1
|
Chu CS, Lin YY, Huang CCY, Chung YA, Park SY, Chang WC, Chang CC, Chang HA. Altered electroencephalography-based source functional connectivity in drug-free patients with major depressive disorder. J Affect Disord 2024; 369:1161-1167. [PMID: 39447969 DOI: 10.1016/j.jad.2024.10.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Compared to functional magnetic resonance imaging (fMRI), source localization of a scalp-recorded electroencephalogram (EEG) provides higher temporal resolution and frequency synchronization to better understand the potential neurophysiological origins of disrupted functional connectivity (FC) in major depressive disorder (MDD). The present study aimed to investigate EEG-sourced measures to examine the FC in drug-free patients with MDD. METHOD Resting-state 32-channel EEG were recorded in 84 drug-free patients with MDD and 143 healthy controls, and the cortical source signals were estimated. Exact low-resolution brain electromagnetic tomography (eLORETA) was used to compute the intracortical activity from regions within the default mode network (DMN) and frontoparietal network (PFN). Lagged phase synchronization was used as a measure of functional connectivity. RESULTS Compared with control subjects, the MDD group showed greater within-DMN alpha 1 and 2 bands and within-FPN alpha 1, 2, and beta 3 bands. Furthermore, the MDD group showed hyperconnectivity between the DMN and the FPN in the alpha 1 and 2 bands. Finally, higher levels of anhedonia were associated with higher between-network DMN and FPN connectivity in the alpha-1 band. LIMITATIONS Due to the inherent limitations of eLORETA with predefined seeds, we could not exclude connectivity between regions of interest (ROIs), which may be related to the activity from regions adjacent to the ROIs. CONCLUSIONS The present findings support the importance of phase-lagged functional dysconnectivity in the neurophysiological mechanisms underlying MDD. Exploring the potential of these patterns as surrogates for treatment responses may advance targeted interventions for depression.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yue Lin
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Yong-An Chung
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sonya Youngju Park
- Department of Nuclear Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chia Chang
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Hsin-An Chang
- Non-Invasive Neuromodulation Consortium for Mental Disorders, Society of Psychophysiology, Taipei, Taiwan; Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Depuydt E, Criel Y, De Letter M, van Mierlo P. Investigating the effect of template head models on Event-Related Potential source localization: a simulation and real-data study. Front Neurosci 2024; 18:1443752. [PMID: 39440187 PMCID: PMC11493687 DOI: 10.3389/fnins.2024.1443752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Event-Related Potentials (ERPs) are valuable for studying brain activity with millisecond-level temporal resolution. While the temporal resolution of this technique is excellent, the spatial resolution is limited. Source localization aims to identify the brain regions generating the EEG data, thus increasing the spatial resolution, but its accuracy depends heavily on the head model used. This study compares the performance of subject-specific and template-based head models in both simulated and real-world ERP localization tasks. Methods Simulated data mimicking realistic ERPs was created to evaluate the impact of head model choice systematically, after which subject-specific and template-based head models were used for the reconstruction of the data. The different modeling approaches were also applied to a face recognition dataset. Results The results indicate that the template models capture the simulated activity less accurately, producing more spurious sources and identifying less true sources correctly. Furthermore, the results show that while creating more accurate and detailed head models is beneficial for the localization accuracy when using subject-specific head models, this is less the case for template head models. The main N170 source of the face recognition dataset was correctly localized to the fusiform gyrus, a known face processing area, using the subject-specific models. Apart from the fusiform gyrus, the template models also reconstructed several other sources, illustrating the localization inaccuracies. Discussion While template models allow researchers to investigate the neural generators of ERP components when no subject-specific MRIs are available, it could lead to misinterpretations. Therefore, it is important to consider a priori knowledge and hypotheses when interpreting results obtained with template head models, acknowledging potential localization errors.
Collapse
Affiliation(s)
- Emma Depuydt
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Yana Criel
- BrainComm Research Group, Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Miet De Letter
- BrainComm Research Group, Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Pieter van Mierlo
- Medical Imaging and Signal Processing Group, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Bastola S, Jahromi S, Chikara R, Stufflebeam SM, Ottensmeyer MP, De Novi G, Papadelis C, Alexandrakis G. Improved Dipole Source Localization from Simultaneous MEG-EEG Data by Combining a Global Optimization Algorithm with a Local Parameter Search: A Brain Phantom Study. Bioengineering (Basel) 2024; 11:897. [PMID: 39329639 PMCID: PMC11428344 DOI: 10.3390/bioengineering11090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dipole localization, a fundamental challenge in electromagnetic source imaging, inherently constitutes an optimization problem aimed at solving the inverse problem of electric current source estimation within the human brain. The accuracy of dipole localization algorithms is contingent upon the complexity of the forward model, often referred to as the head model, and the signal-to-noise ratio (SNR) of measurements. In scenarios characterized by low SNR, often corresponding to deep-seated sources, existing optimization techniques struggle to converge to global minima, thereby leading to the localization of dipoles at erroneous positions, far from their true locations. This study presents a novel hybrid algorithm that combines simulated annealing with the traditional quasi-Newton optimization method, tailored to address the inherent limitations of dipole localization under low-SNR conditions. Using a realistic head model for both electroencephalography (EEG) and magnetoencephalography (MEG), it is demonstrated that this novel hybrid algorithm enables significant improvements of up to 45% in dipole localization accuracy compared to the often-used dipole scanning and gradient descent techniques. Localization improvements are not only found for single dipoles but also in two-dipole-source scenarios, where sources are proximal to each other. The novel methodology presented in this work could be useful in various applications of clinical neuroimaging, particularly in cases where recordings are noisy or sources are located deep within the brain.
Collapse
Affiliation(s)
- Subrat Bastola
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
| | - Saeed Jahromi
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Rupesh Chikara
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Steven M. Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Mark P. Ottensmeyer
- Medical Device & Simulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (M.P.O.); (G.D.N.)
| | - Gianluca De Novi
- Medical Device & Simulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (M.P.O.); (G.D.N.)
| | - Christos Papadelis
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - George Alexandrakis
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
| |
Collapse
|
4
|
Vorwerk J, Wolters CH, Baumgarten D. Global sensitivity of EEG source analysis to tissue conductivity uncertainties. Front Hum Neurosci 2024; 18:1335212. [PMID: 38532791 PMCID: PMC10963400 DOI: 10.3389/fnhum.2024.1335212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction To reliably solve the EEG inverse problem, accurate EEG forward solutions based on a detailed, individual volume conductor model of the head are essential. A crucial-but often neglected-aspect in generating a volume conductor model is the choice of the tissue conductivities, as these may vary from subject to subject. In this study, we investigate the sensitivity of EEG forward and inverse solutions to tissue conductivity uncertainties for sources distributed over the whole cortex surface. Methods We employ a detailed five-compartment head model distinguishing skin, skull, cerebrospinal fluid, gray matter, and white matter, where we consider uncertainties of skin, skull, gray matter, and white matter conductivities. We use the finite element method (FEM) to calculate EEG forward solutions and goal function scans (GFS) as inverse approach. To be able to generate the large number of EEG forward solutions, we employ generalized polynomial chaos (gPC) expansions. Results For sources up to a depth of 4 cm, we find the strongest influence on the signal topography of EEG forward solutions for the skull conductivity and a notable effect for the skin conductivity. For even deeper sources, e.g., located deep in the longitudinal fissure, we find an increasing influence of the white matter conductivity. The conductivity variations translate to varying source localizations particularly for quasi-tangential sources on sulcal walls, whereas source localizations of quasi-radial sources on the top of gyri are less affected. We find a strong correlation between skull conductivity and the variation of source localizations and especially the depth of the reconstructed source for quasi-tangential sources. We furthermore find a clear but weaker correlation between depth of the reconstructed source and the skin conductivity. Discussion Our results clearly show the influence of tissue conductivity uncertainties on EEG source analysis. We find a particularly strong influence of skull and skin conductivity uncertainties.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Daniel Baumgarten
- Institute of Electrical and Biomedical Engineering, UMIT TIROL—Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
5
|
Stolte SE, Indahlastari A, Chen J, Albizu A, Dunn A, Pedersen S, See KB, Woods AJ, Fang R. Precise and Rapid Whole-Head Segmentation from Magnetic Resonance Images of Older Adults using Deep Learning. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00090. [PMID: 38465203 PMCID: PMC10922731 DOI: 10.1162/imag_a_00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Whole-head segmentation from Magnetic Resonance Images (MRI) establishes the foundation for individualized computational models using finite element method (FEM). This foundation paves the path for computer-aided solutions in fields, particularly in non-invasive brain stimulation. Most current automatic head segmentation tools are developed using healthy young adults. Thus, they may neglect the older population that is more prone to age-related structural decline such as brain atrophy. In this work, we present a new deep learning method called GRACE, which stands for General, Rapid, And Comprehensive whole-hEad tissue segmentation. GRACE is trained and validated on a novel dataset that consists of 177 manually corrected MR-derived reference segmentations that have undergone meticulous manual review. Each T1-weighted MRI volume is segmented into 11 tissue types, including white matter, grey matter, eyes, cerebrospinal fluid, air, blood vessel, cancellous bone, cortical bone, skin, fat, and muscle. To the best of our knowledge, this work contains the largest manually corrected dataset to date in terms of number of MRIs and segmented tissues. GRACE outperforms five freely available software tools and a traditional 3D U-Net on a five-tissue segmentation task. On this task, GRACE achieves an average Hausdorff Distance of 0.21, which exceeds the runner-up at an average Hausdorff Distance of 0.36. GRACE can segment a whole-head MRI in about 3 seconds, while the fastest software tool takes about 3 minutes. In summary, GRACE segments a spectrum of tissue types from older adults T1-MRI scans at favorable accuracy and speed. The trained GRACE model is optimized on older adult heads to enable high-precision modeling in age-related brain disorders. To support open science, the GRACE code and trained weights are made available online and open to the research community at https://github.com/lab-smile/GRACE.
Collapse
Affiliation(s)
- Skylar E. Stolte
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Jason Chen
- Department Of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Alejandro Albizu
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Ayden Dunn
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Samantha Pedersen
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
| | - Kyle B. See
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| | - Adam J. Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, USA
| | - Ruogu Fang
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, USA
- Department of Electrical and Computer Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, USA
| |
Collapse
|
6
|
Sanchez-Bornot J, Sotero RC, Kelso JAS, Şimşek Ö, Coyle D. Solving large-scale MEG/EEG source localisation and functional connectivity problems simultaneously using state-space models. Neuroimage 2024; 285:120458. [PMID: 37993002 DOI: 10.1016/j.neuroimage.2023.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/28/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: (1) Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; (2) Developing novel algorithms derived from backpropagation, gradient descent, and alternating least squares to solve MPSS models; (3) Presenting a K-fold cross-validation extension for evaluating regularisation parameters. We validate this MPSS regularisation framework through lower and more complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently solve brain source localisation and functional connectivity problems for real event-related MEG/EEG data, encompassing thousands of sources on the cortical surface. The proposed methodology overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain functions.
Collapse
Affiliation(s)
- Jose Sanchez-Bornot
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee campus, Derry∼Londonderry, United Kingdom.
| | - Roberto C Sotero
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - J A Scott Kelso
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee campus, Derry∼Londonderry, United Kingdom; Human Brain & Behavior laboratory, Center for Complex Systems & Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Özgür Şimşek
- Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Damien Coyle
- Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University, Magee campus, Derry∼Londonderry, United Kingdom; Bath Institute for the Augmented Human, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
7
|
Simmatis L, Russo EE, Geraci J, Harmsen IE, Samuel N. Technical and clinical considerations for electroencephalography-based biomarkers for major depressive disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:18. [PMID: 38609518 PMCID: PMC10955915 DOI: 10.1038/s44184-023-00038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 04/14/2024]
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life. There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and individuals' responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and consider factors leading to the discovery of sensitive and reliable biomarkers.
Collapse
Affiliation(s)
- Leif Simmatis
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Emma E Russo
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Joseph Geraci
- Cove Neurosciences Inc., Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Cove Neurosciences Inc., Toronto, ON, Canada.
| |
Collapse
|
8
|
Wabina RS, Silpasuwanchai C. Neural stochastic differential equations network as uncertainty quantification method for EEG source localization. Biomed Phys Eng Express 2023; 9. [PMID: 36368029 DOI: 10.1088/2057-1976/aca20b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
EEG source localization remains a challenging problem given the uncertain conductivity values of the volume conductor models (VCMs). As uncertain conductivities vary across people, they may considerably impact the forward and inverse solutions of the EEG, leading to an increase in localization mistakes and misdiagnoses of brain disorders. Calibration of conductivity values using uncertainty quantification (UQ) techniques is a promising approach to reduce localization errors. The widely-known UQ methods involve Bayesian approaches, which utilize prior conductivity values to derive their posterior inference and estimate their optimal calibration. However, these approaches have two significant drawbacks: solving for posterior inference is intractable, and choosing inappropriate priors may lead to increased localization mistakes. This study used the Neural Stochastic Differential equations Network (SDE-Net), a combination of dynamical systems and deep learning techniques that utilizes the Wiener process to minimize conductivity uncertainties in the VCM and improve the inverse problem. Results revealed that SDE-Net generated a lower localization error rate in the inverse problem compared to Bayesian techniques. Future studies may employ new stochastic dynamical systems-based techniques as a UQ technique to address further uncertainties in the EEG Source Localization problem. Our code can be found here:https://github.com/rrwabina/SDENet-UQ-ESL.
Collapse
Affiliation(s)
- R S Wabina
- Center for Health and Wellness Technology, Asian Institute of Technology (AIT), Khlong Luang, Pathum Thani, Thailand
| | - C Silpasuwanchai
- Center for Health and Wellness Technology, Asian Institute of Technology (AIT), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
9
|
Van Hoornweder S, A Caulfield K, Nitsche M, Thielscher A, L J Meesen R. Addressing transcranial electrical stimulation variability through prospective individualized dosing of electric field strength in 300 participants across two samples: the 2-SPED approach. J Neural Eng 2022; 19:056045. [PMID: 36240729 PMCID: PMC9855635 DOI: 10.1088/1741-2552/ac9a78] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
Objective. Transcranial electrical stimulation (tES) is a promising method for modulating brain activity and excitability with variable results to date. To minimize electric (E-)field strength variability, we introduce the 2-sample prospective E-field dosing (2-SPED) approach, which uses E-field strengths induced by tES in a first population to individualize stimulation intensity in a second population.Approach. We performed E-field modeling of three common tES montages in 300 healthy younger adults. First, permutation analyses identified the sample size required to obtain a stable group average E-field in the primary motor cortex (M1), with stability being defined as the number of participants where all group-average E-field strengths ± standard deviation did not leave the population's 5-95 percentile range. Second, this stable group average was used to individualize tES intensity in a second independent population (n = 100). The impact of individualized versus fixed intensity tES on E-field strength variability was analyzed.Main results. In the first population, stable group average E-field strengths (V/m) in M1 were achieved at 74-85 participants, depending on the tES montage. Individualizing the stimulation intensity (mA) in the second population resulted in uniform M1 E-field strength (all p < 0.001) and significantly diminished peak cortical E-field strength variability (all p < 0.01), across all montages.Significance. 2-SPED is a feasible way to prospectively induce more uniform E-field strengths in a region of interest. Future studies might apply 2-SPED to investigate whether decreased E-field strength variability also results in decreased physiological and behavioral variability in response to tES.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States of America
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bürkle de la Camp-Platz, Bochum, Germany
| | - Axel Thielscher
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Raf L J Meesen
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Soleimani B, Das P, Dushyanthi Karunathilake IM, Kuchinsky SE, Simon JZ, Babadi B. NLGC: Network localized Granger causality with application to MEG directional functional connectivity analysis. Neuroimage 2022; 260:119496. [PMID: 35870697 PMCID: PMC9435442 DOI: 10.1016/j.neuroimage.2022.119496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Identifying the directed connectivity that underlie networked activity between different cortical areas is critical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magnetoencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from the MEG measurements, integrated with source localization, and employs the resulting parameter estimates to produce a precise statistical characterization of the detected GC links. We offer several theoretical and algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and application to MEG data from an auditory task involving tone processing from both younger and older participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch, network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-level characterization of neural activity during tone processing and resting state by delineating task- and age-related connectivity changes.
Collapse
Affiliation(s)
- Behrad Soleimani
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Proloy Das
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA.
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA; Department of Biology, University of Maryland College Park, MD, USA.
| | - Behtash Babadi
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA; Institute for Systems Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
11
|
Routier L, Mahmoudzadeh M, Panzani M, Saadatmehr B, Gondry J, Bourel-Ponchel E, Moghimi S, Wallois F. The frontal sharp transient in newborns: An endogenous neurobiomarker concomitant to the physiological and critical transitional period around delivery? Cereb Cortex 2022; 33:4026-4039. [PMID: 36066405 PMCID: PMC10068298 DOI: 10.1093/cercor/bhac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The frontal sharp transient (FST) consists of transient electrical activity recorded around the transitional period from the in to ex utero environment. Although its positive predictive value is assumed, nothing is known about its functionality or origin. The objectives were (i) to define its characteristics and (ii) to develop functional hypothesis. The 128-channels high-resolution electroencephalograms of 20 healthy newborns (37.1-41.6 weeks) were studied. The morphological and time-frequency characteristics of 418 FSTs were analyzed. The source localization of the FSTs was obtained using a finite element head model (5 layers and fontanels) and various source localization methods (distributed and dipolar). The characteristics (duration, slopes, and amplitude) and the localization of FSTs were not modulated by the huge developmental neuronal processes that occur during the very last period of gestation. The sources were located beneath the ventral median part of the frontal lobe around the interhemispheric fissure, suggesting that the olfactory bulbs and orbitofrontal cortex, essential in olfaction and the mother-infant attachment relationship, are likely candidates for the generation of FSTs. FSTs may contribute to the implementation of the functionalities of brain structures involved in the higher-order processing necessary for survival ahead of delivery, with a genetic fingerprint.
Collapse
Affiliation(s)
- Laura Routier
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Pediatric Clinical Neurophysiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Mahdi Mahmoudzadeh
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Marine Panzani
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Bahar Saadatmehr
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Jean Gondry
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Maternity Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Emilie Bourel-Ponchel
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Pediatric Clinical Neurophysiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Sahar Moghimi
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France
| | - Fabrice Wallois
- GRAMFC, INSERM UMR-S 1105, CURS, University of Picardie Jules Verne, rue René Laennec, 80054 Amiens, Cedex 1, France.,Pediatric Clinical Neurophysiology Department, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054 Amiens, France
| |
Collapse
|
12
|
Perera D, Wang YK, Lin CT, Nguyen H, Chai R. Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166230. [PMID: 36015991 PMCID: PMC9414352 DOI: 10.3390/s22166230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
This paper discusses a novel approach to an EEG (electroencephalogram)-based driver distraction classification by using brain connectivity estimators as features. Ten healthy volunteers with more than one year of driving experience and an average age of 24.3 participated in a virtual reality environment with two conditions, a simple math problem-solving task and a lane-keeping task to mimic the distracted driving task and a non-distracted driving task, respectively. Independent component analysis (ICA) was conducted on the selected epochs of six selected components relevant to the frontal, central, parietal, occipital, left motor, and right motor areas. Granger-Geweke causality (GGC), directed transfer function (DTF), partial directed coherence (PDC), and generalized partial directed coherence (GPDC) brain connectivity estimators were used to calculate the connectivity matrixes. These connectivity matrixes were used as features to train the support vector machine (SVM) with the radial basis function (RBF) and classify the distracted and non-distracted driving tasks. GGC, DTF, PDC, and GPDC connectivity estimators yielded the classification accuracies of 82.27%, 70.02%, 86.19%, and 80.95%, respectively. Further analysis of the PDC connectivity estimator was conducted to determine the best window to differentiate between the distracted and non-distracted driving tasks. This study suggests that the PDC connectivity estimator can yield better classification accuracy for driver distractions.
Collapse
Affiliation(s)
- Dulan Perera
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yu-Kai Wang
- School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Chin-Teng Lin
- School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hung Nguyen
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Rifai Chai
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
13
|
Shamo: A Tool for Electromagnetic Modeling, Simulation and Sensitivity Analysis of the Head. Neuroinformatics 2022; 20:811-824. [PMID: 35266105 DOI: 10.1007/s12021-022-09574-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/31/2022]
Abstract
Accurate electromagnetic modeling of the head of a subject is of main interest in the fields of source reconstruction and brain stimulation. Those processes rely heavily on the quality of the model and, even though the geometry of the tissues can be extracted from magnetic resonance images (MRI) or computed tomography (CT), their physical properties such as the electrical conductivity are difficult to measure with non intrusive techniques. In this paper, we propose a tool to assess the uncertainty in the model parameters, the tissue conductivity, as well as compute a parametric forward models for electroencephalography (EEG) and transcranial direct current stimulation (tDCS) current distribution.
Collapse
|
14
|
Fu X, Richards JE. Evaluating Head Models for Cortical Source Localization of the Face-Sensitive N290 Component in Infants. Brain Topogr 2022; 35:398-415. [PMID: 35543889 DOI: 10.1007/s10548-022-00899-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Accurate cortical source localization of event-related potentials (ERPs) requires using realistic head models constructed from the participant's structural magnetic resonance imaging (MRI). A challenge in developmental studies is the limited accessibility of participant-specific MRIs. The present study compared source localization of infants' N290 ERP activities estimated using participant-specific head models with a series of substitute head models. The N290 responses to faces relative to toys were measured in 36 infants aged at 4.5, 7.5, 9, and 12 months. The substitutes were individual-based head models constructed from age-matched MRIs with closely matched ("close") or different ("far") head measures with the participants, age-appropriate average template, and age-inappropriate average templates. The greater source responses to faces than toys at the middle fusiform gyrus (mFG) estimated using participant-specific head models were preserved in individual-based head models, but not average templates. The "close" head models yielded the best fit with the participant-specific head models in source activities at the mFG and across face-processing-related regions of interest (ROIs). The age-appropriate average template showed mixed results, not supporting the stimulus effect but showed topographical distributions across the ROIs like the participant-specific head models. The "close" head models are the most optimal substitute for participant-specific MRIs.
Collapse
Affiliation(s)
- Xiaoxue Fu
- Department of Psychology, University of South Carolina, Columbia, USA.
| | - John E Richards
- Department of Psychology, University of South Carolina, Columbia, USA
| |
Collapse
|
15
|
Cao M, Vogrin SJ, Peterson ADH, Woods W, Cook MJ, Plummer C. Dynamical Network Models From EEG and MEG for Epilepsy Surgery—A Quantitative Approach. Front Neurol 2022; 13:837893. [PMID: 35422755 PMCID: PMC9001937 DOI: 10.3389/fneur.2022.837893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for more informative quantitative techniques that non-invasively and objectively assess strategies for epilepsy surgery. Invasive intracranial electroencephalography (iEEG) remains the clinical gold standard to investigate the nature of the epileptogenic zone (EZ) before surgical resection. However, there are major limitations of iEEG, such as the limited spatial sampling and the degree of subjectivity inherent in the analysis and clinical interpretation of iEEG data. Recent advances in network analysis and dynamical network modeling provide a novel aspect toward a more objective assessment of the EZ. The advantage of such approaches is that they are data-driven and require less or no human input. Multiple studies have demonstrated success using these approaches when applied to iEEG data in characterizing the EZ and predicting surgical outcomes. However, the limitations of iEEG recordings equally apply to these studies—limited spatial sampling and the implicit assumption that iEEG electrodes, whether strip, grid, depth or stereo EEG (sEEG) arrays, are placed in the correct location. Therefore, it is of interest to clinicians and scientists to see whether the same analysis and modeling techniques can be applied to whole-brain, non-invasive neuroimaging data (from MRI-based techniques) and neurophysiological data (from MEG and scalp EEG recordings), thus removing the limitation of spatial sampling, while safely and objectively characterizing the EZ. This review aims to summarize current state of the art non-invasive methods that inform epilepsy surgery using network analysis and dynamical network models. We also present perspectives on future directions and clinical applications of these promising approaches.
Collapse
Affiliation(s)
- Miao Cao
- Center for MRI Research, Peking University, Beijing, China
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Simon J. Vogrin
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andre D. H. Peterson
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - William Woods
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Mark J. Cook
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Chris Plummer
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
- *Correspondence: Chris Plummer
| |
Collapse
|
16
|
Moura FS, Beraldo RG, Ferreira LA, Siltanen S. Anatomical atlas of the upper part of the human head for electroencephalography and bioimpedance applications. Physiol Meas 2021; 42. [PMID: 34673557 DOI: 10.1088/1361-6579/ac3218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 11/11/2022]
Abstract
Objective.The objective of this work is to develop a 4D (3D+T) statistical anatomical atlas of the electrical properties of the upper part of the human head for cerebral electrophysiology and bioimpedance applications.Approach.The atlas was constructed based on 3D magnetic resonance images (MRI) of 107 human individuals and comprises the electrical properties of the main internal structures and can be adjusted for specific electrical frequencies. T1w+T2w MRI images were used to segment the main structures of the head while angiography MRI was used to segment the main arteries. The proposed atlas also comprises a time-varying model of arterial brain circulation, based on the solution of the Navier-Stokes equation in the main arteries and their vascular territories.Main results.High-resolution, multi-frequency and time-varying anatomical atlases of resistivity, conductivity and relative permittivity were created and evaluated using a forward problem solver for EIT. The atlas was successfully used to simulate electrical impedance tomography measurements indicating the necessity of signal-to-noise between 100 and 125 dB to identify vascular changes due to the cardiac cycle, corroborating previous studies. The source code of the atlas and solver are freely available to download.Significance.Volume conductor problems in cerebral electrophysiology and bioimpedance do not have analytical solutions for nontrivial geometries and require a 3D model of the head and its electrical properties for solving the associated PDEs numerically. Ideally, the model should be made with patient-specific information. In clinical practice, this is not always the case and an average head model is often used. Also, the electrical properties of the tissues might not be completely known due to natural variability. Anatomical atlases are important tools forin silicostudies on cerebral circulation and electrophysiology that require statistically consistent data, e.g. machine learning, sensitivity analyses, and as a benchmark to test inverse problem solvers.
Collapse
Affiliation(s)
- Fernando S Moura
- Engineering, modelling and Applied Social Sciences Center, Federal University of ABC São Bernardo do Campo, São Paulo, Brazil.,Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Roberto G Beraldo
- Engineering, modelling and Applied Social Sciences Center, Federal University of ABC São Bernardo do Campo, São Paulo, Brazil
| | - Leonardo A Ferreira
- Engineering, modelling and Applied Social Sciences Center, Federal University of ABC São Bernardo do Campo, São Paulo, Brazil
| | - Samuli Siltanen
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Conte S, Richards JE. The Influence of the Head Model Conductor on the Source Localization of Auditory Evoked Potentials. Brain Topogr 2021; 34:793-812. [PMID: 34570330 PMCID: PMC8647205 DOI: 10.1007/s10548-021-00871-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
The accuracy of EEG source analysis reconstruction improves when a realistic head volume conductor is modeled. In this study we investigated how the progressively more complex head representations influence the spatial localization of auditory-evoked potentials (AEPs). Fourteen young-adult participants with normal hearing performed the AEP task. Individualized head models were obtained from structural MRI and diffusion-weighted imaging scans collected in a separate session. AEPs were elicited by 1 k Hz and 4 k Hz tone bursts during a passive-listening tetanizing paradigm. We compared the amplitude of the N1 and P2 components before and after 4 min of tetanic-stimulation with 1 k Hz sounds. Current density reconstruction values of both components were investigated in the primary auditory cortex and adjacent areas. Furthermore, we compared the signal topography and magnitude obtained with 10 different head models on the EEG forward solution. Starting from the simplest model (scalp, skull, brain), we investigated the influence of modeling the CSF, distinguishing between GM and WM conductors, and including anisotropic WM values. We localized the activity of AEPs within the primary auditory cortex, but not in adjacent areas. The inclusion of the CSF compartment had the strongest influence on the source reconstruction, whereas white matter anisotropy led to a smaller improvement. We conclude that individualized realistic head models provide the best solution for the forward solution when modeling the CSF conductor.
Collapse
Affiliation(s)
- Stefania Conte
- Department of Psychology, University of South Carolina, Columbia, USA.
| | - John E Richards
- Department of Psychology, University of South Carolina, Columbia, USA
| |
Collapse
|
18
|
Tait L, Özkan A, Szul MJ, Zhang J. A systematic evaluation of source reconstruction of resting MEG of the human brain with a new high-resolution atlas: Performance, precision, and parcellation. Hum Brain Mapp 2021; 42:4685-4707. [PMID: 34219311 PMCID: PMC8410546 DOI: 10.1002/hbm.25578] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022] Open
Abstract
Noninvasive functional neuroimaging of the human brain can give crucial insight into the mechanisms that underpin healthy cognition and neurological disorders. Magnetoencephalography (MEG) measures extracranial magnetic fields originating from neuronal activity with high temporal resolution, but requires source reconstruction to make neuroanatomical inferences from these signals. Many source reconstruction algorithms are available, and have been widely evaluated in the context of localizing task-evoked activities. However, no consensus yet exists on the optimum algorithm for resting-state data. Here, we evaluated the performance of six commonly-used source reconstruction algorithms based on minimum-norm and beamforming estimates. Using human resting-state MEG, we compared the algorithms using quantitative metrics, including resolution properties of inverse solutions and explained variance in sensor-level data. Next, we proposed a data-driven approach to reduce the atlas from the Human Connectome Project's multi-modal parcellation of the human cortex based on metrics such as MEG signal-to-noise-ratio and resting-state functional connectivity gradients. This procedure produced a reduced cortical atlas with 230 regions, optimized to match the spatial resolution and the rank of MEG data from the current generation of MEG scanners. Our results show that there is no "one size fits all" algorithm, and make recommendations on the appropriate algorithms depending on the data and aimed analyses. Our comprehensive comparisons and recommendations can serve as a guide for choosing appropriate methodologies in future studies of resting-state MEG.
Collapse
Affiliation(s)
- Luke Tait
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| | - Ayşegül Özkan
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| | - Maciej J. Szul
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiff
| |
Collapse
|
19
|
Marino M, Cordero-Grande L, Mantini D, Ferrazzi G. Conductivity Tensor Imaging of the Human Brain Using Water Mapping Techniques. Front Neurosci 2021; 15:694645. [PMID: 34393709 PMCID: PMC8363203 DOI: 10.3389/fnins.2021.694645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Conductivity tensor imaging (CTI) has been recently proposed to map the conductivity tensor in 3D using magnetic resonance imaging (MRI) at the frequency range of the brain at rest, i.e., low-frequencies. Conventional CTI mapping methods process the trans-receiver phase of the MRI signal using the MR electric properties tomography (MR-EPT) technique, which in turn involves the application of the Laplace operator. This results in CTI maps with a low signal-to-noise ratio (SNR), artifacts at tissue boundaries and a limited spatial resolution. In order to improve on these aspects, a methodology independent from the MR-EPT method is proposed. This relies on the strong assumption for which electrical conductivity is univocally pre-determined by water concentration. In particular, CTI maps are calculated by combining high-frequency conductivity derived from water maps and multi b-value diffusion tensor imaging (DTI) data. Following the implementation of a pipeline to optimize the pre-processing of diffusion data and the fitting routine of a multi-compartment diffusivity model, reconstructed conductivity images were evaluated in terms of the achieved spatial resolution in five healthy subjects scanned at rest. We found that the pre-processing of diffusion data and the optimization of the fitting procedure improve the quality of conductivity maps. We achieve reproducible measurements across healthy participants and, in particular, we report conductivity values across subjects of 0.55 ± 0.01Sm, 0.3 ± 0.01Sm and 2.15 ± 0.02Sm for gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), respectively. By attaining an actual spatial resolution of the conductivity tensor close to 1 mm in-plane isotropic, partial volume effects are reduced leading to good discrimination of tissues with similar conductivity values, such as GM and WM. The application of the proposed framework may contribute to a better definition of the head tissue compartments in electroencephalograpy/magnetoencephalography (EEG/MEG) source imaging and be used as biomarker for assessing conductivity changes in pathological conditions, such as stroke and brain tumors.
Collapse
Affiliation(s)
- Marco Marino
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dante Mantini
- Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,IRCCS San Camillo Hospital, Venice, Italy
| | | |
Collapse
|
20
|
Allouch S, Yochum M, Kabbara A, Duprez J, Khalil M, Wendling F, Hassan M, Modolo J. Mean-Field Modeling of Brain-Scale Dynamics for the Evaluation of EEG Source-Space Networks. Brain Topogr 2021; 35:54-65. [PMID: 34244910 DOI: 10.1007/s10548-021-00859-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks is the subject of intense research efforts to unveil fundamental principles of brain functions. To estimate these large-scale brain networks, the emergent method called "electroencephalography (EEG) source connectivity" has generated increasing interest in the network neuroscience community, due to its ability to identify cortical brain networks with satisfactory spatio-temporal resolution, while reducing mixing and volume conduction effects. However, no consensus has been reached yet regarding a unified EEG source connectivity pipeline, and several methodological issues have to be carefully accounted to avoid pitfalls. Thus, a validation toolbox that provides flexible "ground truth" models is needed for an objective methods/parameters evaluation and, thereby an optimization of the EEG source connectivity pipeline. In this paper, we show how a recently developed large-scale model of brain-scale activity, named COALIA, can provide to some extent such ground truth by providing realistic simulations of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential use of COALIA to analyze, in the context of epileptiform activity, the effect of three key factors involved in the "EEG source connectivity" pipeline: (i) EEG sensors density, (ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. Results showed that a high electrode density (at least 64 channels) is required to accurately estimate cortical networks. Regarding the inverse solution/connectivity measure combination, the best performance at high electrode density was obtained using the weighted minimum norm estimate (wMNE) combined with the weighted phase lag index (wPLI). Although those results are specific to the considered aforementioned context (epileptiform activity), we believe that this model-based approach can be successfully applied to other experimental questions/contexts. We aim at presenting a proof-of-concept of the interest of COALIA in the network neuroscience field, and its potential use in optimizing the EEG source-space network estimation pipeline.
Collapse
Affiliation(s)
- Sahar Allouch
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France. .,Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.
| | - Maxime Yochum
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| | - Aya Kabbara
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| | - Joan Duprez
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| | - Mohamad Khalil
- Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.,CRSI Research Center, Faculty of Engineering, Lebanese University, Beirut, Lebanon
| | | | | | - Julien Modolo
- Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France
| |
Collapse
|
21
|
Moridera T, Rashed EA, Mizutani S, Hirata A. High-Resolution EEG Source Localization in Segmentation-Free Head Models Based on Finite-Difference Method and Matching Pursuit Algorithm. Front Neurosci 2021; 15:695668. [PMID: 34262433 PMCID: PMC8273249 DOI: 10.3389/fnins.2021.695668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 11/23/2022] Open
Abstract
Electroencephalogram (EEG) is a method to monitor electrophysiological activity on the scalp, which represents the macroscopic activity of the brain. However, it is challenging to identify EEG source regions inside the brain based on data measured by a scalp-attached network of electrodes. The accuracy of EEG source localization significantly depends on the type of head modeling and inverse problem solver. In this study, we adopted different models with a resolution of 0.5 mm to account for thin tissues/fluids, such as the cerebrospinal fluid (CSF) and dura. In particular, a spatially dependent conductivity (segmentation-free) model created using deep learning was developed and used for more realist representation of electrical conductivity. We then adopted a multi-grid-based finite-difference method (FDM) for forward problem analysis and a sparse-based algorithm to solve the inverse problem. This enabled us to perform efficient source localization using high-resolution model with a reasonable computational cost. Results indicated that the abrupt spatial change in conductivity, inherent in conventional segmentation-based head models, may trigger source localization error accumulation. The accurate modeling of the CSF, whose conductivity is the highest in the head, was an important factor affecting localization accuracy. Moreover, computational experiments with different noise levels and electrode setups demonstrate the robustness of the proposed method with segmentation-free head model.
Collapse
Affiliation(s)
- Takayoshi Moridera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Essam A Rashed
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shogo Mizutani
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan.,Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
22
|
Advances in Electrical Source Imaging: A Review of the Current Approaches, Applications and Challenges. SIGNALS 2021. [DOI: 10.3390/signals2030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain source localization has been consistently implemented over the recent years to elucidate complex brain operations, pairing the high temporal resolution of the EEG with the high spatial estimation of the estimated sources. This review paper aims to present the basic principles of Electrical source imaging (ESI) in the context of the recent progress for solving the forward and the inverse problems, and highlight the advantages and limitations of the different approaches. As such, a synthesis of the current state-of-the-art methodological aspects is provided, offering a complete overview of the present advances with regard to the ESI solutions. Moreover, the new dimensions for the analysis of the brain processes are indicated in terms of clinical and cognitive ESI applications, while the prevailing challenges and limitations are thoroughly discussed, providing insights for future approaches that could help to alleviate methodological and technical shortcomings.
Collapse
|
23
|
Pantazis D, Adler A. MEG Source Localization via Deep Learning. SENSORS (BASEL, SWITZERLAND) 2021; 21:4278. [PMID: 34206620 PMCID: PMC8271934 DOI: 10.3390/s21134278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/22/2022]
Abstract
We present a deep learning solution to the problem of localization of magnetoencephalography (MEG) brain signals. The proposed deep model architectures are tuned to single and multiple time point MEG data, and can estimate varying numbers of dipole sources. Results from simulated MEG data on the cortical surface of a real human subject demonstrated improvements against the popular RAP-MUSIC localization algorithm in specific scenarios with varying SNR levels, inter-source correlation values, and number of sources. Importantly, the deep learning models had robust performance to forward model errors resulting from head translation and rotation and a significant reduction in computation time, to a fraction of 1 ms, paving the way to real-time MEG source localization.
Collapse
Affiliation(s)
- Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amir Adler
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Electrical Engineering Department, Braude College of Engineering, Karmiel 2161002, Israel
| |
Collapse
|
24
|
Puonti O, Van Leemput K, Saturnino GB, Siebner HR, Madsen KH, Thielscher A. Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling. Neuroimage 2020; 219:117044. [PMID: 32534963 PMCID: PMC8048089 DOI: 10.1016/j.neuroimage.2020.117044] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Transcranial brain stimulation (TBS) has been established as a method for modulating and mapping the function of the human brain, and as a potential treatment tool in several brain disorders. Typically, the stimulation is applied using a one-size-fits-all approach with predetermined locations for the electrodes, in electric stimulation (TES), or the coil, in magnetic stimulation (TMS), which disregards anatomical variability between individuals. However, the induced electric field distribution in the head largely depends on anatomical features implying the need for individually tailored stimulation protocols for focal dosing. This requires detailed models of the individual head anatomy, combined with electric field simulations, to find an optimal stimulation protocol for a given cortical target. Considering the anatomical and functional complexity of different brain disorders and pathologies, it is crucial to account for the anatomical variability in order to translate TBS from a research tool into a viable option for treatment. In this article we present a new method, called CHARM, for automated segmentation of fifteen different head tissues from magnetic resonance (MR) scans. The new method compares favorably to two freely available software tools on a five-tissue segmentation task, while obtaining reasonable segmentation accuracy over all fifteen tissues. The method automatically adapts to variability in the input scans and can thus be directly applied to clinical or research scans acquired with different scanners, sequences or settings. We show that an increase in automated segmentation accuracy results in a lower relative error in electric field simulations when compared to anatomical head models constructed from reference segmentations. However, also the improved segmentations and, by implication, the electric field simulations are affected by systematic artifacts in the input MR scans. As long as the artifacts are unaccounted for, this can lead to local simulation differences up to 30% of the peak field strength on reference simulations. Finally, we exemplarily demonstrate the effect of including all fifteen tissue classes in the field simulations against the standard approach of using only five tissue classes and show that for specific stimulation configurations the local differences can reach 10% of the peak field strength.
Collapse
Affiliation(s)
- Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Koen Van Leemput
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Guilherme B Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
25
|
Diminished large-scale functional brain networks in absolute pitch during the perception of naturalistic music and audiobooks. Neuroimage 2020; 216:116513. [DOI: 10.1016/j.neuroimage.2019.116513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 12/26/2022] Open
|
26
|
Aydin Ü, Pellegrino G, Ali OBK, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients. J Neural Eng 2020; 17:035007. [PMID: 32191632 DOI: 10.1088/1741-2552/ab8113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup. APPROACH In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy. MEG recorded prior to surgery from seven seizure-free (Engel Ia) and five non seizure-free (Engel III or IV) patients were analyzed (minimum 2-years post-surgical follow-up). MEG segments without any detectable epileptic activity were source localized using wavelet-based Maximum Entropy on the Mean method. Amplitude envelope correlation in the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-26 Hz) bands were used for assessing connectivity. MAIN RESULTS For seizure-free patients, we found an isolated epileptic network characterized by weaker connections between the brain region where interictal epileptic discharges (IED) are generated and the rest of the cortex, when compared to connectivity between the corresponding contralateral homologous region and the rest of the cortex. Contrarily, non seizure-free patients exhibited a widespread RS epileptic network characterized by stronger connectivity between the IED generator and the rest of the cortex, in comparison to the contralateral region and the cortex. Differences between the two seizure outcome groups concerned mainly distant long-range connections and were found in the alpha-band. SIGNIFICANCE Importantly, these connectivity patterns suggest specific mechanisms describing the underlying organization of the epileptic network and were detectable at the individual patient level, supporting the prospect use of MEG connectivity patterns in epilepsy to predict post-surgical seizure outcome.
Collapse
Affiliation(s)
- Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gross J. Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron 2020; 104:189-204. [PMID: 31647893 DOI: 10.1016/j.neuron.2019.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Magnetoencephalography (MEG) is an invaluable tool to study the dynamics and connectivity of large-scale brain activity and their interactions with the body and the environment in functional and dysfunctional body and brain states. This primer introduces the basic concepts of MEG, discusses its strengths and limitations in comparison to other brain imaging techniques, showcases interesting applications, and projects exciting current trends into the near future, in a way that might more fully exploit the unique capabilities of MEG.
Collapse
Affiliation(s)
- Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis (IBB), University of Muenster, 48149 Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), University of Glasgow, Glasgow, UK.
| |
Collapse
|
28
|
Puonti O, Saturnino GB, Madsen KH, Thielscher A. Value and limitations of intracranial recordings for validating electric field modeling for transcranial brain stimulation. Neuroimage 2020; 208:116431. [DOI: 10.1016/j.neuroimage.2019.116431] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/15/2019] [Accepted: 12/01/2019] [Indexed: 11/29/2022] Open
|
29
|
Barzegaran E, Bosse S, Kohler PJ, Norcia AM. EEGSourceSim: A framework for realistic simulation of EEG scalp data using MRI-based forward models and biologically plausible signals and noise. J Neurosci Methods 2019; 328:108377. [PMID: 31381946 PMCID: PMC6815881 DOI: 10.1016/j.jneumeth.2019.108377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/13/2019] [Accepted: 07/29/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Electroencephalography (EEG) is widely used to investigate human brain function. Simulation studies are essential for assessing the validity of EEG analysis methods and the interpretability of results. NEW METHOD Here we present a simulation environment for generating EEG data by embedding biologically plausible signal and noise into MRI-based forward models that incorporate individual-subject variability in structure and function. RESULTS The package includes pipelines for the evaluation and validation of EEG analysis tools for source estimation, functional connectivity, and spatial filtering. EEG dynamics can be simulated using realistic noise and signal models with user specifiable signal-to-noise ratio (SNR). We also provide a set of quantitative metrics tailored to source estimation, connectivity and spatial filtering applications. COMPARISON WITH EXISTING METHOD(S) We provide a larger set of forward solutions for individual MRI-based head models than has been available previously. These head models are surface-based and include two sets of regions-of-interest (ROIs) that have been brought into registration with the brain of each individual using surface-based alignment - one from a whole brain and the other from a visual cortex atlas. We derive a realistic model of noise by fitting different model components to measured resting state EEG. We also provide a set of quantitative metrics for evaluating source-localization, functional connectivity and spatial filtering methods. CONCLUSIONS The inclusion of a larger number of individual head-models, combined with surface-atlas based labeling of ROIs and plausible models of signal and noise, allows for simulation of EEG data with greater realism than previous packages.
Collapse
Affiliation(s)
- Elham Barzegaran
- Department of Psychology, Jordan Hall, Building 420, Stanford University, Stanford, CA 94305, USA.
| | - Sebastian Bosse
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany.
| | - Peter J Kohler
- Department of Psychology, Jordan Hall, Building 420, Stanford University, Stanford, CA 94305, USA; Department of Psychology and Centre for Vision Research, Core Member, Vision: Science to Applications (VISTA), York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada.
| | - Anthony M Norcia
- Department of Psychology, Jordan Hall, Building 420, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Vorwerk J, Hanrath A, Wolters CH, Grasedyck L. The multipole approach for EEG forward modeling using the finite element method. Neuroimage 2019; 201:116039. [PMID: 31369809 DOI: 10.1016/j.neuroimage.2019.116039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023] Open
Abstract
For accurate EEG forward solutions, it is necessary to apply numerical methods that allow to take into account the realistic geometry of the subject's head. A commonly used method to solve this task is the finite element method (FEM). Different approaches have been developed to obtain EEG forward solutions for dipolar sources with the FEM. The St. Venant approach is frequently applied, since its high numerical accuracy and stability as well as its computational efficiency was demonstrated in multiple comparison studies. In this manuscript, we propose a variation of the St. Venant approach, the multipole approach, to improve the numerical accuracy of the St. Venant approach even further and to allow for the simulation of additional source scenarios, such as quadrupolar sources. Exploiting the multipole expansion of electric fields, we demonstrate that the newly proposed multipole approach achieves even higher numerical accuracies than the St. Venant approach in both multi-layer sphere and realistic head models. Additionally, we exemplarily show that the multipole approach allows to not only simulate dipolar but also quadrupolar sources.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Anne Hanrath
- Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, Germany
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lars Grasedyck
- Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen, Germany
| |
Collapse
|
31
|
Ruiz-Gómez SJ, Hornero R, Poza J, Maturana-Candelas A, Pinto N, Gómez C. Computational modeling of the effects of EEG volume conduction on functional connectivity metrics. Application to Alzheimer’s disease continuum. J Neural Eng 2019; 16:066019. [DOI: 10.1088/1741-2552/ab4024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
van Mierlo P, Höller Y, Focke NK, Vulliemoz S. Network Perspectives on Epilepsy Using EEG/MEG Source Connectivity. Front Neurol 2019; 10:721. [PMID: 31379703 PMCID: PMC6651209 DOI: 10.3389/fneur.2019.00721] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience.
Collapse
Affiliation(s)
- Pieter van Mierlo
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | - Niels K Focke
- Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Vorwerk J, Aydin Ü, Wolters CH, Butson CR. Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction. Front Neurosci 2019; 13:531. [PMID: 31231178 PMCID: PMC6558618 DOI: 10.3389/fnins.2019.00531] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 11/28/2022] Open
Abstract
Reliable EEG source analysis depends on sufficiently detailed and accurate head models. In this study, we investigate how uncertainties inherent to the experimentally determined conductivity values of the different conductive compartments influence the results of EEG source analysis. In a single source scenario, the superficial and focal somatosensory P20/N20 component, we analyze the influence of varying conductivities on dipole reconstructions using a generalized polynomial chaos (gPC) approach. We find that in particular the conductivity uncertainties for skin and skull have a significant influence on the EEG inverse solution, leading to variations in source localization by several centimeters. The conductivity uncertainties for gray and white matter were found to have little influence on the source localization, but a strong influence on the strength and orientation of the reconstructed source, respectively. As the CSF conductivity is most accurately determined of all conductivities in a realistic head model, CSF conductivity uncertainties had a negligible influence on the source reconstruction. This small uncertainty is a further benefit of distinguishing the CSF in realistic volume conductor models.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Institute of Electrical and Biomedical Engineering, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Ümit Aydin
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christopher R. Butson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States
- Departments of Biomedical Engineering, Neurology, and Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Gao C, Conte S, Richards JE, Xie W, Hanayik T. The neural sources of N170: Understanding timing of activation in face-selective areas. Psychophysiology 2019; 56:e13336. [PMID: 30710345 PMCID: PMC6508977 DOI: 10.1111/psyp.13336] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
Abstract
The N170 ERP component has been widely identified as a face-sensitive neural marker. Despite extensive investigations conducted to examine the neural sources of N170, there are two issues in prior literature: (a) few studies used individualized anatomy as head model for the cortical source analysis of the N170, and (b) the relationship between the N170 and face-selective regions from fMRI studies is unclear. Here, we addressed these questions by presenting pictures of faces and houses to the same group of healthy adults and recording structural MRI, fMRI, and high-density ERPs in separate sessions. Source analysis based on the participant's anatomy showed that the middle and posterior fusiform gyri were the primary neural sources for the face-sensitive aspects of the N170. Source analysis based on regions of interest from the fMRI revealed that the fMRI-defined fusiform face area was the major contributor to the N170. The current study suggests that the fusiform gyrus is a major neural contributor to the N170 ERP component and provides further insights about the spatiotemporal characteristics of face processing.
Collapse
Affiliation(s)
- Chuanji Gao
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Stefania Conte
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - John E Richards
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Wanze Xie
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Taylor Hanayik
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
35
|
Variation in Reported Human Head Tissue Electrical Conductivity Values. Brain Topogr 2019; 32:825-858. [PMID: 31054104 PMCID: PMC6708046 DOI: 10.1007/s10548-019-00710-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Electromagnetic source characterisation requires accurate volume conductor models representing head geometry and the electrical conductivity field. Head tissue conductivity is often assumed from previous literature, however, despite extensive research, measurements are inconsistent. A meta-analysis of reported human head electrical conductivity values was therefore conducted to determine significant variation and subsequent influential factors. Of 3121 identified publications spanning three databases, 56 papers were included in data extraction. Conductivity values were categorised according to tissue type, and recorded alongside methodology, measurement condition, current frequency, tissue temperature, participant pathology and age. We found variation in electrical conductivity of the whole-skull, the spongiform layer of the skull, isotropic, perpendicularly- and parallelly-oriented white matter (WM) and the brain-to-skull-conductivity ratio (BSCR) could be significantly attributed to a combination of differences in methodology and demographics. This large variation should be acknowledged, and care should be taken when creating volume conductor models, ideally constructing them on an individual basis, rather than assuming them from the literature. When personalised models are unavailable, it is suggested weighted average means from the current meta-analysis are used. Assigning conductivity as: 0.41 S/m for the scalp, 0.02 S/m for the whole skull, or when better modelled as a three-layer skull 0.048 S/m for the spongiform layer, 0.007 S/m for the inner compact and 0.005 S/m for the outer compact, as well as 1.71 S/m for the CSF, 0.47 S/m for the grey matter, 0.22 S/m for WM and 50.4 for the BSCR.
Collapse
|
36
|
Chella F, Marzetti L, Stenroos M, Parkkonen L, Ilmoniemi RJ, Romani GL, Pizzella V. The impact of improved MEG-MRI co-registration on MEG connectivity analysis. Neuroimage 2019; 197:354-367. [PMID: 31029868 DOI: 10.1016/j.neuroimage.2019.04.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Co-registration between structural head images and functional MEG data is needed for anatomically-informed MEG data analysis. Despite the efforts to minimize the co-registration error, conventional landmark- and surface-based strategies for co-registering head and MEG device coordinates achieve an accuracy of typically 5-10 mm. Recent advances in instrumentation and technical solutions, such as the development of hybrid ultra-low-field (ULF) MRI-MEG devices or the use of 3D-printed individualized foam head-casts, promise unprecedented co-registration accuracy, i.e., 2 mm or better. In the present study, we assess through simulations the impact of such an improved co-registration on MEG connectivity analysis. We generated synthetic MEG recordings for pairs of connected cortical sources with variable locations. We then assessed the capability to reconstruct source-level connectivity from these recordings for 0-15-mm co-registration error, three levels of head modeling detail (one-, three- and four-compartment models), two source estimation techniques (linearly constrained minimum-variance beamforming and minimum-norm estimation MNE) and five separate connectivity metrics (imaginary coherency, phase-locking value, amplitude-envelope correlation, phase-slope index and frequency-domain Granger causality). We found that beamforming can better take advantage of an accurate co-registration than MNE. Specifically, when the co-registration error was smaller than 3 mm, the relative error in connectivity estimates was down to one-third of that observed with typical co-registration errors. MNE provided stable results for a wide range of co-registration errors, while the performance of beamforming rapidly degraded as the co-registration error increased. Furthermore, we found that even moderate co-registration errors (>6 mm, on average) essentially decrease the difference of four- and three- or one-compartment models. Hence, a precise co-registration is important if one wants to take full advantage of highly accurate head models for connectivity analysis. We conclude that an improved co-registration will be beneficial for reliable connectivity analysis and effective use of highly accurate head models in future MEG connectivity studies.
Collapse
Affiliation(s)
- Federico Chella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy.
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI, 00076, Aalto, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI, 00076, Aalto, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI, 00076, Aalto, Finland
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
37
|
Reinhart RMG, Nguyen JA. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat Neurosci 2019; 22:820-827. [PMID: 30962628 PMCID: PMC6486414 DOI: 10.1038/s41593-019-0371-x] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
Understanding normal brain aging and developing methods to maintain or improve cognition in older adults are major goals of fundamental and translational neuroscience. Here we show a core feature of cognitive decline-working-memory deficits-emerges from disconnected local and long-range circuits instantiated by theta-gamma phase-amplitude coupling in temporal cortex and theta phase synchronization across frontotemporal cortex. We developed a noninvasive stimulation procedure for modulating long-range theta interactions in adults aged 60-76 years. After 25 min of stimulation, frequency-tuned to individual brain network dynamics, we observed a preferential increase in neural synchronization patterns and the return of sender-receiver relationships of information flow within and between frontotemporal regions. The end result was rapid improvement in working-memory performance that outlasted a 50 min post-stimulation period. The results provide insight into the physiological foundations of age-related cognitive impairment and contribute to groundwork for future non-pharmacological interventions targeting aspects of cognitive decline.
Collapse
Affiliation(s)
- Robert M G Reinhart
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA.
| | - John A Nguyen
- Department of Psychological & Brain Sciences, Center for Systems Neuroscience, Cognitive Neuroimaging Center, Center for Research in Sensory Communication & Emerging Neural Technology, Boston University, Boston, MA, USA
| |
Collapse
|
38
|
Indahlastari A, Chauhan M, Sadleir RJ. Benchmarking transcranial electrical stimulation finite element models: a comparison study. J Neural Eng 2019; 16:026019. [PMID: 30605892 DOI: 10.1088/1741-2552/aafbbd] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To compare field measure differences in simulations of transcranial electrical stimulation (tES) generated by variations in finite element (FE) models due to boundary condition specification, use of tissue compartment smoothing filters, and use of free or structured tetrahedral meshes based on magnetic resonance imaging (MRI) data. APPROACH A structural MRI head volume was acquired at 1 mm3 resolution and segmented into ten tissue compartments. Predicted current densities and electric fields were computed in segmented models using modeling pipelines involving either an in-house (block) or a commercial platform commonly used in previous FE tES studies involving smoothed compartments and free meshing procedures (smooth). The same boundary conditions were used for both block and smooth pipelines. Differences caused by varying boundary conditions were examined using a simple geometry. Percentage differences of median current density values in five cortical structures were compared between the two pipelines for three electrode montages (F3-right supraorbital, T7-T8 and Cz-Oz). MAIN RESULTS Use of boundary conditions commonly used in previous tES FE studies produced asymmetric current density profiles in the simple geometry. In head models, median current density differences produced by the two pipelines, using the same boundary conditions, were up to 6% (isotropic) and 18% (anisotropic) in structures targeted by each montage. Tangential electric field measures calculated via either pipeline were within the range of values reported in the literature, when averaged over cortical surface patches. SIGNIFICANCE Apparently equivalent boundary settings may affect predicted current density outcomes and care must be taken in their specification. Smoothing FE model compartments may not be necessary, and directly translated, voxellated tissue boundaries at 1 mm3 resolution may be sufficient for use in tES FE studies, greatly reducing processing times. The findings here may be used to inform future current density modeling studies.
Collapse
Affiliation(s)
- Aprinda Indahlastari
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States of America
| | | | | |
Collapse
|
39
|
Prestel M, Steinfath TP, Tremmel M, Stark R, Ott U. fMRI BOLD Correlates of EEG Independent Components: Spatial Correspondence With the Default Mode Network. Front Hum Neurosci 2018; 12:478. [PMID: 30542275 PMCID: PMC6277921 DOI: 10.3389/fnhum.2018.00478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/14/2018] [Indexed: 01/24/2023] Open
Abstract
Goal: We aimed to identify electroencephalographic (EEG) signal fluctuations within independent components (ICs) that correlate to spontaneous blood oxygenation level dependent (BOLD) activity in regions of the default mode network (DMN) during eyes-closed resting state. Methods: We analyzed simultaneously acquired EEG and functional magnetic resonance imaging (fMRI) eyes-closed resting state data in a convenience sample of 30 participants. IC analysis (ICA) was used to decompose the EEG time-series and common ICs were identified using data-driven IC clustering across subjects. The IC time courses were filtered into seven frequency bands, convolved with a hemeodynamic response function (HRF) and used to model spontaneous fMRI signal fluctuations across the brain. In parallel, group ICA analysis was used to decompose the fMRI signal into ICs from which the DMN was identified. Frequency and IC cluster associated hemeodynamic correlation maps obtained from the regression analysis were spatially correlated with the DMN. To investigate the reliability of our findings, the analyses were repeated with data collected from the same subjects 1 year later. Results: Our results indicate a relationship between power fluctuations in the delta, theta, beta and gamma frequency range and the DMN in different EEG ICs in our sample as shown by small to moderate spatial correlations at the first measurement (0.234 < |r| < 0.346, p < 0.0001). Furthermore, activity within an EEG component commonly identified as eye movements correlates with BOLD activity within regions of the DMN. In addition, we demonstrate that correlations between EEG ICs and the BOLD signal during rest are in part stable across time. Discussion: We show that ICA source separated EEG signals can be used to investigate electrophysiological correlates of the DMN. The relationship between the eye movement component and the DMN points to a behavioral association between DMN activity and the level of eye movement or the presence of neuronal activity in this component. Previous findings of an association between frontal midline theta activity and the DMN were replicated.
Collapse
Affiliation(s)
- Marcel Prestel
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Tim Paul Steinfath
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Tremmel
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Rudolf Stark
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Ott
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Taha I, Cook G. Brain sources estimation based on EEG and computer simulation technology (CST). Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
New Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems. Brain Topogr 2018; 32:354-362. [PMID: 30073558 DOI: 10.1007/s10548-018-0669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The finite element method (FEM) is a numerical method that is often used for solving electroencephalography (EEG) forward problems involving realistic head models. In this study, FEM solutions obtained using three different mesh structures, namely coarse, densely refined, and adaptively refined meshes, are compared. The simulation results showed that the accuracy of FEM solutions could be significantly enhanced by adding a small number of elements around regions with large estimated errors. Moreover, it was demonstrated that the adaptively refined regions were always near the current dipole sources, suggesting that selectively generating additional elements around the cortical surface might be a new promising strategy for more efficient FEM-based EEG forward analysis.
Collapse
|
42
|
Paraskevopoulos E, Chalas N, Kartsidis P, Wollbrink A, Bamidis P. Statistical learning of multisensory regularities is enhanced in musicians: An MEG study. Neuroimage 2018; 175:150-160. [DOI: 10.1016/j.neuroimage.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/21/2018] [Accepted: 04/02/2018] [Indexed: 01/09/2023] Open
|
43
|
Nielsen JD, Madsen KH, Puonti O, Siebner HR, Bauer C, Madsen CG, Saturnino GB, Thielscher A. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. Neuroimage 2018. [DOI: 10.1016/j.neuroimage.2018.03.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
44
|
Shim M, Im CH, Kim YW, Lee SH. Altered cortical functional network in major depressive disorder: A resting-state electroencephalogram study. NEUROIMAGE-CLINICAL 2018; 19:1000-1007. [PMID: 30003037 PMCID: PMC6039896 DOI: 10.1016/j.nicl.2018.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 01/16/2023]
Abstract
Background Electroencephalogram (EEG)-based brain network analysis is a useful biological correlate reflecting brain function. Sensor-level network analysis might be contaminated by volume conduction and does not explain regional brain characteristics. Source-level network analysis could be a useful alternative. We analyzed EEG-based source-level network in major depressive disorder (MDD). Method Resting-state EEG was recorded in 87 MDD and 58 healthy controls, and cortical source signals were estimated. Network measures were calculated: global indices (strength, clustering coefficient (CC), path length (PL), and efficiency) and nodal indices (eigenvector centrality and nodal CC) in six frequency. Correlation analyses were performed between network indices and symptom scales. Results At the global level, MDD showed decreased strength, CC in theta and alpha bands, and efficiency in alpha band, while enhanced PL in alpha band. At nodal level, eigenvector centrality of alpha band showed region dependent changes in MDD. Nodal CCs of alpha band were reduced in MDD and were negatively correlated with depression and anxiety scales. Conclusion Disturbances in EEG-based brain network indices might reflect altered emotional processing in MDD. These source-level network indices might provide useful biomarkers to understand regional brain pathology in MDD. We investigated the altered function of electroencephalogram-based cortical network for major depressive disorder (MDD). MDD showed altered cortical brain network at both global and nodal level network in alpha frequency band. Abnormal network indices in MDD were significantly correlated with depression and anxiety symptom scale scores. Disrupted cortical networks band might reflect altered neural pathway during emotional processing in patients with MDD.
Collapse
Affiliation(s)
- Miseon Shim
- Psychiatry Department, University of Missouri, Kansas City, USA; Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Yong-Wook Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea; Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea; Psychiatry Department, Ilsan Paik Hospital, Inje University, Goyang, Republic of Korea.
| |
Collapse
|
45
|
Vorwerk J, Oostenveld R, Piastra MC, Magyari L, Wolters CH. The FieldTrip-SimBio pipeline for EEG forward solutions. Biomed Eng Online 2018; 17:37. [PMID: 29580236 PMCID: PMC5870695 DOI: 10.1186/s12938-018-0463-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Accurately solving the electroencephalography (EEG) forward problem is crucial for precise EEG source analysis. Previous studies have shown that the use of multicompartment head models in combination with the finite element method (FEM) can yield high accuracies both numerically and with regard to the geometrical approximation of the human head. However, the workload for the generation of multicompartment head models has often been too high and the use of publicly available FEM implementations too complicated for a wider application of FEM in research studies. In this paper, we present a MATLAB-based pipeline that aims to resolve this lack of easy-to-use integrated software solutions. The presented pipeline allows for the easy application of five-compartment head models with the FEM within the FieldTrip toolbox for EEG source analysis. Methods The FEM from the SimBio toolbox, more specifically the St. Venant approach, was integrated into the FieldTrip toolbox. We give a short sketch of the implementation and its application, and we perform a source localization of somatosensory evoked potentials (SEPs) using this pipeline. We then evaluate the accuracy that can be achieved using the automatically generated five-compartment hexahedral head model [skin, skull, cerebrospinal fluid (CSF), gray matter, white matter] in comparison to a highly accurate tetrahedral head model that was generated on the basis of a semiautomatic segmentation with very careful and time-consuming manual corrections. Results The source analysis of the SEP data correctly localizes the P20 component and achieves a high goodness of fit. The subsequent comparison to the highly detailed tetrahedral head model shows that the automatically generated five-compartment head model performs about as well as a highly detailed four-compartment head model (skin, skull, CSF, brain). This is a significant improvement in comparison to a three-compartment head model, which is frequently used in praxis, since the importance of modeling the CSF compartment has been shown in a variety of studies. Conclusion The presented pipeline facilitates the use of five-compartment head models with the FEM for EEG source analysis. The accuracy with which the EEG forward problem can thereby be solved is increased compared to the commonly used three-compartment head models, and more reliable EEG source reconstruction results can be obtained. Electronic supplementary material The online version of this article (10.1186/s12938-018-0463-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany. .,Scientific Computing & Imaging (SCI) Institute, University of Utah, 72 Central Campus Dr., Salt Lake City, 84112, USA.
| | - Robert Oostenveld
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.,Department of Clinical Neuroscience, Karolinska Institutet, NatMEG, Nobels väg 9, 17177, Stockholm, Sweden
| | - Maria Carla Piastra
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| | - Lilla Magyari
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.,Department of General Psychology, Faculty of Humanities and Social Sciences, Pazmany Peter Catholic University, Mikszath Kalman Square 1, Budapest, 1088, Hungary
| | - Carsten H Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany
| |
Collapse
|
46
|
Robust EEG/MEG Based Functional Connectivity with the Envelope of the Imaginary Coherence: Sensor Space Analysis. Brain Topogr 2018; 31:895-916. [PMID: 29546509 PMCID: PMC6182573 DOI: 10.1007/s10548-018-0640-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/26/2018] [Indexed: 10/25/2022]
Abstract
The brain's functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can provide quick and useful information towards understanding cognition and brain disorders. Volume conduction (VC) is a fundamental issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the imaginary part of the coherence (iCOH) of any two signals are readily robust to VC effects, but neglecting the real part of the coherence leads to negligible FC when the processes are truly connected but with zero or π-phase (modulus 2π) interaction. We ameliorate this issue by proposing a novel method that implements an envelope of the imaginary coherence (EIC) to approximate the coherence estimate of supposedly active underlying sources. We compare EIC with state-of-the-art FC measures that included lagged coherence, iCOH, phase lag index (PLI) and weighted PLI (wPLI), using bivariate autoregressive and stochastic neural mass models. Additionally, we create realistic simulations where three and five regions were mapped on a template cortical surface and synthetic MEG signals were obtained after computing the electromagnetic leadfield. With this simulation and comparison study, we also demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst varying the signal's noise level. However, these results should be interpreted with caution given the known limitations of the sensor-based FC approach. Overall, we found that EIC and iCOH demonstrate superior results with most accurate FC maps. As they complement each other in different scenarios, that will be important to study normal and diseased brain activity.
Collapse
|
47
|
Liu Q, Ganzetti M, Wenderoth N, Mantini D. Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization. Front Neuroinform 2018; 12:4. [PMID: 29551969 PMCID: PMC5841019 DOI: 10.3389/fninf.2018.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/22/2018] [Indexed: 11/13/2022] Open
Abstract
Resting state networks (RSNs) in the human brain were recently detected using high-density electroencephalography (hdEEG). This was done by using an advanced analysis workflow to estimate neural signals in the cortex and to assess functional connectivity (FC) between distant cortical regions. FC analyses were conducted either using temporal (tICA) or spatial independent component analysis (sICA). Notably, EEG-RSNs obtained with sICA were very similar to RSNs retrieved with sICA from functional magnetic resonance imaging data. It still remains to be clarified, however, what technological aspects of hdEEG acquisition and analysis primarily influence this correspondence. Here we examined to what extent the detection of EEG-RSN maps by sICA depends on the electrode density, the accuracy of the head model, and the source localization algorithm employed. Our analyses revealed that the collection of EEG data using a high-density montage is crucial for RSN detection by sICA, but also the use of appropriate methods for head modeling and source localization have a substantial effect on RSN reconstruction. Overall, our results confirm the potential of hdEEG for mapping the functional architecture of the human brain, and highlight at the same time the interplay between acquisition technology and innovative solutions in data analysis.
Collapse
Affiliation(s)
- Quanying Liu
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, CA, United States
| | - Marco Ganzetti
- Laboratory of Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Movement Control and Neuroplasticity, KU Leuven, Leuven, Belgium.,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Influence of Time-Series Extraction on Binge Drinking Interpretability Using Functional Connectivity Analysis. Brain Inform 2018. [DOI: 10.1007/978-3-030-05587-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Whitton AE, Deccy S, Ironside ML, Kumar P, Beltzer M, Pizzagalli DA. Electroencephalography Source Functional Connectivity Reveals Abnormal High-Frequency Communication Among Large-Scale Functional Networks in Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:50-58. [PMID: 29397079 DOI: 10.1016/j.bpsc.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Functional magnetic resonance imaging studies of resting-state functional connectivity have shown that major depressive disorder (MDD) is characterized by increased connectivity within the default mode network (DMN) and between the DMN and the frontoparietal network (FPN). However, much remains unknown about abnormalities in higher frequency (>1 Hz) synchronization. Findings of abnormal synchronization in specific frequencies would contribute to a better understanding of the potential neurophysiological origins of disrupted functional connectivity in MDD. METHODS We used the high temporal resolution of electroencephalography to compare the spectral properties of resting-state functional connectivity in individuals with MDD (n = 65) with healthy control subjects (n = 79) and examined the extent to which connectivity disturbances were evident in a third sample of individuals in remission from depression (n = 30). Exact low resolution electromagnetic tomography was used to compute intracortical activity from regions within the DMN and FPN, and functional connectivity was computed using lagged phase synchronization. RESULTS Compared to control subjects, the MDD group showed greater within-DMN beta 2 band (18.5-21 Hz) connectivity and greater beta 1 band (12.5-18 Hz) connectivity between the DMN and FPN. This hyperconnectivity was not observed in the remitted MDD group. However, greater beta 1 band DMN-FPN connectivity was associated with more frequent depressive episodes since first depression onset, even after controlling for current symptom severity. CONCLUSIONS These findings extend our understanding of the neurophysiological basis of abnormal resting-state functional connectivity in MDD and indicate that elevations in high-frequency DMN-FPN connectivity may be a neural marker linked to a more recurrent illness course.
Collapse
Affiliation(s)
- Alexis E Whitton
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Stephanie Deccy
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Manon L Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Poornima Kumar
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Miranda Beltzer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
50
|
Liu Q, Farahibozorg S, Porcaro C, Wenderoth N, Mantini D. Detecting large-scale networks in the human brain using high-density electroencephalography. Hum Brain Mapp 2017. [PMID: 28631281 DOI: 10.1002/hbm.23688] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
High-density electroencephalography (hdEEG) is an emerging brain imaging technique that can be used to investigate fast dynamics of electrical activity in the healthy and the diseased human brain. Its applications are however currently limited by a number of methodological issues, among which the difficulty in obtaining accurate source localizations. In particular, these issues have so far prevented EEG studies from reporting brain networks similar to those previously detected by functional magnetic resonance imaging (fMRI). Here, we report for the first time a robust detection of brain networks from resting state (256-channel) hdEEG recordings. Specifically, we obtained 14 networks previously described in fMRI studies by means of realistic 12-layer head models and exact low-resolution brain electromagnetic tomography (eLORETA) source localization, together with independent component analysis (ICA) for functional connectivity analysis. Our analyses revealed three important methodological aspects. First, brain network reconstruction can be improved by performing source localization using the gray matter as source space, instead of the whole brain. Second, conducting EEG connectivity analyses in individual space rather than on concatenated datasets may be preferable, as it permits to incorporate realistic information on head modeling and electrode positioning. Third, the use of a wide frequency band leads to an unbiased and generally accurate reconstruction of several network maps, whereas filtering data in a narrow frequency band may enhance the detection of specific networks and penalize that of others. We hope that our methodological work will contribute to rise of hdEEG as a powerful tool for brain research. Hum Brain Mapp 38:4631-4643, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Quanying Liu
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland.,Laboratory of Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Belgium.,Department of Experimental Psychology, Oxford University, United Kingdom
| | - Seyedehrezvan Farahibozorg
- Department of Experimental Psychology, Oxford University, United Kingdom.,Cognition and Brain Sciences Unit, Medical Research Council, Cambridge, United Kingdom
| | - Camillo Porcaro
- Laboratory of Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Belgium.,LET'S-ISTC, National Research Council, Rome, Italy.,Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland.,Laboratory of Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Belgium
| | - Dante Mantini
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zurich, Switzerland.,Laboratory of Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Belgium.,Department of Experimental Psychology, Oxford University, United Kingdom
| |
Collapse
|