established. However, identifying generative models providing the underlying patterns of inhibition/excitation is very challenging. To address this issue, we present a novel generative model to estimate large-scale effective connectivity from MEG. The dynamic evolution of this model is determined by a recurrent Hopfield neural network with asymmetric connections, and thus denoted Recurrent Hopfield Mass Model (RHoMM). Since RHoMM must be applied to binary neurons, it is suitable for analyzing Band Limited Power (BLP) dynamics following a binarization process. We trained RHoMM to predict the MEG dynamics through a gradient descent minimization and we validated it in two steps. First, we showed a significant agreement between the similarity of the effective connectivity patterns and that of the interregional BLP correlation, demonstrating RHoMM's ability to capture individual variability of BLP dynamics. Second, we showed that the simulated BLP correlation connectomes, obtained from RHoMM evolutions of BLP, preserved some important topological features, e.g, the centrality of the real data, assuring the reliability of RHoMM. Compared to other biophysical models, RHoMM is based on recurrent Hopfield neural networks, thus, it has the advantage of being data-driven, less demanding in terms of hyperparameters and scalable to encompass large-scale system interactions. These features are promising for investigating the dynamics of inhibition/excitation at different spatial scales.
Collapse
Affiliation(s)
- Giorgio Gosti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, CNR-ISPC, Via Salaria km, 34900 Rome, Italy.
| | - Edoardo Milanetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | - Viola Folli
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; D-TAILS srl, Via di Torre Rossa, 66, 00165, Rome, Italy.
| | - Francesco de Pasquale
- Faculty of Veterinary Medicine, University of Teramo, 64100 Piano D'Accio, Teramo, Italy.
| | - Marco Leonetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 5, 00185, Rome, Italy; D-TAILS srl, Via di Torre Rossa, 66, 00165, Rome, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Via Belzoni, 160, 35121, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Via Orus, 2/B, 35129, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus, 2, 35129, Padova, Italy.
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi, 11, 66100 Chieti, Italy.
| |
Collapse
|
2
|
Seidel A, Weber C, Ghio M, Bellebaum C. My view on your actions: Dynamic changes in viewpoint-dependent auditory ERP attenuation during action observation. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01083-7. [PMID: 36949276 PMCID: PMC10400693 DOI: 10.3758/s13415-023-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
It has been suggested that during action observation, a sensory representation of the observed action is mapped onto one's own motor system. However, it is largely unexplored what this may imply for the early processing of the action's sensory consequences, whether the observational viewpoint exerts influence on this and how such a modulatory effect might change over time. We tested whether the event-related potential of auditory effects of actions observed from a first- versus third-person perspective show amplitude reductions compared with externally generated sounds, as revealed for self-generated sounds. Multilevel modeling on trial-level data showed distinct dynamic patterns for the two viewpoints on reductions of the N1, P2, and N2 components. For both viewpoints, an N1 reduction for sounds generated by observed actions versus externally generated sounds was observed. However, only during first-person observation, we found a temporal dynamic within experimental runs (i.e., the N1 reduction only emerged with increasing trial number), indicating time-variant, viewpoint-dependent processes involved in sensorimotor prediction during action observation. For the P2, only a viewpoint-independent reduction was found for sounds elicited by observed actions, which disappeared in the second half of the experiment. The opposite pattern was found in an exploratory analysis concerning the N2, revealing a reduction that increased in the second half of the experiment, and, moreover, a temporal dynamic within experimental runs for the first-person perspective, possibly reflecting an agency-related process. Overall, these results suggested that the processing of auditory outcomes of observed actions is dynamically modulated by the viewpoint over time.
Collapse
Affiliation(s)
- Alexander Seidel
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Constanze Weber
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany.
| | - Marta Ghio
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Department of Biological Psychology, Heinrich Heine University, Universitätstrasse, 1, 40255, Düsseldorf, Germany
| |
Collapse
|
3
|
Charyasz E, Heule R, Molla F, Erb M, Kumar VJ, Grodd W, Scheffler K, Bause J. Functional mapping of sensorimotor activation in the human thalamus at 9.4 Tesla. Front Neurosci 2023; 17:1116002. [PMID: 37008235 PMCID: PMC10050447 DOI: 10.3389/fnins.2023.1116002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Although the thalamus is perceived as a passive relay station for almost all sensory signals, the function of individual thalamic nuclei remains unresolved. In the present study, we aimed to identify the sensorimotor nuclei of the thalamus in humans using task-based fMRI at a field strength of 9.4T by assessing the individual subject-specific sensorimotor BOLD response during a combined active motor (finger-tapping) and passive sensory (tactile-finger) stimulation. We demonstrate that both tasks increase BOLD signal response in the lateral nuclei group (VPL, VA, VLa, and VLp), and in the pulvinar nuclei group (PuA, PuM, and PuL). Finger-tapping stimuli evokes a stronger BOLD response compared to the tactile stimuli, and additionally engages the intralaminar nuclei group (CM and Pf). In addition, our results demonstrate reproducible thalamic nuclei activation during motor and tactile stimuli. This work provides important insight into understanding the function of individual thalamic nuclei in processing various input signals and corroborates the benefits of using ultra-high-field MR scanners for functional imaging of fine-scale deeply located brain structures.
Collapse
Affiliation(s)
- Edyta Charyasz
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, Tübingen, Germany
- *Correspondence: Edyta Charyasz,
| | - Rahel Heule
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Center for MR Research, University Children’s Hospital, Zurich, Switzerland
| | - Francesko Molla
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Graduate Training Centre of Neuroscience, Tübingen, Germany
- Center for Neurology, Hertie-Institute for Clinical Brain Research, Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Vinod Jangir Kumar
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Grodd
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jonas Bause
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
4
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
5
|
Spadone S, Tosoni A, Penna SD, Sestieri C. Alpha rhythm modulations in the intraparietal sulcus reflect decision signals during item recognition. Neuroimage 2022; 258:119345. [PMID: 35660462 DOI: 10.1016/j.neuroimage.2022.119345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 01/05/2023] Open
Abstract
Theoretical work and empirical observations suggest a contribution of regions along the intraparietal sulcus to the process of evidence accumulation during episodic memory retrieval. In the present study, we recorded magnetoencephalographic signals in a group of healthy human participants to test whether the pattern of oscillatory modulations in the lateral parietal lobe is consistent with the mnemonic accumulator hypothesis. To this aim, the dynamic properties and the spatial distribution of MEG oscillatory power modulations were investigated during an item recognition task in which the amount of evidence for old vs. new memory decisions was manipulated across three levels. A data-driven approach was employed to identify brain nodes where oscillatory activity was sensitive to both retrieval success and the amount of evidence for old decisions. The analysis identified three nodes in the left lateral parietal lobe where the event-related desynchronization (ERD) in the alpha frequency band showed both effects. Further analyses revealed that the alpha ERD in the intraparietal sulcus, but not in other parietal nodes: i. showed modulation of duration in response to the amount of evidence for both old and new decisions, ii. was behaviorally significant, and iii. more accurately tracked the subjective memory judgment rather than the objective memory status. The present findings provide support for a recent anatomical-functional model of the parietal involvement in episodic memory retrieval and suggest that the alpha ERD in the intraparietal sulcus might represent a neural signature of the evidence accumulation process during simple memory-based decisions.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Annalisa Tosoni
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100, Italy.
| |
Collapse
|
6
|
Lapenta OM, Keller PE, Nozaradan S, Varlet M. Lateralised dynamic modulations of corticomuscular coherence associated with bimanual learning of rhythmic patterns. Sci Rep 2022; 12:6271. [PMID: 35428836 PMCID: PMC9012795 DOI: 10.1038/s41598-022-10342-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Human movements are spontaneously attracted to auditory rhythms, triggering an automatic activation of the motor system, a central phenomenon to music perception and production. Cortico-muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index of the synchronisation between cortical motor regions and the muscles. Here we investigated how learning to produce a bimanual rhythmic pattern composed of low- and high-pitch sounds affects CMC in the beta frequency band. Electroencephalography (EEG) and electromyography (EMG) from the left and right First Dorsal Interosseus and Flexor Digitorum Superficialis muscles were concurrently recorded during constant pressure on a force sensor held between the thumb and index finger while listening to the rhythmic pattern before and after a bimanual training session. During the training, participants learnt to produce the rhythmic pattern guided by visual cues by pressing the force sensors with their left or right hand to produce the low- and high-pitch sounds, respectively. Results revealed no changes after training in overall beta CMC or beta oscillation amplitude, nor in the correlation between the left and right sides for EEG and EMG separately. However, correlation analyses indicated that left- and right-hand beta EEG-EMG coherence were positively correlated over time before training but became uncorrelated after training. This suggests that learning to bimanually produce a rhythmic musical pattern reinforces lateralised and segregated cortico-muscular communication.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. .,Center for Investigation in Psychology, University of Minho, Braga, Portugal.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,Institute of Neuroscience, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,School of Psychology, Western Sydney University, Penrith, Australia
| |
Collapse
|
7
|
Zhao M, Bonassi G, Samogin J, Taberna GA, Pelosin E, Nieuwboer A, Avanzino L, Mantini D. Frequency-dependent modulation of neural oscillations across the gait cycle. Hum Brain Mapp 2022; 43:3404-3415. [PMID: 35384123 PMCID: PMC9248303 DOI: 10.1002/hbm.25856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Balance and walking are fundamental to support common daily activities. Relatively accurate characterizations of normal and impaired gait features were attained at the kinematic and muscular levels. Conversely, the neural processes underlying gait dynamics still need to be elucidated. To shed light on gait‐related modulations of neural activity, we collected high‐density electroencephalography (hdEEG) signals and ankle acceleration data in young healthy participants during treadmill walking. We used the ankle acceleration data to segment each gait cycle in four phases: initial double support, right leg swing, final double support, left leg swing. Then, we processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma bands, and examined event‐related desynchronization/synchronization (ERD/ERS) across gait phases. Our results showed that ERD/ERS modulations for alpha, beta, and gamma bands were strongest in the primary sensorimotor cortex (M1), but were also found in premotor cortex, thalamus and cerebellum. We observed a modulation of neural oscillations across gait phases in M1 and cerebellum, and an interaction between frequency band and gait phase in premotor cortex and thalamus. Furthermore, an ERD/ERS lateralization effect was present in M1 for the alpha and beta bands, and in the cerebellum for the beta and gamma bands. Overall, our findings demonstrate that an electrophysiological source imaging approach based on hdEEG can be used to investigate dynamic neural processes of gait control. Future work on the development of mobile hdEEG‐based brain–body imaging platforms may enable overground walking investigations, with potential applications in the study of gait disorders.
Collapse
Affiliation(s)
- Mingqi Zhao
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, Chiavari, Italy
| | - Jessica Samogin
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | | | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alice Nieuwboer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Spadone S, Betti V, Sestieri C, Pizzella V, Corbetta M, Della Penna S. Spectral signature of attentional reorienting in the human brain. Neuroimage 2021; 244:118616. [PMID: 34582947 DOI: 10.1016/j.neuroimage.2021.118616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
As we move in the environment, attention shifts to novel objects of interest based on either their sensory salience or behavioral value (reorienting). This study measures with magnetoencephalography (MEG) different properties (amplitude, onset-to-peak duration) of event-related desynchronization/synchronization (ERD/ERS) of oscillatory activity during a visuospatial attention task designed to separate activity related to reorienting vs. maintaining attention to the same location, controlling for target detection and response processes. The oscillatory activity was measured both in fMRI-defined regions of interest (ROIs) of the dorsal attention (DAN) and visual (VIS) networks, previously defined as task-relevant in the same subjects, or whole-brain in a pre-defined set of cortical ROIs encompassing the main brain networks. Reorienting attention (shift cues) as compared to maintaining attention (stay cues) produced a temporal sequence of ERD/ERS modulations at multiple frequencies in specific anatomical regions/networks. An early (∼330 ms), stronger, transient theta ERS occurred in task-relevant (DAN, VIS) and control networks (VAN, CON, FPN), possibly reflecting an alert/reset signal in response to the cue. A more sustained, behaviorally relevant, low-beta band ERD peaking ∼450 ms following shift cues (∼410 for stay cues) localized in frontal and parietal regions of the DAN. This modulation is consistent with a control signal re-routing information across visual hemifields. Contralateral vs. ipsilateral shift cues produced in occipital visual regions a stronger, sustained alpha ERD (peak ∼470 ms) and a longer, transient high beta/gamma ERS (peak ∼490 ms) related to preparatory visual modulations in advance of target occurrence. This is the first description of a cascade of oscillatory processes during attentional reorienting in specific anatomical regions and networks. Among these processes, a behaviorally relevant beta desynchronization in the FEF is likely associated with the control of attention shifts.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy.
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padua, Italy; Padova Neuroscience Center, University of Padua, Italy; Departments of Neurology, Radiology, Neuroscience, Washington University St. Louis, USA
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| |
Collapse
|
9
|
Hervault M, Zanone PG, Buisson JC, Huys R. Cortical sensorimotor activity in the execution and suppression of discrete and rhythmic movements. Sci Rep 2021; 11:22364. [PMID: 34785710 PMCID: PMC8595306 DOI: 10.1038/s41598-021-01368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Although the engagement of sensorimotor cortices in movement is well documented, the functional relevance of brain activity patterns remains ambiguous. Especially, the cortical engagement specific to the pre-, within-, and post-movement periods is poorly understood. The present study addressed this issue by examining sensorimotor EEG activity during the performance as well as STOP-signal cued suppression of movements pertaining to two distinct classes, namely, discrete vs. ongoing rhythmic movements. Our findings indicate that the lateralized readiness potential (LRP), which is classically used as a marker of pre-movement processing, indexes multiple pre- and in- movement-related brain dynamics in a movement-class dependent fashion. In- and post-movement event-related (de)synchronization (ERD/ERS) observed in the Mu (8-13 Hz) and Beta (15-30 Hz) frequency ranges were associated with estimated brain sources in both motor and somatosensory cortical areas. Notwithstanding, Beta ERS occurred earlier following cancelled than actually performed movements. In contrast, Mu power did not vary. Whereas Beta power may reflect the evaluation of the sensory predicted outcome, Mu power might engage in linking perception to action. Additionally, the rhythmic movement forced stop (only) showed a post-movement Mu/Beta rebound, which might reflect an active "clearing-out" of the motor plan and its feedback-based online control. Overall, the present study supports the notion that sensorimotor EEG modulations are key markers to investigate control or executive processes, here initiation and inhibition, which are exerted when performing distinct movement classes.
Collapse
Affiliation(s)
- Mario Hervault
- Centre de Recherche Cerveau et Cognition, UMR 5549, Pavillon Baudot CHU Purpan, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France.
| | - Pier-Giorgio Zanone
- Centre de Recherche Cerveau et Cognition, UMR 5549, Pavillon Baudot CHU Purpan, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Christophe Buisson
- Institut de Recherche en Informatique de Toulouse - UMR 5505, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Raoul Huys
- Centre de Recherche Cerveau et Cognition, UMR 5549, Pavillon Baudot CHU Purpan, CNRS - Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
10
|
Jenson D. Audiovisual incongruence differentially impacts left and right hemisphere sensorimotor oscillations: Potential applications to production. PLoS One 2021; 16:e0258335. [PMID: 34618866 PMCID: PMC8496780 DOI: 10.1371/journal.pone.0258335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Speech production gives rise to distinct auditory and somatosensory feedback signals which are dynamically integrated to enable online monitoring and error correction, though it remains unclear how the sensorimotor system supports the integration of these multimodal signals. Capitalizing on the parity of sensorimotor processes supporting perception and production, the current study employed the McGurk paradigm to induce multimodal sensory congruence/incongruence. EEG data from a cohort of 39 typical speakers were decomposed with independent component analysis to identify bilateral mu rhythms; indices of sensorimotor activity. Subsequent time-frequency analyses revealed bilateral patterns of event related desynchronization (ERD) across alpha and beta frequency ranges over the time course of perceptual events. Right mu activity was characterized by reduced ERD during all cases of audiovisual incongruence, while left mu activity was attenuated and protracted in McGurk trials eliciting sensory fusion. Results were interpreted to suggest distinct hemispheric contributions, with right hemisphere mu activity supporting a coarse incongruence detection process and left hemisphere mu activity reflecting a more granular level of analysis including phonological identification and incongruence resolution. Findings are also considered in regard to incongruence detection and resolution processes during production.
Collapse
Affiliation(s)
- David Jenson
- Department of Speech and Hearing Sciences, Washington State University, Spokane, Washington, United States of America
| |
Collapse
|
11
|
Jenson D, Saltuklaroglu T. Sensorimotor contributions to working memory differ between the discrimination of Same and Different syllable pairs. Neuropsychologia 2021; 159:107947. [PMID: 34216594 DOI: 10.1016/j.neuropsychologia.2021.107947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Sensorimotor activity during speech perception is both pervasive and highly variable, changing as a function of the cognitive demands imposed by the task. The purpose of the current study was to evaluate whether the discrimination of Same (matched) and Different (unmatched) syllable pairs elicit different patterns of sensorimotor activity as stimuli are processed in working memory. Raw EEG data recorded from 42 participants were decomposed with independent component analysis to identify bilateral sensorimotor mu rhythms from 36 subjects. Time frequency decomposition of mu rhythms revealed concurrent event related desynchronization (ERD) in alpha and beta frequency bands across the peri- and post-stimulus time periods, which were interpreted as evidence of sensorimotor contributions to working memory encoding and maintenance. Left hemisphere alpha/beta ERD was stronger in Different trials than Same trials during the post-stimulus period, while right hemisphere alpha/beta ERD was stronger in Same trials than Different trials. A between-hemispheres contrast revealed no differences during Same trials, while post-stimulus alpha/beta ERD was stronger in the left hemisphere than the right during Different trials. Results were interpreted to suggest that predictive coding mechanisms lead to repetition suppression effects in Same trials. Mismatches arising from predictive coding mechanisms in Different trials shift subsequent working memory processing to the speech-dominant left hemisphere. Findings clarify how sensorimotor activity differentially supports working memory encoding and maintenance stages during speech discrimination tasks and have potential to inform sensorimotor models of speech perception and working memory.
Collapse
Affiliation(s)
- David Jenson
- Washington State University, Elson S. Floyd College of Medicine, Department of Speech and Hearing Sciences, Spokane, WA, USA.
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, College of Health Professions, Department of Audiology and Speech-Pathology, Knoxville, TN, USA
| |
Collapse
|
12
|
de Pasquale F, Spadone S, Betti V, Corbetta M, Della Penna S. Temporal modes of hub synchronization at rest. Neuroimage 2021; 235:118005. [PMID: 33819608 DOI: 10.1016/j.neuroimage.2021.118005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022] Open
Abstract
The brain is a dynamic system that generates a broad repertoire of perceptual, motor, and cognitive states by the integration and segregation of different functional domains represented in large-scale brain networks. However, the fundamental mechanisms underlying brain network integration remain elusive. Here, for the first time to our knowledge, we found that in the resting state the brain visits few synchronization modes defined as clusters of temporally aligned functional hubs. These modes alternate over time and their probability of switching leads to specific temporal loops among them. Notably, although each mode involves a small set of nodes, the brain integration seems highly vulnerable to a simulated attack on this temporal synchronization mechanism. In line with the hypothesis that the resting state represents a prior sculpted by the task activity, the observed synchronization modes might be interpreted as a temporal brain template needed to respond to task/environmental demands .
Collapse
Affiliation(s)
- F de Pasquale
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| | - S Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - V Betti
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy; IRCCS Fondazione Santa Lucia, 00142, Rome, Italy
| | - M Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy; Department of Neurology, Radiology, and Neuroscience, Washington University St. Louis
| | - S Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Betti V, Della Penna S, de Pasquale F, Corbetta M. Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. Neuroscientist 2021; 27:184-201. [PMID: 32538310 PMCID: PMC7961741 DOI: 10.1177/1073858420928988] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regularity of the physical world and the biomechanics of the human body movements generate distributions of highly probable states that are internalized by the brain in the course of a lifetime. In Bayesian terms, the brain exploits prior knowledge, especially under conditions when sensory input is unavailable or uncertain, to predictively anticipate the most likely outcome of upcoming stimuli and movements. These internal models, formed during development, yet still malleable in adults, continuously adapt through the learning of novel stimuli and movements.Traditionally, neural beta (β) oscillations are considered essential for maintaining sensorimotor and cognitive representations, and for temporal coding of expectations. However, recent findings show that fluctuations of β band power in the resting state strongly correlate between cortical association regions. Moreover, central (hub) regions form strong interactions over time with different brain regions/networks (dynamic core). β band centrality fluctuations of regions of the dynamic core predict global efficiency peaks suggesting a mechanism for network integration. Furthermore, this temporal architecture is surprisingly stable, both in topology and dynamics, during the observation of ecological natural visual scenes, whereas synthetic temporally scrambled stimuli modify it. We propose that spontaneous β rhythms may function as a long-term "prior" of frequent environmental stimuli and behaviors.
