1
|
Cui N, Piai V, Zheng XY. Domain-general cognitive control processes in bilingual switching: Evidence from midfrontal theta oscillations. Eur J Neurosci 2024; 60:4813-4829. [PMID: 39039939 DOI: 10.1111/ejn.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/29/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Language control in bilingual speakers is thought to be implicated in effectively switching between languages, inhibiting the non-intended language, and continuously monitoring what to say and what has been said. It has been a matter of controversy concerning whether language control operates in a comparable manner to cognitive control processes in non-linguistic domains (domain-general) or if it is exclusive to language processing (domain-specific). As midfrontal theta oscillations have been considered as an index of cognitive control, examining whether a midfrontal theta effect is evident in tasks requiring bilingual control could bring new insights to the ongoing debate. To this end, we reanalysed the EEG data from two previous bilingual production studies where Dutch-English bilinguals named pictures based on colour cues. Specifically, we focused on three fundamental control processes in bilingual production: switching between languages, inhibition of the nontarget language, and monitoring of speech errors. Theta power increase was observed in switch trials compared to repeat trials, with a midfrontal scalp distribution. However, no theta power difference was observed in switch trials following a shorter sequence of same-language trials compared to a longer sequence, suggesting a missing modulation of inhibitory control. Similarly, increased midfrontal theta power was observed when participants failed to switch to the intended language compared to correct responses. Altogether, these findings tentatively support the involvement of domain-general cognitive control mechanisms in bilingual switching.
Collapse
Affiliation(s)
- Ningjing Cui
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Institute of Cognitive Psychology, Leiden University, Leiden, Netherlands
| | - Vitoria Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
- Donders Centre for Medical Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Xiaochen Y Zheng
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Todorović S, Anton JL, Sein J, Nazarian B, Chanoine V, Rauchbauer B, Kotz SA, Runnqvist E. Cortico-Cerebellar Monitoring of Speech Sequence Production. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:701-721. [PMID: 39175789 PMCID: PMC11338302 DOI: 10.1162/nol_a_00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/27/2023] [Indexed: 08/24/2024]
Abstract
In a functional magnetic resonance imaging study, we examined speech error monitoring in a cortico-cerebellar network for two contrasts: (a) correct trials with high versus low articulatory error probability and (b) overtly committed errors versus correct trials. Engagement of the cognitive cerebellar region Crus I in both contrasts suggests that this region is involved in overarching performance monitoring. The activation of cerebellar motor regions (superior medial cerebellum, lobules VI and VIII) indicates the additional presence of a sensorimotor driven implementation of control. The combined pattern of pre-supplementary motor area (active across contrasts) and anterior cingulate cortex (only active in the contrast involving overt errors) activations suggests sensorimotor driven feedback monitoring in the medial frontal cortex, making use of proprioception and auditory feedback through overt errors. Differential temporal and parietal cortex activation across contrasts indicates involvement beyond sensorimotor driven feedback in line with speech production models that link these regions to auditory target processing and internal modeling-like mechanisms. These results highlight the presence of multiple, possibly hierarchically interdependent, mechanisms that support the optimizing of speech production.
