1
|
Mihut A, O'Neill JS, Partch CL, Crosby P. PERspectives on circadian cell biology. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230483. [PMID: 39842483 PMCID: PMC11753889 DOI: 10.1098/rstb.2023.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 01/24/2025] Open
Abstract
Daily rhythms in the activities of PERIOD proteins are critical to the temporal regulation of mammalian physiology. While the molecular partners and genetic circuits that allow PERIOD to effect auto-repression and regulate transcriptional programmes are increasingly well understood, comprehension of the time-resolved mechanisms that allow PERIOD to conduct this daily dance is incomplete. Here, we consider the character and controversies of this central mammalian clock protein with a focus on its intrinsically disordered nature.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Andrei Mihut
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - John S. O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CambridgeCB2 0QH, UK
| | - Carrie L. Partch
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA95064, USA
| | - Priya Crosby
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| |
Collapse
|
2
|
Cajochen C, Schmidt C. The Circadian Brain and Cognition. Annu Rev Psychol 2025; 76:115-141. [PMID: 39441908 DOI: 10.1146/annurev-psych-022824-043825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Circadian rhythms are inherent to living organisms from single cells to humans and operate on a genetically determined cycle of approximately 24 hours. These endogenous rhythms are aligned with the external light/dark cycle of the Earth's rotation and offer the advantage of anticipating environmental changes. Circadian rhythms act directly on human cognition and indirectly through their fundamental influence on sleep/wake cycles. The strength of the circadian regulation of performance depends on the accumulated sleep debt and the cognitive domain, and it has been suggested to involve the activation of ascending arousal systems and their interaction with attention and other cognitive processes. In addition, attention-related cortical responses show extensive circadian rhythms, the phases of which vary across brain regions. This review discusses the impact of the circadian system on sleep/wake regulation and cognitive performance. It further addresses the health implications of circadian disruption, particularly in relation to mental and neurological disorders.
Collapse
Affiliation(s)
- Christian Cajochen
- Research Cluster Molecular and Cognitive Neurosciences, Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Chronobiology, Department for Adult Psychiatry, Psychiatric Hospital of the University of Basel, Basel, Switzerland;
| | - Christina Schmidt
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology, Speech and Language, University of Liège, Liège, Belgium
- Sleep & Chronobiology Laboratory, GIGA-Research, CRC Human Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Sarrazin DH, Gardner W, Marchese C, Balzinger M, Ramanathan C, Schott M, Rozov S, Veleanu M, Vestring S, Normann C, Rantamäki T, Antoine B, Barrot M, Challet E, Bourgin P, Serchov T. Prefrontal cortex molecular clock modulates development of depression-like phenotype and rapid antidepressant response in mice. Nat Commun 2024; 15:7257. [PMID: 39179578 PMCID: PMC11344080 DOI: 10.1038/s41467-024-51716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Depression is associated with dysregulated circadian rhythms, but the role of intrinsic clocks in mood-controlling brain regions remains poorly understood. We found increased circadian negative loop and decreased positive clock regulators expression in the medial prefrontal cortex (mPFC) of a mouse model of depression, and a subsequent clock countermodulation by the rapid antidepressant ketamine. Selective Bmal1KO in CaMK2a excitatory neurons revealed that the functional mPFC clock is an essential factor for the development of a depression-like phenotype and ketamine effects. Per2 silencing in mPFC produced antidepressant-like effects, while REV-ERB agonism enhanced the depression-like phenotype and suppressed ketamine action. Pharmacological potentiation of clock positive modulator ROR elicited antidepressant-like effects, upregulating plasticity protein Homer1a, synaptic AMPA receptors expression and plasticity-related slow wave activity specifically in the mPFC. Our data demonstrate a critical role for mPFC molecular clock in regulating depression-like behavior and the therapeutic potential of clock pharmacological manipulations influencing glutamatergic-dependent plasticity.
Collapse
Affiliation(s)
- David H Sarrazin
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Wilf Gardner
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Carole Marchese
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Martin Balzinger
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | | | - Marion Schott
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Stanislav Rozov
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maxime Veleanu
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Neuromodulation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomi Rantamäki
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Benedicte Antoine
- Sorbonne Université, INSERM, Centre de Recherches St-Antoine (CRSA), Paris, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
| | - Patrice Bourgin
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France
- CIRCSom (International Research Center for ChronoSomnology) & Sleep Disorders Center, Strasbourg University Hospital, Strasbourg, France
| | - Tsvetan Serchov
- Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI) UPR 3212, Strasbourg, France.
- University of Strasbourg Institute for Advanced Study (USIAS), University of Strasbourg, Strasbourg, France.
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Chatburn A, Lushington K, Cross ZR. Considerations towards a neurobiologically-informed EEG measurement of sleepiness. Brain Res 2024; 1841:149088. [PMID: 38879143 DOI: 10.1016/j.brainres.2024.149088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Sleep is a daily experience across humans and other species, yet our understanding of how and why we sleep is presently incomplete. This is particularly prevalent in research examining the neurophysiological measurement of sleepiness in humans, where several electroencephalogram (EEG) phenomena have been linked with prolonged wakefulness. This leaves researchers without a solid basis for the measurement of homeostatic sleep need and complicates our understanding of the nature of sleep. Recent theoretical and technical advances may allow for a greater understanding of the neurobiological basis of homeostatic sleep need: this may result from increases in neuronal excitability and shifts in excitation/inhibition balance in neuronal circuits and can potentially be directly measured via the aperiodic component of the EEG. Here, we review the literature on EEG-derived markers of sleepiness in humans and argue that changes in these electrophysiological markers may actually result from neuronal activity represented by changes in aperiodic markers. We argue for the use of aperiodic markers derived from the EEG in predicting sleepiness and suggest areas for future research based on these.
Collapse
Affiliation(s)
- Alex Chatburn
- Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia.
| | - Kurt Lushington
- Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia; Centre for Behaviour-Brain-Body: Justice and Society Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory, University of South Australia, Adelaide, Australia; Feinberg School of Medicine, Northwestern University, USA
| |
Collapse
|
5
|
Bódizs R, Schneider B, Ujma PP, Horváth CG, Dresler M, Rosenblum Y. Fundamentals of sleep regulation: Model and benchmark values for fractal and oscillatory neurodynamics. Prog Neurobiol 2024; 234:102589. [PMID: 38458483 DOI: 10.1016/j.pneurobio.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Homeostatic, circadian and ultradian mechanisms play crucial roles in the regulation of sleep. Evidence suggests that ratios of low-to-high frequency power in the electroencephalogram (EEG) spectrum indicate the instantaneous level of sleep pressure, influenced by factors such as individual sleep-wake history, current sleep stage, age-related differences and brain topography characteristics. These effects are well captured and reflected in the spectral exponent, a composite measure of the constant low-to-high frequency ratio in the periodogram, which is scale-free and exhibits lower interindividual variability compared to slow wave activity, potentially serving as a suitable standardization and reference measure. Here we propose an index of sleep homeostasis based on the spectral exponent, reflecting the level of membrane hyperpolarization and/or network bistability in the central nervous system in humans. In addition, we advance the idea that the U-shaped overnight deceleration of oscillatory slow and fast sleep spindle frequencies marks the biological night, providing somnologists with an EEG-index of circadian sleep regulation. Evidence supporting this assertion comes from studies based on sleep replacement, forced desynchrony protocols and high-resolution analyses of sleep spindles. Finally, ultradian sleep regulatory mechanisms are indicated by the recurrent, abrupt shifts in dominant oscillatory frequencies, with spindle ranges signifying non-rapid eye movement and non-spindle oscillations - rapid eye movement phases of the sleep cycles. Reconsidering the indicators of fundamental sleep regulatory processes in the framework of the new Fractal and Oscillatory Adjustment Model (FOAM) offers an appealing opportunity to bridge the gap between the two-process model of sleep regulation and clinical somnology.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.
| | - Bence Schneider
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Ding Y, Cen Z, Zheng Y, Qiu X, Ye Y, Chen X, Hu L, Wang B, Wang Z, Yin H, Shen C, Ming W, Ge Y, Xie F, Yang D, Ouyang Z, Wang H, Wu S, Ding M, Wang S, Luo W. Seizures and electrophysiological features in familial cortical myoclonic tremor with epilepsy 1. Ann Clin Transl Neurol 2024; 11:414-423. [PMID: 38059543 PMCID: PMC10863925 DOI: 10.1002/acn3.51961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVES To investigate and characterize epileptic seizures and electrophysiological features of familial cortical myoclonic tremor with epilepsy (FCMTE) type 1 patients in a large Chinese cohort. METHODS We systematically evaluated 125 FCMTEtype 1 patients carrying the pentanucleotide (TTTCA) repeat expansion in the SAMD12 gene in China. RESULTS Among the 28 probands, epileptic seizures (96.4%, 27/28) were the most common reason for an initial clinic visit. Ninety-seven (77.6%, 97/125) patients had experienced seizures. The seizures onset age was 36.5 ± 9.0 years, which was 6.9 years later than cortical tremors. The seizures were largely rare (<1/year, 58.8%) and occasional (1-6/year, 37.1%). Prolonged prodromes were reported in 57.7% (56/97). Thirty-one patients (24.8%, 31/125) reported photosensitivity history, and 79.5% (31/39) had a photoparoxysmal response. Interictal epileptiform discharges (IEDs) were recorded in 69.1% (56/81) of patients. Thirty-three patients showed generalized IEDs and 72.7% (24/33) were occipitally dominant, while 23 patients presented with focal IEDs with 65.2% (15/23) taking place over the occipital lobe. Overnight EEG of FCMTE patients displayed paradoxical sleep-wake fluctuation, with a higher average IED index of 0.82 ± 0.88/min during wakefulness and a lower IED index of 0.04 ± 0.06/min during non-rapid eye movement sleep stages I-II. INTERPRETATION FCMTE type 1 has a benign course of epilepsy and distinct clinical and electrophysiological features. In addition to a positive family history and cortical myoclonus tremor, the seizure prodromes, specific seizure triggers, photosensitivity, distribution of IEDs, and unique fluctuations during sleep-wake cycle are cues for proper genetic testing and an early diagnosis of FCMTE.
Collapse
Affiliation(s)
- Yao Ding
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Zhidong Cen
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yang Zheng
- Department of NeurologyZhejiang Chinese Medical University First Affiliated HospitalHangzhouZhejiangChina
| | - Xia Qiu
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yumao Ye
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Department of NeurologyQingyuan County People's HospitalLishuiZhejiangChina
| | - Xinhui Chen
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Lingli Hu
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Bo Wang
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Zhongjin Wang
- Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Houmin Yin
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Chunhong Shen
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Wenjie Ming
- Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yi Ge
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Fei Xie
- Department of NeurologySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Dehao Yang
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Zhiyuan Ouyang
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Haotian Wang
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Sheng Wu
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Meiping Ding
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Shuang Wang
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Epilepsy CenterSecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Wei Luo
- Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
7
|
Franken P, Dijk DJ. Sleep and circadian rhythmicity as entangled processes serving homeostasis. Nat Rev Neurosci 2024; 25:43-59. [PMID: 38040815 DOI: 10.1038/s41583-023-00764-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/03/2023]
Abstract
Sleep is considered essential for the brain and body. A predominant concept is that sleep is regulated by circadian rhythmicity and sleep homeostasis, processes that were posited to be functionally and mechanistically separate. Here we review and re-evaluate this concept and its assumptions using findings from recent human and rodent studies. Alterations in genes that are central to circadian rhythmicity affect not only sleep timing but also putative markers of sleep homeostasis such as electroencephalogram slow-wave activity (SWA). Perturbations of sleep change the rhythmicity in the expression of core clock genes in tissues outside the central clock. The dynamics of recovery from sleep loss vary across sleep variables: SWA and immediate early genes show an early response, but the recovery of non-rapid eye movement and rapid eye movement sleep follows slower time courses. Changes in the expression of many genes in response to sleep perturbations outlast the effects on SWA and time spent asleep. These findings are difficult to reconcile with the notion that circadian- and sleep-wake-driven processes are mutually independent and that the dynamics of sleep homeostasis are reflected in a single variable. Further understanding of how both sleep and circadian rhythmicity contribute to the homeostasis of essential physiological variables may benefit from the assessment of multiple sleep and molecular variables over longer time scales.
Collapse
Affiliation(s)
- Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK.
- UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
8
|
Putilov AA. Reaction of the endogenous regulatory mechanisms to early weekday wakeups: a review of its popular explanations in light of model-based simulations. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1285658. [PMID: 38169971 PMCID: PMC10760451 DOI: 10.3389/fnetp.2023.1285658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Introduction: Several widely held explanations of the mechanisms underlying the responses of endogenous sleep-wake-regulating processes to early weekday wakeups have been proposed. Here, they were briefly reviewed and validated against simulations based on the rhythmostatic version of a two-process model of sleep-wake regulation. Methods: Simulated sleep times on weekdays and weekends were compared with the times averaged over 1,048 samples with either earlier or later weekday risetimes. In total, 74 paired samples were collected before and during lockdown, and 93 paired samples were collected during early and later school start times. Results: The counterintuitive predictions of the simulations included the following: 1) only one night of ad lib sleep is sufficient to restore the endogenously determined sleep times after 1 day/5 days of larger/smaller reduction/extension of the sleep/wake phase of the circadian sleep-wake cycle; 2) sleep loss on weekdays is irrecoverable; 3) irrespective of the amount of such deadweight loss, sleep on weekends is not prolonged; and 4) the control of the circadian clocks over the sleep-wake cyclicity is not disrupted throughout the week. Discussion: The following popular explanations of the gaps between weekends and weekdays in sleep timing and duration were not supported by these simulations: 1) early weekday wakeups cause "social jetlag," viewed as the weekend and weekday (back and forth) shifts of the sleep phase relative to the unchanged phase of the circadian clocks, and 2) early weekday wakeups cause an accumulation of "sleep debt paid back" on weekends, or, in other terms, people can "catch-up" or "compensate" sleep on weekends.
Collapse
Affiliation(s)
- Arcady A. Putilov
- Laboratory of Nanobiotechnology and Biophysics, North-Caucasus Federal University, Stavropol, Russia
- Laboratory of Sleep/Wake Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Andrillon T, Oudiette D. What is sleep exactly? Global and local modulations of sleep oscillations all around the clock. Neurosci Biobehav Rev 2023; 155:105465. [PMID: 37972882 DOI: 10.1016/j.neubiorev.2023.105465] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Wakefulness, non-rapid eye-movement (NREM) and rapid eye-movement (REM) sleep differ from each other along three dimensions: behavioral, phenomenological, physiological. Although these dimensions often fluctuate in step, they can also dissociate. The current paradigm that views sleep as made of global NREM and REM states fail to account for these dissociations. This conundrum can be dissolved by stressing the existence and significance of the local regulation of sleep. We will review the evidence in animals and humans, healthy and pathological brains, showing different forms of local sleep and the consequences on behavior, cognition, and subjective experience. Altogether, we argue that the notion of local sleep provides a unified account for a host of phenomena: dreaming in REM and NREM sleep, NREM and REM parasomnias, intrasleep responsiveness, inattention and mind wandering in wakefulness. Yet, the physiological origins of local sleep or its putative functions remain unclear. Exploring further local sleep could provide a unique and novel perspective on how and why we sleep.
Collapse
Affiliation(s)
- Thomas Andrillon
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France; Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia.
| | - Delphine Oudiette
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France
| |
Collapse
|
10
|
Deantoni M, Baillet M, Hammad G, Berthomier C, Reyt M, Jaspar M, Meyer C, Van Egroo M, Talwar P, Lambot E, Chellappa SL, Degueldre C, Luxen A, Salmon E, Balteau E, Phillips C, Dijk DJ, Vandewalle G, Collette F, Maquet P, Muto V, Schmidt C. Association between sleep slow-wave activity and in-vivo estimates of myelin in healthy young men. Neuroimage 2023; 272:120045. [PMID: 36997136 PMCID: PMC10112274 DOI: 10.1016/j.neuroimage.2023.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/18/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Sleep has been suggested to contribute to myelinogenesis and associated structural changes in the brain. As a principal hallmark of sleep, slow-wave activity (SWA) is homeostatically regulated but also differs between individuals. Besides its homeostatic function, SWA topography is suggested to reflect processes of brain maturation. Here, we assessed whether interindividual differences in sleep SWA and its homeostatic response to sleep manipulations are associated with in-vivo myelin estimates in a sample of healthy young men. Two hundred twenty-six participants (18-31 y.) underwent an in-lab protocol in which SWA was assessed at baseline (BAS), after sleep deprivation (high homeostatic sleep pressure, HSP) and after sleep saturation (low homeostatic sleep pressure, LSP). Early-night frontal SWA, the frontal-occipital SWA ratio, as well as the overnight exponential SWA decay were computed over sleep conditions. Semi-quantitative magnetization transfer saturation maps (MTsat), providing markers for myelin content, were acquired during a separate laboratory visit. Early-night frontal SWA was negatively associated with regional myelin estimates in the temporal portion of the inferior longitudinal fasciculus. By contrast, neither the responsiveness of SWA to sleep saturation or deprivation, its overnight dynamics, nor the frontal/occipital SWA ratio were associated with brain structural indices. Our results indicate that frontal SWA generation tracks inter-individual differences in continued structural brain re-organization during early adulthood. This stage of life is not only characterized by ongoing region-specific changes in myelin content, but also by a sharp decrease and a shift towards frontal predominance in SWA generation.
Collapse
Affiliation(s)
| | | | | | | | - Mathilde Reyt
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium
| | - Mathieu Jaspar
- ARCH, Faculty of Psychology, Logopedics and Educational Sciences, University of Liège, Belgium
| | | | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, the Netherlands
| | - Puneet Talwar
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Eric Lambot
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Sarah L Chellappa
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | | | - André Luxen
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | - Eric Salmon
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium
| | | | | | - Derk-Jan Dijk
- Sleep Research Centre, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research & Technology Centre at Imperial College London and the University of Surrey, Guildford, UK
| | | | - Fabienne Collette
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium
| | - Pierre Maquet
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Department of Neurology, University Hospital (CHU) of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium.
| | - Christina Schmidt
- GIGA-CRC in Vivo Imaging, University of Liège, Belgium; Psychology and Neurosciences of Cognition (PsyNCog), Faculty of Psychology, Logopedics and Educational Sciences University of Liège, Belgium.
| |
Collapse
|
11
|
Mayà G, Gaig C, Iranzo A, Santamaria J. Temporal distribution of sleep onset REM periods and N3 sleep in the MSLT and night polysomnogram of narcolepsy type 1 and other hypersomnias. Sleep Med 2023; 102:32-38. [PMID: 36592569 DOI: 10.1016/j.sleep.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The presence of ≥2 sleep onset REM periods (SOREMP) in the Multiple Sleep Latency Test (MSLT) and the previous night polysomnogram (PSG) is part of the diagnostic criteria of narcolepsy, with every SOREMP having the same diagnostic value, despite evidence suggesting that time of SOREMP appearance and their preceding sleep stage might be relevant. We studied the temporal distribution of SOREMPs and associated sleep stages in the MSLT of patients with narcolepsy type 1 (NT1) and other hypersomnias (OH). METHODS We reviewed consecutive five-nap MSLTs and their preceding PSG from 83 untreated adult patients with hypersomnolence and ≥1 SOREMPs. Wake/N1(W/N1)-SOREMPs, N2-SOREMPs, and N3 sleep presence and time of appearance were analyzed. RESULTS Thirty-nine patients had NT1 and 44 OH. There were 183 (78%) SOREMPs in patients with NT1 and 83 (31%) in OH. Sixty-seven percent of SOREMPs in NT1 were from W/N1, and 20% -none from wake-in OH (p < 0.001). Most patients (94%) with ≥2 W/N1-SOREMPs had NT1 (specificity 95%, sensitivity 82%). In patients with NT1 but not in OH, W/N1-SOREMPs decreased throughout the day (from 79% in the 1st nap to 33% in the preceding night, p < 0.001), whereas N2-SOREMPs did not change. N3 sleep frequency in the 5th nap was higher in NT1 than in OH (28% vs. 7%, p:0.009). Nocturnal-SOREMP plus ≥4 daytime SOREMPs, Wake-REM transitions, and REM followed by N3 were only seen in NT1. CONCLUSION Measuring the sleep stage sequence and temporal distribution of SOREMP helps to identify patients with narcolepsy in the MSLT.
Collapse
Affiliation(s)
- Gerard Mayà
- Sleep Disorders Center, Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain.
| | - Carles Gaig
- Sleep Disorders Center, Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain.
| | - Alex Iranzo
- Sleep Disorders Center, Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain.
| | - Joan Santamaria
- Sleep Disorders Center, Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), CIBERNED: CB06/05/0018-ISCIII, Barcelona, Spain.
| |
Collapse
|
12
|
Elder GJ, Lazar AS, Alfonso‐Miller P, Taylor J. Sleep disturbances in Lewy body dementia: A systematic review. Int J Geriatr Psychiatry 2022; 37:10.1002/gps.5814. [PMID: 36168299 PMCID: PMC9827922 DOI: 10.1002/gps.5814] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Lewy body dementia (LBD) refers to both dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD). Sleep disturbances are common in LBD, and can include poor sleep quality, excessive daytime sleepiness (EDS), and rapid eye movement behaviour disorder (RBD). Despite the high clinical prevalence of sleep disturbances in LBD, they are under-studied relative to other dementias. The aim of the present systematic review was to examine the nature of sleep disturbances in LBD, summarise the effect of treatment studies upon sleep, and highlight specific and necessary directions for future research. METHODS Published studies in English were located by searching PubMED and PSYCArticles databases (until 10 June 2022). The search protocol was pre-registered in PROSPERO (CRD42021293490) and performed in accordance with PRISMA guidelines. RESULTS Following full-text review, a final total of 70 articles were included. These included 20 studies focussing on subjective sleep, 14 on RBD, 8 on EDS, 7 on objective sleep, and 1 on circadian rhythms. The majority of the 18 treatment studies used pharmacological interventions (n = 12), had an open-label design (n = 8), and were of low-to-moderate quality. Most studies (n = 55) included only patients with DLB. Due to the heterogeneity of the studies, we reported a narrative synthesis without meta-analysis. CONCLUSIONS At least one form of sleep disturbance may be present in as many as 90% of people with LBD. Subjectively poor sleep quality, excessive daytime sleepiness, and RBD are more common and severe in LBD relative to other dementias.
Collapse
Affiliation(s)
- Greg J. Elder
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Alpar S. Lazar
- Sleep and Brain Research UnitFaculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Pam Alfonso‐Miller
- Northumbria Sleep ResearchDepartment of PsychologyFaculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - John‐Paul Taylor
- Translational and Clinical Research InstituteNewcastle UniversityCampus for Ageing and VitalityNewcastle Upon TyneUK
| |
Collapse
|
13
|
Meyer N, Harvey AG, Lockley SW, Dijk DJ. Circadian rhythms and disorders of the timing of sleep. Lancet 2022; 400:1061-1078. [PMID: 36115370 DOI: 10.1016/s0140-6736(22)00877-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/20/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023]
Abstract
The daily alternation between sleep and wakefulness is one of the most dominant features of our lives and is a manifestation of the intrinsic 24 h rhythmicity underlying almost every aspect of our physiology. Circadian rhythms are generated by networks of molecular oscillators in the brain and peripheral tissues that interact with environmental and behavioural cycles to promote the occurrence of sleep during the environmental night. This alignment is often disturbed, however, by contemporary changes to our living environments, work or social schedules, patterns of light exposure, and biological factors, with consequences not only for sleep timing but also for our physical and mental health. Characterised by undesirable or irregular timing of sleep and wakefulness, in this Series paper we critically examine the existing categories of circadian rhythm sleep-wake disorders and the role of the circadian system in their development. We emphasise how not all disruption to daily rhythms is driven solely by an underlying circadian disturbance, and take a broader, dimensional approach to explore how circadian rhythms and sleep homoeostasis interact with behavioural and environmental factors. Very few high-quality epidemiological and intervention studies exist, and wider recognition and treatment of sleep timing disorders are currently hindered by a scarcity of accessible and objective tools for quantifying sleep and circadian physiology and environmental variables. We therefore assess emerging wearable technology, transcriptomics, and mathematical modelling approaches that promise to accelerate the integration of our knowledge in sleep and circadian science into improved human health.
Collapse
Affiliation(s)
- Nicholas Meyer
- Insomnia and Behavioural Sleep Medicine Clinic, University College London Hospitals NHS Foundation Trust, London, UK; Department of Psychosis Studies, Institute of Psychology, Psychiatry, and Neuroscience, King's College London, London, UK
| | - Allison G Harvey
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK.
| |
Collapse
|
14
|
Lok R, Woelders T, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light Increases Alertness and Not Cortisol in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (I). J Biol Rhythms 2022; 37:403-416. [PMID: 35686534 PMCID: PMC9326799 DOI: 10.1177/07487304221096945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such.
Collapse
Affiliation(s)
- R. Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
- University of Groningen, Leeuwarden, the Netherlands
| | - T. Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - M. J. van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K. Oberman
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - S. G. Fuhler
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - D. G. M. Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - R. A. Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Pandi-Perumal SR, Cardinali DP, Zaki NFW, Karthikeyan R, Spence DW, Reiter RJ, Brown GM. Timing is everything: Circadian rhythms and their role in the control of sleep. Front Neuroendocrinol 2022; 66:100978. [PMID: 35033557 DOI: 10.1016/j.yfrne.2022.100978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2021] [Accepted: 01/08/2022] [Indexed: 01/16/2023]
Abstract
Sleep and the circadian clock are intertwined and have persisted throughout history. The suprachiasmatic nucleus (SCN) orchestrates sleep by controlling circadian (Process C) and homeostatic (Process S) activities. As a "hand" on the endogenous circadian clock, melatonin is critical for sleep regulation. Light serves as a cue for sleep/wake control by activating retino-recipient cells in the SCN and subsequently suppressing melatonin. Clock genes are the molecular timekeepers that keep the 24 h cycle in place. Two main sleep and behavioural disorder diagnostic manuals have now officially recognised the importance of these processes for human health and well-being. The body's ability to respond to daily demands with the least amount of effort is maximised by carefully timing and integrating all components of sleep and waking. In the brain, the organization of timing is essential for optimal brain physiology.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Somnogen Canada Inc, College Street, Toronto, ON, Canada; Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina
| | - Nevin F W Zaki
- Department of Psychiatry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Gregory M Brown
- Centre for Addiction and Mental Health, Molecular Brain Sciences, University of Toronto, 250 College St. Toronto, ON, Canada
| |
Collapse
|
16
|
Andreani T, Rosensweig C, Sisobhan S, Ogunlana E, Kath W, Allada R. Circadian programming of the ellipsoid body sleep homeostat in Drosophila. eLife 2022; 11:e74327. [PMID: 35735904 PMCID: PMC9270026 DOI: 10.7554/elife.74327] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Homeostatic and circadian processes collaborate to appropriately time and consolidate sleep and wake. To understand how these processes are integrated, we scheduled brief sleep deprivation at different times of day in Drosophila and find elevated morning rebound compared to evening. These effects depend on discrete morning and evening clock neurons, independent of their roles in circadian locomotor activity. In the R5 ellipsoid body sleep homeostat, we identified elevated morning expression of activity dependent and presynaptic gene expression as well as the presynaptic protein BRUCHPILOT consistent with regulation by clock circuits. These neurons also display elevated calcium levels in response to sleep loss in the morning, but not the evening consistent with the observed time-dependent sleep rebound. These studies reveal the circuit and molecular mechanisms by which discrete circadian clock neurons program a homeostatic sleep center.
Collapse
Affiliation(s)
- Tomas Andreani
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Clark Rosensweig
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Shiju Sisobhan
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Emmanuel Ogunlana
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - William Kath
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Ravi Allada
- Department of Neurobiology, Northwestern UniversityChicagoUnited States
| |
Collapse
|
17
|
Lok R, Woelders T, Gordijn MCM, van Koningsveld MJ, Oberman K, Fuhler SG, Beersma DGM, Hut RA. Bright Light During Wakefulness Improves Sleep Quality in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (III). J Biol Rhythms 2022; 37:429-441. [PMID: 35730553 PMCID: PMC9326793 DOI: 10.1177/07487304221096910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness—5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep.
Collapse
Affiliation(s)
- R Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,University of Groningen, Leeuwarden, the Netherlands.,Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - T Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - M C M Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,Chrono@Work B.V., Groningen, the Netherlands
| | - M J van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - K Oberman
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - S G Fuhler
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - D G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - R A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
18
|
Putilov AA. Weekend sleep after early and later school start times confirmed a model-predicted failure to catch up sleep missed on weekdays. Sleep Breath 2022; 27:709-719. [PMID: 35657472 PMCID: PMC9164574 DOI: 10.1007/s11325-022-02648-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
Background Many people believe they sleep for longer time on weekend nights to make up for sleep lost on weekdays. However, results of simulations of risetimes and bedtimes on weekdays and weekends with a sleep–wake regulating model revealed their inability to prolong weekend sleep. In particular, they predicted identical durations of weekend sleep after weeks with relatively earlier and relatively later risetime on weekdays. In the present study, this paradoxical prediction was empirically confirmed. Methods Times in bed were calculated from weekday and weekend risetimes and bedtimes in pairs of samples of students with early and later school start time and in subsets of samples from 7 age groups with weekday risetime earlier and later than 7:00 a.m. Results Among 35 pairs of students, mean age ± standard deviation was 14.5 ± 2.9 years and among the age group samples, 21.6 ± 14.6 years. As predicted by the simulations, times in bed on weekends were practically identical in the samples with early and later school start time and in two subsets with earlier and later weekday risetime. Conclusions The model-based simulations of sleep times can inform an individual about an amount of irrecoverable loss of sleep caused by an advance shift of wakeups on weekdays. Supplementary Information The online version contains supplementary material available at 10.1007/s11325-022-02648-5.
Collapse
Affiliation(s)
- Arcady A Putilov
- Laboratory of Sleep/Wake Neurobiology, the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia. .,Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk, Russia. .,, Berlin, Germany.
| |
Collapse
|
19
|
Putilov AA, Donskaya OG. What Can Make the Difference Between Chronotypes in Sleep Duration? Testing the Similarity of Their Homeostatic Processes. Front Neurosci 2022; 16:832807. [PMID: 35299620 PMCID: PMC8920995 DOI: 10.3389/fnins.2022.832807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022] Open
Abstract
The two-process conceptualization of sleep-wake regulation suggests that the biological underpinnings of the differences between morning and evening types in sleep timing and duration might be related to either the circadian process or the homeostatic process or both. The purpose of this report was to test whether morning and evening types might have similar homeostatic processes to achieve such ultimate goal of homeostatic sleep regulation as taking an adequate amount of sleep on free days. Weekend and weekday rise- and bedtimes reported for 50 paired samples of morning and evening types were averaged and simulated with a model of sleep-wake regulation. In morning and evening types of the same age, the homeostatic components of the sleep-wake regulation were found to be identical. Therefore, the difference in the circadian process between chronotypes of similar age can account for the observed differences between them in sleep timing and duration on weekdays and weekends. It was also demonstrated that the model-based simulations might have practical implications for informing an individual about the extent of unrecoverable reduction of his/her sleep on weekdays.
Collapse
Affiliation(s)
- Arcady A. Putilov
- Laboratory of Sleep/Wake Neurobiology, The Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Olga G. Donskaya
- Research Group for Math-Modeling of Biomedical Systems, Research Institute for Molecular Biology and Biophysics of the Federal Research Centre for Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
20
|
Pedersen TT, Sunde E, Wisor J, Mrdalj J, Pallesen S, Grønli J. Sleep Homeostasis and Night Work: A Polysomnographic Study of Daytime Sleep Following Three Consecutive Simulated Night Shifts. Nat Sci Sleep 2022; 14:243-254. [PMID: 35210891 PMCID: PMC8863345 DOI: 10.2147/nss.s339639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Millions of people work at times that overlap with the habitual time for sleep. Consequently, sleep often occurs during the day. Daytime sleep is, however, characterized by reduced sleep duration. Despite preserved time spent in deep NREM sleep (stage N3), daytime sleep is subjectively rated as less restorative. Knowledge on how night work influences homeostatic sleep pressure is limited. Therefore, we aimed to explore the effect of three consecutive simulated night shifts on daytime sleep and markers of sleep homeostasis. PATIENTS AND METHODS We performed continuous EEG, EMG and EOG recordings in the subjects' home setting for one nighttime sleep opportunity, and for the daytime sleep opportunities following three consecutive simulated night shifts. RESULTS For all daytime sleep opportunities, total sleep time was reduced compared to nighttime sleep. While time spent in stage N3 was preserved, sleep pressure at sleep onset, measured by slow wave activity (1-4 Hz), was higher than nighttime sleep and higher on day 3 than on day 1 and 2. Elevated EEG power during daytime sleep was sustained through 6 h of time in bed. Slow wave energy was not significantly different from nighttime sleep after 6 h, reflecting a less efficient relief of sleep pressure. CONCLUSION Adaptation to daytime sleep following three consecutive simulated night shifts is limited. The increased homeostatic response and continuation of sleep pressure relief even after 6 h of sleep, are assumed to reflect a challenge for appropriate homeostatic reduction to occur.
Collapse
Affiliation(s)
- Torhild T Pedersen
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Erlend Sunde
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Jonathan Wisor
- Sleep and Performance Research Center and Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jelena Mrdalj
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Ståle Pallesen
- Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway.,Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway.,Optentia Research Focus Area, North-West University, Vanderbijlpark, South Africa
| | - Janne Grønli
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Vaisvilaite L, Hushagen V, Grønli J, Specht K. Time-of-Day Effects in Resting-State Functional Magnetic Resonance Imaging: Changes in Effective Connectivity and Blood Oxygenation Level Dependent Signal. Brain Connect 2021; 12:515-523. [PMID: 34636252 PMCID: PMC9419957 DOI: 10.1089/brain.2021.0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction: In the light of the ongoing replication crisis in the field of neuroimaging, it is necessary to assess the possible exogenous and endogenous factors that may affect functional magnetic resonance imaging (fMRI). The current project investigated time-of-day effects in the spontaneous fluctuations (<0.1 Hz) of the blood oxygenation level dependent (BOLD) signal. Method: Using data from the human connectome project release S1200, cross-spectral density dynamic causal modeling (DCM) was used to analyze time-dependent effects on the hemodynamic response and effective connectivity parameters. The DCM analysis covered three networks, namely the default mode network, the central executive network, and the saliency network. Hierarchical group-parametric empirical Bayes (PEB) was used to test varying design-matrices against the time-of-day model. Results: Hierarchical group-PEB found no support for changes in effective connectivity, whereas the hemodynamic parameters exhibited a significant time-of-day dependent effect, indicating a diurnal vascular effect that might affect the measured BOLD signal in the absence of any diurnal variations of the underlying neuronal activations and effective connectivity. Conclusion: We conclude that these findings urge the need to account for the time of data acquisition in future MRI studies and suggest that time-of-day dependent metabolic variations contribute to reduced reliability in resting-state fMRI studies. Impact statement The results from this study suggest that the circadian mechanism influences the blood oxygenation level dependent signal in resting-state functional magnetic resonance imaging (fMRI). The current study urges to record and report the time of fMRI scan acquisition in future research, as it may increase the replicability of findings. Both exploratory and clinical studies would benefit by incorporating this small change in fMRI protocol, which to date has been often overlooked.
Collapse
Affiliation(s)
- Liucija Vaisvilaite
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,The publication in the preprint server is available at https://www.biorxiv.org/content/10.1101/2020.08.20.258517v2
| | - Vetle Hushagen
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,The publication in the preprint server is available at https://www.biorxiv.org/content/10.1101/2020.08.20.258517v2
| | - Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,The publication in the preprint server is available at https://www.biorxiv.org/content/10.1101/2020.08.20.258517v2
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical and Imaging Visualization Centre, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway.,The publication in the preprint server is available at https://www.biorxiv.org/content/10.1101/2020.08.20.258517v2
| |
Collapse
|
22
|
Schmid SR, Höhn C, Bothe K, Plamberger CP, Angerer M, Pletzer B, Hoedlmoser K. How Smart Is It to Go to Bed with the Phone? The Impact of Short-Wavelength Light and Affective States on Sleep and Circadian Rhythms. Clocks Sleep 2021; 3:558-580. [PMID: 34842631 PMCID: PMC8628671 DOI: 10.3390/clockssleep3040040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, we presented our preliminary results (N = 14) investigating the effects of short-wavelength light from a smartphone during the evening on sleep and circadian rhythms (Höhn et al., 2021). Here, we now demonstrate our full sample (N = 33 men), where polysomnography and body temperature were recorded during three experimental nights and subjects read for 90 min on a smartphone with or without a filter or from a book. Cortisol, melatonin and affectivity were assessed before and after sleep. These results confirm our earlier findings, indicating reduced slow-wave-sleep and -activity in the first night quarter after reading on the smartphone without a filter. The same was true for the cortisol-awakening-response. Although subjective sleepiness was not affected, the evening melatonin increase was attenuated in both smartphone conditions. Accordingly, the distal-proximal skin temperature gradient increased less after short-wavelength light exposure than after reading a book. Interestingly, we could unravel within this full dataset that higher positive affectivity in the evening predicted better subjective but not objective sleep quality. Our results show disruptive consequences of short-wavelength light for sleep and circadian rhythmicity with a partially attenuating effect of blue-light filters. Furthermore, affective states influence subjective sleep quality and should be considered, whenever investigating sleep and circadian rhythms.
Collapse
Affiliation(s)
- Sarah R. Schmid
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Christopher Höhn
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Kathrin Bothe
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Christina P. Plamberger
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Monika Angerer
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Belinda Pletzer
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology, University of Salzburg, 5020 Salzburg, Austria; (S.R.S.); (C.H.); (K.B.); (C.P.P.); (M.A.)
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, 5020 Salzburg, Austria;
| |
Collapse
|
23
|
Lechat B, Scott H, Naik G, Hansen K, Nguyen DP, Vakulin A, Catcheside P, Eckert DJ. New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences. Front Neurosci 2021; 15:751730. [PMID: 34690688 PMCID: PMC8530106 DOI: 10.3389/fnins.2021.751730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Current approaches to quantify and diagnose sleep disorders and circadian rhythm disruption are imprecise, laborious, and often do not relate well to key clinical and health outcomes. Newer emerging approaches that aim to overcome the practical and technical constraints of current sleep metrics have considerable potential to better explain sleep disorder pathophysiology and thus to more precisely align diagnostic, treatment and management approaches to underlying pathology. These include more fine-grained and continuous EEG signal feature detection and novel oxygenation metrics to better encapsulate hypoxia duration, frequency, and magnitude readily possible via more advanced data acquisition and scoring algorithm approaches. Recent technological advances may also soon facilitate simple assessment of circadian rhythm physiology at home to enable sleep disorder diagnostics even for “non-circadian rhythm” sleep disorders, such as chronic insomnia and sleep apnea, which in many cases also include a circadian disruption component. Bringing these novel approaches into the clinic and the home settings should be a priority for the field. Modern sleep tracking technology can also further facilitate the transition of sleep diagnostics from the laboratory to the home, where environmental factors such as noise and light could usefully inform clinical decision-making. The “endpoint” of these new and emerging assessments will be better targeted therapies that directly address underlying sleep disorder pathophysiology via an individualized, precision medicine approach. This review outlines the current state-of-the-art in sleep and circadian monitoring and diagnostics and covers several new and emerging approaches to better define sleep disruption and its consequences.
Collapse
Affiliation(s)
- Bastien Lechat
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Hannah Scott
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Ganesh Naik
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Kristy Hansen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Duc Phuc Nguyen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Andrew Vakulin
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Peter Catcheside
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
24
|
A Novel EEG Derived Measure of Disrupted Delta Wave Activity during Sleep Predicts All-Cause Mortality Risk. Ann Am Thorac Soc 2021; 19:649-658. [PMID: 34672877 DOI: 10.1513/annalsats.202103-315oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Conventional markers of sleep disturbance, based on manual electroencephalography scoring, may not adequately capture important features of more fundamental electroencephalography-related sleep disturbance. OBJECTIVES This study aimed to determine if more comprehensive power-spectral measures of delta wave activity during sleep are stronger independent predictors of mortality than conventional sleep quality and disturbance metrics. METHODS Power spectral analysis of the delta frequency band and spectral entropy-based markers to quantify disruption of electroencephalography delta power during sleep were performed to examine potential associations with mortality risk in the Sleep Heart Health Study cohort (N = 5804). Adjusted Cox proportional hazard models were used to determine the association between disrupted delta wave activity at baseline and all-cause mortality over an ~11y follow-up period. RESULTS Disrupted delta electroencephalography power during sleep was associated with a 32% increased risk of all-cause mortality compared with no fragmentation (hazard ratios 1.32 [95% confidence interval 1.14, 1.50], after adjusting for total sleep time and other clinical and life-style related covariates including sleep apnea. The association was of similar magnitude to a reduction in total sleep time from 6.5h to 4.25h. Conventional measures of sleep quality, including wake after sleep onset and arousal index were not predictive of all-cause mortality. CONCLUSIONS Delta wave activity disruption during sleep is strongly associated with all-cause mortality risk, independent of traditional potential confounders. Future investigation into the potential role of delta sleep disruption on other specific adverse health consequences such as cardiometabolic, mental health and safety outcomes has considerable potential to provide unique neurophysiological insight.
Collapse
|
25
|
Restoring the Molecular Clockwork within the Suprachiasmatic Hypothalamus of an Otherwise Clockless Mouse Enables Circadian Phasing and Stabilization of Sleep-Wake Cycles and Reverses Memory Deficits. J Neurosci 2021; 41:8562-8576. [PMID: 34446572 PMCID: PMC8513698 DOI: 10.1523/jneurosci.3141-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/29/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The timing and quality of sleep-wake cycles are regulated by interacting circadian and homeostatic mechanisms. Although the suprachiasmatic nucleus (SCN) is the principal clock, circadian clocks are active across the brain and the respective sleep-regulatory roles of SCN and local clocks are unclear. To determine the specific contribution(s) of the SCN, we used virally mediated genetic complementation, expressing Cryptochrome1 (Cry1) to establish circadian molecular competence in the suprachiasmatic hypothalamus of globally clockless, arrhythmic male Cry1/Cry2-null mice. Under free-running conditions, the rest/activity behavior of Cry1/Cry2-null controls expressing EGFP (SCNCon) was arrhythmic, whereas Cry1-complemented mice (SCNCry1) had coherent circadian behavior, comparable to that of Cry1,2-competent wild types (WTs). In SCNCon mice, sleep-wakefulness, assessed by electroencephalography (EEG)/electromyography (EMG), lacked circadian organization. In SCNCry1 mice, however, it matched WTs, with consolidated vigilance states [wake, rapid eye movement sleep (REMS) and non-REMS (NREMS)] and rhythms in NREMS δ power and expression of REMS within total sleep (TS). Wakefulness in SCNCon mice was more fragmented than in WTs, with more wake-NREMS-wake transitions. This disruption was reversed in SCNCry1 mice. Following sleep deprivation (SD), all mice showed a homeostatic increase in NREMS δ power, although the SCNCon mice had reduced NREMS during the inactive (light) phase of recovery. In contrast, the dynamics of homeostatic responses in the SCNCry1 mice were comparable to WTs. Finally, SCNCon mice exhibited poor sleep-dependent memory but this was corrected in SCNCry1mice. In clockless mice, circadian molecular competence focused solely on the SCN rescued the architecture and consolidation of sleep-wake and sleep-dependent memory, highlighting its dominant role in timing sleep. SIGNIFICANCE STATEMENT The circadian timing system regulates sleep-wake cycles. The hypothalamic suprachiasmatic nucleus (SCN) is the principal circadian clock, but the presence of multiple local brain and peripheral clocks mean the respective roles of SCN and other clocks in regulating sleep are unclear. We therefore used virally mediated genetic complementation to restore molecular circadian functions in the suprachiasmatic hypothalamus, focusing on the SCN, in otherwise genetically clockless, arrhythmic mice. This initiated circadian activity-rest cycles, and circadian sleep-wake cycles, circadian patterning to the intensity of non-rapid eye movement sleep (NREMS) and circadian control of REMS as a proportion of total sleep (TS). Consolidation of sleep-wake established normal dynamics of sleep homeostasis and enhanced sleep-dependent memory. Thus, the suprachiasmatic hypothalamus, alone, can direct circadian regulation of sleep-wake.
Collapse
|
26
|
Tarokh L, Van Reen E, Achermann P, Carskadon MA. Naps not as effective as a night of sleep at dissipating sleep pressure. J Sleep Res 2021; 30:e13295. [PMID: 33622020 PMCID: PMC10948110 DOI: 10.1111/jsr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/29/2022]
Abstract
The two-process model of sleep posits that two processes interact to regulate sleep and wake: a homeostatic (Process S) and a circadian process (Process C). Process S compensates for sleep loss by increasing sleep duration and intensity. Process C gates the timing of sleep/wake favouring sleep during the circadian night in humans. In this study, we examined whether taking six naps throughout a 24-hr period would result in the same amount of dissipation of homeostatic pressure at the end of the day as a night of sleep, when time in bed is equivalent. Data from 46 participants (10-23 years; mean = 14.5 [± 2.9]; 25 females) were analysed. Slow-wave energy, normalized to account for individual differences in slow-wave activity, was used as a measure of sleep homeostasis. In the nap condition, slow-wave energy of six naps distributed equally during a 24-hr period was calculated. In the baseline condition, slow-wave energy was measured after 9-hr time in bed. A paired t-test was used to compare nap and baseline conditions. A linear regression was used to examine whether slow-wave energy varied as a function of age. Slow-wave energy was greater during baseline than the nap condition (p < .001). No association between age and slow-wave energy was found for baseline or nap conditions. Our findings indicate that multiple naps throughout the day are not as effective at dissipating sleep pressure as a night of sleep. This is likely due to the influence of the circadian system, which staves off sleep during certain times of the day.
Collapse
Affiliation(s)
- Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Eliza Van Reen
- Sleep for Science Research Lab of Brown University, Providence, RI, USA
- Chronobiology and Sleep Research, EP Bradley Hospital, Providence, RI, USA
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- The KEY institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
| | - Mary A. Carskadon
- Sleep for Science Research Lab of Brown University, Providence, RI, USA
- Chronobiology and Sleep Research, EP Bradley Hospital, Providence, RI, USA
- Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Lehnertz K, Rings T, Bröhl T. Time in Brain: How Biological Rhythms Impact on EEG Signals and on EEG-Derived Brain Networks. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:755016. [PMID: 36925573 PMCID: PMC10013076 DOI: 10.3389/fnetp.2021.755016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022]
Abstract
Electroencephalography (EEG) is a widely employed tool for exploring brain dynamics and is used extensively in various domains, ranging from clinical diagnosis via neuroscience, cognitive science, cognitive psychology, psychophysiology, neuromarketing, neurolinguistics, and pharmacology to research on brain computer interfaces. EEG is the only technique that enables the continuous recording of brain dynamics over periods of time that range from a few seconds to hours and days and beyond. When taking long-term recordings, various endogenous and exogenous biological rhythms may impinge on characteristics of EEG signals. While the impact of the circadian rhythm and of ultradian rhythms on spectral characteristics of EEG signals has been investigated for more than half a century, only little is known on how biological rhythms influence characteristics of brain dynamics assessed with modern EEG analysis techniques. At the example of multiday, multichannel non-invasive and invasive EEG recordings, we here discuss the impact of biological rhythms on temporal changes of various characteristics of human brain dynamics: higher-order statistical moments and interaction properties of multichannel EEG signals as well as local and global characteristics of EEG-derived evolving functional brain networks. Our findings emphasize the need to take into account the impact of biological rhythms in order to avoid erroneous statements about brain dynamics and about evolving functional brain networks.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| |
Collapse
|
28
|
Weibel J, Lin YS, Landolt HP, Berthomier C, Brandewinder M, Kistler J, Rehm S, Rentsch KM, Meyer M, Borgwardt S, Cajochen C, Reichert CF. Regular Caffeine Intake Delays REM Sleep Promotion and Attenuates Sleep Quality in Healthy Men. J Biol Rhythms 2021; 36:384-394. [PMID: 34024173 PMCID: PMC8276335 DOI: 10.1177/07487304211013995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute caffeine intake can attenuate homeostatic sleep pressure and worsen sleep quality. Caffeine intake—particularly in high doses and close to bedtime—may also affect circadian-regulated rapid eye movement (REM) sleep promotion, an important determinant of subjective sleep quality. However, it is not known whether such changes persist under chronic caffeine consumption during daytime. Twenty male caffeine consumers (26.4 ± 4 years old, habitual caffeine intake 478.1 ± 102.8 mg/day) participated in a double-blind crossover study. Each volunteer completed a caffeine (3 × 150 mg caffeine daily for 10 days), a withdrawal (3 × 150 mg caffeine for 8 days then placebo), and a placebo condition. After 10 days of controlled intake and a fixed sleep-wake cycle, we recorded electroencephalography for 8 h starting 5 h after habitual bedtime (i.e., start on average at 04:22 h which is around the peak of circadian REM sleep promotion). A 60-min evening nap preceded each sleep episode and reduced high sleep pressure levels. While total sleep time and sleep architecture did not significantly differ between the three conditions, REM sleep latency was longer after daily caffeine intake compared with both placebo and withdrawal. Moreover, the accumulation of REM sleep proportion was delayed, and volunteers reported more difficulties with awakening after sleep and feeling more tired upon wake-up in the caffeine condition compared with placebo. Our data indicate that besides acute intake, also regular daytime caffeine intake affects REM sleep regulation in men, such that it delays circadian REM sleep promotion when compared with placebo. Moreover, the observed caffeine-induced deterioration in the quality of awakening may suggest a potential motive to reinstate caffeine intake after sleep.
Collapse
Affiliation(s)
- Janine Weibel
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Yu-Shiuan Lin
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.,Neuropsychiatry and Brain Imaging, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.,Sleep & Health Zürich, University Center of Competence, University of Zürich, Zürich, Switzerland
| | | | | | - Joshua Kistler
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sophia Rehm
- Laboratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina M Rentsch
- Laboratory Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Martin Meyer
- Clinical Sleep Laboratory, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Neuropsychiatry and Brain Imaging, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Carolin F Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland.,Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Maywood ES, Chesham JE, Winsky-Sommerer R, Smyllie NJ, Hastings MH. Circadian Chimeric Mice Reveal an Interplay Between the Suprachiasmatic Nucleus and Local Brain Clocks in the Control of Sleep and Memory. Front Neurosci 2021; 15:639281. [PMID: 33679317 PMCID: PMC7935531 DOI: 10.3389/fnins.2021.639281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Sleep is regulated by circadian and homeostatic processes. Whereas the suprachiasmatic nucleus (SCN) is viewed as the principal mediator of circadian control, the contributions of sub-ordinate local circadian clocks distributed across the brain are unknown. To test whether the SCN and local brain clocks interact to regulate sleep, we used intersectional genetics to create temporally chimeric CK1ε Tau mice, in which dopamine 1a receptor (Drd1a)-expressing cells, a powerful pacemaking sub-population of the SCN, had a cell-autonomous circadian period of 24 h whereas the rest of the SCN and the brain had intrinsic periods of 20 h. We compared these mice with non-chimeric 24 h wild-types (WT) and 20 h CK1ε Tau mutants. The periods of the SCN ex vivo and the in vivo circadian behavior of chimeric mice were 24 h, as with WT, whereas other tissues in the chimeras had ex vivo periods of 20 h, as did all tissues from Tau mice. Nevertheless, the chimeric SCN imposed its 24 h period on the circadian patterning of sleep. When compared to 24 h WT and 20 h Tau mice, however, the sleep/wake cycle of chimeric mice under free-running conditions was disrupted, with more fragmented sleep and an increased number of short NREMS and REMS episodes. Even though the chimeras could entrain to 20 h light:dark cycles, the onset of activity and wakefulness was delayed, suggesting that SCN Drd1a-Cre cells regulate the sleep/wake transition. Chimeric mice also displayed a blunted homeostatic response to 6 h sleep deprivation (SD) with an impaired ability to recover lost sleep. Furthermore, sleep-dependent memory was compromised in chimeras, which performed significantly worse than 24 h WT and 20 h Tau mice. These results demonstrate a central role for the circadian clocks of SCN Drd1a cells in circadian sleep regulation, but they also indicate a role for extra-SCN clocks. In circumstances where the SCN and sub-ordinate local clocks are temporally mis-aligned, the SCN can maintain overall circadian control, but sleep consolidation and recovery from SD are compromised. The importance of temporal alignment between SCN and extra-SCN clocks for maintaining vigilance state, restorative sleep and memory may have relevance to circadian misalignment in humans, with environmental (e.g., shift work) causes.
Collapse
Affiliation(s)
| | | | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicola Jane Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Sion B, Bégou M. Can chronopharmacology improve the therapeutic management of neurological diseases? Fundam Clin Pharmacol 2021; 35:564-581. [PMID: 33539566 DOI: 10.1111/fcp.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
The importance of circadian rhythm dysfunctions in the pathophysiology of neurological diseases has been highlighted recently. Chronopharmacology principles imply that tailoring the timing of treatments to the circadian rhythm of individual patients could optimize therapeutic management. According to these principles, chronopharmacology takes into account the individual differences in patients' clocks, the rhythmic changes in the organism sensitivity to therapeutic and side effects of drugs, and the predictable time variations of disease. This review examines the current literature on chronopharmacology of neurological diseases focusing its scope on epilepsy, Alzheimer and Parkinson diseases, and neuropathic pain, even if other neurological diseases could have been analyzed. While the results of the studies discussed in this review point to a potential therapeutic benefit of chronopharmacology in neurological diseases, the field is still in its infancy. Studies including a sufficiently large number of patients and measuring gold standard markers of the circadian rhythmicity are still needed to evaluate the beneficial effect of administration times over the 24-hour day but also of clock modulating drugs.
Collapse
Affiliation(s)
- Benoit Sion
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Mélina Bégou
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| |
Collapse
|
31
|
Kaduk SI, Roberts APJ, Stanton NA. The circadian effect on psychophysiological driver state monitoring. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2020. [DOI: 10.1080/1463922x.2020.1842548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sylwia I. Kaduk
- Human Factors Engineering, Transportation Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Aaron P. J. Roberts
- Human Factors Engineering, Transportation Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Neville A. Stanton
- Human Factors Engineering, Transportation Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Zhong D, Luo S, Zheng L, Zhang Y, Jin R. Epilepsy Occurrence and Circadian Rhythm: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front Neurol 2020; 11:984. [PMID: 33250835 PMCID: PMC7674827 DOI: 10.3389/fneur.2020.00984] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: This study aimed to review the research status and to demonstrate the hot spots and frontiers of epilepsy and circadian rhythm via CiteSpace. Method: We searched Web of Science (WoS) for studies related to epilepsy and circadian rhythm from inception to 2020. CiteSpace was used to generate network maps about the collaborations between authors, countries, and institutions and reveal hot spots and frontiers of epilepsy and circadian rhythm. Results: A total of 704 studies related to epilepsy and circadian rhythm from the WoS were retrieved. Sanchez-Vazquez FJ was the most prolific author (17 articles). The USA and University of Murcia were the leading country and institution in this field with 219 and 22 publications, respectively. There were active collaborations among the authors, countries, and institutions. Hot topics focused on the interaction between epilepsy and circadian rhythm, as well as possible novel treatments. Conclusions: Based on the results of CiteSpace, the current study suggested active cooperation between authors, countries, and institutions. Major ongoing research trends include the circadian rhythm of epilepsy based on different epileptic focus and the interaction between epilepsy and circadian rhythm, especially through melatonin, sleep–wake cycles, and clock genes, which may implicate possible treatments (such as chronotherapy, neural stem cells transplantation) for epilepsy in the future.
Collapse
Affiliation(s)
- Dongling Zhong
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanxia Luo
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| | - Linli Zheng
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Zivi P, De Gennaro L, Ferlazzo F. Sleep in Isolated, Confined, and Extreme (ICE): A Review on the Different Factors Affecting Human Sleep in ICE. Front Neurosci 2020; 14:851. [PMID: 32848590 PMCID: PMC7433404 DOI: 10.3389/fnins.2020.00851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
The recently renewed focus on the human exploration of outer space has boosted the interest toward a variety of questions regarding health of astronauts and cosmonauts. Among the others, sleep has traditionally been considered a central issue. To extend the research chances, human sleep alterations have been investigated in several analog environments, called ICEs (Isolated, Confined, and Extreme). ICEs share different features with the spaceflight itself and have been implemented in natural facilities and artificial simulations. The current paper presents a systematic review of research findings on sleep disturbances in ICEs. We looked for evidence from studies run in polar settings (mostly Antarctica) during space missions, Head-Down Bed-Rest protocols, simulations, and in a few ICE-resembling settings such as caves and submarines. Even though research has shown that sleep can be widely affected in ICEs, mostly evidencing general and non-specific changes in REM and SWS sleep, results show a very blurred picture, often with contradictory findings. The variable coexistence of the many factors characterizing the ICE environments (such as isolation and confinement, microgravity, circadian disentrainment, hypoxia, noise levels, and radiations) does not provide a clear indication of what role is played by each factor per se or in association one with each other in determining the pattern observed, and how. Most importantly, a number of methodological limitations contribute immensely to the unclear pattern of results reported in the literature. Among them, small sample sizes, small effect sizes, and large variability among experimental conditions, protocols, and measurements make it difficult to draw hints about whether sleep alterations in ICEs do exist due to the specific environmental characteristics, and which of them plays a major role. More systematic and cross-settings research is needed to address the mechanisms underlying the sleep alterations in ICE environments and possibly develop appropriate countermeasures to be used during long-term space missions.
Collapse
Affiliation(s)
| | | | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
34
|
Yang J, Pan Y, Wang T, Zhang X, Wen J, Luo Y. Sleep-Dependent Directional Interactions of the Central Nervous System-Cardiorespiratory Network. IEEE Trans Biomed Eng 2020; 68:639-649. [PMID: 32746063 DOI: 10.1109/tbme.2020.3009950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We investigated the nature of interactions between the central nervous system (CNS) and the cardiorespiratory system during sleep. METHODS Overnight polysomnography recordings were obtained from 33 healthy individuals. The relative spectral powers of five frequency bands, three ECG morphological features and respiratory rate were obtained from six EEG channels, ECG, and oronasal airflow, respectively. The synchronous feature series were interpolated to 1 Hz to retain the high time-resolution required to detect rapid physiological variations. CNS-cardiorespiratory interaction networks were built for each EEG channel and a directionality analysis was conducted using multivariate transfer entropy. Finally, the difference in interaction between Deep, Light, and REM sleep (DS, LS, and REM) was studied. RESULTS Bidirectional interactions existed in central-cardiorespiratory networks, and the dominant direction was from the cardiorespiratory system to the brain during all sleep stages. Sleep stages had evident influence on these interactions, with the strength of information transfer from heart rate and respiration rate to the brain gradually increasing with the sequence of REM, LS, and DS. Furthermore, the occipital lobe appeared to receive the most input from the cardiorespiratory system during LS. Finally, different ECG morphological features were found to be involved with various central-cardiac and cardiac-respiratory interactions. CONCLUSION These findings reveal detailed information regarding CNS-cardiorespiratory interactions during sleep and provide new insights into understanding of sleep control mechanisms. SIGNIFICANCE Our approach may facilitate the investigation of the pathological cardiorespiratory complications of sleep disorders.
Collapse
|
35
|
|
36
|
D'Ambrosio S, Castelnovo A, Guglielmi O, Nobili L, Sarasso S, Garbarino S. Sleepiness as a Local Phenomenon. Front Neurosci 2019; 13:1086. [PMID: 31680822 PMCID: PMC6813205 DOI: 10.3389/fnins.2019.01086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Sleep occupies a third of our life and is a primary need for all animal species studied so far. Nonetheless, chronic sleep restriction is a growing source of morbidity and mortality in both developed and developing countries. Sleep loss is associated with the subjective feeling of sleepiness and with decreased performance, as well as with detrimental effects on general health, cognition, and emotions. The ideas that small brain areas can be asleep while the rest of the brain is awake and that local sleep may account for at least some of the cognitive and behavioral manifestations of sleepiness are making their way into the scientific community. We herein clarify the different ways sleep can intrude into wakefulness, summarize recent scientific advances in the field, and offer some hypotheses that help framing sleepiness as a local phenomenon.
Collapse
Affiliation(s)
- Sasha D'Ambrosio
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi di Milano, Milan, Italy
| | - Anna Castelnovo
- Sleep and Epilepsy Center, Neurocenter of Southern Switzerland, Civic Hospital (EOC) of Lugano, Lugano, Switzerland
| | - Ottavia Guglielmi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, Genoa, Italy
| | - Lino Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS, Child Neuropsychiatry Unit, Giannina Gaslini Institute, Genoa, Italy
| | - Simone Sarasso
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università Degli Studi di Milano, Milan, Italy
| | - Sergio Garbarino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
37
|
Guillaumin MCC, McKillop LE, Cui N, Fisher SP, Foster RG, de Vos M, Peirson SN, Achermann P, Vyazovskiy VV. Cortical region-specific sleep homeostasis in mice: effects of time of day and waking experience. Sleep 2019; 41:4985519. [PMID: 29697841 PMCID: PMC6047413 DOI: 10.1093/sleep/zsy079] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Sleep–wake history, wake behaviors, lighting conditions, and circadian time influence sleep, but neither their relative contribution nor the underlying mechanisms are fully understood. The dynamics of electroencephalogram (EEG) slow-wave activity (SWA) during sleep can be described using the two-process model, whereby the parameters of homeostatic Process S are estimated using empirical EEG SWA (0.5–4 Hz) in nonrapid eye movement sleep (NREMS), and the 24 hr distribution of vigilance states. We hypothesized that the influence of extrinsic factors on sleep homeostasis, such as the time of day or wake behavior, would manifest in systematic deviations between empirical SWA and model predictions. To test this hypothesis, we performed parameter estimation and tested model predictions using NREMS SWA derived from continuous EEG recordings from the frontal and occipital cortex in mice. The animals showed prolonged wake periods, followed by consolidated sleep, both during the dark and light phases, and wakefulness primarily consisted of voluntary wheel running, learning a new motor skill or novel object exploration. Simulated SWA matched empirical levels well across conditions, and neither waking experience nor time of day had a significant influence on the fit between data and simulation. However, we consistently observed that Process S declined during sleep significantly faster in the frontal than in the occipital area of the neocortex. The striking resilience of the model to specific wake behaviors, lighting conditions, and time of day suggests that intrinsic factors underpinning the dynamics of Process S are robust to extrinsic influences, despite their major role in shaping the overall amount and distribution of vigilance states across 24 hr.
Collapse
Affiliation(s)
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nanyi Cui
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maarten de Vos
- Department of Engineering Science, University of Oxford, Headington, United Kingdom
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Barone I, Hawks-Mayer H, Lipton JO. Mechanisms of sleep and circadian ontogeny through the lens of neurodevelopmental disorders. Neurobiol Learn Mem 2019; 160:160-172. [DOI: 10.1016/j.nlm.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
39
|
Lázár ZI, Dijk DJ, Lázár AS. Infraslow oscillations in human sleep spindle activity. J Neurosci Methods 2019; 316:22-34. [PMID: 30571990 PMCID: PMC6390176 DOI: 10.1016/j.jneumeth.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/29/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND It has previously been reported that EEG sigma (10-15 Hz) activity during sleep exhibits infraslow oscillations (ISO) with a period of 50 s. However, a detailed analysis of the ISO of individually identified sleep spindles is not available. NEW METHOD We investigated basic properties of ISO during baseline sleep of 34 healthy young human participants using new and established methods. The analyses focused on fast sleep spindle and sigma activity (13-15 Hz) in NREM stage 2 and slow wave sleep (SWS). To describe ISO in sigma activity we analyzed power of power of the EEG signal. For the study of ISO in sleep spindle activity we applied a new method in which the EEG signal was reduced to a spindle on/off binary square signal. Its spectral properties were contrasted to that of a square signal wherein the same spindles and also the inter spindle intervals were permutated randomly. This approach was validated using surrogate data with imposed ISO modulation. RESULTS We confirm the existence of ISO in sigma activity albeit with a frequency below the previously reported 0.02 Hz. These ISO are most prominent in the high sigma band and over the centro-parieto-occipital regions. A similar modulation is present in spindle activity. ISO in sleep spindles are most prominent in the centro-parieto-occipital regions, left hemisphere and second half of the night independent of the number of spindles. CONCLUSIONS The comparison of spectral properties of binary event signals and permutated event signals is effective in detecting slow oscillatory phenomena.
Collapse
Affiliation(s)
- Zsolt I Lázár
- Babeş-Bolyai University, Faculty of Physics, RO-400084 Cluj-Napoca, Str. Kogălniceanu Nr. 1, Romania
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alpár S Lázár
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
40
|
Abstract
Sleep and circadian rhythms are regulated across multiple functional, spatial and temporal levels: from genes to networks of coupled neurons and glial cells, to large scale brain dynamics and behaviour. The dynamics at each of these levels are complex and the interaction between the levels is even more so, so research have mostly focused on interactions within the levels to understand the underlying mechanisms—the so-called reductionist approach. Mathematical models were developed to test theories of sleep regulation and guide new experiments at each of these levels and have become an integral part of the field. The advantage of modelling, however, is that it allows us to simulate and test the dynamics of complex biological systems and thus provides a tool to investigate the connections between the different levels and study the system as a whole. In this paper I review key models of sleep developed at different physiological levels and discuss the potential for an integrated systems biology approach for sleep regulation across these levels. I also highlight the necessity of building mechanistic connections between models of sleep and circadian rhythms across these levels.
Collapse
Affiliation(s)
- Svetlana Postnova
- School of Physics, University of Sydney, Sydney 2006, NSW, Australia;
- Center of Excellence for Integrative Brain Function, University of Sydney, Sydney 2006, NSW, Australia
- Charles Perkins Center, University of Sydney, Sydney 2006, NSW, Australia
| |
Collapse
|
41
|
Dijk DJ, Landolt HP. Sleep Physiology, Circadian Rhythms, Waking Performance and the Development of Sleep-Wake Therapeutics. Handb Exp Pharmacol 2019; 253:441-481. [PMID: 31254050 DOI: 10.1007/164_2019_243] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Disturbances of the sleep-wake cycle are highly prevalent and diverse. The aetiology of some sleep disorders, such as circadian rhythm sleep-wake disorders, is understood at the conceptual level of the circadian and homeostatic regulation of sleep and in part at a mechanistic level. Other disorders such as insomnia are more difficult to relate to sleep regulatory mechanisms or sleep physiology. To further our understanding of sleep-wake disorders and the potential of novel therapeutics, we discuss recent findings on the neurobiology of sleep regulation and circadian rhythmicity and its relation with the subjective experience of sleep and the quality of wakefulness. Sleep continuity and to some extent REM sleep emerge as determinants of subjective sleep quality and waking performance. The effects of insufficient sleep primarily concern subjective and objective sleepiness as well as vigilant attention, whereas performance on higher cognitive functions appears to be better preserved albeit at the cost of increased effort. We discuss age-related, sex and other trait-like differences in sleep physiology and sleep need and compare the effects of existing pharmacological and non-pharmacological sleep- and wake-promoting treatments. Successful non-pharmacological approaches such as sleep restriction for insomnia and light and melatonin treatment for circadian rhythm sleep disorders target processes such as sleep homeostasis or circadian rhythmicity. Most pharmacological treatments of sleep disorders target specific signalling pathways with no well-established role in either sleep homeostasis or circadian rhythmicity. Pharmacological sleep therapeutics induce changes in sleep structure and the sleep EEG which are specific to the mechanism of action of the drug. Sleep- and wake-promoting therapeutics often induce residual effects on waking performance and sleep, respectively. The need for novel therapeutic approaches continues not at least because of the societal demand to sleep and be awake out of synchrony with the natural light-dark cycle, the high prevalence of sleep-wake disturbances in mental health disorders and in neurodegeneration. Novel approaches, which will provide a more comprehensive description of sleep and allow for large-scale sleep and circadian physiology studies in the home environment, hold promise for continued improvement of therapeutics for disturbances of sleep, circadian rhythms and waking performance.
Collapse
Affiliation(s)
- Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, Sleep and Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Hasan S, Foster RG, Vyazovskiy VV, Peirson SN. Effects of circadian misalignment on sleep in mice. Sci Rep 2018; 8:15343. [PMID: 30367119 PMCID: PMC6203841 DOI: 10.1038/s41598-018-33480-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/19/2018] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms and sleep-wake history determine sleep duration and intensity, and influence subsequent waking. Previous studies have shown that T cycles - light-dark (LD) cycles differing from 24 h - lead to acute changes in the daily amount and distribution of waking and sleep. However, little is known about the long-term effects of T cycles. Here we performed continuous 10 day recording of electroencephalography (EEG), locomotor activity and core body temperature in C57BL/6 mice under a T20 cycle, to investigate spontaneous sleep and waking at baseline compared with when the circadian clock was misaligned and then re-aligned with respect to the external LD cycle. We found that the rhythmic distribution of sleep was abolished during misalignment, while the time course of EEG slow wave activity (1–4 Hz) was inverted compared to baseline. Although the typical light-dark distribution of NREM sleep was re-instated when animals were re-aligned, slow wave activity during NREM sleep showed an atypical increase in the dark phase, suggesting a long-term effect of T cycles on sleep intensity. Our data show that circadian misalignment results in previously uncharacterised long-term effects on sleep, which may have important consequences for behaviour.
Collapse
Affiliation(s)
- Sibah Hasan
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, OX13RE, United Kingdom
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, OX13RE, United Kingdom
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford Molecular Pathology Institute, Dunn School of Pathology, South Parks Road, Oxford, OX13RE, United Kingdom.
| |
Collapse
|
43
|
Khan S, Nobili L, Khatami R, Loddenkemper T, Cajochen C, Dijk DJ, Eriksson SH. Circadian rhythm and epilepsy. Lancet Neurol 2018; 17:1098-1108. [PMID: 30366868 DOI: 10.1016/s1474-4422(18)30335-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/18/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Advances in diagnostic technology, including chronic intracranial EEG recordings, have confirmed the clinical observation of different temporal patterns of epileptic activity and seizure occurrence over a 24-h period. The rhythmic patterns in epileptic activity and seizure occurrence are probably related to vigilance states and circadian variation in excitatory and inhibitory balance. Core circadian genes BMAL1 and CLOCK, which code for transcription factors, have been shown to influence excitability and seizure threshold. Despite uncertainties about the relative contribution of vigilance states versus circadian rhythmicity, including circadian factors such as seizure timing improves sensitivity of seizure prediction algorithms in individual patients. Improved prediction of seizure occurrence opens the possibility for personalised antiepileptic drug-dosing regimens timed to particular phases of the circadian cycle to improve seizure control and to reduce side-effects and risks associated with seizures. Further studies are needed to clarify the pathways through which rhythmic patterns of epileptic activity are generated, because this might also inform future treatment options.
Collapse
Affiliation(s)
- Sofia Khan
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery and Institute of Neurology, University College London, London, UK; Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lino Nobili
- Centre of Sleep Medicine, Centre for Epilepsy Surgery C Munari, Niguarda Hospital, Milan, Italy; Child Neuropsychiatry Unit, IRCCS Giannina Gaslini Pediatric Institute, DINOGMI, University of Genoa, Italy
| | - Ramin Khatami
- Centre for Sleep Research, Sleep Medicine and Epileptology, Klinik Barmelweid AG, Switzerland; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland; Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sofia H Eriksson
- Department of Clinical and Experimental Epilepsy, National Hospital for Neurology and Neurosurgery and Institute of Neurology, University College London, London, UK.
| |
Collapse
|
44
|
Ujma PP, Halász P, Simor P, Fabó D, Ferri R. Increased cortical involvement and synchronization during CAP A1 slow waves. Brain Struct Funct 2018; 223:3531-3542. [PMID: 29951916 DOI: 10.1007/s00429-018-1703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Abstract
Slow waves recorded with EEG in NREM sleep are indicative of the strength and spatial extent of synchronized firing in neuronal assemblies of the cerebral cortex. Slow waves often appear in the A1 part of the cyclic alternating patterns (CAP), which correlate with a number of behavioral and biological parameters, but their physiological significance is not adequately known. We automatically detected slow waves from the scalp recordings of 37 healthy patients, visually identified CAP A1 events and compared slow waves during CAP A1 with those during NCAP. For each slow wave, we computed the amplitude, slopes, frequency, synchronization (synchronization likelihood) between specific cortical areas, as well as the location of origin and scalp propagation of individual waves. CAP A1 slow waves were characterized by greater spatial extent and amplitude, steeper slopes and greater cortical synchronization, but a similar prominence in frontal areas and similar propagation patterns to other areas on the scalp. Our results indicate that CAP A1 represents a period of highly synchronous neuronal firing over large areas of the cortical mantle. This feature may contribute to the role CAP A1 plays in both normal synaptic homeostasis and in the generation of epileptiform phenomena in epileptic patients.
Collapse
Affiliation(s)
- Péter Przemyslaw Ujma
- Institute of Clinical Neuroscience, "Juhász Pál" Epilepsy Centrum, Amerikai út 57, Budapest, 1145, Hungary.
- Institute of Behavioural Sciences, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.
| | - Péter Halász
- Institute of Clinical Neuroscience, "Juhász Pál" Epilepsy Centrum, Amerikai út 57, Budapest, 1145, Hungary
| | - Péter Simor
- Institute of Psychology, ELTE, Eötvos Loránd University, Kazinczy utca 23-27, Budapest, 1075, Hungary
| | - Dániel Fabó
- Institute of Clinical Neuroscience, "Juhász Pál" Epilepsy Centrum, Amerikai út 57, Budapest, 1145, Hungary
| | - Raffaele Ferri
- Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 91018, Troina, Italy
| |
Collapse
|
45
|
Skorucak J, Arbon EL, Dijk DJ, Achermann P. Response to chronic sleep restriction, extension, and subsequent total sleep deprivation in humans: adaptation or preserved sleep homeostasis? Sleep 2018; 41:4990768. [DOI: 10.1093/sleep/zsy078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jelena Skorucak
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| | - Emma L Arbon
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, United Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
McKillop LE, Vyazovskiy VV. Sleep- and Wake-Like States in Small Networks In Vivo and In Vitro. Handb Exp Pharmacol 2018; 253:97-121. [PMID: 30443784 DOI: 10.1007/164_2018_174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wakefulness and sleep are highly complex and heterogeneous processes, involving multiple neurotransmitter systems and a sophisticated interplay between global and local networks of neurons and non-neuronal cells. Macroscopic approaches applied at the level of the whole organism, view sleep as a global behaviour and allow for investigation into aspects such as the effects of insufficient or disrupted sleep on cognitive function, metabolism, thermoregulation and sensory processing. While significant progress has been achieved using such large-scale approaches, the inherent complexity of sleep-wake regulation has necessitated the development of methods which tackle specific aspects of sleep in isolation. One way this may be achieved is by investigating specific cellular or molecular phenomena in the whole organism in situ, either during spontaneous or induced sleep-wake states. This approach has greatly advanced our knowledge about the electrophysiology and pharmacology of ion channels, specific receptors, intracellular pathways and the small networks implicated in the control and regulation of the sleep-wake cycle. Importantly though, there are a variety of external and internal factors that influence global behavioural states which are difficult to control for using these approaches. For this reason, over the last few decades, ex vivo experimental models have become increasingly popular and have greatly advanced our understanding of many fundamental aspects of sleep, including the neuroanatomy and neurochemistry of sleep states, sleep regulation, the origin and dynamics of specific sleep oscillations, network homeostasis as well as the functional roles of sleep. This chapter will focus on the use of small neuronal networks as experimental models and will highlight the most significant and novel insights these approaches have provided.
Collapse
Affiliation(s)
- Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
47
|
The dichotomy between low frequency and delta waves in human sleep: A reappraisal. J Neurosci Methods 2018; 293:234-246. [DOI: 10.1016/j.jneumeth.2017.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 11/20/2022]
|
48
|
Circadian preference towards morningness is associated with lower slow sleep spindle amplitude and intensity in adolescents. Sci Rep 2017; 7:14619. [PMID: 29097698 PMCID: PMC5668430 DOI: 10.1038/s41598-017-13846-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/02/2017] [Indexed: 12/03/2022] Open
Abstract
Individual circadian preference types and sleep EEG patterns related to spindle characteristics, have both been associated with similar cognitive and mental health phenotypes. However, no previous study has examined whether sleep spindles would differ by circadian preference. Here, we explore if spindle amplitude, density, duration or intensity differ by circadian preference and whether these associations are moderated by spindle location, frequency, and time distribution across the night. The participants (N = 170, 59% girls; mean age = 16.9, SD = 0.1 years) filled in the shortened 6-item Horne-Östberg Morningness-Eveningness Questionnaire. We performed an overnight sleep EEG at the homes of the participants. In linear mixed model analyses, we found statistically significant lower spindle amplitude and intensity in the morning as compared to intermediate (P < 0.001) and evening preference groups (P < 0.01; P > 0.06 for spindle duration and density). Spindle frequency moderated the associations (P < 0.003 for slow (<13 Hz); P > 0.2 for fast (>13 Hz)). Growth curve analyses revealed a distinct time distribution of spindles across the night by the circadian preference: both spindle amplitude and intensity decreased more towards morning in the morning preference group than in other groups. Our results indicate that circadian preference is not only affecting the sleep timing, but also associates with sleep microstructure regarding sleep spindle phenotypes.
Collapse
|
49
|
Ronai KZ, Szentkiralyi A, Lazar AS, Lazar ZI, Papp I, Gombos F, Zoller R, Czira ME, Lindner AV, Mucsi I, Bodizs R, Molnar MZ, Novak M. Association of symptoms of insomnia and sleep parameters among kidney transplant recipients. J Psychosom Res 2017; 99:95-104. [PMID: 28712436 DOI: 10.1016/j.jpsychores.2017.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/29/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Insomnia complaints are frequent among kidney transplant (kTx) recipients and are associated with fatigue, depression, lower quality of life and increased morbidity. However, it is not known if subjective insomnia symptoms are associated with objective parameters of sleep architecture. Thus, we analyze the association between sleep macrostructure and EEG activity versus insomnia symptoms among kTx recipients. METHODS Participants (n1=100) were selected from prevalent adult transplant recipients (n0=1214) followed at a single institution. Insomnia symptoms were assessed by the Athens Insomnia Scale (AIS) and standard overnight polysomnography was performed. In a subgroup of patients (n2=56) sleep microstructure was also analyzed with power spectral analysis. RESULTS In univariable analysis AIS score was not associated with sleep macrostructure parameters (sleep latency, total sleep time, slow wave sleep, wake after sleep onset), nor with NREM and REM beta or delta activity in sleep microstructure. In multivariable analysis after controlling for covariables AIS score was independently associated with the proportion of slow wave sleep (β=0.263; CI: 0.026-0.500) and REM beta activity (β=0.323; CI=0.041-0.606) (p<0.05 for both associations). CONCLUSIONS Among kTx recipients the severity of insomnia symptoms is independently associated with higher proportion of slow wave sleep and increased beta activity during REM sleep but not with other parameters sleep architecture. The results suggest a potential compensatory sleep protective mechanism and a sign of REM sleep instability associated with insomnia symptoms among this population.
Collapse
Affiliation(s)
- Katalin Z Ronai
- Inst. of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Andras Szentkiralyi
- Inst. of Behavioural Sciences, Semmelweis University, Budapest, Hungary; Inst. of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
| | - Alpar S Lazar
- Inst. of Behavioural Sciences, Semmelweis University, Budapest, Hungary; Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - Zsolt I Lazar
- Dept. of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Istvan Papp
- Dept. of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ferenc Gombos
- Dept. of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Rezso Zoller
- 1st Dept. of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Maria E Czira
- Inst. of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
| | - Anett V Lindner
- Klinikum Landkreis Erding, Interdisciplinary Pain Center, Erding, Germany
| | - Istvan Mucsi
- Inst. of Behavioural Sciences, Semmelweis University, Budapest, Hungary; Dept. of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, Canada
| | - Robert Bodizs
- Inst. of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Miklos Z Molnar
- Dept. Transplantation and Surgery, Semmelweis University, Budapest, Hungary; Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, TN, USA
| | - Marta Novak
- Inst. of Behavioural Sciences, Semmelweis University, Budapest, Hungary; Centre for Mental Health, University Health Network and Dept. of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
50
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|