1
|
Rosenthal A, Haslacher D, Garbusow M, Pangratz L, Apfel B, Soekadar S, Romanczuk-Seiferth N, Beck A. Neuromodulation and mindfulness as therapeutic treatment in detoxified patients with alcohol use disorder. BMC Psychiatry 2024; 24:635. [PMID: 39334026 PMCID: PMC11438385 DOI: 10.1186/s12888-024-06085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) poses a significant global health challenge. Traditional management strategies often face high relapse rates, leading to a need for innovative approaches. Mindfulness-based relapse prevention (MBRP) has emerged as a promising intervention to enhance cognitive control, reduce cue-related craving and improve interoceptive processing. Neuroimaging studies suggest that mindfulness training can modulate brain networks associated with these factors, potentially improving treatment outcomes for AUD. Neuroimaging studies suggest that mindfulness training can modulate brain networks linked to these brain functions, potentially improving treatment outcomes for AUD. However, it is unclear how MBRP links to neurophysiological measures such as frontal midline theta oscillations (FMΘ) and whether the beneficial effects of MBRP can be increased by enhancing FMΘ. Here, we will use two different forms of neuromodulation to target and enhance these oscillations, and evaluate their impact on the effectiveness of MBRP. METHODS This study will employ a four-arm randomized controlled trial to evaluate the synergistic effects of MBRP augmented with transcutaneous vagus nerve stimulation (tVNS) or closed-loop amplitude-modulated transcranial alternating current stimulation (CLAM-tACS) on cognitive control, cue reactivity and interoceptive processing in AUD patients. Participants will undergo six weekly group MBRP sessions and daily individual mindfulness practices. Assessments will include an inhibition task, cue-induced craving task, and heartbeat discrimination task, alongside heart rate variability and 32-channel EEG recordings. Participants will be assessed pre and post treatment, with a three-month follow-up to evaluate long-term effects on abstinence and alcohol consumption. DISCUSSION This study will not only elucidate the causal link between FMΘ and efficacy of MBRP, but contribute to a better understanding of how combined psychological and neuromodulation interventions can improve treatment outcomes for AUD, potentially leading to more effective therapeutic strategies. This study also seeks to explore individual differences in response to treatment, which could inform future approaches to AUD management. TRIAL REGISTRATION This study received approval by the Charité-Universitätsmedizin Berlin Institutional Review Board (EA1/030/23, 10.11.2023). It was registered on ClinicalTrials.gov (NCT06308484).
Collapse
Affiliation(s)
- Annika Rosenthal
- Institute for Mental Health and Behavioral Medicine, Department of Psychology, HMU Health and Medical University Potsdam, 14471, Potsdam, Germany.
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany.
| | - D Haslacher
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany
| | - M Garbusow
- Department of Psychology, MSB Medical School Berlin, 14197, Berlin, Germany
| | - L Pangratz
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany
| | - B Apfel
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany
| | - S Soekadar
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany
| | | | - A Beck
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, 10117, Berlin, Germany
| |
Collapse
|
2
|
Haslacher D, Cavallo A, Reber P, Kattein A, Thiele M, Nasr K, Hashemi K, Sokoliuk R, Thut G, Soekadar SR. Working memory enhancement using real-time phase-tuned transcranial alternating current stimulation. Brain Stimul 2024; 17:850-859. [PMID: 39029737 DOI: 10.1016/j.brs.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8-14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES AND HYPOTHESIS We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychology, University of California, Berkeley, CA, USA
| | - Anna Kattein
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Thiele
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kimia Hashemi
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gregor Thut
- School of Psychology & Neuroscience, University of Glasgow, Glasgow, UK
| | - Surjo R Soekadar
- Clinical Neurotechnology Laboratory, Department of Psychiatry and Neurosciences, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Meltzer JA, Sivaratnam G, Deschamps T, Zadeh M, Li C, Farzan F, Francois-Nienaber A. Contrasting MEG effects of anodal and cathodal high-definition TDCS on sensorimotor activity during voluntary finger movements. FRONTIERS IN NEUROIMAGING 2024; 3:1341732. [PMID: 38379832 PMCID: PMC10875011 DOI: 10.3389/fnimg.2024.1341732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Introduction Protocols for noninvasive brain stimulation (NIBS) are generally categorized as "excitatory" or "inhibitory" based on their ability to produce short-term modulation of motor-evoked potentials (MEPs) in peripheral muscles, when applied to motor cortex. Anodal and cathodal stimulation are widely considered excitatory and inhibitory, respectively, on this basis. However, it is poorly understood whether such polarity-dependent changes apply for neural signals generated during task performance, at rest, or in response to sensory stimulation. Methods To characterize such changes, we measured spontaneous and movement-related neural activity with magnetoencephalography (MEG) before and after high-definition transcranial direct-current stimulation (HD-TDCS) of the left motor cortex (M1), while participants performed simple finger movements with the left and right hands. Results Anodal HD-TDCS (excitatory) decreased the movement-related cortical fields (MRCF) localized to left M1 during contralateral right finger movements while cathodal HD-TDCS (inhibitory), increased them. In contrast, oscillatory signatures of voluntary motor output were not differentially affected by the two stimulation protocols, and tended to decrease in magnitude over the course of the experiment regardless. Spontaneous resting state oscillations were not affected either. Discussion MRCFs are thought to reflect reafferent proprioceptive input to motor cortex following movements. Thus, these results suggest that processing of incoming sensory information may be affected by TDCS in a polarity-dependent manner that is opposite that seen for MEPs-increases in cortical excitability as defined by MEPs may correspond to reduced responses to afferent input, and vice-versa.