Collapse
Affiliation(s)
- Snežana Todorović
- Laboratoire Parole et Langage, CNRS–Aix-Marseille Université, Aix-en-Provence, France
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Jean-Luc Anton
- Centre IRM, Marseille, France
- INT, CNRS–Aix-Marseille Université, Marseille, France
| | - Julien Sein
- Centre IRM, Marseille, France
- INT, CNRS–Aix-Marseille Université, Marseille, France
| | - Bruno Nazarian
- Centre IRM, Marseille, France
- INT, CNRS–Aix-Marseille Université, Marseille, France
| | - Valérie Chanoine
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Birgit Rauchbauer
- Laboratoire Parole et Langage, CNRS–Aix-Marseille Université, Aix-en-Provence, France
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Sonja A. Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elin Runnqvist
- Laboratoire Parole et Langage, CNRS–Aix-Marseille Université, Aix-en-Provence, France
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| |
Collapse
|
3
|
Robert C, Weiblen R, Wagner-Altendorf TA, Paulus T, Müller-Vahl K, Münchau A, Krämer UM, Heldmann M, Roessner V, Münte TF. Slips of the tongue in patients with Gilles de la Tourette syndrome. Neurol Res Pract 2024; 6:25. [PMID: 38693574 PMCID: PMC11064284 DOI: 10.1186/s42466-024-00324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Motor and vocal tics are the main symptom of Gilles de la Tourette-syndrome (GTS). A particular complex vocal tic comprises the utterance of swear words, termed coprolalia. Since taboo words are socially inappropriate, they are normally suppressed by people, which implies cognitive control processes. METHOD To investigate the control of the unintentional pronunciation of taboo words and the associated processes of conflict monitoring, we used the "Spoonerisms of Laboratory Induced Predisposition" (SLIP) paradigm. Participants read multiple inductor word pairs with the same phonemes, followed by pronouncing a target pair with inverse phonemes. This led to a conflict between two competing speech plans: the correct word pair and the word pair with inverted phonemes. Latter speech error, a spoonerism, could result in a neutral or taboo word. We investigated 19 patients with GTS and 23 typically developed controls (TDC) and measured participants' electroencephalography (EEG) during the SLIP task. RESULTS At the behavioral level less taboo than neutral word spoonerisms occurred in both groups without significant differences. Event-related brain potentials (ERP) revealed a difference between taboo and neutral word conditions in the GTS group at the midline electrodes in a time range of 250-400 ms after the speech prompt, which was not found in the TDC group. The extent of this effect depended on the number of inductor word pairs, suggesting an increasing level of cognitive control in the GTS group. CONCLUSION The differences between taboo and neutral word conditions in patients with GTS compared to TDC suggest an altered recruitment of cognitive control processes in GTS, likely enlisted to suppress taboo words.
Collapse
Affiliation(s)
- Carina Robert
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
| | - Ronja Weiblen
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | | | - Theresa Paulus
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Alexander Münchau
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Institute of Medical Psychology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany
- Department of Psychology, University of Lübeck, Lübeck, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, TU Dresden, Dresden, Germany
| | - Thomas F Münte
- Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Straße, Building 66, 23562, Lübeck, Germany.
| |
Collapse
|
4
|
Balčiūnienė I, Kornev AN. Linguistic disfluencies in Russian-speaking typically and atypically developing children: individual variability in different contexts. CLINICAL LINGUISTICS & PHONETICS 2024; 38:287-306. [PMID: 36787206 DOI: 10.1080/02699206.2023.2176786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Disfluency in children and adults seems to occur like errors of speech but, at the same time, is an essential feature of spontaneous (unprepared) speech. The present study aimed to evaluate linguistic disfluencies in typically and atypically developing Russian-speaking children from the perspective of the dynamic adaptive model of self-monitoring in speech production. The study collected four language samples from 10 six-year-old children with developmental language disorder and 14 typically developing peers: two storytelling tasks, structured conversation, and a play argument. After transcribing audio-recordings and marking linguistic disfluencies, the authors conducted structured distributional analysis. The distribution of several indexes of disfluency was estimated to assess the prevalence and profiles of different (sub)types of disfluencies. The disfluency rate statistics were similar between the typically developing children and children with developmental language disorder. The distributional indexes score showed that tasks significantly impacted the rate of different (sub)types of disfluencies. Task-related patterns in a set of the distributional indexes significantly distinguished the groups. Thus, changes in the disfluency profile related to different external factors, as a sign of a flexibility of an adaptive self-monitoring system, may be limited in children with developmental language disorder.