Collapse
Affiliation(s)
- Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Della Penna
- Institute for Advanced Biomedical Technologies and Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University, Chieti, Italy
| | | | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Neurology, Radiology, and Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
14
|
Favaretto C, Spadone S, Sestieri C, Betti V, Cenedese A, Della Penna S, Corbetta M. Multi-band MEG signatures of BOLD connectivity reorganization during visuospatial attention. Neuroimage 2021; 230:117781. [PMID: 33497772 DOI: 10.1016/j.neuroimage.2021.117781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The functional architecture of the resting brain, as measured with the blood oxygenation level-dependent functional connectivity (BOLD-FC), is slightly modified during task performance. In previous work, we reported behaviorally relevant BOLD-FC modulations between visual and dorsal attention regions when subjects performed a visuospatial attention task as compared to central fixation (Spadone et al., 2015). Here we use magnetoencephalography (MEG) in the same group of subjects to identify the electrophysiological correlates of the BOLD-FC modulation found in our previous work. While BOLD-FC topography, separately at rest and during visual attention, corresponded to neuromagnetic Band-Limited Power (BLP) correlation in the alpha and beta bands (8-30 Hz), BOLD-FC modulations evoked by performing the visual attention task (Spadone et al. 2015) did not match any specific oscillatory band BLP modulation. Conversely, following the application of an orthogonal spatial decomposition that identifies common inter-subject co-variations, we found that attention-rest BOLD-FC modulations were recapitulated by multi-spectral BLP-FC components. Notably, individual variability of alpha connectivity between Frontal Eye Fields and visual occipital regions, jointly with decreased interaction in the Visual network, correlated with visual discrimination accuracy. In summary, task-rest BOLD connectivity modulations match multi-spectral MEG BLP connectivity.
Collapse
Affiliation(s)
- Chiara Favaretto
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| | - Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Angelo Cenedese
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy; Department of Neurology, Radiology, Neuroscience, and Biomedical Engineering Washington University Saint Louis, MO 63110, USA; Venetian Institute of Molecular Medicine, VIMM, 35128 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
15
|
Ghio M, Egan S, Bellebaum C. Similarities and Differences between Performers and Observers in Processing Auditory Action Consequences: Evidence from Simultaneous EEG Acquisition. J Cogn Neurosci 2020; 33:683-694. [PMID: 33378242 DOI: 10.1162/jocn_a_01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In our social environment, we easily distinguish stimuli caused by our own actions (e.g., water splashing when I fill my glass) from stimuli that have an external source (e.g., water splashing in a fountain). Accumulating evidence suggests that processing the auditory consequences of self-performed actions elicits N1 and P2 ERPs of reduced amplitude compared to physically identical but externally generated sounds, with such reductions being ascribed to neural predictive mechanisms. It is unexplored, however, whether the sensory processing of action outcomes is similarly modulated by action observation (e.g., water splashing when I observe you filling my glass). We tested 40 healthy participants by applying a methodological approach for the simultaneous EEG recording of two persons: An observer observed button presses executed by a performer in real time. For the performers, we replicated previous findings of a reduced N1 amplitude for self- versus externally generated sounds. This pattern differed significantly from the one in observers, whose N1 for sounds generated by observed button presses was not attenuated. In turn, the P2 amplitude was reduced for processing action- versus externally generated sounds for both performers and observers. These findings show that both action performance and observation affect the processing of action-generated sounds. There are, however, important differences between the two in the timing of the effects, probably related to differences in the predictability of the actions and thus also the associated stimuli. We discuss how these differences might contribute to recognizing the stimulus as caused by self versus others.
Collapse
|
16
|
Zhao M, Marino M, Samogin J, Swinnen SP, Mantini D. Hand, foot and lip representations in primary sensorimotor cortex: a high-density electroencephalography study. Sci Rep 2019; 9:19464. [PMID: 31857602 PMCID: PMC6923477 DOI: 10.1038/s41598-019-55369-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/22/2019] [Indexed: 11/09/2022] Open
Abstract
The primary sensorimotor cortex plays a major role in the execution of movements of the contralateral side of the body. The topographic representation of different body parts within this brain region is commonly investigated through functional magnetic resonance imaging (fMRI). However, fMRI does not provide direct information about neuronal activity. In this study, we used high-density electroencephalography (hdEEG) to map the representations of hand, foot, and lip movements in the primary sensorimotor cortex, and to study their neural signatures. Specifically, we assessed the event-related desynchronization (ERD) in the cortical space. We found that the performance of hand, foot, and lip movements elicited an ERD in beta and gamma frequency bands. The primary regions showing significant beta- and gamma-band ERD for hand and foot movements, respectively, were consistent with previously reported using fMRI. We observed relatively weaker ERD for lip movements, which may be explained by the fact that less fine movement control was required. Overall, our study demonstrated that ERD based on hdEEG data can support the study of motor-related neural processes, with relatively high spatial resolution. An interesting avenue may be the use of hdEEG for deeper investigations into the pathophysiology of neuromotor disorders.
Collapse
Affiliation(s)
- Mingqi Zhao
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001, Leuven, Belgium
| | - Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy
| | - Jessica Samogin
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001, Leuven, Belgium
| | - Stephan P Swinnen
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001, Leuven, Belgium. .,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy.
| |
Collapse
|
17
|
Jenson D, Thornton D, Harkrider AW, Saltuklaroglu T. Influences of cognitive load on sensorimotor contributions to working memory: An EEG investigation of mu rhythm activity during speech discrimination. Neurobiol Learn Mem 2019; 166:107098. [DOI: 10.1016/j.nlm.2019.107098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
|
18
|
Saltuklaroglu T, Bowers A, Harkrider AW, Casenhiser D, Reilly KJ, Jenson DE, Thornton D. EEG mu rhythms: Rich sources of sensorimotor information in speech processing. BRAIN AND LANGUAGE 2018; 187:41-61. [PMID: 30509381 DOI: 10.1016/j.bandl.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/27/2017] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Tim Saltuklaroglu
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA.
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, 606 N. Razorback Road, Fayetteville, AR 72701, USA
| | - Ashley W Harkrider
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Devin Casenhiser
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Kevin J Reilly
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - David E Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Spokane, WA 99210-1495, USA
| | - David Thornton
- Department of Hearing, Speech, and Language Sciences, Gallaudet University, 800 Florida Avenue NE, Washington, DC 20002, USA
| |
Collapse
|
19
|
Paracampo R, Montemurro M, de Vega M, Avenanti A. Primary motor cortex crucial for action prediction: A tDCS study. Cortex 2018; 109:287-302. [DOI: 10.1016/j.cortex.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
20
|
Motor system recruitment during action observation: No correlation between mu-rhythm desynchronization and corticospinal excitability. PLoS One 2018; 13:e0207476. [PMID: 30440042 PMCID: PMC6237396 DOI: 10.1371/journal.pone.0207476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022] Open
Abstract
Observing others’ actions desynchronizes electroencephalographic (EEG) rhythms and modulates corticospinal excitability as assessed by transcranial magnetic stimulation (TMS). However, it remains unclear if these measures reflect similar neurofunctional mechanisms at the individual level. In the present study, a within-subject experiment was designed to assess these two neurophysiological indexes and to quantify their mutual correlation. Participants observed reach-to-grasp actions directed towards a small (precision grip) or a large object (power grip). We focused on two specific time points for both EEG and TMS. The first time point (t1) coincided with the maximum hand aperture, i.e. the moment at which a significant modulation of corticospinal excitability is expected. The second (t2), coincided with the EEG resynchronization occurring at the end of the action, i.e. the moment at which a hypothetic minimum for action observation effect is expected. Results showed a Mu rhythm bilateral desynchronization at t1 with differential resynchronization at t2 in the two hemispheres. Beta rhythm was more desynchronized in the left hemisphere at both time points. These EEG differences, however, were not influenced by grip type. Conversely, motor potentials evoked by TMS in an intrinsic hand muscle revealed an interaction effect of grip and time. No significant correlations between Mu/Beta rhythms and motor evoked potentials were found. These findings are discussed considering the spatial and temporal resolution of the two investigated techniques and argue over two alternative explanations: i. each technique provides different measures of the same process or ii. they describe complementary features of the action observation network in humans.
Collapse
|
21
|
Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: An EEG investigation of μ rhythm dynamics during spontaneous fluency. Neuroimage Clin 2018; 19:690-702. [PMID: 29872634 PMCID: PMC5986168 DOI: 10.1016/j.nicl.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 01/09/2023]
Abstract
Stuttering is associated with compromised sensorimotor control (i.e., internal modeling) across the dorsal stream and oscillations of EEG mu (μ) rhythms have been proposed as reliable indices of anterior dorsal stream processing. The purpose of this study was to compare μ rhythm oscillatory activity between (PWS) and matched typically fluent speakers (TFS) during spontaneously fluent overt and covert speech production tasks. Independent component analysis identified bilateral μ components from 24/27 PWS and matched TFS that localized over premotor cortex. Time-frequency analysis of the left hemisphere μ clusters demonstrated significantly reduced μ-α and μ-β ERD (pCLUSTER < 0.05) in PWS across the time course of overt and covert speech production, while no group differences were found in the right hemisphere in any condition. Results were interpreted through the framework of State Feedback Control. They suggest that weak forward modeling and evaluation of sensory feedback across the time course of speech production characterizes the trait related sensorimotor impairment in PWS. This weakness is proposed to represent an underlying sensorimotor instability that may predispose the speech of PWS to breakdown.
Collapse
Affiliation(s)
- David Jenson
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States.
| | - Kevin J Reilly
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - David Thornton
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| |
Collapse
|
22
|
Kittilstved T, Reilly KJ, Harkrider AW, Casenhiser D, Thornton D, Jenson DE, Hedinger T, Bowers AL, Saltuklaroglu T. The Effects of Fluency Enhancing Conditions on Sensorimotor Control of Speech in Typically Fluent Speakers: An EEG Mu Rhythm Study. Front Hum Neurosci 2018; 12:126. [PMID: 29670516 PMCID: PMC5893846 DOI: 10.3389/fnhum.2018.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Objective: To determine whether changes in sensorimotor control resulting from speaking conditions that induce fluency in people who stutter (PWS) can be measured using electroencephalographic (EEG) mu rhythms in neurotypical speakers. Methods: Non-stuttering (NS) adults spoke in one control condition (solo speaking) and four experimental conditions (choral speech, delayed auditory feedback (DAF), prolonged speech and pseudostuttering). Independent component analysis (ICA) was used to identify sensorimotor μ components from EEG recordings. Time-frequency analyses measured μ-alpha (8–13 Hz) and μ-beta (15–25 Hz) event-related synchronization (ERS) and desynchronization (ERD) during each speech condition. Results: 19/24 participants contributed μ components. Relative to the control condition, the choral and DAF conditions elicited increases in μ-alpha ERD in the right hemisphere. In the pseudostuttering condition, increases in μ-beta ERD were observed in the left hemisphere. No differences were present between the prolonged speech and control conditions. Conclusions: Differences observed in the experimental conditions are thought to reflect sensorimotor control changes. Increases in right hemisphere μ-alpha ERD likely reflect increased reliance on auditory information, including auditory feedback, during the choral and DAF conditions. In the left hemisphere, increases in μ-beta ERD during pseudostuttering may have resulted from the different movement characteristics of this task compared with the solo speaking task. Relationships to findings in stuttering are discussed. Significance: Changes in sensorimotor control related feedforward and feedback control in fluency-enhancing speech manipulations can be measured using time-frequency decompositions of EEG μ rhythms in neurotypical speakers. This quiet, non-invasive, and temporally sensitive technique may be applied to learn more about normal sensorimotor control and fluency enhancement in PWS.
