1
|
Seyedmirzaei H, Salmannezhad A, Ashayeri H, Shushtari A, Farazinia B, Heidari MM, Momayezi A, Shaki Baher S. Growth-Associated Protein 43 and Tensor-Based Morphometry Indices in Mild Cognitive Impairment. Neuroinformatics 2024; 22:239-250. [PMID: 38630411 DOI: 10.1007/s12021-024-09663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/17/2024]
Abstract
Growth-associated protein 43 (GAP-43) is found in the axonal terminal of neurons in the limbic system, which is affected in people with Alzheimer's disease (AD). We assumed GAP-43 may contribute to AD progression and serve as a biomarker. So, in a two-year follow-up study, we assessed GAP-43 changes and whether they are correlated with tensor-based morphometry (TBM) findings in patients with mild cognitive impairment (MCI). We included MCI and cognitively normal (CN) people with available baseline and follow-up cerebrospinal fluid (CSF) GAP-43 and TBM findings from the ADNI database. We assessed the difference between the two groups and correlations in each group at each time point. CSF GAP-43 and TBM measures were similar in the two study groups in all time points, except for the accelerated anatomical region of interest (ROI) of CN subjects that were significantly greater than those of MCI. The only significant correlations with GAP-43 observed were those inverse correlations with accelerated and non-accelerated anatomical ROI in MCI subjects at baseline. Plus, all TBM metrics decreased significantly in all study groups during the follow-up in contrast to CSF GAP-43 levels. Our study revealed significant associations between CSF GAP-43 levels and TBM indices among people of the AD spectrum.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamidreza Ashayeri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shushtari
- Faculty of Medicine , Mazandaran University of Medical Sciences, Sari, Iran.
| | - Bita Farazinia
- Faculty of Economics and Management, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Mahdi Heidari
- Student Research Committee, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirali Momayezi
- School of Chemical engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sara Shaki Baher
- Faculty of Medicine, Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Chen Y, Su Y, Wu J, Chen K, Atri A, Caselli RJ, Reiman EM, Wang Y. Combining Blood-Based Biomarkers and Structural MRI Measurements to Distinguish Persons with and without Significant Amyloid Plaques. J Alzheimers Dis 2024; 98:1415-1426. [PMID: 38578889 PMCID: PMC11789004 DOI: 10.3233/jad-231162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Amyloid-β (Aβ) plaques play a pivotal role in Alzheimer's disease. The current positron emission tomography (PET) is expensive and limited in availability. In contrast, blood-based biomarkers (BBBMs) show potential for characterizing Aβ plaques more affordably. We have previously proposed an MRI-based hippocampal morphometry measure to be an indicator of Aβ plaques. Objective To develop and validate an integrated model to predict brain amyloid PET positivity combining MRI feature and plasma Aβ42/40 ratio. Methods We extracted hippocampal multivariate morphometry statistics from MR images and together with plasma Aβ42/40 trained a random forest classifier to perform a binary classification of participant brain amyloid PET positivity. We evaluated the model performance using two distinct cohorts, one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the other from the Banner Alzheimer's Institute (BAI), including prediction accuracy, precision, recall rate, F1 score, and AUC score. Results Results from ADNI (mean age 72.6, Aβ+ rate 49.5%) and BAI (mean age 66.2, Aβ+ rate 36.9%) datasets revealed the integrated multimodal (IMM) model's superior performance over unimodal models. The IMM model achieved prediction accuracies of 0.86 in ADNI and 0.92 in BAI, surpassing unimodal models based solely on structural MRI (0.81 and 0.87) or plasma Aβ42/40 (0.73 and 0.81) predictors. CONCLUSIONS Our IMM model, combining MRI and BBBM data, offers a highly accurate approach to predict brain amyloid PET positivity. This innovative multiplex biomarker strategy presents an accessible and cost-effective avenue for advancing Alzheimer's disease diagnostics, leveraging diverse pathologic features related to Aβ plaques and structural MRI.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Alireza Atri
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Zhang L, Zhang P, Dong Q, Zhao Z, Zheng W, Zhang J, Hu X, Yao Z, Hu B. Fine-grained features characterize hippocampal and amygdaloid change pattern in Parkinson's disease and discriminate cognitive-deficit subtype. CNS Neurosci Ther 2024; 30:e14480. [PMID: 37849445 PMCID: PMC10805398 DOI: 10.1111/cns.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
AIMS To extract vertex-wise features of the hippocampus and amygdala in Parkinson's disease (PD) with mild cognitive impairment (MCI) and normal cognition (NC) and further evaluate their discriminatory efficacy. METHODS High-resolution 3D-T1 data were collected from 68 PD-MCI, 211 PD-NC, and 100 matched healthy controls (HC). Surface geometric features were captured using surface conformal representation, and surfaces were registered to a common template using fluid registration. The statistical tests were performed to detect differences between groups. The disease-discriminatory ability of features was also tested in the ensemble classifiers. RESULTS The amygdala, not the hippocampus, showed significant overall differences among the groups. Compared with PD-NC, the right amygdala in MCI patients showed expansion (anterior cortical, anterior amygdaloid, and accessory basal areas) and atrophy (basolateral ventromedial area) subregions. There was notable atrophy in the right CA1 and hippocampal subiculum of PD-MCI. The accuracy of classifiers with multivariate morphometry statistics as features exceeded 85%. CONCLUSION PD-MCI is associated with multiscale morphological changes in the amygdala, as well as subtle atrophy in the hippocampus. These novel metrics demonstrated the potential to serve as biomarkers for PD-MCI diagnosis. Overall, these findings from this study help understand the role of subcortical structures in the neuropathological mechanisms of PD cognitive impairment.
Collapse
Affiliation(s)
- Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Pengfei Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhouChina
| | - Qunxi Dong
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhouChina
| | - Xiping Hu
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of SemiconductorsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
4
|
Zheng W, Liu H, Li Z, Li K, Wang Y, Hu B, Dong Q, Wang Z. Classification of Alzheimer's disease based on hippocampal multivariate morphometry statistics. CNS Neurosci Ther 2023; 29:2457-2468. [PMID: 37002795 PMCID: PMC10401169 DOI: 10.1111/cns.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, and mild cognitive impairment (MCI) is associated with a high risk of developing AD. Hippocampal morphometry analysis is believed to be the most robust magnetic resonance imaging (MRI) markers for AD and MCI. Multivariate morphometry statistics (MMS), a quantitative method of surface deformations analysis, is confirmed to have strong statistical power for evaluating hippocampus. AIMS We aimed to test whether surface deformation features in hippocampus can be employed for early classification of AD, MCI, and healthy controls (HC). METHODS We first explored the differences in hippocampus surface deformation among these three groups by using MMS analysis. Additionally, the hippocampal MMS features of selective patches and support vector machine (SVM) were used for the binary classification and triple classification. RESULTS By the results, we identified significant hippocampal deformation among the three groups, especially in hippocampal CA1. In addition, the binary classification of AD/HC, MCI/HC, AD/MCI showed good performances, and area under curve (AUC) of triple-classification model achieved 0.85. Finally, positive correlations were found between the hippocampus MMS features and cognitive performances. CONCLUSIONS The study revealed significant hippocampal deformation among AD, MCI, and HC. Additionally, we confirmed that hippocampal MMS can be used as a sensitive imaging biomarker for the early diagnosis of AD at the individual level.
Collapse
Affiliation(s)
- Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Honghong Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhigang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
5
|
Wu J, Su Y, Zhu W, Mallak NJ, Lepore N, Reiman EM, Caselli RJ, Thompson PM, Chen K, Wang Y. Improved Prediction of Amyloid-β and Tau Burden Using Hippocampal Surface Multivariate Morphometry Statistics and Sparse Coding. J Alzheimers Dis 2023; 91:637-651. [PMID: 36463452 PMCID: PMC9940990 DOI: 10.3233/jad-220812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) plaques and tau protein tangles in the brain are the defining 'A' and 'T' hallmarks of Alzheimer's disease (AD), and together with structural atrophy detectable on brain magnetic resonance imaging (MRI) scans as one of the neurodegenerative ('N') biomarkers comprise the "ATN framework" of AD. Current methods to detect Aβ/tau pathology include cerebrospinal fluid (invasive), positron emission tomography (PET; costly and not widely available), and blood-based biomarkers (promising but mainly still in development). OBJECTIVE To develop a non-invasive and widely available structural MRI-based framework to quantitatively predict the amyloid and tau measurements. METHODS With MRI-based hippocampal multivariate morphometry statistics (MMS) features, we apply our Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-MP) method combined with the ridge regression model to individual amyloid/tau measure prediction. RESULTS We evaluate our framework on amyloid PET/MRI and tau PET/MRI datasets from the Alzheimer's Disease Neuroimaging Initiative. Each subject has one pair consisting of a PET image and MRI scan, collected at about the same time. Experimental results suggest that amyloid/tau measurements predicted with our PASCP-MP representations are closer to the real values than the measures derived from other approaches, such as hippocampal surface area, volume, and shape morphometry features based on spherical harmonics. CONCLUSION The MMS-based PASCP-MP is an efficient tool that can bridge hippocampal atrophy with amyloid and tau pathology and thus help assess disease burden, progression, and treatment effects.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Wenhui Zhu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Negar Jalili Mallak
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
6
|
Wu J, Su Y, Chen Y, Zhu W, Reiman EM, Caselli RJ, Chen K, Thompson PM, Wang J, Wang Y. A Surface-Based Federated Chow Test Model for Integrating APOE Status, Tau Deposition Measure, and Hippocampal Surface Morphometry. J Alzheimers Dis 2023; 93:1153-1168. [PMID: 37182882 PMCID: PMC10329869 DOI: 10.3233/jad-230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of age-related dementia, affecting 6.2 million people aged 65 or older according to CDC data. It is commonly agreed that discovering an effective AD diagnosis biomarker could have enormous public health benefits, potentially preventing or delaying up to 40% of dementia cases. Tau neurofibrillary tangles are the primary driver of downstream neurodegeneration and subsequent cognitive impairment in AD, resulting in structural deformations such as hippocampal atrophy that can be observed in magnetic resonance imaging (MRI) scans. OBJECTIVE To build a surface-based model to 1) detect differences between APOE subgroups in patterns of tau deposition and hippocampal atrophy, and 2) use the extracted surface-based features to predict cognitive decline. METHODS Using data obtained from different institutions, we develop a surface-based federated Chow test model to study the synergistic effects of APOE, a previously reported significant risk factor of AD, and tau on hippocampal surface morphometry. RESULTS We illustrate that the APOE-specific morphometry features correlate with AD progression and better predict future AD conversion than other MRI biomarkers. For example, a strong association between atrophy and abnormal tau was identified in hippocampal subregion cornu ammonis 1 (CA1 subfield) and subiculum in e4 homozygote cohort. CONCLUSION Our model allows for identifying MRI biomarkers for AD and cognitive decline prediction and may uncover a corner of the neural mechanism of the influence of APOE and tau deposition on hippocampal morphology.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, USA
| | - Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, USA
| | - Wenhui Zhu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, USA
| | | | | | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, USA
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, USA
| | - Junwen Wang
- Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, USA
| |
Collapse
|
7
|
Cong Z, Fu Y, Chen N, Zhang L, Yao C, Wang Y, Yao Z, Hu B. Individuals with cannabis use are associated with widespread morphological alterations in the subregions of the amygdala, hippocampus, and pallidum. Drug Alcohol Depend 2022; 239:109595. [PMID: 35961268 DOI: 10.1016/j.drugalcdep.2022.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/02/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cannabis is the most frequently used illicit drug worldwide. Although multiple structural MRI studies of individuals with cannabis use (CB) have been undertaken, the reports of the volume alterations in the amygdala, hippocampus, and pallidum are not consistent. This study aims to detect subregion-level morphological alterations, analyze the correlation areas with cannabis usage characteristics, and gain new insights into the neuro mechanisms of CB. METHODS By leveraging the novel surface-based subcortical morphometry method, 20 CB and 22 age- and sex-matched healthy controls (HC) were included to explore their volumetric and morphological differences in the three subcortical structures. Afterward, the correlation analysis between surface morphological eigenvalues and cannabis usage characteristics was performed. RESULTS Compared with volumetric measures, the surface-based subcortical morphometry method detected more significant global morphological deformations in the left amygdala, right hippocampus, and right pallidum (overall-p < 0.05, corrected). More obvious morphological alterations (atrophy or expansion) were observed in specific subregions (vertex-based p-value<0.05, uncorrected) of the three subcortical structures. Both positive and negative subregional correlation areas were reported by the correlation analysis. CONCLUSIONS The current study illuminated new pathophysiologic mechanisms in the amygdala, hippocampus, and pallidum at the subregion level, which may inform the subsequent smaller-scale CB research.
Collapse
Affiliation(s)
- Zhaoyang Cong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chaofan Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province 730000, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, Gansu Province 730000, China.
| |
Collapse
|
8
|
Zhang Z, Wu Y, Xiong D, Ibrahim JG, Srivastava A, Zhu H. LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures. J Am Stat Assoc 2022; 118:3-17. [PMID: 37153845 PMCID: PMC10162479 DOI: 10.1080/01621459.2022.2102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 10/17/2022]
Abstract
Over the past 30 years, magnetic resonance imaging has become a ubiquitous tool for accurately visualizing the change and development of the brain's subcortical structures (e.g., hippocampus). Although subcortical structures act as information hubs of the nervous system, their quantification is still in its infancy due to many challenges in shape extraction, representation, and modeling. Here, we develop a simple and efficient framework of longitudinal elastic shape analysis (LESA) for subcortical structures. Integrating ideas from elastic shape analysis of static surfaces and statistical modeling of sparse longitudinal data, LESA provides a set of tools for systematically quantifying changes of longitudinal subcortical surface shapes from raw structure MRI data. The key novelties of LESA include: (i) it can efficiently represent complex subcortical structures using a small number of basis functions and (ii) it can accurately delineate the spatiotemporal shape changes of the human subcortical structures. We applied LESA to analyze three longitudinal neuroimaging data sets and showcase its wide applications in estimating continuous shape trajectories, building life-span growth patterns, and comparing shape differences among different groups. In particular, with the Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we found that the Alzheimer's Disease (AD) can significantly speed the shape change of ventricle and hippocampus from 60 to 75 years old compared with normal aging.
Collapse
Affiliation(s)
- Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| | - Yuexuan Wu
- Department of Statistics, Florida State University, Tallahassee, Florida
| | - Di Xiong
- Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph G. Ibrahim
- Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anuj Srivastava
- Department of Statistics, Florida State University, Tallahassee, Florida
| | - Hongtu Zhu
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill Chapel Hill, North Carolina
- Departments of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Departments of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Departments of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina at Chapel, Hill Chapel Hill, North Carolina
| |
Collapse
|
9
|
Li S, An N, Chen N, Wang Y, Yang L, Wang Y, Yao Z, Hu B. The impact of Alzheimer's disease susceptibility loci on lateral ventricular surface morphology in older adults. Brain Struct Funct 2022; 227:913-924. [PMID: 35028746 DOI: 10.1007/s00429-021-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
The enlargement of ventricular volume is a general trend in the elderly, especially in patients with Alzheimer's disease (AD). Multiple susceptibility loci have been reported to have an increased risk for AD and the morphology of brain structures are affected by the variations in the risk loci. Therefore, we hypothesized that genes contributed significantly to the ventricular surface, and the changes of ventricular surface were associated with the impairment of cognitive functions. After the quality controls (QC) and genotyping, a lateral ventricular segmentation method was employed to obtain the surface features of lateral ventricle. We evaluated the influence of 18 selected AD susceptibility loci on both volume and surface morphology across 410 subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI). Correlations were conducted between radial distance (RD) and Montreal Cognitive Assessment (MoCA) subscales. Only the C allele at the rs744373 loci in BIN1 gene significantly accelerated the atrophy of lateral ventricle, including the anterior horn, body, and temporal horn of left lateral ventricle. No significant effect on lateral ventricle was found at other loci. Our results revealed that most regions of the bilateral ventricular surface were significantly negatively correlated with cognitive scores, particularly in delayed recall. Besides, small areas of surface were negatively correlated with language, orientation, and visuospatial scores. Together, our results indicated that the genetic variation affected the localized areas of lateral ventricular surface, and supported that lateral ventricle was an important brain structure associated with cognition in the elderly.
Collapse
Affiliation(s)
- Shan Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Na An
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShangHai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, LanZhou, China.
- Engineering Research Center of Open Source Software and Real-Time System, Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Wang G, Zhou W, Kong D, Qu Z, Ba M, Hao J, Yao T, Dong Q, Su Y, Reiman EM, Caselli RJ, Chen K, Wang Y. Studying APOE ɛ4 Allele Dose Effects with a Univariate Morphometry Biomarker. J Alzheimers Dis 2022; 85:1233-1250. [PMID: 34924383 PMCID: PMC10498787 DOI: 10.3233/jad-215149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND A univariate neurodegeneration biomarker (UNB) based on MRI with strong statistical discrimination power would be highly desirable for studying hippocampal surface morphological changes associated with APOE ɛ4 genetic risk for AD in the cognitively unimpaired (CU) population. However, existing UNB work either fails to model large group variances or does not capture AD induced changes. OBJECTIVE We proposed a subspace decomposition method capable of exploiting a UNB to represent the hippocampal morphological changes related to the APOE ɛ4 dose effects among the longitudinal APOE ɛ4 homozygotes (HM, N = 30), heterozygotes (HT, N = 49) and non-carriers (NC, N = 61). METHODS Rank minimization mechanism combined with sparse constraint considering the local continuity of the hippocampal atrophy regions is used to extract group common structures. Based on the group common structures of amyloid-β (Aβ) positive AD patients and Aβ negative CU subjects, we identified the regions-of-interest (ROI), which reflect significant morphometry changes caused by the AD development. Then univariate morphometry index (UMI) is constructed from these ROIs. RESULTS The proposed UMI demonstrates a more substantial statistical discrimination power to distinguish the longitudinal groups with different APOE ɛ4 genotypes than the hippocampal volume measurements. And different APOE ɛ4 allele load affects the shrinkage rate of the hippocampus, i.e., HM genotype will cause the largest atrophy rate, followed by HT, and the smallest is NC. CONCLUSION The UMIs may capture the APOE ɛ4 risk allele-induced brain morphometry abnormalities and reveal the dose effects of APOE ɛ4 on the hippocampal morphology in cognitively normal individuals.
Collapse
Affiliation(s)
- Gang Wang
- School of Ulsan Ship and Ocean College, Ludong University, Yantai, China
| | - Wenju Zhou
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Deping Kong
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Zongshuai Qu
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Maowen Ba
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinguang Hao
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Tao Yao
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Qunxi Dong
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yi Su
- Banner Alzheimer’s Institute, 100 Washtenaw Avenue, Phoenix, AZ, USA
| | - Eric M Reiman
- Banner Alzheimer’s Institute, 100 Washtenaw Avenue, Phoenix, AZ, USA
| | | | - Kewei Chen
- Banner Alzheimer’s Institute, 100 Washtenaw Avenue, Phoenix, AZ, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Wu J, Dong Q, Zhang J, Su Y, Wu T, Caselli RJ, Reiman EM, Ye J, Lepore N, Chen K, Thompson PM, Wang Y. Federated Morphometry Feature Selection for Hippocampal Morphometry Associated Beta-Amyloid and Tau Pathology. Front Neurosci 2021; 15:762458. [PMID: 34899166 PMCID: PMC8655732 DOI: 10.3389/fnins.2021.762458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Amyloid-β (Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer's disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. One of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research focuses in the AD pathophysiological progress. This work proposes a novel framework, Federated Morphometry Feature Selection (FMFS) model, to examine subtle aspects of hippocampal morphometry that are associated with Aβ/tau burden in the brain, measured using positron emission tomography (PET). FMFS is comprised of hippocampal surface-based feature calculation, patch-based feature selection, federated group LASSO regression, federated screening rule-based stability selection, and region of interest (ROI) identification. FMFS was tested on two Alzheimer's Disease Neuroimaging Initiative (ADNI) cohorts to understand hippocampal alterations that relate to Aβ/tau depositions. Each cohort included pairs of MRI and PET for AD, mild cognitive impairment (MCI), and cognitively unimpaired (CU) subjects. Experimental results demonstrated that FMFS achieves an 89× speedup compared to other published state-of-the-art methods under five independent hypothetical institutions. In addition, the subiculum and cornu ammonis 1 (CA1 subfield) were identified as hippocampal subregions where atrophy is strongly associated with abnormal Aβ/tau. As potential biomarkers for Aβ/tau pathology, the features from the identified ROIs had greater power for predicting cognitive assessment and for survival analysis than five other imaging biomarkers. All the results indicate that FMFS is an efficient and effective tool to reveal associations between Aβ/tau burden and hippocampal morphometry.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Teresa Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Richard J. Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
12
|
Wu J, Zhu W, Su Y, Gui J, Lepore N, Reiman EM, Caselli RJ, Thompson PM, Chen K, Wang Y. Predicting Tau Accumulation in Cerebral Cortex with Multivariate MRI Morphometry Measurements, Sparse Coding, and Correntropy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 12088:120880O. [PMID: 34961803 PMCID: PMC8710175 DOI: 10.1117/12.2607169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomarker-assisted diagnosis and intervention in Alzheimer's disease (AD) may be the key to prevention breakthroughs. One of the hallmarks of AD is the accumulation of tau plaques in the human brain. However, current methods to detect tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (Tau PET). In our previous work, structural MRI-based hippocampal multivariate morphometry statistics (MMS) showed superior performance as an effective neurodegenerative biomarker for preclinical AD and Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-MP) has excellent ability to generate low-dimensional representations with strong statistical power for brain amyloid prediction. In this work, we apply this framework together with ridge regression models to predict Tau deposition in Braak12 and Braak34 brain regions separately. We evaluate our framework on 925 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Each subject has one pair consisting of a PET image and MRI scan which were collected at about the same times. Experimental results suggest that the representations from our MMS and PASCS-MP have stronger predictive power and their predicted Braak12 and Braak34 are closer to the real values compared to the measures derived from other approaches such as hippocampal surface area and volume, and shape morphometry features based on spherical harmonics (SPHARM).
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, USA
| | - Wenhui Zhu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, USA
| | - Jie Gui
- School of Cyber Science and Engineering, Southeast University, Nanjing, China
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology Children’s Hospital Los Angeles, Los Angeles, USA
| | | | | | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, USA
| |
Collapse
|
13
|
Wu J, Dong Q, Gui J, Zhang J, Su Y, Chen K, Thompson PM, Caselli RJ, Reiman EM, Ye J, Wang Y. Predicting Brain Amyloid Using Multivariate Morphometry Statistics, Sparse Coding, and Correntropy: Validation in 1,101 Individuals From the ADNI and OASIS Databases. Front Neurosci 2021; 15:669595. [PMID: 34421510 PMCID: PMC8377280 DOI: 10.3389/fnins.2021.669595] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Biomarker assisted preclinical/early detection and intervention in Alzheimer’s disease (AD) may be the key to therapeutic breakthroughs. One of the presymptomatic hallmarks of AD is the accumulation of beta-amyloid (Aβ) plaques in the human brain. However, current methods to detect Aβ pathology are either invasive (lumbar puncture) or quite costly and not widely available (amyloid PET). Our prior studies show that magnetic resonance imaging (MRI)-based hippocampal multivariate morphometry statistics (MMS) are an effective neurodegenerative biomarker for preclinical AD. Here we attempt to use MRI-MMS to make inferences regarding brain Aβ burden at the individual subject level. As MMS data has a larger dimension than the sample size, we propose a sparse coding algorithm, Patch Analysis-based Surface Correntropy-induced Sparse-coding and Max-Pooling (PASCS-MP), to generate a low-dimensional representation of hippocampal morphometry for each individual subject. Then we apply these individual representations and a binary random forest classifier to predict brain Aβ positivity for each person. We test our method in two independent cohorts, 841 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 260 subjects from the Open Access Series of Imaging Studies (OASIS). Experimental results suggest that our proposed PASCS-MP method and MMS can discriminate Aβ positivity in people with mild cognitive impairment (MCI) [Accuracy (ACC) = 0.89 (ADNI)] and in cognitively unimpaired (CU) individuals [ACC = 0.79 (ADNI) and ACC = 0.81 (OASIS)]. These results compare favorably relative to measures derived from traditional algorithms, including hippocampal volume and surface area, shape measures based on spherical harmonics (SPHARM) and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling (PASS-MP) methods.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States.,Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jie Gui
- School of Cyber Science and Engineering, Southeast University, Nanjing, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
14
|
Zhang J, Dong Q, Shi J, Li Q, Stonnington CM, Gutman BA, Chen K, Reiman EM, Caselli RJ, Thompson PM, Ye J, Wang Y. Predicting future cognitive decline with hyperbolic stochastic coding. Med Image Anal 2021; 70:102009. [PMID: 33711742 PMCID: PMC8049149 DOI: 10.1016/j.media.2021.102009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/10/2020] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
Hyperbolic geometry has been successfully applied in modeling brain cortical and subcortical surfaces with general topological structures. However, such approaches, similar to other surface-based brain morphology analysis methods, usually generate high dimensional features. It limits their statistical power in cognitive decline prediction research, especially in datasets with limited subject numbers. To address the above limitation, we propose a novel framework termed as hyperbolic stochastic coding (HSC). We first compute diffeomorphic maps between general topological surfaces by mapping them to a canonical hyperbolic parameter space with consistent boundary conditions and extracts critical shape features. Secondly, in the hyperbolic parameter space, we introduce a farthest point sampling with breadth-first search method to obtain ring-shaped patches. Thirdly, stochastic coordinate coding and max-pooling algorithms are adopted for feature dimension reduction. We further validate the proposed system by comparing its classification accuracy with some other methods on two brain imaging datasets for Alzheimer's disease (AD) progression studies. Our preliminary experimental results show that our algorithm achieves superior results on various classification tasks. Our work may enrich surface-based brain imaging research tools and potentially result in a diagnostic and prognostic indicator to be useful in individualized treatment strategies.
Collapse
Affiliation(s)
- Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | | | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | | | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics & Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA.
| |
Collapse
|
15
|
Fu Y, Zhang J, Li Y, Shi J, Zou Y, Guo H, Li Y, Yao Z, Wang Y, Hu B. A novel pipeline leveraging surface-based features of small subcortical structures to classify individuals with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:109989. [PMID: 32512131 PMCID: PMC9632410 DOI: 10.1016/j.pnpbp.2020.109989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 10/24/2022]
Abstract
Autism spectrum disorder (ASD) is accompanied with widespread impairment in social-emotional functioning. Classification of ASD using sensitive morphological features derived from structural magnetic resonance imaging (MRI) of the brain may help us to better understand ASD-related mechanisms and improve related automatic diagnosis. Previous studies using T1 MRI scans in large heterogeneous ABIDE dataset with typical development (TD) controls reported poor classification accuracies (around 60%). This may because they only considered surface-based morphometry (SBM) as scalar estimates (such as cortical thickness and surface area) and ignored the neighboring intrinsic geometry information among features. In recent years, the shape-related SBM achieves great success in discovering the disease burden and progression of other brain diseases. However, when focusing on local geometry information, its high dimensionality requires careful treatment in its application to machine learning. To address the above challenges, we propose a novel pipeline for ASD classification, which mainly includes the generation of surface-based features, patch-based surface sparse coding and dictionary learning, Max-pooling and ensemble classifiers based on adaptive optimizers. The proposed pipeline may leverage the sensitivity of brain surface morphometry statistics and the efficiency of sparse coding and Max-pooling. By introducing only the surface features of bilateral hippocampus that derived from 364 male subjects with ASD and 381 age-matched TD males, this pipeline outperformed five recent MRI-based ASD classification studies with >80% accuracy in discriminating individuals with ASD from TD controls. Our results suggest shape-related SBM features may further boost the classification performance of MRI between ASD and TD.
Collapse
Affiliation(s)
- Yu Fu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yuan Li
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong Province, China
| | - Jie Shi
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ying Zou
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hanning Guo
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yongchao Li
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China.
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu Province, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Wang G, Dong Q, Wu J, Su Y, Chen K, Su Q, Zhang X, Hao J, Yao T, Liu L, Zhang C, Caselli RJ, Reiman EM, Wang Y. Developing univariate neurodegeneration biomarkers with low-rank and sparse subspace decomposition. Med Image Anal 2021; 67:101877. [PMID: 33166772 PMCID: PMC7725891 DOI: 10.1016/j.media.2020.101877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
Cognitive decline due to Alzheimer's disease (AD) is closely associated with brain structure alterations captured by structural magnetic resonance imaging (sMRI). It supports the validity to develop sMRI-based univariate neurodegeneration biomarkers (UNB). However, existing UNB work either fails to model large group variances or does not capture AD dementia (ADD) induced changes. We propose a novel low-rank and sparse subspace decomposition method capable of stably quantifying the morphological changes induced by ADD. Specifically, we propose a numerically efficient rank minimization mechanism to extract group common structure and impose regularization constraints to encode the original 3D morphometry connectivity. Further, we generate regions-of-interest (ROI) with group difference study between common subspaces of Aβ+AD and Aβ-cognitively unimpaired (CU) groups. A univariate morphometry index (UMI) is constructed from these ROIs by summarizing individual morphological characteristics weighted by normalized difference between Aβ+AD and Aβ-CU groups. We use hippocampal surface radial distance feature to compute the UMIs and validate our work in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. With hippocampal UMIs, the estimated minimum sample sizes needed to detect a 25% reduction in the mean annual change with 80% power and two-tailed P=0.05are 116, 279 and 387 for the longitudinal Aβ+AD, Aβ+mild cognitive impairment (MCI) and Aβ+CU groups, respectively. Additionally, for MCI patients, UMIs well correlate with hazard ratio of conversion to AD (4.3, 95% CI = 2.3-8.2) within 18 months. Our experimental results outperform traditional hippocampal volume measures and suggest the application of UMI as a potential UNB.
Collapse
Affiliation(s)
- Gang Wang
- Ulsan Ship and Ocean College, Ludong University, Yantai, China.
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA
| | - Yi Su
- Banner Alzheimer's Institute and Banner Good Samaritan Pet Center, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer's Institute and Banner Good Samaritan Pet Center, Phoenix, AZ, USA
| | - Qingtang Su
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Xiaofeng Zhang
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Jinguang Hao
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Tao Yao
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Li Liu
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Caiming Zhang
- Shandong Province Key Lab of Digital Media Technology, Shandong University of Finance and Economics, Jinan, China
| | | | - Eric M Reiman
- Banner Alzheimer's Institute and Banner Good Samaritan Pet Center, Phoenix, AZ, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA.
| |
Collapse
|
17
|
Zhou X, Ye Q, Jiang Y, Wang M, Niu Z, Menpes-Smith W, Fang EF, Liu Z, Xia J, Yang G. Systematic and Comprehensive Automated Ventricle Segmentation on Ventricle Images of the Elderly Patients: A Retrospective Study. Front Aging Neurosci 2020; 12:618538. [PMID: 33390930 PMCID: PMC7772233 DOI: 10.3389/fnagi.2020.618538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Ventricle volume is closely related to hydrocephalus, brain atrophy, Alzheimer's, Parkinson's syndrome, and other diseases. To accurately measure the volume of the ventricles for elderly patients, we use deep learning to establish a systematic and comprehensive automated ventricle segmentation framework. Methods: The study participation included 20 normal elderly people, 20 patients with cerebral atrophy, 64 patients with normal pressure hydrocephalus, and 51 patients with acquired hydrocephalus. Second, get their imaging data through the picture archiving and communication systems (PACS) system. Then use ITK software to manually label participants' ventricular structures. Finally, extract imaging features through machine learning. Results: This automated ventricle segmentation method can be applied not only to CT and MRI images but also to images with different scan slice thicknesses. More importantly, it produces excellent segmentation results (Dice > 0.9). Conclusion: This automated ventricle segmentation method has wide applicability and clinical practicability. It can help clinicians find early disease, diagnose disease, understand the patient's disease progression, and evaluate the patient's treatment effect.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qinghao Ye
- Hangzhou Ocean's Smart Boya Co., Ltd., Hangzhou, China.,Mind Rank Ltd., Hongkong, China
| | - Yinghui Jiang
- Hangzhou Ocean's Smart Boya Co., Ltd., Hangzhou, China.,Mind Rank Ltd., Hongkong, China
| | - Minhao Wang
- Hangzhou Ocean's Smart Boya Co., Ltd., Hangzhou, China.,Mind Rank Ltd., Hongkong, China
| | - Zhangming Niu
- Aladdin Healthcare Technologies Ltd., London, United Kingdom
| | | | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Zhi Liu
- School of Information Science and Engineering, Shandong University, Qingdao, China
| | - Jun Xia
- Department of Radiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Wu J, Zhang J, Li Q, Su Y, Chen K, Reiman EM, Wang J, Lepore N, Ye J, Thompson PM, Wang Y. Patch-Based Surface Morphometry Feature Selection with Federated Group Lasso Regression. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11583. [PMID: 33250550 DOI: 10.1117/12.2575984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Collectively, vast quantities of brain imaging data exist across hospitals and research institutions, providing valuable resources to study brain disorders such as Alzheimer's disease (AD). However, in practice, putting all these distributed datasets into a centralized platform is infeasible due to patient privacy concerns, data restrictions and legal regulations. In this study, we propose a novel federated feature selection framework that can analyze the data at each individual institution without data-sharing or accessing private patient information. In this framework, we first propose a federated group lasso optimization method based on block coordinate descent. We employ stability selection to determine statistically significant features, by solving the group lasso problem with a sequence of regularization parameters. To accelerate the stability selection, we further propose a federated screening rule, which can identify and exclude the irrelevant features before solving the group lasso. Here, we use this framework for patch based feature selection on hippocampal morphometry. Shape is characterized through two different kinds of local measures, the radial distance and the surface area determined via tensor-based morphometry (TBM). The method is tested on 1,127 T1-weighted brain magnetic resonance images (MRI) of AD, mild cognitive impairment (MCI) and elderly control subjects, randomly assigned to five independent hypothetical institutions for testing purpose. We examine the association of MRI-based anatomical measures with general cognitive assessment and amyloid burden to identify the morphometry changes related to AD deterioration and plaque accumulation. Finally, we visualize the significance of the association on the hippocampal surfaces. Our experimental results successfully demonstrate the efficiency and effectiveness of our method.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| | - Yi Su
- Banner Alzheimer's Institute, 100 Washtenaw Avenue, Phoenix, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, 100 Washtenaw Avenue, Phoenix, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, 100 Washtenaw Avenue, Phoenix, USA
| | - Jie Wang
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, 1129 Huizhou Ave, Baohe District, Hefei, China
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd. MS 81, Los Angeles, USA
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, 1301 Beal Avenue, Ann Arbor, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, 4676 Admiralty Way, Los Angeles, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, 699 S Mill Ave, Tempe, USA
| |
Collapse
|
19
|
Dong Q, Zhang W, Stonnington CM, Wu J, Gutman BA, Chen K, Su Y, Baxter LC, Thompson PM, Reiman EM, Caselli RJ, Wang Y. Applying surface-based morphometry to study ventricular abnormalities of cognitively unimpaired subjects prior to clinically significant memory decline. NEUROIMAGE-CLINICAL 2020; 27:102338. [PMID: 32683323 PMCID: PMC7371915 DOI: 10.1016/j.nicl.2020.102338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022]
Abstract
A completely automated surface-based ventricular morphometry system. Generate a whole connected 3D ventricular shape model. Test-retest the system in two independent CU subject cohorts. Subregional ventricular abnormalities prior to clinically memory decline.
Ventricular volume (VV) is a widely used structural magnetic resonance imaging (MRI) biomarker in Alzheimer’s disease (AD) research. Abnormal enlargements of VV can be detected before clinically significant memory decline. However, VV does not pinpoint the details of subregional ventricular expansions. Here we introduce a ventricular morphometry analysis system (VMAS) that generates a whole connected 3D ventricular shape model and encodes a great deal of ventricular surface deformation information that is inaccessible by VV. VMAS contains an automated segmentation approach and surface-based multivariate morphometry statistics. We applied VMAS to two independent datasets of cognitively unimpaired (CU) groups. To our knowledge, it is the first work to detect ventricular abnormalities that distinguish normal aging subjects from those who imminently progress to clinically significant memory decline. Significant bilateral ventricular morphometric differences were first shown in 38 members of the Arizona APOE cohort, which included 18 CU participants subsequently progressing to the clinically significant memory decline within 2 years after baseline visits (progressors), and 20 matched CU participants with at least 4 years of post-baseline cognitive stability (non-progressors). VMAS also detected significant differences in bilateral ventricular morphometry in 44 Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects (18 CU progressors vs. 26 CU non-progressors) with the same inclusion criterion. Experimental results demonstrated that the ventricular anterior horn regions were affected bilaterally in CU progressors, and more so on the left. VMAS may track disease progression at subregional levels and measure the effects of pharmacological intervention at a preclinical stage.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Leslie C Baxter
- Human Brain Imaging Laboratory, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
20
|
Yao Z, Fu Y, Wu J, Zhang W, Yu Y, Zhang Z, Wu X, Wang Y, Hu B. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients. Brain Imaging Behav 2020; 14:653-667. [PMID: 30519998 PMCID: PMC6551316 DOI: 10.1007/s11682-018-0003-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite many neuroimaging studies in the past years, the neuroanatomical substrates of major depressive disorder (MDD) subcortical structures are still not well understood. Since hippocampus and amygdala are the two vital subcortical structures that most susceptible to MDD, finding the evidence of morphological changes in their subregions may bring some new insights for MDD research. Combining structural magnetic resonance imaging (MRI) with novel morphometry analysis methods, we recruited 25 MDD patients and 28 healthy controls (HC), and investigated their volume and morphological differences in hippocampus and amygdala. Relative to volumetric method, our methods detected more significant global morphological atrophies (p<0.05). More precisely, subiculum and cornu ammonis (CA) 1 subregions of bilateral hippocampus, lateral (LA) and basolateral ventromedial (BLVM) of left amygdala and LA, BLVM, central (CE), amygdalostriatal transition area (ASTR), anterior cortical (ACO) and anterior amygdaloid area (AAA) of right amygdala were demonstrated prone to atrophy. Correlation analyses between each subject's surface eigenvalues and Hamilton Depression Scale (HAMD) were then performed. Correlation results showed that atrophy areas in hippocampus and amygdala have slight tendencies of expanding into other subregions with the development of MDD. Finally, we performed group morphometric analysis and drew the atrophy and expansion areas between MDD-Medicated group (only 19 medicated subjects in MDD group were included) and HC group, found some preliminary evidence about subregional morphological resilience of hippocampus and amygdala. These findings revealed new pathophysiologic patterns in the subregions of hippocampus and amygdala, which can help with subsequent smaller-scale MDD research.
Collapse
Affiliation(s)
- Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, P.O. Box 730000, Lanzhou, China
| | - Yu Fu
- School of Information Science and Engineering, Lanzhou University, P.O. Box 730000, Lanzhou, China
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| | - Yue Yu
- School of Information Science and Engineering, Lanzhou University, P.O. Box 730000, Lanzhou, China
| | - Zicheng Zhang
- School of Information Science and Engineering, Lanzhou University, P.O. Box 730000, Lanzhou, China
| | - Xia Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- College of Information Science and Technology, Beijing Normal University, P.O. Box 100000, Beijing, China.
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809, Tempe, AZ, 85287, USA.
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, P.O. Box 730000, Lanzhou, China.
| |
Collapse
|
21
|
Shi J, Wang Y. Hyperbolic Wasserstein Distance for Shape Indexing. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2020; 42:1362-1376. [PMID: 30763239 PMCID: PMC6687563 DOI: 10.1109/tpami.2019.2898400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shape space is an active research topic in computer vision and medical imaging fields. The distance defined in a shape space may provide a simple and refined index to represent a unique shape. This work studies the Wasserstein space and proposes a novel framework to compute the Wasserstein distance between general topological surfaces by integrating hyperbolic Ricci flow, hyperbolic harmonic map, and hyperbolic power Voronoi diagram algorithms. The resulting hyperbolic Wasserstein distance can intrinsically measure the similarity between general topological surfaces. Our proposed algorithms are theoretically rigorous and practically efficient. It has the potential to be a powerful tool for 3D shape indexing research. We tested our algorithm with human face classification and Alzheimer's disease (AD) progression tracking studies. Experimental results demonstrated that our work may provide a succinct and effective shape index.
Collapse
|
22
|
Dong Q, Zhang J, Li Q, Thompson PM, Caselli RJ, Ye J, Wang Y. Multi-task Dictionary Learning based on Convolutional Neural Networks for Longitudinal Clinical Score Predictions in Alzheimer's Disease. HUMAN BRAIN AND ARTIFICIAL INTELLIGENCE : FIRST INTERNATIONAL WORKSHOP, HBAI 2019, HELD IN CONJUNCTION WITH IJCAI 2019, MACAO, CHINA, AUGUST 12, 2019, REVISED SELECTED PAPERS. HBAI (CONFERENCE) (1ST : 2019 : MACAU, CHINA) 2019; 1072:21-35. [PMID: 33907742 PMCID: PMC8075273 DOI: 10.1007/978-981-15-1398-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Computer-aided diagnosis (CAD) systems for medical images are seen as effective tools to improve the efficiency of diagnosis and prognosis of Alzheimers disease (AD). The current state-of-the-art models for many images analyzing tasks are based on Convolutional Neural Networks (CNN). However, the lack of training data is a common challenge in applying CNN to the diagnosis of AD and its prodromal stages. Another challenge for CAD applications is the controversy between the requiring of longitudinal cortical structural information for higher diagnosis/prognosis accuracy and the computing ability for processing varied imaging features. To address these two challenges, we propose a novel computer-aided AD diagnosis system CNN-Multitask Stochastic Coordinate Coding (MSCC) which integrates CNN with transfer learning strategy, a novel MSCC algorithm and our effective AD-related biomarkers-multivariate morphometry statistics (MMS). We applied the novel CNN-MSCC system on the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset to predict future cognitive clinical measures with baseline Hippocampal/Ventricle MMS features and cortical thickness. The experimental results showed that CNN-MSCC achieved superior results. The proposed system may aid in expediting the diagnosis of AD progress, facilitating earlier clinical intervention, and resulting in improved clinical outcomes.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Pau M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
23
|
Dong Q, Zhang W, Wu J, Li B, Schron EH, McMahon T, Shi J, Gutman BA, Chen K, Baxter LC, Thompson PM, Reiman EM, Caselli RJ, Wang Y. Applying surface-based hippocampal morphometry to study APOE-E4 allele dose effects in cognitively unimpaired subjects. NEUROIMAGE-CLINICAL 2019; 22:101744. [PMID: 30852398 PMCID: PMC6411498 DOI: 10.1016/j.nicl.2019.101744] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/02/2019] [Accepted: 03/02/2019] [Indexed: 11/30/2022]
Abstract
Apolipoprotein E (APOE) e4 is the major genetic risk factor for late-onset Alzheimer's disease (AD). The dose-dependent impact of this allele on hippocampal volumes has been documented, but its influence on general hippocampal morphology in cognitively unimpaired individuals is still elusive. Capitalizing on the study of a large number of cognitively unimpaired late middle aged and older adults with two, one and no APOE-e4 alleles, the current study aims to characterize the ability of our automated surface-based hippocampal morphometry algorithm to distinguish between these three levels of genetic risk for AD and demonstrate its superiority to a commonly used hippocampal volume measurement. We examined the APOE-e4 dose effect on cross-sectional hippocampal morphology analysis in a magnetic resonance imaging (MRI) database of 117 cognitively unimpaired subjects aged between 50 and 85 years (mean = 57.4, SD = 6.3), including 36 heterozygotes (e3/e4), 37 homozygotes (e4/e4) and 44 non-carriers (e3/e3). The proposed automated framework includes hippocampal surface segmentation and reconstruction, higher-order hippocampal surface correspondence computation, and hippocampal surface deformation analysis with multivariate statistics. In our experiments, the surface-based method identified APOE-e4 dose effects on the left hippocampal morphology. Compared to the widely-used hippocampal volume measure, our hippocampal morphometry statistics showed greater statistical power by distinguishing cognitively unimpaired subjects with two, one, and no APOE-e4 alleles. Our findings mirrored previous studies showing that APOE-e4 has a dose effect on the acceleration of brain structure deformities. The results indicated that the proposed surface-based hippocampal morphometry measure is a potential preclinical AD imaging biomarker for cognitively unimpaired individuals. Applied surface-based hippocampal morphometry on cognitively unimpaired subjects. Our study identified APOE-e4 dose effects on cognitively unimpaired subjects. Surface-based hippocampal morphometry outperformed the hippocampal volume measure. Surface-based hippocampal morphometry may be a potential preclinical AD biomarker.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Bolun Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Travis McMahon
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Leslie C Baxter
- Human Brain Imaging Laboratory, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
24
|
Tang X, Luo Y, Chen Z, Huang N, Johnson HJ, Paulsen JS, Miller MI. A Fully-Automated Subcortical and Ventricular Shape Generation Pipeline Preserving Smoothness and Anatomical Topology. Front Neurosci 2018; 12:321. [PMID: 29867332 PMCID: PMC5966575 DOI: 10.3389/fnins.2018.00321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
In this paper, we present a fully-automated subcortical and ventricular shape generation pipeline that acts on structural magnetic resonance images (MRIs) of the human brain. Principally, the proposed pipeline consists of three steps: (1) automated structure segmentation using the diffeomorphic multi-atlas likelihood-fusion algorithm; (2) study-specific shape template creation based on the Delaunay triangulation; (3) deformation-based shape filtering using the large deformation diffeomorphic metric mapping for surfaces. The proposed pipeline is shown to provide high accuracy, sufficient smoothness, and accurate anatomical topology. Two datasets focused upon Huntington's disease (HD) were used for evaluating the performance of the proposed pipeline. The first of these contains a total of 16 MRI scans, each with a gold standard available, on which the proposed pipeline's outputs were observed to be highly accurate and smooth when compared with the gold standard. Visual examinations and outlier analyses on the second dataset, which contains a total of 1,445 MRI scans, revealed 100% success rates for the putamen, the thalamus, the globus pallidus, the amygdala, and the lateral ventricle in both hemispheres and rates no smaller than 97% for the bilateral hippocampus and caudate. Another independent dataset, consisting of 15 atlas images and 20 testing images, was also used to quantitatively evaluate the proposed pipeline, with high accuracy having been obtained. In short, the proposed pipeline is herein demonstrated to be effective, both quantitatively and qualitatively, using a large collection of MRI scans.
Collapse
Affiliation(s)
- Xiaoying Tang
- Sun Yat-sen University-Carnegie Mellon University Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, China.,Sun Yat-sen University-Carnegie Mellon University Shunde International Joint Research Institute, Shunde, China.,School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Yuan Luo
- Sun Yat-sen University-Carnegie Mellon University Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Zhibin Chen
- Sun Yat-sen University-Carnegie Mellon University Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nianwei Huang
- Sun Yat-sen University-Carnegie Mellon University Shunde International Joint Research Institute, Shunde, China
| | - Hans J Johnson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jane S Paulsen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States.,Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
25
|
Glozman T, Solomon J, Pestilli F, Guibas L. Shape-Attributes of Brain Structures as Biomarkers for Alzheimer's Disease. J Alzheimers Dis 2018; 56:287-295. [PMID: 27911322 PMCID: PMC5240557 DOI: 10.3233/jad-160900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe a fully automatic framework for classification of two types of dementia based on the differences in the shape of brain structures. We consider Alzheimer’s disease (AD), mild cognitive impairment of individuals who converted to AD within 18 months (MCIc), and normal controls (NC). Our approach uses statistical learning and a feature space consisting of projection-based shape descriptors, allowing for canonical representation of brain regions. Our framework automatically identifies the structures most affected by the disease. We evaluate our results by comparing to other methods using a standardized data set of 375 adults available from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Our framework is sensitive to identifying the onset of Alzheimer’s disease, achieving up to 88.13% accuracy in classifying MCIc versus NC, outperforming previous methods.
Collapse
Affiliation(s)
- Tanya Glozman
- Department of Electrical Engineering, Stanford, CA, USA
| | - Justin Solomon
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Franco Pestilli
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | | |
Collapse
|
26
|
Glozman T, Bruckert L, Pestilli F, Yecies DW, Guibas LJ, Yeom KW. Framework for shape analysis of white matter fiber bundles. Neuroimage 2018; 167:466-477. [PMID: 29203454 PMCID: PMC5845796 DOI: 10.1016/j.neuroimage.2017.11.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/26/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain.
Collapse
Affiliation(s)
- Tanya Glozman
- Electrical Engineering, Stanford University, Stanford, CA, USA.
| | | | - Franco Pestilli
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Derek W Yecies
- Pediatric Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| |
Collapse
|
27
|
Zhang W, Shi J, Yu J, Zhan L, Thompson PM, Wang Y. Enhancing Diffusion MRI Measures By Integrating Grey and White Matter Morphometry With Hyperbolic Wasserstein Distance. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2017; 2017:520-524. [PMID: 28936280 DOI: 10.1109/isbi.2017.7950574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to improve the preclinical diagnose of Alzheimer's disease (AD), there is a great deal of interest in analyzing the AD related brain structural changes with magnetic resonance image (MRI) analyses. As the major features, variation of the structural connectivity and the cortical surface morphometry provide different views of structural changes to determine whether AD is present on presymptomatic patients. However, the large scale tensor-valued information and relatively low imaging resolution in diffusion MRI (dMRI) have created huge challenges for analysis. In this paper, we propose a novel framework that improves dMRI analysis power by fusing cortical surface morphometry features from structural MRI (sMRI). We first compute the hyperbolic harmonic maps between cortical surfaces with the landmark constraints thus to precisely evaluate surface tensor-based morphometry. Meanwhile, the graph-based analysis of structural connectivity derived from dMRI is conducted. Next, we fuse these two features via the optimal mass transportation (OMT) and eventually the Wasserstein distance (WD) based single image index is computed as a potential clinical multimodality imaging score. We apply our framework to brain images of 20 AD patients and 20 matched healthy controls, randomly chosen from the Alzheimer's Disease Neuroimaging Initiative (AD-NI2) dataset. Our preliminary experimental results of group classification outperformed those of some other single dMRI-based features, such as regional hippocampal volume, mean scores of fractional anisotropy (FA) and mean axial (MD). The novel image fusion pipeline and simple imaging score of structural changes may benefit the preclinical AD and AD prevention research.
Collapse
Affiliation(s)
- Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| | - Jun Yu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| | - Liang Zhan
- Computer Engineering Program, University of Wisconsin-Stout, Menomonie, WI
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine, University of Southern California, CA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| |
Collapse
|
28
|
Paquette N, Shi J, Wang Y, Lao Y, Ceschin R, Nelson MD, Panigrahy A, Lepore N. Ventricular shape and relative position abnormalities in preterm neonates. NEUROIMAGE-CLINICAL 2017. [PMID: 28649491 PMCID: PMC5470570 DOI: 10.1016/j.nicl.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent neuroimaging findings have highlighted the impact of premature birth on subcortical development and morphological changes in the deep grey nuclei and ventricular system. To help characterize subcortical microstructural changes in preterm neonates, we recently implemented a multivariate tensor-based method (mTBM). This method allows to precisely measure local surface deformation of brain structures in infants. Here, we investigated ventricular abnormalities and their spatial relationships with surrounding subcortical structures in preterm neonates. We performed regional group comparisons on the surface morphometry and relative position of the lateral ventricles between 19 full-term and 17 preterm born neonates at term-equivalent age. Furthermore, a relative pose analysis was used to detect individual differences in translation, rotation, and scale of a given brain structure with respect to an average. Our mTBM results revealed broad areas of alterations on the frontal horn and body of the left ventricle, and narrower areas of differences on the temporal horn of the right ventricle. A significant shift in the rotation of the left ventricle was also found in preterm neonates. Furthermore, we located significant correlations between morphology and pose parameters of the lateral ventricles and that of the putamen and thalamus. These results show that regional abnormalities on the surface and pose of the ventricles are also associated with alterations on the putamen and thalamus. The complementarity of the information provided by the surface and pose analysis may help to identify abnormal white and grey matter growth, hinting toward a pattern of neural and cellular dysmaturation.
Collapse
Affiliation(s)
- N Paquette
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA
| | - J Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Y Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Y Lao
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA
| | - R Ceschin
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - M D Nelson
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA
| | - A Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - N Lepore
- Department of Radiology, University of Southern California and Children's Hospital of Los Angeles, CA, USA.
| |
Collapse
|
29
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimers Dement 2017; 13:e1-e85. [PMID: 28342697 DOI: 10.1016/j.jalz.2016.11.007] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS We used standard searches to find publications using ADNI data. RESULTS (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial design.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Shi J, Zhang W, Wang Y. Shape Analysis with Hyperbolic Wasserstein Distance. PROCEEDINGS. IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2016; 2016:5051-5061. [PMID: 28392672 DOI: 10.1109/cvpr.2016.546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Shape space is an active research field in computer vision study. The shape distance defined in a shape space may provide a simple and refined index to represent a unique shape. Wasserstein distance defines a Riemannian metric for the Wasserstein space. It intrinsically measures the similarities between shapes and is robust to image noise. Thus it has the potential for the 3D shape indexing and classification research. While the algorithms for computing Wasserstein distance have been extensively studied, most of them only work for genus-0 surfaces. This paper proposes a novel framework to compute Wasserstein distance between general topological surfaces with hyperbolic metric. The computational algorithms are based on Ricci flow, hyperbolic harmonic map, and hyperbolic power Voronoi diagram and the method is general and robust. We apply our method to study human facial expression, longitudinal brain cortical morphometry with normal aging, and cortical shape classification in Alzheimer's disease (AD). Experimental results demonstrate that our method may be used as an effective shape index, which outperforms some other standard shape measures in our AD versus healthy control classification study.
Collapse
Affiliation(s)
- Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering Arizona State University
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering Arizona State University
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering Arizona State University
| |
Collapse
|
31
|
Zhang J, Shi J, Stonnington C, Li Q, Gutman BA, Chen K, Reiman EM, Caselli RJ, Thompson PM, Ye J, Wang Y. Hyperbolic Space Sparse Coding with Its Application on Prediction of Alzheimer's Disease in Mild Cognitive Impairment. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2016; 9900:326-334. [PMID: 28066843 DOI: 10.1007/978-3-319-46720-7_38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mild Cognitive Impairment (MCI) is a transitional stage between normal age-related cognitive decline and Alzheimer's disease (AD). Here we introduce a hyperbolic space sparse coding method to predict impending decline of MCI patients to dementia using surface measures of ventricular enlargement. First, we compute diffeomorphic mappings between ventricular surfaces using a canonical hyperbolic parameter space with consistent boundary conditions and surface tensor-based morphometry is computed to measure local surface deformations. Second, ring-shaped patches of TBM features are selected according to the geometric structure of the hyperbolic parameter space to initialize a dictionary. Sparse coding is then applied on the patch features to learn sparse codes and update the dictionary. Finally, we adopt max-pooling to reduce the feature dimensions and apply Adaboost to predict AD in MCI patients (N = 133) from the Alzheimer's Disease Neuroimaging Initiative baseline dataset. Our work achieved an accuracy rate of 96.7% and outperformed some other morphometry measures. The hyperbolic space sparse coding method may offer a more sensitive tool to study AD and its early symptom.
Collapse
Affiliation(s)
- Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| | | | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| | - Boris A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Univ. of Southern California, Marina del Rey, CA
| | - Kewei Chen
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ
| | - Eric M Reiman
- Banner Alzheimer's Institute and Banner Good Samaritan PET Center, Phoenix, AZ
| | | | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Univ. of Southern California, Marina del Rey, CA
| | - Jieping Ye
- Dept. of Computational Medicine and Bioinformatics, Univ. of Michigan, Ann Arbor, MI
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ
| |
Collapse
|
32
|
Shi J, Zhang W, Tang M, Caselli RJ, Wang Y. Conformal invariants for multiply connected surfaces: Application to landmark curve-based brain morphometry analysis. Med Image Anal 2016; 35:517-529. [PMID: 27639215 DOI: 10.1016/j.media.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
Abstract
Landmark curves were widely adopted in neuroimaging research for surface correspondence computation and quantified morphometry analysis. However, most of the landmark based morphometry studies only focused on landmark curve shape difference. Here we propose to compute a set of conformal invariant-based shape indices, which are associated with the landmark curve induced boundary lengths in the hyperbolic parameter domain. Such shape indices may be used to identify which surfaces are conformally equivalent and further quantitatively measure surface deformation. With the surface Ricci flow method, we can conformally map a multiply connected surface to the Poincaré disk. Our algorithm provides a stable method to compute the shape index values in the 2D (Poincaré Disk) parameter domain. The proposed shape indices are succinct, intrinsic and informative. Experimental results with synthetic data and 3D MRI data demonstrate that our method is invariant under isometric transformations and able to detect brain surface abnormalities. We also applied the new shape indices to analyze brain morphometry abnormalities associated with Alzheimer' s disease (AD). We studied the baseline MRI scans of a set of healthy control and AD patients from the Alzheimer' s Disease Neuroimaging Initiative (ADNI: 30 healthy control subjects vs. 30 AD patients). Although the lengths of the landmarks in Euclidean space, cortical surface area, and volume features did not differ between the two groups, our conformal invariant based shape indices revealed significant differences by Hotelling' s T2 test. The novel conformal invariant shape indices may offer a new sensitive biomarker and enrich our brain imaging analysis toolset for studying diagnosis and prognosis of AD.
Collapse
Affiliation(s)
- Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA
| | - Wen Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA
| | - Miao Tang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA
| | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287, P.O. Box 878809, USA.
| |
Collapse
|
33
|
Castañeyra-Ruiz L, González-Marrero I, Carmona-Calero EM, Abreu-Gonzalez P, Lecuona M, Brage L, Rodríguez EM, Castañeyra-Perdomo A. Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg 2016; 146:76-81. [PMID: 27155076 DOI: 10.1016/j.clineuro.2016.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/02/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of the present work was to make a comparative analysis of the cerebrospinal fluid levels of Tumor necrosis factor (TNFα) and aquaporin 1 (AQP1) in (i) healthy elder control, (ii) patients with mild cognitive impairment and, (iii) patients with idiopathic normal pressure hydrocephalus. PATIENTS AND METHODS Samples of CSF were taken from seven patients with MCI, 77 years average age; six patients with iNPH, 75 years average age; eleven healthy subjects, 60year average age, were used as controls. The cerebrospinal fluid levels of AQP1 and TNFα were studied by enzyme immunoassay (ELISA). RESULTS In mild cognitive impairment the total protein content of the CSF and the relative CSF levels of AQP1 and TNFα were similar to those of control subjects and different from those of iNPH patients. On the other hand, in iNPH patients the CSF content of proteins was low and the levels of TNFα were significantly high while those of AQP1 were insignificantly high. CONCLUSION These finding may help the differential diagnosis and prognosis of mild cognitive impairment and normal pressure hydrocephalus patients.
Collapse
Affiliation(s)
- Leandro Castañeyra-Ruiz
- Departamento de Anatomía, Anatomía Patológica, Histología y Fisiología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain; Departamento de Farmacología. Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Ibrahim González-Marrero
- Departamento de Anatomía, Anatomía Patológica, Histología y Fisiología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Emilia M Carmona-Calero
- Departamento de Anatomía, Anatomía Patológica, Histología y Fisiología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain; Instituto de Investigación y Ciencias de Puerto del Rosario, Puerto del Rosario, Fuerteventura, Spain
| | - Pedro Abreu-Gonzalez
- Departamento de Anatomía, Anatomía Patológica, Histología y Fisiología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Maria Lecuona
- Servicio de Microbiología, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Liberto Brage
- Servicio de Neurocirugía, Hospital Universitario de Canarias, La Laguna, Tenerife, Spain
| | - Esteban M Rodríguez
- Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Agustin Castañeyra-Perdomo
- Departamento de Anatomía, Anatomía Patológica, Histología y Fisiología, Facultad de Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain; Instituto de Investigación y Ciencias de Puerto del Rosario, Puerto del Rosario, Fuerteventura, Spain.
| |
Collapse
|
34
|
Influence of APOE Genotype on Hippocampal Atrophy over Time - An N=1925 Surface-Based ADNI Study. PLoS One 2016; 11:e0152901. [PMID: 27065111 PMCID: PMC4827849 DOI: 10.1371/journal.pone.0152901] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/21/2016] [Indexed: 11/25/2022] Open
Abstract
The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.
Collapse
|
35
|
Jagust WJ, Landau SM, Koeppe RA, Reiman EM, Chen K, Mathis CA, Price JC, Foster NL, Wang AY. The Alzheimer's Disease Neuroimaging Initiative 2 PET Core: 2015. Alzheimers Dement 2016; 11:757-71. [PMID: 26194311 DOI: 10.1016/j.jalz.2015.05.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This article reviews the work done in the Alzheimer's Disease Neuroimaging Initiative positron emission tomography (ADNI PET) core over the past 5 years, largely concerning techniques, methods, and results related to amyloid imaging in ADNI. METHODS The PET Core has used [(18)F]florbetapir routinely on ADNI participants, with over 1600 scans available for download. Four different laboratories are involved in data analysis, and have examined factors such as longitudinal florbetapir analysis, use of [(18)F]fluorodeoxyglucose (FDG)-PET in clinical trials, and relationships between different biomarkers and cognition. RESULTS Converging evidence from the PET Core has indicated that cross-sectional and longitudinal florbetapir analyses require different reference regions. Studies have also examined the relationship between florbetapir data obtained immediately after injection, which reflects perfusion, and FDG-PET results. Finally, standardization has included the translation of florbetapir PET data to a centiloid scale. CONCLUSION The PET Core has demonstrated a variety of methods for the standardization of biomarkers such as florbetapir PET in a multicenter setting.
Collapse
Affiliation(s)
- William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Robert A Koeppe
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Kewei Chen
- Banner Alzheimer Institute, Phoenix, AZ, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Norman L Foster
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| | - Angela Y Wang
- Department of Neurology, Center for Alzheimer's Care, Imaging and Research, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
36
|
Shi J, Wang Y, Lao Y, Ceschin R, Mi L, Nelson MD, Panigrahy A, Leporé N. Abnormal Ventricular Development in Preterm Neonates with Visually Normal MRIs. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2015; 9681. [PMID: 31178622 DOI: 10.1117/12.2213297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Children born preterm are at risk for a wide range of neurocognitive and neurobehavioral disorders. Some of these may stem from early brain abnormalities at the neonatal age. Hence, a precise characterization of neonatal neuroanatomy may help inform treatment strategies. In particular, the ventricles are often enlarged in neurocognitive disorders, due to atrophy of surrounding tissues. Here we present a new pipeline for the detection of morphological and relative pose differences in the ventricles of premature neonates compared to controls. To this end, we use a new hyperbolic Ricci flow based mapping of the ventricular surfaces of each subjects to the Poincaré disk. Resulting surfaces are then registered to a template, and a between group comparison is performed using mulitvariate tensor-based morphometry. We also statistically compare the relative pose of the ventricles within the brain between the two groups, by performing a Procrustes alignment between each subject's ventricles and an average shape. For both types of analyses, differences were found in the left ventricles between the two groups.
Collapse
Affiliation(s)
- Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Yi Lao
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rafael Ceschin
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA
| | - Liang Mi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Marvin D Nelson
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Radiology, University of Southern California, CA, USA
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital of Pittsburgh UPMC, Pittsburgh, PA, USA.,Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Natasha Leporé
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,CIBORG Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Radiology, University of Southern California, CA, USA
| |
Collapse
|