Collapse
Affiliation(s)
- Ingrida Balčiūnienė
- Department of Lithuanian Studies, Vytautas Magnus University, Kaunas, Lithuania
| | - Aleksandr N Kornev
- Department of Logopathology, Saint-Petersburg State Pediatric Medical University, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Cai H, Dong J, Mei L, Feng G, Li L, Wang G, Yan H. Functional and structural abnormalities of the speech disorders: a multimodal activation likelihood estimation meta-analysis. Cereb Cortex 2024; 34:bhae075. [PMID: 38466117 DOI: 10.1093/cercor/bhae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Speech disorders are associated with different degrees of functional and structural abnormalities. However, the abnormalities associated with specific disorders, and the common abnormalities shown by all disorders, remain unclear. Herein, a meta-analysis was conducted to integrate the results of 70 studies that compared 1843 speech disorder patients (dysarthria, dysphonia, stuttering, and aphasia) to 1950 healthy controls in terms of brain activity, functional connectivity, gray matter, and white matter fractional anisotropy. The analysis revealed that compared to controls, the dysarthria group showed higher activity in the left superior temporal gyrus and lower activity in the left postcentral gyrus. The dysphonia group had higher activity in the right precentral and postcentral gyrus. The stuttering group had higher activity in the right inferior frontal gyrus and lower activity in the left inferior frontal gyrus. The aphasia group showed lower activity in the bilateral anterior cingulate gyrus and left superior frontal gyrus. Across the four disorders, there were concurrent lower activity, gray matter, and fractional anisotropy in motor and auditory cortices, and stronger connectivity between the default mode network and frontoparietal network. These findings enhance our understanding of the neural basis of speech disorders, potentially aiding clinical diagnosis and intervention.
Collapse
Affiliation(s)
- Hao Cai
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an 710128, China
| | - Jie Dong
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an 710128, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University); School of Psychology; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Genyi Feng
- Imaging Department, Xi'an GEM Flower Changqing Hospital, Xi'an 710201, China
| | - Lili Li
- Speech Language Therapy Department, Shaanxi Provincial Rehabilitation Hospital, Xi'an 710065, China
| | - Gang Wang
- Imaging Department, Xi'an GEM Flower Changqing Hospital, Xi'an 710201, China
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an 710128, China
| |
Collapse
|
6
|
McCall JD, DeMarco AT, Mandal AS, Fama ME, van der Stelt CM, Lacey EH, Laks AB, Snider SF, Friedman RB, Turkeltaub PE. Listening to Yourself and Watching Your Tongue: Distinct Abilities and Brain Regions for Monitoring Semantic and Phonological Speech Errors. J Cogn Neurosci 2023; 35:1169-1194. [PMID: 37159232 PMCID: PMC10273223 DOI: 10.1162/jocn_a_02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite the many mistakes we make while speaking, people can effectively communicate because we monitor our speech errors. However, the cognitive abilities and brain structures that support speech error monitoring are unclear. There may be different abilities and brain regions that support monitoring phonological speech errors versus monitoring semantic speech errors. We investigated speech, language, and cognitive control abilities that relate to detecting phonological and semantic speech errors in 41 individuals with aphasia who underwent detailed cognitive testing. Then, we used support vector regression lesion symptom mapping to identify brain regions supporting detection of phonological versus semantic errors in a group of 76 individuals with aphasia. The results revealed that motor speech deficits as well as lesions to the ventral motor cortex were related to reduced detection of phonological errors relative to semantic errors. Detection of semantic errors selectively related to auditory word comprehension deficits. Across all error types, poor cognitive control related to reduced detection. We conclude that monitoring of phonological and semantic errors relies on distinct cognitive abilities and brain regions. Furthermore, we identified cognitive control as a shared cognitive basis for monitoring all types of speech errors. These findings refine and expand our understanding of the neurocognitive basis of speech error monitoring.