Collapse
Affiliation(s)
- Jed A. Meltzer
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
- Departments of Psychology and Speech-language Pathology, University of Toronto, Toronto, ON, Canada
| | - Gayatri Sivaratnam
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Maryam Zadeh
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Catherine Li
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC, Canada
| | - Alex Francois-Nienaber
- Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, ON, Canada
| |
Collapse
|
4
|
Shirota Y, Fushimi M, Sekino M, Yumoto M. Investigating the technical feasibility of magnetoencephalography during transcranial direct current stimulation. Front Hum Neurosci 2023; 17:1270605. [PMID: 37771350 PMCID: PMC10525331 DOI: 10.3389/fnhum.2023.1270605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Magnetoencephalography (MEG) can measure weak magnetic fields produced by electrical brain activity. Transcranial direct current stimulation (tDCS) can affect such brain activities. The concurrent application of both, however, is challenging because tDCS presents artifacts on the MEG signal. If brain activity during tDCS can be elucidated by MEG, mechanisms of plasticity-inducing and other effects of tDCS would be more comprehensively understood. We tested the technical feasibility of MEG during tDCS using a phantom that produces an artificial current dipole simulating focal brain activity. An earlier study investigated estimation of a single oscillating phantom dipole during tDCS, and we systematically tested multiple dipole locations with a different MEG device. Methods A phantom provided by the manufacturer was used to produce current dipoles from 32 locations. For the 32 dipoles, MEG was recorded with and without tDCS. Temporally extended signal space separation (tSSS) was applied for artifact rejection. Current dipole sources were estimated as equivalent current dipoles (ECDs). The ECD modeling quality was assessed using localization error, amplitude error, and goodness of fit (GOF). The ECD modeling performance with and without tDCS, and with and without tSSS was assessed. Results Mean localization errors of the 32 dipoles were 1.70 ± 0.72 mm (tDCS off, tSSS off, mean ± standard deviation), 6.13 ± 3.32 mm (tDCS on, tSSS off), 1.78 ± 0.83 mm (tDCS off, tSSS on), and 5.73 ± 1.60 mm (tDCS on, tSSS on). Mean GOF findings were, respectively, 92.3, 87.4, 97.5, and 96.7%. Modeling was affected by tDCS and restored by tSSS, but improvement of the localization error was marginal, even with tSSS. Also, the quality was dependent on the dipole location. Discussion Concurrent tDCS-MEG recording is feasible, especially when tSSS is applied for artifact rejection and when the assumed location of the source of activity is favorable for modeling. More technical studies must be conducted to confirm its feasibility with different source modeling methods and stimulation protocols. Recovery of single-trial activity under tDCS warrants further research.
Collapse
Affiliation(s)
- Yuichiro Shirota
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Motofumi Fushimi
- Department of Bioengineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Sekino
- Department of Bioengineering, The Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
- Department of Clinical Engineering, Gunma Paz University, Takasaki, Japan
| |
Collapse
|
5
|
Haslacher D, Narang A, Sokoliuk R, Cavallo A, Reber P, Nasr K, Santarnecchi E, Soekadar SR. In vivo phase-dependent enhancement and suppression of human brain oscillations by transcranial alternating current stimulation (tACS). Neuroimage 2023:120187. [PMID: 37230205 DOI: 10.1016/j.neuroimage.2023.120187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95 %, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15 %. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Asmita Narang
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany..
| |
Collapse
|
6
|
Singh MF, Cole MW, Braver TS, Ching S. Control-theoretic integration of stimulation and electrophysiology for cognitive enhancement. FRONTIERS IN NEUROIMAGING 2022; 1:982288. [PMID: 37555140 PMCID: PMC10406304 DOI: 10.3389/fnimg.2022.982288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023]
Abstract
Transcranial electrical stimulation (tES) technology and neuroimaging are increasingly coupled in basic and applied science. This synergy has enabled individualized tES therapy and facilitated causal inferences in functional neuroimaging. However, traditional tES paradigms have been stymied by relatively small changes in neural activity and high inter-subject variability in cognitive effects. In this perspective, we propose a tES framework to treat these issues which is grounded in dynamical systems and control theory. The proposed paradigm involves a tight coupling of tES and neuroimaging in which M/EEG is used to parameterize generative brain models as well as control tES delivery in a hybrid closed-loop fashion. We also present a novel quantitative framework for cognitive enhancement driven by a new computational objective: shaping how the brain reacts to potential "inputs" (e.g., task contexts) rather than enforcing a fixed pattern of brain activity.
Collapse
Affiliation(s)
- Matthew F. Singh
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Todd S. Braver
- Psychological and Brain Science, Washington University in St. Louis, St. Louis, MO, United States
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Haslacher D, Nasr K, Robinson SE, Braun C, Soekadar SR. A set of electroencephalographic (EEG) data recorded during amplitude-modulated transcranial alternating current stimulation (AM-tACS) targeting 10-Hz steady-state visually evoked potentials (SSVEP). Data Brief 2021; 36:107011. [PMID: 33948453 PMCID: PMC8080469 DOI: 10.1016/j.dib.2021.107011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can affect perception, learning and cognition, but the underlying mechanisms are not well understood. A promising strategy to elucidate these mechanisms aims at applying tACS while electric or magnetic brain oscillations targeted by stimulation are recorded. However, reconstructing brain oscillations targeted by tACS remains a challenging problem due to stimulation artifacts. Besides lack of an established strategy to effectively supress such stimulation artifacts, there are also no resources available that allow for the development and testing of new and effective tACS artefact suppression algorithms, such as adaptive spatial filtering using beamforming or signal-space projection. Here, we provide a full dataset comprising encephalographic (EEG) recordings across six healthy human volunteers who underwent 10-Hz amplitude-modulated tACS (AM-tACS) during a 10-Hz steady-state visually evoked potential (SSVEP) paradigm. Moreover, data and scripts are provided related to the validation of a novel stimulation artefact suppression strategy, Stimulation Artifact Source Separation (SASS), removing EEG signal components that are maximally different in the presence versus absence of stimulation. Besides including EEG single-trial data and comparisons of 10-Hz brain oscillatory phase and amplitude recorded across three conditions (condition 1: no stimulation, condition 2: stimulation with SASS, condition 3: stimulation without SASS), also power spectra and topographies of SSVEP amplitudes across all three conditions are presented. Moreover, data is provided for assessing nonlinear modulations of the stimulation artifact in both time and frequency domains due to heartbeats. Finally, the dataset includes eigenvalue spectra and spatial patterns of signal components that were identified and removed by SASS for stimulation artefact suppression at the target frequency. Besides providing a valuable resource to assess properties of AM-tACS artifacts in the EEG, this dataset allows for testing different artifact rejection methods and offers in-depth insights into the workings of SASS.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Berlin, Germany
| | - Stephen E. Robinson
- National Institute of Mental Health (NIMH), MEG Core Facility, Bethesda, United States
| | - Christoph Braun
- MEG Center, University of Tübingen, Germany
- CIMeC, Center of Mind/Brain Sciences, University of Trento, Italy
| | - Surjo R. Soekadar
- Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité-University Medicine Berlin, Berlin, Germany
- Corresponding author. @ssoekadar
| |
Collapse
|
8
|
Brain glucose uptake during transcranial direct current stimulation measured with functional [ 18F]FDG-PET. Brain Imaging Behav 2021; 14:477-484. [PMID: 31598826 PMCID: PMC7160063 DOI: 10.1007/s11682-019-00195-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous evidence indicates that transcranial direct stimulation (tDCS) is a neuromodulatory brain stimulation technique. Easy applicability, low side-effects and negligible costs facilitated its wide-spread application in efforts to modulate brain function, however neuronal mechanisms of tDCS are insufficiently understood. Hence, we investigated the immediate impact of tDCS on the brain's glucose consumption in a continuous infusion protocol with the radioligand 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and positron emission tomography (PET). This novel functional PET (fPET) method is capable to reliably detect area-specific and dynamic absolute glucose demand related to neuronal activity in a single molecular imaging session. Fifteen healthy subjects underwent tDCS at 0.5, 1 and 2 mA (mA) at the bilateral dorsolateral prefrontal cortex (dlPFC, cathodal right) for 10 min during functional [18F]FDG-PET lasting 70 min. Active stimulation compared to sham did not yield significant changes in glucose consumption at any tested stimulation intensity in this paradigm. Exploratory investigation of aftereffects provided hints for increased glucose consumption with a delay of 5 min at 1 mA in the right posterior temporal cortex. This is the first study investigating changes of glucose consumption in the brain during tDCS. The lack of immediately increased glucose consumption indicates that energy demanding processes in the brain such as glutamatergic signaling might not be immediately increased by tDCS. However, our results implicate the need of fPET investigations for medium-term and long-term effects.
Collapse
|
9
|
Haslacher D, Nasr K, Robinson SE, Braun C, Soekadar SR. Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage 2021; 228:117571. [PMID: 33412281 PMCID: PMC7903161 DOI: 10.1016/j.neuroimage.2020.117571] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Stimulation Artifact Source Separation (SASS) is introduced, a real-time compatible signal decomposition algorithm for separating electric brain activity and stimulation signal artifacts related to amplitude-modulated transcranial alternating current stimulation (AM-tACS) Employing SASS, phase and amplitude of single-trial steady state visual evoked potentials (SSVEPs) were reliably recovered from electroencephalography (EEG) recordings at the frequency targeted with AM-tACS SASS enables assessment of single-trial oscillatory brain activity at the target frequency during stimulation and paves the way for online adaptation of stimulation parameters to ongoing brain oscillations
Brain oscillations, e.g. measured by electro- or magnetoencephalography (EEG/MEG), are causally linked to brain functions that are fundamental for perception, cognition and learning. Recent advances in neurotechnology provide means to non-invasively target these oscillations using frequency-tuned amplitude-modulated transcranial alternating current stimulation (AM-tACS). However, online adaptation of stimulation parameters to ongoing brain oscillations remains an unsolved problem due to stimulation artifacts that impede such adaptation, particularly at the target frequency. Here, we introduce a real-time compatible artifact rejection algorithm (Stimulation Artifact Source Separation, SASS) that overcomes this limitation. SASS is a spatial filter (linear projection) removing EEG signal components that are maximally different in the presence versus absence of stimulation. This enables the reliable removal of stimulation-specific signal components, while leaving physiological signal components unaffected. For validation of SASS, we evoked brain activity with known phase and amplitude using 10 Hz visual flickers across 7 healthy human volunteers. 64-channel EEG was recorded during and in absence of 10 Hz AM-tACS targeting the visual cortex. Phase differences between AM-tACS and the visual stimuli were randomized, so that steady-state visually evoked potentials (SSVEPs) were phase-locked to the visual stimuli but not to the AM-tACS signal. For validation, distributions of single-trial amplitude and phase of EEG signals recorded during and in absence of AM-tACS were compared for each participant. When no artifact rejection method was applied, AM-tACS stimulation artifacts impeded assessment of single-trial SSVEP amplitude and phase. Using SASS, amplitude and phase of single trials recorded during and in absence of AM-tACS were comparable. These results indicate that SASS can be used to establish adaptive (closed-loop) AM-tACS, a potentially powerful tool to target various brain functions, and to investigate how AM-tACS interacts with electric brain oscillations.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Stephen E Robinson
- National Institute of Mental Health (NIMH), MEG Core Facility, Bethesda, USA
| | - Christoph Braun
- MEG Center, University of Tübingen, Germany; CIMeC, Center of Mind/Brain Sciences, University of Trento, Italy
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany; Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Germany.
| |
Collapse
|
10
|
McKendrick R, Falcone B, Scheldrup M, Ayaz H. Effects of Transcranial Direct Current Stimulation on Baseline and Slope of Prefrontal Cortex Hemodynamics During a Spatial Working Memory Task. Front Hum Neurosci 2020; 14:64. [PMID: 32372928 PMCID: PMC7179692 DOI: 10.3389/fnhum.2020.00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Transcranial direct current stimulation (tDCS) has been shown to be an inexpensive, safe, and effective way of augmenting a variety of cognitive abilities. Relatively recent advances in neuroimaging technology have provided the ability to measure brain activity concurrently during active brain stimulation rather than after stimulation. The effects on brain activity elicited by tDCS during active tDCS reported by initial studies have been somewhat conflicted and seemingly dependent on whether a behavioral improvement was observed. Objective: The current study set out to address questions regarding behavioral change, within and between-participant designs as well as differentiating the effects on hemodynamic amplitude and baseline during active tDCS stimulation. Methods: We tested the effects of transcranial direct current stimulation (tDCS) on anterior hemodynamics in prefrontal cortex during performance on a spatial memory task. Prefrontal cortex activity was measured with functional near infrared spectroscopy (fNIRS), a wearable and portable neuroimaging technique that utilizes near infrared light to measure cortical oxygenated and deoxygenated hemoglobin changes non-invasively. There were two groups, one group (n = 10) received only sham stimulation and the other group (n = 11) received sham followed by anodal stimulation to right ventral lateral prefrontal cortex. Results: Analyses revealed an increase in spatial memory performance following tDCS stimulation. This augmented performance was accompanied by changes to oxygenation (HbO-HbR) at the onset of the hemodynamic response in bilateral dorsolateral prefrontal cortex and left ventral medial prefrontal cortex. In these regions we also observed that stimulation improved neural processing efficiency, by reducing oxygenation and increasing performance from block to block. During and following tDCS stimulation, it was also observed that in bilateral dorsolateral prefrontal cortex the relationship between performance and oxygenation inverted, from a negative relationship to a positive relationship. Conclusion: The results suggest that tDCS is predominately a mechanism for changing neurons propensity for activity as opposed to their strength of activity. tDCS not only alters the efficiency of task relevant processing, but also the nature in which hemodynamic resources are used during augmented task performance.
Collapse
Affiliation(s)
- Ryan McKendrick
- Northrop Grumman Company, Mission Systems, Falls Church, VA, United States
| | - Brian Falcone
- Northrop Grumman Company, Mission Systems, Falls Church, VA, United States
| | - Melissa Scheldrup
- Department of Psychology, George Mason University, Fairfax, VA, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States.,Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States.,Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States.,Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
11
|
Davis SE, Smith GA. Transcranial Direct Current Stimulation Use in Warfighting: Benefits, Risks, and Future Prospects. Front Hum Neurosci 2019; 13:114. [PMID: 31105538 PMCID: PMC6499187 DOI: 10.3389/fnhum.2019.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which provides unique potential to directly improve human capability on a temporary, at needs, basis. The purpose of this paper is to consider the utility of tDCS through analysis of the potential risks and benefits in the context of defence service personnel. First, we look at the potential benefits, focusing primarily on warfighter survivability and enriching cognition quality in support of command and control. Second, we look at the potential detriments to tDCS military use, focusing on adverse effects, safety considerations, and risk. Third, we examine how the level of risk can be mitigated through military doctrine development focusing on safety parameters and exclusion criteria. Finally, we explore the future prospects of military tDCS use, particularly in terms of addressing gaps in the literature so that tDCS can be used ethically and efficaciously at the level of individual personnel.
Collapse
Affiliation(s)
- Steven E Davis
- Joint and Operational Analysis Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Glen A Smith
- Institute of Integrated and Intelligent Systems, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
12
|
McDermott TJ, Wiesman AI, Mills MS, Spooner RK, Coolidge NM, Proskovec AL, Heinrichs‐Graham E, Wilson TW. tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Hum Brain Mapp 2019; 40:729-740. [PMID: 30368974 PMCID: PMC6328324 DOI: 10.1002/hbm.24405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive method for modulating human brain activity. Although there are several hypotheses about the net effects of tDCS on brain function, the field's understanding remains incomplete and this is especially true for neural oscillatory activity during cognitive task performance. In this study, we examined whether different polarities of occipital tDCS differentially alter flanker task performance and the underlying neural dynamics. To this end, 48 healthy adults underwent 20 min of anodal, cathodal, or sham occipital tDCS, and then completed a visual flanker task during high-density magnetoencephalography (MEG). The resulting oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on task-related oscillations and spontaneous neural activity were assessed. The results indicated that anodal tDCS of the occipital cortices inhibited flanker task performance as measured by reaction time, elevated spontaneous activity in the theta (4-7 Hz) and alpha (9-14 Hz) bands in prefrontal and occipital cortices, respectively, and reduced task-related theta oscillatory activity in prefrontal cortices during task performance. Cathodal tDCS of the occipital cortices did not significantly affect behavior or any of these neuronal parameters in any brain region. Lastly, the power of theta oscillations in the prefrontal cortices was inversely correlated with reaction time. In conclusion, anodal tDCS modulated task-related oscillations and spontaneous activity across multiple cortical areas, both near the electrode and in distant sites that were putatively connected to the targeted regions.
Collapse
Affiliation(s)
- Timothy J. McDermott
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
| | - Alex I. Wiesman
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Mackenzie S. Mills
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
| | - Rachel K. Spooner
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Nathan M. Coolidge
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of PsychologyUniversity of NebraskaOmahaNebraska
| | - Amy L. Proskovec
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of PsychologyUniversity of NebraskaOmahaNebraska
| | - Elizabeth Heinrichs‐Graham
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Tony W. Wilson
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| |
Collapse
|
13
|
Gebodh N, Esmaeilpour Z, Adair D, Chelette K, Dmochowski J, Woods AJ, Kappenman ES, Parra LC, Bikson M. Inherent physiological artifacts in EEG during tDCS. Neuroimage 2018; 185:408-424. [PMID: 30321643 DOI: 10.1016/j.neuroimage.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/10/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022] Open
Abstract
Online imaging and neuromodulation is invalid if stimulation distorts measurements beyond the point of accurate measurement. In theory, combining transcranial Direct Current Stimulation (tDCS) with electroencephalography (EEG) is compelling, as both use non-invasive electrodes and image-guided dose can be informed by the reciprocity principle. To distinguish real changes in EEG from stimulation artifacts, prior studies applied conventional signal processing techniques (e.g. high-pass filtering, ICA). Here, we address the assumptions underlying the suitability of these approaches. We distinguish physiological artifacts - defined as artifacts resulting from interactions between the stimulation induced voltage and the body and so inherent regardless of tDCS or EEG hardware performance - from methodology-related artifacts - arising from non-ideal experimental conditions or non-ideal stimulation and recording equipment performance. Critically, we identify inherent physiological artifacts which are present in all online EEG-tDCS: 1) cardiac distortion and 2) ocular motor distortion. In conjunction, non-inherent physiological artifacts which can be minimized in most experimental conditions include: 1) motion and 2) myogenic distortion. Artifact dynamics were analyzed for varying stimulation parameters (montage, polarity, current) and stimulation hardware. Together with concurrent physiological monitoring (ECG, respiration, ocular, EMG, head motion), and current flow modeling, each physiological artifact was explained by biological source-specific body impedance changes, leading to incremental changes in scalp DC voltage that are significantly larger than real neural signals. Because these artifacts modulate the DC voltage and scale with applied current, they are dose specific such that their contamination cannot be accounted for by conventional experimental controls (e.g. differing stimulation montage or current as a control). Moreover, because the EEG artifacts introduced by physiologic processes during tDCS are high dimensional (as indicated by Generalized Singular Value Decomposition- GSVD), non-stationary, and overlap highly with neurogenic frequencies, these artifacts cannot be easily removed with conventional signal processing techniques. Spatial filtering techniques (GSVD) suggest that the removal of physiological artifacts would significantly degrade signal integrity. Physiological artifacts, as defined here, would emerge only during tDCS, thus processing techniques typically applied to EEG in the absence of tDCS would not be suitable for artifact removal during tDCS. All concurrent EEG-tDCS must account for physiological artifacts that are a) present regardless of equipment used, and b) broadband and confound a broad range of experiments (e.g. oscillatory activity and event related potentials). Removal of these artifacts requires the recognition of their non-stationary, physiology-specific dynamics, and individualized nature. We present a broad taxonomy of artifacts (non/stimulation related), and suggest possible approaches and challenges to denoising online EEG-tDCS stimulation artifacts.
Collapse
Affiliation(s)
- Nigel Gebodh
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| | - Zeinab Esmaeilpour
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| | - Devin Adair
- Department of Psychology, The Graduate Center at City University of New York, New York, NY, USA.
| | | | - Jacek Dmochowski
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | | | - Lucas C Parra
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA.
| | - Marom Bikson
- Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA; Department of Psychology, The Graduate Center at City University of New York, New York, NY, USA.
| |
Collapse
|
14
|
Herring JD, Esterer S, Marshall TR, Jensen O, Bergmann TO. Low-frequency alternating current stimulation rhythmically suppresses gamma-band oscillations and impairs perceptual performance. Neuroimage 2018; 184:440-449. [PMID: 30243972 DOI: 10.1016/j.neuroimage.2018.09.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022] Open
Abstract
Low frequency oscillations such as alpha (8-12 Hz) are hypothesized to rhythmically gate sensory processing, reflected by 40-100 Hz gamma band activity, via the mechanism of pulsed inhibition. We applied transcranial alternating current stimulation (TACS) at individual alpha frequency (IAF) and flanking frequencies (IAF-4 Hz, IAF+4 Hz) to the occipital cortex of healthy human volunteers during concurrent magnetoencephalography (MEG), while participants performed a visual detection task inducing strong gamma-band responses. Occipital (but not retinal) TACS phasically suppressed stimulus-induced gamma oscillations in the visual cortex and impaired target detection, with stronger phase-to-amplitude coupling predicting behavioral impairments. Retinal control TACS ruled out retino-thalamo-cortical entrainment resulting from (subthreshold) retinal stimulation. All TACS frequencies tested were effective, suggesting that visual gamma-band responses can be modulated by a range of low frequency oscillations. We propose that TACS-induced membrane potential modulations mimic the rhythmic change in cortical excitability by which spontaneous low frequency oscillations may eventually exert their impact when gating sensory processing via pulsed inhibition.
Collapse
Affiliation(s)
- Jim D Herring
- Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sophie Esterer
- CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Tom R Marshall
- Department of Experimental Psychology, University of Oxford, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ole Jensen
- School of Psychology, University of Birmingham, Birmingham, United Kingdom; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Til O Bergmann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Donders Institute, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Falcone B, Wada A, Parasuraman R, Callan DE. Individual differences in learning correlate with modulation of brain activity induced by transcranial direct current stimulation. PLoS One 2018; 13:e0197192. [PMID: 29782510 PMCID: PMC5962315 DOI: 10.1371/journal.pone.0197192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to enhance cognitive performance on a variety of tasks. It is hypothesized that tDCS enhances performance by affecting task related cortical excitability changes in networks underlying or connected to the site of stimulation facilitating long term potentiation. However, many recent studies have called into question the reliability and efficacy of tDCS to induce modulatory changes in brain activity. In this study, our goal is to investigate the individual differences in tDCS induced modulatory effects on brain activity related to the degree of enhancement in performance, providing insight into this lack of reliability. In accomplishing this goal, we used functional magnetic resonance imaging (fMRI) concurrently with tDCS stimulation (1 mA, 30 minutes duration) using a visual search task simulating real world conditions. The experiment consisted of three fMRI sessions: pre-training (no performance feedback), training (performance feedback which included response accuracy and target location and either real tDCS or sham stimulation given), and post-training (no performance feedback). The right posterior parietal cortex was selected as the site of anodal tDCS based on its known role in visual search and spatial attention processing. Our results identified a region in the right precentral gyrus, known to be involved with visual spatial attention and orienting, that showed tDCS induced task related changes in cortical excitability that were associated with individual differences in improved performance. This same region showed greater activity during the training session for target feedback of incorrect (target-error feedback) over correct trials for the tDCS stim over sham group indicating greater attention to target features during training feedback when trials were incorrect. These results give important insight into the nature of neural excitability induced by tDCS as it relates to variability in individual differences in improved performance shedding some light the apparent lack of reliability found in tDCS research.
Collapse
Affiliation(s)
- Brian Falcone
- Center of Excellence in Neuroergonomics, Technology, and Cognition (CENTEC), George Mason University, Fairfax, Virginia, United States of America
| | - Atsushi Wada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| | - Raja Parasuraman
- Center of Excellence in Neuroergonomics, Technology, and Cognition (CENTEC), George Mason University, Fairfax, Virginia, United States of America
| | - Daniel E. Callan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Wilson TW, McDermott TJ, Mills MS, Coolidge NM, Heinrichs-Graham E. tDCS Modulates Visual Gamma Oscillations and Basal Alpha Activity in Occipital Cortices: Evidence from MEG. Cereb Cortex 2018; 28:1597-1609. [PMID: 28334214 PMCID: PMC5907344 DOI: 10.1093/cercor/bhx055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 01/03/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is now a widely used method for modulating the human brain, but the resulting physiological effects are not understood. Recent studies have combined magnetoencephalography (MEG) with simultaneous tDCS to evaluate online changes in occipital alpha and gamma oscillations, but no study to date has quantified the offline (i.e., after tDCS) alterations in these responses. Thirty-five healthy adults received active or sham anodal tDCS to the occipital cortices, and then completed a visual stimulation paradigm during MEG that is known to elicit robust gamma and alpha oscillations. The resulting MEG data were imaged and peak voxel time series were extracted to evaluate tDCS effects. We found that tDCS to the occipital increased the amplitude of local gamma oscillations, and basal alpha levels during the baseline. tDCS was also associated with network-level effects, including increased gamma oscillations in the prefrontal cortex, parietal, and other visual attention regions. Finally, although tDCS did not modulate peak gamma frequency, this variable was inversely correlated with gamma amplitude, which is consistent with a GABA-gamma link. In conclusion, tDCS alters gamma oscillations and basal alpha levels. The net offline effects on gamma activity are consistent with the view that anodal tDCS decreases local GABA.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Department of Pharmacology and Experimental Neurosciences, UNMC, Omaha, NE, USA
- Center for Magnetoencephalography, UNMC, Omaha, NE 68198, USA
| | | | | | | | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
- Center for Magnetoencephalography, UNMC, Omaha, NE 68198, USA
| |
Collapse
|
17
|
Transcranial electric stimulation (tES) and NeuroImaging: the state-of-the-art, new insights and prospects in basic and clinical neuroscience. Neuroimage 2018; 140:1-3. [PMID: 27633745 DOI: 10.1016/j.neuroimage.2016.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transcranial electric stimulation (tES) of the brain has attracted an increased interest in recent years. Yet, despite remarkable research efforts to date, the underlying neurobiological mechanisms of tES' effects are still incompletely understood. This Special Issue aims to provide a comprehensive and up-to-date overview of the state-of-the-art in studies combining tES and neuroimaging, while introducing most recent insights and outlining future prospects related to this new and rapidly growing field. The findings reported here combine methodological advancements with insights into the underlying mechanisms of tES itself. At the same time, they also point to the many caveats and specific challenges associated with such studies, which can arise from both technical and biological sources. Besides promising to advance basic neuroscience, combined tES and neuroimaging studies may also substantially change previous conceptions about the methods of action of electric or magnetic stimulation on the brain.
Collapse
|
18
|
Heinrichs-Graham E, McDermott TJ, Mills MS, Coolidge NM, Wilson TW. Transcranial direct-current stimulation modulates offline visual oscillatory activity: A magnetoencephalography study. Cortex 2016; 88:19-31. [PMID: 28042984 DOI: 10.1016/j.cortex.2016.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive neuromodulatory method that involves delivering low amplitude, direct current to specific regions of the brain. While a wealth of literature shows changes in behavior and cognition following tDCS administration, the underlying neuronal mechanisms remain largely unknown. Neuroimaging studies have generally used fMRI and shown only limited consensus to date, while the few electrophysiological studies have reported mostly null or counterintuitive findings. The goal of the current investigation was to quantify tDCS-induced alterations in the oscillatory dynamics of visual processing. To this end, we performed either active or sham tDCS using an occipital-frontal electrode configuration, and then recorded magnetoencephalography (MEG) offline during a visual entrainment task. Significant oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on absolute and relative power were assessed. The results indicated significantly increased basal alpha levels in the occipital cortex following anodal tDCS, as well as reduced occipital synchronization at the second harmonic of the stimulus-flicker frequency relative to sham stimulation. In addition, we found reduced power in brain regions near the cathode (e.g., right inferior frontal gyrus [IFG]) following active tDCS, which was absent in the sham group. Taken together, these results suggest that anodal tDCS of the occipital cortices differentially modulates spontaneous and induced activity, and may interfere with the entrainment of neuronal populations by a visual-flicker stimulus. These findings also demonstrate the importance of electrode configuration on whole-brain dynamics, and highlight the deceptively complicated nature of tDCS in the context of neurophysiology.
Collapse
Affiliation(s)
- Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA
| | | | | | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Center for Magnetoencephalography, UNMC, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, UNMC, Omaha, NE, USA.
| |
Collapse
|
19
|
In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI. Sci Rep 2016; 6:34385. [PMID: 27698358 PMCID: PMC5048181 DOI: 10.1038/srep34385] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere's law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.
Collapse
|
20
|
Mancini M, Brignani D, Conforto S, Mauri P, Miniussi C, Pellicciari MC. Assessing cortical synchronization during transcranial direct current stimulation: A graph-theoretical analysis. Neuroimage 2016; 140:57-65. [DOI: 10.1016/j.neuroimage.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 01/22/2023] Open
|
21
|
Minarik T, Berger B, Althaus L, Bader V, Biebl B, Brotzeller F, Fusban T, Hegemann J, Jesteadt L, Kalweit L, Leitner M, Linke F, Nabielska N, Reiter T, Schmitt D, Spraetz A, Sauseng P. The Importance of Sample Size for Reproducibility of tDCS Effects. Front Hum Neurosci 2016; 10:453. [PMID: 27679568 PMCID: PMC5020062 DOI: 10.3389/fnhum.2016.00453] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tamas Minarik
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Barbara Berger
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Laura Althaus
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Veronika Bader
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Bianca Biebl
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Franziska Brotzeller
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Theodor Fusban
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Jessica Hegemann
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Lea Jesteadt
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Lukas Kalweit
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Miriam Leitner
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Francesca Linke
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Natalia Nabielska
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Thomas Reiter
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Daniela Schmitt
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Alexander Spraetz
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München Munich, Germany
| |
Collapse
|
22
|
Chander BS, Witkowski M, Braun C, Robinson SE, Born J, Cohen LG, Birbaumer N, Soekadar SR. tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Front Cell Neurosci 2016; 10:120. [PMID: 27199669 PMCID: PMC4858529 DOI: 10.3389/fncel.2016.00120] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Frontal midline theta (FMT) oscillations (4–8 Hz) are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM) task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS) can block WM demand-related FMT power increase (FMTΔpower) and disrupt normal WM performance. Methods: Twenty healthy volunteers were assigned to one of two groups (group A, group B) and performed a 2-back task across a baseline block (block 1) and an intervention block (block 2) while 275-sensor magnetoencephalography (MEG) was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC) while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV) between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMTΔpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTΔpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMTΔpower. This finding may have important implications for the treatment of brain disorders such as depression and attention deficit disorder associated with abnormal regulation of FMT activity or disorders characterized by dysfunctional coupling of brain activity, e.g., epilepsy, Alzheimer’s or Parkinson’s disease (AD/PD).
Collapse
Affiliation(s)
- Bankim S Chander
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen Tübingen, Germany
| | - Matthias Witkowski
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of Tübingen Tübingen, Germany
| | - Christoph Braun
- MEG Center, University Hospital of TübingenTübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of TrentoTrento, Italy
| | - Stephen E Robinson
- National Institute of Mental Health (NIMH), MEG Core Facility Bethesda, MD, USA
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Leonardo G Cohen
- National Institute of Neurological Disorders and Stroke (NINDS) Bethesda, MD, USA
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Surjo R Soekadar
- Applied Neurotechnology Lab, Department of Psychiatry and Psychotherapy, University Hospital of TübingenTübingen, Germany; MEG Center, University Hospital of TübingenTübingen, Germany
| |
Collapse
|
23
|
Baeken C, Brunelin J, Duprat R, Vanderhasselt MA. The application of tDCS in psychiatric disorders: a brain imaging view. SOCIOAFFECTIVE NEUROSCIENCE & PSYCHOLOGY 2016; 6:29588. [PMID: 26993785 PMCID: PMC4799388 DOI: 10.3402/snp.v6.29588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/20/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022]
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive, non-convulsive technique for modulating brain function. In contrast to other non-invasive brain stimulation techniques, where costs, clinical applicability, and availability limit their large-scale use in clinical practices, the low-cost, portable, and easy-to-use tDCS devices may overcome these restrictions. Objective Despite numerous clinical applications in large numbers of patients suffering from psychiatric disorders, it is not quite clear how tDCS influences the mentally affected human brain. In order to decipher potential neural mechanisms of action of tDCS in patients with psychiatric conditions, we focused on the combination of tDCS with neuroimaging techniques. Design We propose a contemporary overview on the currently available neurophysiological and neuroimaging data where tDCS has been used as a research or treatment tool in patients with psychiatric disorders. Results Over a reasonably short period of time, tDCS has been broadly used as a research tool to examine neuronal processes in the healthy brain. tDCS has also commonly been applied as a treatment application in a variety of mental disorders, with to date no straightforward clinical outcome and not always accompanied by brain imaging techniques. Conclusion tDCS, as do other neuromodulation devices, clearly affects the underlying neuronal processes. However, research on these mechanisms in psychiatric patients is rather limited. A better comprehension of how tDCS modulates brain function will help us to define optimal parameters of stimulation in each indication and may result in the detection of biomarkers in favor of clinical response.
Collapse
Affiliation(s)
- Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium.,Department of Psychiatry University Hospital (UZBrussel), Brussels, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium;
| | - Jerome Brunelin
- INSERM U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Centre Hospitalier Le Vinatier, Université Claude Bernard Lyon 1, Villeurbanne, France.,CIRRIS-Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale, Université Laval, Québec, Canada
| | - Romain Duprat
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Psychiatry and Medical Psychology, Ghent University Hospital, Ghent University, Ghent, Belgium.,Faculty of Medicine and Pharmacy, Free University Brussels, Brussels, Belgium
| |
Collapse
|
24
|
Veniero D, Vossen A, Gross J, Thut G. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity. Front Cell Neurosci 2015; 9:477. [PMID: 26696834 PMCID: PMC4678227 DOI: 10.3389/fncel.2015.00477] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity.
Collapse
Affiliation(s)
- Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | | | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| |
Collapse
|
25
|
Transcranial electrical stimulation of the occipital cortex during visual perception modifies the magnitude of BOLD activity: A combined tES-fMRI approach. Neuroimage 2015; 140:110-7. [PMID: 26608246 DOI: 10.1016/j.neuroimage.2015.11.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/05/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate if the blood oxygenation level-dependent (BOLD) changes in the visual cortex can be used as biomarkers reflecting the online and offline effects of transcranial electrical stimulation (tES). Anodal transcranial direct current stimulation (tDCS) and 10Hz transcranial alternating current stimulation (tACS) were applied for 10min duration over the occipital cortex of healthy adults during the presentation of different visual stimuli, using a crossover, double-blinded design. Control experiments were also performed, in which sham stimulation as well as another electrode montage were used. Anodal tDCS over the visual cortex induced a small but significant further increase in BOLD response evoked by a visual stimulus; however, no aftereffect was observed. Ten hertz of tACS did not result in an online effect, but in a widespread offline BOLD decrease over the occipital, temporal, and frontal areas. These findings demonstrate that tES during visual perception affects the neuronal metabolism, which can be detected with functional magnetic resonance imaging (fMRI).
Collapse
|
26
|
Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). Neuroimage 2015; 140:89-98. [PMID: 26481671 DOI: 10.1016/j.neuroimage.2015.10.024] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Transcranial alternating current stimulation (tACS), a non-invasive and well-tolerated form of electric brain stimulation, can influence perception, memory, as well as motor and cognitive function. While the exact underlying neurophysiological mechanisms are unknown, the effects of tACS are mainly attributed to frequency-specific entrainment of endogenous brain oscillations in brain areas close to the stimulation electrodes, and modulation of spike timing dependent plasticity reflected in gamma band oscillatory responses. tACS-related electromagnetic stimulator artifacts, however, impede investigation of these neurophysiological mechanisms. Here we introduce a novel approach combining amplitude-modulated tACS during whole-head magnetoencephalography (MEG) allowing for artifact-free source reconstruction and precise mapping of entrained brain oscillations underneath the stimulator electrodes. Using this approach, we show that reliable reconstruction of neuromagnetic low- and high-frequency oscillations including high gamma band activity in stimulated cortical areas is feasible opening a new window to unveil the mechanisms underlying the effects of stimulation protocols that entrain brain oscillatory activity.
Collapse
|