Collapse
Affiliation(s)
- Tiffani Kittilstved
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Kevin J Reilly
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Ashley W Harkrider
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Devin Casenhiser
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - David Thornton
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - David E Jenson
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Tricia Hedinger
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Andrew L Bowers
- Department of Communication Disorders, The University of Arkansas, Fayetteville, AR, United States
| | - Tim Saltuklaroglu
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| |
Collapse
|
23
|
Bechtold L, Ghio M, Lange J, Bellebaum C. Event-related desynchronization of mu and beta oscillations during the processing of novel tool names. BRAIN AND LANGUAGE 2018; 177-178:44-55. [PMID: 29421271 DOI: 10.1016/j.bandl.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
According to the embodied cognition framework, the formation of conceptual representations integrates the type of experience during learning. In this electroencephalographic study, we applied a linguistic variant of a training paradigm, in which participants learned to associate novel names to novel tools while either manipulating or visually exploring them. The analysis focused on event-related desynchronization (ERD) of oscillations in the mu and beta frequency range, which reflects activation of sensorimotor brain areas. After three training sessions, processing names of manipulated tools elicited a stronger ERD of the beta (18-25 Hz, 140-260 ms) and the lower mu rhythm (8-10 Hz, 320-440 ms) than processing names of visually explored tools, reflecting a possible reactivation of experiential sensorimotor information. Given the unexpected result that familiarized pseudo-words elicited an ERD comparable to names of manipulated tools, our findings could reflect a suppression of sensorimotor activity during the processing of objects with exclusively visual features.
Collapse
Affiliation(s)
- Laura Bechtold
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany.
| | - Marta Ghio
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Christian Bellebaum
- Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
24
|
Verga L, Kotz SA. Help me if I can't: Social interaction effects in adult contextual word learning. Cognition 2017; 168:76-90. [PMID: 28658646 DOI: 10.1016/j.cognition.2017.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 10/19/2022]
Abstract
A major challenge in second language acquisition is to build up new vocabulary. How is it possible to identify the meaning of a new word among several possible referents? Adult learners typically use contextual information, which reduces the number of possible referents a new word can have. Alternatively, a social partner may facilitate word learning by directing the learner's attention toward the correct new word meaning. While much is known about the role of this form of 'joint attention' in first language acquisition, little is known about its efficacy in second language acquisition. Consequently, we introduce and validate a novel visual word learning game to evaluate how joint attention affects the contextual learning of new words in a second language. Adult learners either acquired new words in a constant or variable sentence context by playing the game with a knowledgeable partner, or by playing the game alone on a computer. Results clearly show that participants who learned new words in social interaction (i) are faster in identifying a correct new word referent in variable sentence contexts, and (ii) temporally coordinate their behavior with a social partner. Testing the learned words in a post-learning recall or recognition task showed that participants, who learned interactively, better recognized words originally learned in a variable context. While this result may suggest that interactive learning facilitates the allocation of attention to a target referent, the differences in the performance during recognition and recall call for further studies investigating the effect of social interaction on learning performance. In summary, we provide first evidence on the role joint attention in second language learning. Furthermore, the new interactive learning game offers itself to further testing in complex neuroimaging research, where the lack of appropriate experimental set-ups has so far limited the investigation of the neural basis of adult word learning in social interaction.
Collapse
Affiliation(s)
- Laura Verga
- Max Planck Institute for Human Cognitive and Brain Sciences, Dept. of Neuropsychology, Leipzig, Germany
| | - Sonja A Kotz
- Max Planck Institute for Human Cognitive and Brain Sciences, Dept. of Neuropsychology, Leipzig, Germany; Faculty of Psychology and Neuroscience, Dept. of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Saltuklaroglu T, Harkrider AW, Thornton D, Jenson D, Kittilstved T. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults. Neuroimage 2017; 153:232-245. [PMID: 28400266 PMCID: PMC5569894 DOI: 10.1016/j.neuroimage.2017.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/24/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022] Open
Abstract
Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits.
Collapse
Affiliation(s)
- Tim Saltuklaroglu
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA.
| | - David Thornton
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - David Jenson
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - Tiffani Kittilstved
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| |
Collapse
|
26
|
Intentional action processing results from automatic bottom-up attention: An EEG-investigation into the Social Relevance Hypothesis using hypnosis. Conscious Cogn 2016; 42:101-112. [PMID: 26998562 DOI: 10.1016/j.concog.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/10/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
Abstract
Social stimuli grab our attention. However, it has rarely been investigated how variations in attention affect the processing of social stimuli, although the answer could help us uncover details of social cognition processes such as action understanding. In the present study, we examined how changes to bottom-up attention affects neural EEG-responses associated with intentional action processing. We induced an increase in bottom-up attention by using hypnosis. We recorded the electroencephalographic μ-wave suppression of hypnotized participants when presented with intentional actions in first and third person perspective in a video-clip paradigm. Previous studies have shown that the μ-rhythm is selectively suppressed both when executing and observing goal-directed motor actions; hence it can be used as a neural signal for intentional action processing. Our results show that neutral hypnotic trance increases μ-suppression in highly suggestible participants when they observe intentional actions. This suggests that social action processing is enhanced when bottom-up attentional processes are predominant. Our findings support the Social Relevance Hypothesis, according to which social action processing is a bottom-up driven attentional process, and can thus be altered as a function of bottom-up processing devoted to a social stimulus.