Collapse
Affiliation(s)
- Joshua D McCall
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC
| | - Ayan S Mandal
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Brain-Gene Development Lab, Psychiatry Department, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mackenzie E Fama
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC
| | - Candace M van der Stelt
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| | - Elizabeth H Lacey
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| | - Alycia B Laks
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
| | - Sarah F Snider
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC
| | - Rhonda B Friedman
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Neurology Department, Georgetown University Medical Center, Washington, DC
- Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
7
|
Tsai CG, Fu YF, Li CW. Prediction errors arising from switches between major and minor modes in music: An fMRI study. Brain Cogn 2023; 169:105987. [PMID: 37126951 DOI: 10.1016/j.bandc.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The major and minor modes in Western music have positive and negative connotations, respectively. The present fMRI study examined listeners' neural responses to switches between major and minor modes. We manipulated the final chords of J. S. Bach's keyboard pieces so that each major-mode passage ended with either the major (Major-Major) or minor (Major-Minor) tonic chord, and each minor-mode passage ended with either the minor (Minor-Minor) or major (Minor-Major) tonic chord. If the final major and minor chords have positive and negative reward values respectively, the Major-Minor and Minor-Major stimuli would cause negative and positive reward prediction errors (RPEs) respectively in a listener's brain. We found that activity in a frontoparietal network was significantly higher for Major-Minor than for Major-Major. Based on previous research, these results support the idea that a major-to-minor switch causes negative RPE. The contrast of Minor-Major minus Minor-Minor yielded activation in the ventral insula and visual cortex, speaking against the idea that a minor-to-major switch causes positive RPE. We discuss our results in relation to executive functions and the emotional connotations of major versus minor modes.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Fu
- Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
8
|
Arnon T, Lavidor M. Cognitive control in processing ambiguous idioms: evidence from a self-paced reading study. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2023; 52:261-281. [PMID: 35316445 DOI: 10.1007/s10936-022-09861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Idioms entail a competition between bottom-up and top-down activations of literal and figurative meanings. The present study explored the involvement of cognitive control in processing Hebrew ambiguous idioms. Fifty subjects have completed a self-paced reading task and a response inhibition, stop-signal task (SST). Subjects read 26 matched pairs of almost-identical sentences, which included ambiguous idioms (e.g., "break the ice"). The ambiguity was resolved only in the third part of the sentence, which was either literal ("on the parking lot") or figurative ("with funny stories"). Figurative disambiguation parts were read significantly faster than literal ones. The means of the absolute RT difference between the literal and figurative sentences significantly correlated with the SST cognitive control measure. A comparison between three groups of cognitive control levels validated that "Good inhibitors" in the SST were also faster in processing ambiguities. The paper discusses the generality of cognitive control in linguistic processing.
Collapse
Affiliation(s)
- Tamar Arnon
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Centerr, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Michal Lavidor
- Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Centerr, Bar-Ilan University, 5290002, Ramat Gan, Israel
| |
Collapse
|
9
|
Volfart A, McMahon KL, Howard D, de Zubicaray GI. Neural Correlates of Naturally Occurring Speech Errors during Picture Naming in Healthy Participants. J Cogn Neurosci 2022; 35:111-127. [PMID: 36306259 DOI: 10.1162/jocn_a_01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Most of our knowledge about the neuroanatomy of speech errors comes from lesion-symptom mapping studies in people with aphasia and laboratory paradigms designed to elicit primarily phonological errors in healthy adults, with comparatively little evidence from naturally occurring speech errors. In this study, we analyzed perfusion fMRI data from 24 healthy participants during a picture naming task, classifying their responses into correct and different speech error types (e.g., semantic, phonological, omission errors). Total speech errors engaged a wide set of left-lateralized frontal, parietal, and temporal regions that were almost identical to those involved during the production of correct responses. We observed significant perfusion signal decreases in the left posterior middle temporal gyrus and inferior parietal lobule (angular gyrus) for semantic errors compared to correct trials matched on various psycholinguistic variables. In addition, the left dorsal caudate nucleus showed a significant perfusion signal decrease for omission (i.e., anomic) errors compared with matched correct trials. Surprisingly, we did not observe any significant perfusion signal changes in brain regions proposed to be associated with monitoring mechanisms during speech production (e.g., ACC, superior temporal gyrus). Overall, our findings provide evidence for distinct neural correlates of semantic and omission error types, with anomic speech errors likely resulting from failures to initiate articulatory-motor processes rather than semantic knowledge impairments as often reported for people with aphasia.
Collapse
Affiliation(s)
| | - Katie L McMahon
- Queensland University of Technology.,Royal Brisbane & Women's Hospital
| | | | | |
Collapse
|
10
|
Li T, