1
|
Paré S, Bleau M, Dricot L, Ptito M, Kupers R. Brain structural changes in blindness: a systematic review and an anatomical likelihood estimation (ALE) meta-analysis. Neurosci Biobehav Rev 2023; 150:105165. [PMID: 37054803 DOI: 10.1016/j.neubiorev.2023.105165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
In recent decades, numerous structural brain imaging studies investigated purported morphometric changes in early (EB) and late onset blindness (LB). The results of these studies have not yielded very consistent results, neither with respect to the type, nor to the anatomical locations of the brain morphometric alterations. To better characterize the effects of blindness on brain morphometry, we performed a systematic review and an Anatomical-Likelihood-Estimation (ALE) coordinate-based-meta-analysis of 65 eligible studies on brain structural changes in EB and LB, including 890 EB, 466 LB and 1257 sighted controls. Results revealed atrophic changes throughout the whole extent of the retino-geniculo-striate system in both EB and LB, whereas changes in areas beyond the occipital lobe occurred in EB only. We discuss the nature of some of the contradictory findings with respect to the used brain imaging methodologies and characteristics of the blind populations such as the onset, duration and cause of blindness. Future studies should aim for much larger sample sizes, eventually by merging data from different brain imaging centers using the same imaging sequences, opt for multimodal structural brain imaging, and go beyond a purely structural approach by combining functional with structural connectivity network analyses.
Collapse
Affiliation(s)
- Samuel Paré
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Maxime Bleau
- School of Optometry, University of Montreal, Montreal, Qc, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium
| | - Maurice Ptito
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Qc, Canada; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, Qc, Canada; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Bruxelles, Belgium; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Mareckova K, Miles A, Liao Z, Andryskova L, Brazdil M, Paus T, Nikolova YS. Prenatal stress and its association with amygdala-related structural covariance patterns in youth. Neuroimage Clin 2022; 34:102976. [PMID: 35316668 PMCID: PMC8938327 DOI: 10.1016/j.nicl.2022.102976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/05/2022] [Accepted: 02/26/2022] [Indexed: 11/27/2022]
Abstract
Prenatal exposure to stress predicts amygdala degree centrality in young adulthood. High (vs. low) stress group showed lower structural covariance degree of amygdala. These effects were particularly significant in men. Global network parameters did not drive these effects.
Background Prenatal stress influences brain development and mood disorder vulnerability. Brain structural covariance network (SCN) properties based on inter-regional volumetric correlations may reflect developmentally-mediated shared plasticity among regions. Childhood trauma is associated with amygdala-centric SCN reorganization patterns, however, the impact of prenatal stress on SCN properties remains unknown. Methods The study included participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) with archival prenatal stress data and structural MRI acquired in young adulthood (age 23–24). SCNs were constructed based on Freesurfer-extracted volumes of 7 subcortical and 34 cortical regions. We compared amygdala degree centrality, a measure of hubness, between those exposed to high vs. low (median split) prenatal stress, defined by maternal reports of stressful life events during the first (n = 93, 57% female) and second (n = 125, 54% female) half of pregnancy. Group differences were tested across network density thresholds (5–40%) using 10,000 permutations, with sex and intracranial volume as covariates, followed by sex-specific analyses. Finally, we sought to replicate our results in an independent all-male sample (n = 450, age 18–20) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Results The high-stress during the first half of pregnancy ELSPAC group showed lower amygdala degree particularly in men, who demonstrated this difference at 10 consecutive thresholds, with no significant differences in global network properties. At the lowest significant density threshold, amygdala volume was positively correlated with hippocampus, putamen, rostral anterior and posterior cingulate, transverse temporal, and pericalcarine cortex in the low-stress (p(FDR) < 0.027), but not the high-stress (p(FDR) > 0.882) group. Although amygdala degree was nominally lower across thresholds in the high-stress ALSPAC group, these results were not significant. Conclusion Unlike childhood trauma, prenatal stress may shift SCN towards a less amygdala-centric SCN pattern, particularly in men. These findings did not replicate in an all-male ALSPAC sample, possibly due to the sample’s younger age and lower prenatal stress exposure.
Collapse
Affiliation(s)
- Klara Mareckova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Amy Miles
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Zhijie Liao
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Lenka Andryskova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brazdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tomas Paus
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Departments of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Hu JJ, Jiang N, Chen J, Ying P, Kang M, Xu SH, Zou J, Wei H, Ling Q, Shao Y. Altered Regional Homogeneity in Patients With Congenital Blindness: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2022; 13:925412. [PMID: 35815017 PMCID: PMC9256957 DOI: 10.3389/fpsyt.2022.925412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
In patients with congenital blindness (CB), the lack of any visual experience may affect brain development resulting in functional, structural, or even psychological changes. Few studies to date have addressed or focused on the synchronicity of regional brain activity in patients with CB. Our study aimed to investigate regional brain activity in patients with CB in a resting state and try to explain the possible causes and effects of any anomalies. Twenty-three CB patients and 23 healthy control (HC) volunteers agreed to undergo resting state functional magnetic resonance imaging (fMRI) scans. After the fMRI data were preprocessed, regional homogeneity (ReHo) analysis was conducted to assess the differences in brain activity synchronicity between the two groups. Receiver operating characteristic (ROC) curve analysis was used to explore whether the brain areas with statistically significant ReHo differences have diagnostic and identification values for CB. All CB patients were also required to complete the Hospital Anxiety and Depression Scale (HADS) to evaluate their anxiety and depression levels. The results showed that in CB patients mean ReHo values were significantly lower than in HCs in the right orbital part of the middle frontal gyrus (MFGorb), bilateral middle occipital gyrus (MOG), and the right dorsolateral superior frontal gyrus (SFGdl), but significantly higher in the left paracentral lobule (PCL), right insula and bilateral thalamus. The ReHo value of MFGorb showed a negative linear correlation with both the anxiety score and the depression score of the HADS. ROC curve analysis revealed that the mean ReHo values which differed significantly between the groups have excellent diagnostic accuracy for CB (especially in the left PCL and right SFGdl regions). Patients with CB show abnormalities of ReHo values in several specific brain regions, suggesting potential regional structural changes, functional reorganization, or even psychological effects in these patients. FMRI ReHo analysis may find use as an objective method to confirm CB for medical or legal purposes.
Collapse
Affiliation(s)
- Jiong-Jiong Hu
- Department of Ophthalmology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Nan Jiang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - San-Hua Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Feng Y, Collignon O, Maurer D, Yao K, Gao X. Brief Postnatal Visual Deprivation Triggers Long-Lasting Interactive Structural and Functional Reorganization of the Human Cortex. Front Med (Lausanne) 2021; 8:752021. [PMID: 34869446 PMCID: PMC8635780 DOI: 10.3389/fmed.2021.752021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Patients treated for bilateral congenital cataracts provide a unique model to test the role of early visual input in shaping the development of the human cortex. Previous studies showed that brief early visual deprivation triggers long-lasting changes in the human visual cortex. However, it remains unknown if such changes interact with the development of other parts of the cortex. With high-resolution structural and resting-state fMRI images, we found changes in cortical thickness within, but not limited to, the visual cortex in adult patients, who experienced transient visual deprivation early in life as a result of congenital cataracts. Importantly, the covariation of cortical thickness across regions was also altered in the patients. The areas with altered cortical thickness in patients also showed differences in functional connectivity between patients and normally sighted controls. Together, the current findings suggest an impact of early visual deprivation on the interactive development of the human cortex.
Collapse
Affiliation(s)
- Yixuan Feng
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Olivier Collignon
- Institute of Research in Psychology/Institute of Neuroscience, University of Louvain, Louvain-la-Neuve, Belgium.,Centro Interdipartimentale Mente/Cervello, Università di Trento, Trento, Italy
| | - Daphne Maurer
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada.,The Hospital for Sick Children, Toronto, ON, Canada
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou, China
| | - Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Tuerk C, Dégeilh F, Catroppa C, Anderson V, Beauchamp MH. Pediatric Moderate-Severe Traumatic Brain Injury and Gray Matter Structural Covariance Networks: A Preliminary Longitudinal Investigation. Dev Neurosci 2021; 43:335-347. [PMID: 34515088 DOI: 10.1159/000518752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022] Open
Abstract
Pediatric traumatic brain injury (TBI) is prevalent and can disrupt ongoing brain maturation. However, the long-term consequences of pediatric TBI on the brain's network architecture are poorly understood. Structural covariance networks (SCN), based on anatomical correlations between brain regions, may provide important insights into brain topology following TBI. Changes in global SCN (default-mode network [DMN], central executive network [CEN], and salience network [SN]) were compared sub-acutely (<90 days) and in the long-term (approximately 12-24 months) after pediatric moderate-severe TBI (n = 16), and compared to typically developing children assessed concurrently (n = 15). Gray matter (GM) volumes from selected seeds (DMN: right angular gyrus [rAG], CEN: right dorsolateral prefrontal cortex [rDLPFC], SN: right anterior insula) were extracted from T1-weighted images at both timepoints. No group differences were found sub-acutely; at the second timepoint, the TBI group showed significantly reduced structural covariance within the DMN seeded from the rAG and the (1) right middle frontal gyrus, (2) left superior frontal gyrus, and (3) left fusiform gyrus. Reduced structural covariance was also found within the CEN, that is, between the rDLPFC and the (1) calcarine sulcus, and (2) right occipital gyrus. In addition, injury severity was positively associated with GM volumes in the identified CEN regions. Over time, there were no significant changes in SCN in either group. The findings, albeit preliminary, suggest for the first time a long-term effect of pediatric TBI on SCN. SCN may be a complementary approach to characterize the global effect of TBI on the developing brain. Future work needs to further examine how disruptions of these networks relate to behavioral and cognitive difficulties.
Collapse
Affiliation(s)
- Carola Tuerk
- Department of Psychology, University of Montreal, Montreal, Québec, Canada,
| | - Fanny Dégeilh
- Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Sainte-Justine Hospital Research Center, Montreal, Québec, Canada
| | - Cathy Catroppa
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Sainte-Justine Hospital Research Center, Montreal, Québec, Canada
| |
Collapse
|
6
|
Touj S, Gallino D, Chakravarty MM, Bronchti G, Piché M. Structural brain plasticity induced by early blindness. Eur J Neurosci 2020; 53:778-795. [PMID: 33113245 DOI: 10.1111/ejn.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
It is well established that early blindness results in behavioural adaptations. While the functional effects of visual deprivation have been well researched, anatomical studies are scarce. The aim of this study was to investigate whole brain structural plasticity in a mouse model of congenital blindness. Volumetric analyses were conducted on high-resolution MRI images and histological sections from the same brains. These morphometric measurements were compared between anophthalmic and sighted ZRDBA mice obtained by breeding ZRDCT and DBA mice. Results from MRI analyses using the Multiple Automatically Generated Templates (MAGeT) method showed smaller volume for the primary visual cortex and superior colliculi in anophthalmic compared with sighted mice. Deformation-based morphometry revealed smaller volumes within the dorsal lateral geniculate nuclei and the lateral secondary visual cortex and larger volumes within olfactory areas, piriform cortex, orbital areas and the amygdala, in anophthalmic compared with sighted mice. Histological analyses revealed a larger volume for the amygdala and smaller volume for the superior colliculi, primary visual cortex and medial secondary visual cortex, in anophthalmic compared with sighted mice. The absence of superficial visual layers of the superior colliculus and the thinner cortical layer IV of the primary and secondary visual cortices may explain the smaller volume of these areas, although this was observed in a limited sample. The present study shows large-scale brain plasticity in a mouse model of congenital blindness. In addition, the congruence of MRI and histological findings support the use of MRI to investigate structural brain plasticity in the mouse.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biological and Biomedical Engineering, McGill, Montréal, QC, Canada.,Department of Psychiatry, McGill, Montréal, QC, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
7
|
Fang JW, Yu YJ, Tang LY, Chen SY, Zhang MY, Sun T, Wu SN, Yu K, Li B, Shao Y. Abnormal Fractional Amplitude of Low-Frequency Fluctuation Changes in Patients with Monocular Blindness: A Functional Magnetic Resonance Imaging (MRI) Study. Med Sci Monit 2020; 26:e926224. [PMID: 32773731 PMCID: PMC7439597 DOI: 10.12659/msm.926224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We used fractional amplitude of low-frequency fluctuation (fALFF) technology to investigate spontaneous cerebral activity in patients with monocular blindness (MB) and in healthy controls (HCs). MATERIAL AND METHODS Thirty MB patient and 15 HCs were included in this study. All subjects were scanned by resting-state functional magnetic resonance imaging (rs-fMRI). The independent sample t test and chi-squared test were applied to analyze demographics of MB patients and HCs. The 2-sample t test and receiver operating characteristic (ROC) curves were applied to identify the difference in average fALFF values between MB patients and HCs. Pearson's correlation analysis was applied to explore the relationship between the average fALFF values of brain areas and clinical behavior in the MB group. RESULTS MB patients had lower fALFF values in the left anterior cingulate and higher fALFF values in the left precuneus and right and left inferior parietal lobes than in HCs. Moreover, the mean fALFF values of MB patients in the left anterior cingulate had negative correlations with the anxiety scale score (r=-0.825, P<0.001) and the depression scale score (r=-0.871, P<0.001). CONCLUSIONS Our study found that MB patients had abnormal spontaneous activities in the visual and vision-related regions. The finding of abnormal neuronal activity helps to reveal the underlying neuropathologic mechanisms of vision loss.
Collapse
Affiliation(s)
- Jian-Wen Fang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ya-Jie Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Li-Ying Tang
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China (mainland).,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University; Xiamen University School of Medicine, Xiamen, Fujian, China (mainland)
| | - Si-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Meng-Yao Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Tie Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Shi-Nan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Kang Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
8
|
Selective sensory deafferentation induces structural and functional brain plasticity. NEUROIMAGE-CLINICAL 2018; 21:101633. [PMID: 30584013 PMCID: PMC6411904 DOI: 10.1016/j.nicl.2018.101633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 02/07/2023]
Abstract
Sensory-motor integration models have been proposed aiming to explain how the brain uses sensory information to guide and check the planning and execution of movements. Sensory neuronopathy (SN) is a peculiar disease characterized by exclusive, severe and widespread sensory loss. It is a valuable condition to investigate how sensory deafferentation impacts brain organization. We thus recruited patients with clinical and electrophysiological criteria for SN to perform structural and functional MRI analyses. We investigated volumetric changes in gray matter (GM) using anatomical images; the microstructure of WM within segmented regions of interest (ROI), via diffusion images; and brain activation related to a finger tapping task. All significant results were related to the long disease duration subgroup of patients. Structural analysis showed hypertrophy of the caudate nucleus, whereas the diffusion study identified reduction of fractional anisotropy values in ROIs located around the thalamus and the striatum. We also found differences regarding finger-tapping activation in the posterior parietal regions and in the medial areas of the cerebellum. Our results stress the role of the caudate nucleus over the other basal ganglia in the sensory-motor integration models, and suggest an inhibitory function of a recently discovered tract between the thalamus and the striatum. Overall, our findings confirm plasticity in the adult brain and open new avenues to design neurorehabilitation strategies.
Collapse
|
9
|
Karpati FJ, Giacosa C, Foster NEV, Penhune VB, Hyde KL. Structural Covariance Analysis Reveals Differences Between Dancers and Untrained Controls. Front Hum Neurosci 2018; 12:373. [PMID: 30319377 PMCID: PMC6167617 DOI: 10.3389/fnhum.2018.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
Dancers and musicians differ in brain structure from untrained individuals. Structural covariance (SC) analysis can provide further insight into training-associated brain plasticity by evaluating interregional relationships in gray matter (GM) structure. The objectives of the present study were to compare SC of cortical thickness (CT) between expert dancers, expert musicians and untrained controls, as well as to examine the relationship between SC and performance on dance- and music-related tasks. A reduced correlation between CT in the left dorsolateral prefrontal cortex (DLPFC) and mean CT across the whole brain was found in the dancers compared to the controls, and a reduced correlation between these two CT measures was associated with higher performance on a dance video game task. This suggests that the left DLPFC is structurally decoupled in dancers and may be more strongly affected by local training-related factors than global factors in this group. This work provides a better understanding of structural brain connectivity and training-induced brain plasticity, as well as their interaction with behavior in dance and music.
Collapse
Affiliation(s)
- Falisha J Karpati
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Chiara Giacosa
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Virginia B Penhune
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Krista L Hyde
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, QC, Canada.,Faculty of Medicine, McGill University, Montreal, QC, Canada.,Department of Psychology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Singh AK, Phillips F, Merabet LB, Sinha P. Why Does the Cortex Reorganize after Sensory Loss? Trends Cogn Sci 2018; 22:569-582. [PMID: 29907530 DOI: 10.1016/j.tics.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/01/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
A growing body of evidence demonstrates that the brain can reorganize dramatically following sensory loss. Although the existence of such neuroplastic crossmodal changes is not in doubt, the functional significance of these changes remains unclear. The dominant belief is that reorganization is compensatory. However, results thus far do not unequivocally indicate that sensory deprivation results in markedly enhanced abilities in other senses. Here, we consider alternative reasons besides sensory compensation that might drive the brain to reorganize after sensory loss. One such possibility is that the cortex reorganizes not to confer functional benefits, but to avoid undesirable physiological consequences of sensory deafferentation. Empirical assessment of the validity of this and other possibilities defines a rich program for future research.
Collapse
Affiliation(s)
- Amy Kalia Singh
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Flip Phillips
- Department of Psychology and Neuroscience, Skidmore College, Saratoga Springs, NY, USA
| | - Lotfi B Merabet
- Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Pawan Sinha
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
Voss P. Brain (re)organization following visual loss. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1468. [PMID: 29878533 DOI: 10.1002/wcs.1468] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022]
Abstract
The study of the neural consequences of sensory loss provides a unique window into the brain's functional and organizational principles. Although the blind visual cortex has been implicated in the cross-modal processing of nonvisual inputs for quite some time, recent research has shown that certain cortical organizational principles are preserved even in the case of complete sensory loss. Furthermore, a growing body of work has shown that markers of neuroplasticity extend to neuroanatomical metrics that include cortical thickness and myelinization. Although our understanding of the mechanisms that underlie sensory deprivation-driven cross-modal plasticity is improving, several critical questions remain unanswered. The specific pathways that underlie the rerouting of nonvisual information, for instance, have not been fully elucidated. The fact that important cross-modal recruitment occurs following transient deprivation in sighted individuals suggests that significant rewiring following blindness may not be required. Furthermore, there are marked individual differences regarding the magnitude and functional relevance of the cross-modal reorganization. It is also not clear to what extent precise environmental factors may play a role in establishing the degree of reorganization across individuals, as opposed to factors that might specifically relate to the cause or the nature of the visual loss. In sum, although many unresolved questions remain, sensory deprivation continues to be an excellent model for studying the plastic nature of the brain. This article is categorized under: Psychology > Brain Function and Dysfunction Psychology > Perception and Psychophysics Neuroscience > Plasticity.
Collapse
Affiliation(s)
- Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Altered regional homogeneity in patients with late monocular blindness: a resting-state functional MRI study. Neuroreport 2018; 28:1085-1091. [PMID: 28858036 PMCID: PMC5916480 DOI: 10.1097/wnr.0000000000000855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many previous studies have demonstrated that the blindness patients have has functional and anatomical abnormalities in the visual and other vision-related cortex. However, changes in the brain function in late monocular blindness (MB) at rest are largely unknown. In this study, we investigated the underlying regional homogeneity (ReHo) of brain-activity abnormalities in patients with late MB and their relationship with clinical features. A total of 32 patients with MB (25 male and seven female) and 32 healthy controls (HCs) (25 male and seven female) closely matched in age, sex, and education underwent resting-state functional MRI scans. The ReHo method was used to assess local features of spontaneous brain activities. Patients with MB were distinguishable from HCs using the receiver operating characteristic curve. The relationship between the mean ReHo in brain regions and the behavioral performance was calculated using correlation analysis. Compared with HCs, patients with MB showed significantly decreased ReHo values in the right rectal gyrus, right cuneus, right anterior cingulate, and right lateral occipital cortex and increased ReHo values in the right inferior temporal gyrus, right frontal middle orbital, left posterior cingulate/precuneus, and left middle frontal gyrus. However, there was no significant relationship between the different mean ReHo values in the brain regions and the clinical features. Late MB involves abnormalities of the visual cortex and other vision-related brain regions, which may reflect brain dysfunction in these regions.
Collapse
|
13
|
Yee Y, Fernandes DJ, French L, Ellegood J, Cahill LS, Vousden DA, Spencer Noakes L, Scholz J, van Eede MC, Nieman BJ, Sled JG, Lerch JP. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity. Neuroimage 2018; 179:357-372. [PMID: 29782994 DOI: 10.1016/j.neuroimage.2018.05.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] Open
Abstract
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance.
Collapse
Affiliation(s)
- Yohan Yee
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Darren J Fernandes
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leon French
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dulcie A Vousden
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jan Scholz
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthijs C van Eede
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian J Nieman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
15
|
Sharda M, Foster NEV, Tryfon A, Doyle-Thomas KAR, Ouimet T, Anagnostou E, Evans AC, Zwaigenbaum L, Lerch JP, Lewis JD, Hyde KL. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder. Cereb Cortex 2017; 27:1849-1862. [PMID: 26891985 DOI: 10.1093/cercor/bhw024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD.
Collapse
Affiliation(s)
- Megha Sharda
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | - Nicholas E V Foster
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | - Ana Tryfon
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, Canada H2V 2J2.,Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | - Tia Ouimet
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, CanadaH2V 2J2
| | | | - Alan C Evans
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, CanadaH3A 2B4
| | | | - Jason P Lerch
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, CanadaM5T 3H7
| | - John D Lewis
- Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, CanadaH3A 2B4
| | - Krista L Hyde
- International Laboratory for Brain Music and Sound Research (BRAMS), Université de Montréal, Montréal, Quebec, Canada H2V 2J2.,Montreal Neurological Institute, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | |
Collapse
|
16
|
Gamond L, Vecchi T, Ferrari C, Merabet LB, Cattaneo Z. Emotion processing in early blind and sighted individuals. Neuropsychology 2017; 31:516-524. [PMID: 28287776 DOI: 10.1037/neu0000360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Emotion processing is known to be mediated by a complex network of cortical and subcortical regions with evidence of specialized hemispheric lateralization within the brain. In light of prior evidence indicating that lateralization of cognitive functions (such as language) may depend on normal visual development, we investigated whether the lack of prior visual experience would have an impact on the development of specialized hemispheric lateralization in emotional processing. METHOD We addressed this issue by comparing performance in early blind and sighted controls on a dichotic listening task requiring the detection of specific emotional vocalizations (i.e., suggestive of happiness or sadness) presented independently to either ear. RESULTS Consistent with previous studies, we found that sighted individuals showed enhanced detection of positive vocalizations when presented in the right ear (i.e., processed within the left hemisphere) and negative vocalizations when presented in the left ear (i.e., right hemisphere). It is interesting to note that although blind individuals were as accurate as sighted controls in detecting the valance of the vocalization, performance was not consistent with any pattern of specialized hemispheric lateralization. CONCLUSIONS Overall, these results suggest that although the lack of prior visual experience may not lead to impaired emotion processing performance, the underlying neurophysiological substrate (i.e., degree of special hemispheric lateralization) may depend on normal visual development. (PsycINFO Database Record
Collapse
Affiliation(s)
- Lucile Gamond
- Department of Psychology, University of Milano-Bicocca
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia
| | | | - Lotfi B Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | | |
Collapse
|
17
|
Li Q, Huang X, Ye L, Wei R, Zhang Y, Zhong YL, Jiang N, Shao Y. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study. Clin Interv Aging 2016; 11:1773-1780. [PMID: 27980398 PMCID: PMC5147398 DOI: 10.2147/cia.s117292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Objective Previous reports have demonstrated significant brain activity changes in bilateral blindness, whereas brain activity changes in late monocular blindness (MB) at rest are not well studied. Our study aimed to investigate spontaneous brain activity in patients with late middle-aged MB using the amplitude of low-frequency fluctuation (ALFF) method and their relationship with clinical features. Methods A total of 32 patients with MB (25 males and 7 females) and 32 healthy control (HC) subjects (25 males and 7 females), similar in age, sex, and education, were recruited for the study. All subjects were performed with resting-state functional magnetic resonance imaging scanning. The ALFF method was applied to evaluate spontaneous brain activity. The relationships between the ALFF signal values in different brain regions and clinical features in MB patients were investigated using correlation analysis. Results Compared with HCs, the MB patients had marked lower ALFF values in the left cerebellum anterior lobe, right parahippocampal gyrus, right cuneus, left precentral gyrus, and left paracentral lobule, but higher ALFF values in the right middle frontal gyrus, left middle frontal gyrus, and left supramarginal gyrus. However, there was no linear correlation between the mean ALFF signal values in brain regions and clinical manifestations in MB patients. Conclusion There were abnormal spontaneous activities in many brain regions including vision and vision-related regions, which might indicate the neuropathologic mechanisms of vision loss in the MB patients. Meanwhile, these brain activity changes might be used as a useful clinical indicator for MB.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacy, The Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, People's Republic of China; Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China; Department of Ophthalmology, The First People's Hospital of Jiujiang City, Jiujiang, Jiangxi, People's Republic of China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - Rong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - Ying Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - Yu-Lin Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China; Department of Ophthalmology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, People's Republic of China
| | - Nan Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
18
|
Vijverberg EGB, Tijms BM, Dopp J, Hong YJ, Teunissen CE, Barkhof F, Scheltens P, Pijnenburg YAL. Gray matter network differences between behavioral variant frontotemporal dementia and Alzheimer's disease. Neurobiol Aging 2016; 50:77-86. [PMID: 27940352 DOI: 10.1016/j.neurobiolaging.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022]
Abstract
We set out to study whether single-subject gray matter (GM) networks show disturbances that are specific for Alzheimer's disease (AD; n = 90) or behavioral variant frontotemporal dementia (bvFTD; n = 59), and whether such disturbances would be related to cognitive deficits measured with mini-mental state examination and a neuropsychological battery, using subjective cognitive decline subjects as reference. AD and bvFTD patients had a lower degree, connectivity density, clustering, path length, betweenness centrality, and small world values compared with subjective cognitive decline. AD patients had a lower connectivity density than bvFTD patients (F = 5.79, p = 0.02; mean ± standard deviation bvFTD 16.10 ± 1.19%; mean ± standard deviation AD 15.64 ± 1.02%). Lasso logistic regression showed that connectivity differences between bvFTD and AD were specific to 23 anatomical areas, in terms of local GM volume, degree, and clustering. Lower clustering values and lower degree values were specifically associated with worse mini-mental state examination scores and lower performance on the neuropsychological tests. GM showed disease-specific alterations, when comparing bvFTD with AD patients, and these alterations were associated with cognitive deficits.
Collapse
Affiliation(s)
- E G B Vijverberg
- Alzheimer Centre and Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands; Department of Neurology, Haga Ziekenhuis, The Hague, the Netherlands.
| | - B M Tijms
- Alzheimer Centre and Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - J Dopp
- Alzheimer Centre and Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Y J Hong
- Alzheimer Centre and Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - C E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands
| | - F Barkhof
- Department of Radiology, VU University Medical Centre, Amsterdam, the Netherlands; Department of Radiology, Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - P Scheltens
- Alzheimer Centre and Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| | - Y A L Pijnenburg
- Alzheimer Centre and Department of Neurology, Amsterdam Neuroscience, VU University Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Aguirre GK, Datta R, Benson NC, Prasad S, Jacobson SG, Cideciyan AV, Bridge H, Watkins KE, Butt OH, Dain AS, Brandes L, Gennatas ED. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind. PLoS One 2016; 11:e0164677. [PMID: 27812129 PMCID: PMC5094697 DOI: 10.1371/journal.pone.0164677] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted.
Collapse
Affiliation(s)
- Geoffrey K. Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- * E-mail:
| | - Ritobrato Datta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Noah C. Benson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Sashank Prasad
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Samuel G. Jacobson
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Artur V. Cideciyan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Holly Bridge
- FMRIB Centre, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Kate E. Watkins
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3UD, United Kingdom
| | - Omar H. Butt
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Aleksandra S. Dain
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Lauren Brandes
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Efstathios D. Gennatas
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| |
Collapse
|
20
|
Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. Neuroimage 2016; 134:475-485. [PMID: 27103137 DOI: 10.1016/j.neuroimage.2016.04.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual MI-BCI performance.
Collapse
|
21
|
Hasson U, Andric M, Atilgan H, Collignon O. Congenital blindness is associated with large-scale reorganization of anatomical networks. Neuroimage 2016; 128:362-372. [PMID: 26767944 PMCID: PMC4767220 DOI: 10.1016/j.neuroimage.2015.12.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/15/2022] Open
Abstract
Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind.
Collapse
Affiliation(s)
- Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.
| | - Michael Andric
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Hicret Atilgan
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy; CERNEC, Département de Psychologie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
22
|
Tijms BM, Kate MT, Wink AM, Visser PJ, Ecay M, Clerigue M, Estanga A, Garcia Sebastian M, Izagirre A, Villanua J, Martinez Lage P, van der Flier WM, Scheltens P, Sanz Arigita E, Barkhof F. Gray matter network disruptions and amyloid beta in cognitively normal adults. Neurobiol Aging 2015; 37:154-160. [PMID: 26559882 DOI: 10.1016/j.neurobiolaging.2015.10.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
Gray matter networks are disrupted in Alzheimer's disease (AD). It is unclear when these disruptions start during the development of AD. Amyloid beta 1-42 (Aβ42) is among the earliest changes in AD. We studied, in cognitively healthy adults, the relationship between Aβ42 levels in cerebrospinal fluid (CSF) and single-subject cortical gray matter network measures. Single-subject gray matter networks were extracted from structural magnetic resonance imaging scans in a sample of cognitively healthy adults (N = 185; age range 39-79, mini-mental state examination >25, N = 12 showed abnormal Aβ42 < 550 pg/mL). Degree, clustering coefficient, and path length were computed at whole brain level and for 90 anatomical areas. Associations between continuous Aβ42 CSF levels and single-subject cortical gray matter network measures were tested. Smoothing splines were used to determine whether a linear or nonlinear relationship gave a better fit to the data. Lower Aβ42 CSF levels were linearly associated at whole brain level with lower connectivity density, and nonlinearly with lower clustering values and higher path length values, which is indicative of a less-efficient network organization. These relationships were specific to medial temporal areas, precuneus, and the middle frontal gyrus (all p < 0.05). These results suggest that mostly within the normal spectrum of amyloid, lower Aβ42 levels can be related to gray matter networks disruptions.
Collapse
Affiliation(s)
- Betty M Tijms
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| | - Mara Ten Kate
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Mirian Ecay
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | | | - Ainara Estanga
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | | | - Andrea Izagirre
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain
| | - Jorge Villanua
- Department of Neurology, CITA-Alzheimer Foundation, San Sebastian, Spain; Donostia Unit, Osatek SA, Donostia University Hospital, San Sebastian, Spain
| | | | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands; Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Grey matter networks in people at increased familial risk for schizophrenia. Schizophr Res 2015; 168:1-8. [PMID: 26330380 DOI: 10.1016/j.schres.2015.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/12/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023]
Abstract
Grey matter brain networks are disrupted in schizophrenia, but it is still unclear at which point during the development of the illness these disruptions arise and whether these can be associated with behavioural predictors of schizophrenia. We investigated if single-subject grey matter networks were disrupted in a sample of people at familial risk of schizophrenia. Single-subject grey matter networks were extracted from structural MRI scans of 144 high risk subjects, 32 recent-onset patients and 36 healthy controls. The following network properties were calculated: size, connectivity density, degree, path length, clustering coefficient, betweenness centrality and small world properties. People at risk of schizophrenia showed decreased path length and clustering in mostly prefrontal and temporal areas. Within the high risk sample, the path length of the posterior cingulate cortex and the betweenness centrality of the left inferior frontal operculum explained 81% of the variance in schizotypal cognitions, which was previously shown to be the strongest behavioural predictor of schizophrenia in the study. In contrast, local grey matter volume measurements explained 48% of variance in schizotypy. The present results suggest that single-subject grey matter networks can quantify behaviourally relevant biological alterations in people at increased risk for schizophrenia before disease onset.
Collapse
|
24
|
Guerreiro MJS, Erfort MV, Henssler J, Putzar L, Röder B. Increased visual cortical thickness in sight-recovery individuals. Hum Brain Mapp 2015; 36:5265-74. [PMID: 26417668 DOI: 10.1002/hbm.23009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 11/09/2022] Open
Abstract
Individuals who are born blind due to dense bilateral cataracts and who later regain vision due to cataract surgery provide a unique model to evaluate the effect of early sensory experience in humans. In recent years, several studies have started to assess the functional consequences of early visual deprivation in these individuals, revealing a number of behavioral impairments in visual and multisensory functions. In contrast, the extent to which a transient period of congenital visual deprivation impacts brain structure has not yet been investigated. The present study investigated this by assessing cortical thickness of occipital areas in a group of six cataract-reversal individuals and a group of six age-matched normally sighted controls. This analysis revealed higher cortical thickness in cataract-reversal individuals in the left calcarine sulcus, in the superior occipital gyrus and in the transverse occipital sulcus bilaterally. In addition, occipital cortical thickness correlated negatively with behavioral performance in an audio-visual task for which visual input was critical, and positively with behavioral performance in auditory tasks. Together, these results underscore the critical role of early sensory experience in shaping brain structure and suggest that increased occipital cortical thickness, while potentially compensatory for auditory sensory processing, might be maladaptive for visual recovery in cases of sight restoration.
Collapse
Affiliation(s)
- Maria J S Guerreiro
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Hamburg, D-20146, Germany
| | - Maria V Erfort
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Hamburg, D-20146, Germany.,Department of Psychology, Carl Von Ossietzky University of Oldenburg, Oldenburg, D-26111, Germany
| | - Jonathan Henssler
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Hamburg, D-20146, Germany.,Clinic for Psychiatry and Psychotherapy, Charité University Medicine, St Hedwig-Krankenhaus, Berlin, D-10115, Germany
| | - Lisa Putzar
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Hamburg, D-20146, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Institute for Psychology, University of Hamburg, Hamburg, D-20146, Germany
| |
Collapse
|
25
|
Fengler I, Nava E, Röder B. Short-term visual deprivation reduces interference effects of task-irrelevant facial expressions on affective prosody judgments. Front Integr Neurosci 2015; 9:31. [PMID: 25954166 PMCID: PMC4406062 DOI: 10.3389/fnint.2015.00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/05/2015] [Indexed: 11/22/2022] Open
Abstract
Several studies have suggested that neuroplasticity can be triggered by short-term visual deprivation in healthy adults. Specifically, these studies have provided evidence that visual deprivation reversibly affects basic perceptual abilities. The present study investigated the long-lasting effects of short-term visual deprivation on emotion perception. To this aim, we visually deprived a group of young healthy adults, age-matched with a group of non-deprived controls, for 3 h and tested them before and after visual deprivation (i.e., after 8 h on average and at 4 week follow-up) on an audio–visual (i.e., faces and voices) emotion discrimination task. To observe changes at the level of basic perceptual skills, we additionally employed a simple audio–visual (i.e., tone bursts and light flashes) discrimination task and two unimodal (one auditory and one visual) perceptual threshold measures. During the 3 h period, both groups performed a series of auditory tasks. To exclude the possibility that changes in emotion discrimination may emerge as a consequence of the exposure to auditory stimulation during the 3 h stay in the dark, we visually deprived an additional group of age-matched participants who concurrently performed unrelated (i.e., tactile) tasks to the later tested abilities. The two visually deprived groups showed enhanced affective prosodic discrimination abilities in the context of incongruent facial expressions following the period of visual deprivation; this effect was partially maintained until follow-up. By contrast, no changes were observed in affective facial expression discrimination and in the basic perception tasks in any group. These findings suggest that short-term visual deprivation per se triggers a reweighting of visual and auditory emotional cues, which seems to possibly prevail for longer durations.
Collapse
Affiliation(s)
- Ineke Fengler
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, Institute for Psychology, University of Hamburg Hamburg, Germany
| | - Elena Nava
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, Institute for Psychology, University of Hamburg Hamburg, Germany ; Department of Psychology, University of Milan-Bicocca Milan, Italy ; NeuroMI Milan Center for Neuroscience Milan, Italy
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Faculty of Psychology and Human Movement Science, Institute for Psychology, University of Hamburg Hamburg, Germany
| |
Collapse
|