Collapse
|
27
|
Tognoli E, Kelso JAS. The coordination dynamics of social neuromarkers. Front Hum Neurosci 2015; 9:563. [PMID: 26557067 PMCID: PMC4617382 DOI: 10.3389/fnhum.2015.00563] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/25/2015] [Indexed: 01/12/2023] Open
Abstract
Social behavior is a complex integrative function that entails many aspects of the brain’s sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called “neuromarkers” of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.
Collapse
Affiliation(s)
- Emmanuelle Tognoli
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University Boca Raton, FL, USA
| | - J A Scott Kelso
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University Boca Raton, FL, USA ; Intelligent System Research Centre, Ulster University, Derry ~ Londonderry UK
| |
Collapse
|
28
|
Verga L, Bigand E, Kotz SA. Play along: effects of music and social interaction on word learning. Front Psychol 2015; 6:1316. [PMID: 26388818 PMCID: PMC4554937 DOI: 10.3389/fpsyg.2015.01316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022] Open
Abstract
Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner's temporal behavior, these stimuli are able to drive the learner's attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner's behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants' learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time.
Collapse
Affiliation(s)
- Laura Verga
- Department of Neuropsychology, Research Group Subcortical Contributions to Comprehension, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- Movement to Health Laboratory (M2H), EuroMov – Montpellier-1 UniversityMontpellier, France
| | - Emmanuel Bigand
- Laboratoire d’Etude de l’Apprentissage et du Développement, Department of Psychology, University of BurgundyDijon, France
| | - Sonja A. Kotz
- Department of Neuropsychology, Research Group Subcortical Contributions to Comprehension, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- School of Psychological Sciences, The University of ManchesterManchester, UK
| |
Collapse
|
29
|
Trilla Gros I, Panasiti MS, Chakrabarti B. The plasticity of the mirror system: how reward learning modulates cortical motor simulation of others. Neuropsychologia 2015; 70:255-62. [PMID: 25744871 PMCID: PMC4415906 DOI: 10.1016/j.neuropsychologia.2015.02.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/04/2015] [Accepted: 02/23/2015] [Indexed: 11/25/2022]
Abstract
Cortical motor simulation supports the understanding of others' actions and intentions. This mechanism is thought to rely on the mirror neuron system (MNS), a brain network that is active both during action execution and observation. Indirect evidence suggests that (alpha/beta) mu suppression, an electroencephalographic (EEG) index of MNS activity, is modulated by reward. In this study we aimed to test the plasticity of the MNS by directly investigating the link between (alpha/beta) mu suppression and reward. 40 individuals from a general population sample took part in an evaluative conditioning experiment, where different neutral faces were associated with high or low reward values. In the test phase, EEG was recorded while participants viewed videoclips of happy expressions made by the conditioned faces. Alpha/beta mu suppression (identified using event-related desynchronisation of specific independent components) in response to rewarding faces was found to be greater than for non-rewarding faces. This result provides a mechanistic insight into the plasticity of the MNS and, more generally, into the role of reward in modulating physiological responses linked to empathy.
Collapse
Affiliation(s)
- Irene Trilla Gros
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK; Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Maria Serena Panasiti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK; Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Bhismadev Chakrabarti
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6AL, UK.
| |
Collapse
|
30
|
Language-motor interference reflected in MEG beta oscillations. Neuroimage 2015; 109:438-48. [PMID: 25576646 DOI: 10.1016/j.neuroimage.2014.12.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/04/2014] [Accepted: 12/29/2014] [Indexed: 11/21/2022] Open
Abstract
The involvement of the brain's motor system in action-related language processing can lead to overt interference with simultaneous action execution. The aim of the current study was to find evidence for this behavioural interference effect and to investigate its neurophysiological correlates using oscillatory MEG analysis. Subjects performed a semantic decision task on single action verbs, describing actions executed with the hands or the feet, and abstract verbs. Right hand button press responses were given for concrete verbs only. Therefore, longer response latencies for hand compared to foot verbs should reflect interference. We found interference effects to depend on verb imageability: overall response latencies for hand verbs did not differ significantly from foot verbs. However, imageability interacted with effector: while response latencies to hand and foot verbs with low imageability were equally fast, those for highly imageable hand verbs were longer than for highly imageable foot verbs. The difference is reflected in motor-related MEG beta band power suppression, which was weaker for highly imageable hand verbs compared with highly imageable foot verbs. This provides a putative neuronal mechanism for language-motor interference where the involvement of cortical hand motor areas in hand verb processing interacts with the typical beta suppression seen before movements. We found that the facilitatory effect of higher imageability on action verb processing time is perturbed when verb and motor response relate to the same body part. Importantly, this effect is accompanied by neurophysiological effects in beta band oscillations. The attenuated power suppression around the time of movement, reflecting decreased cortical excitability, seems to result from motor simulation during action-related language processing. This is in line with embodied cognition theories.
Collapse
|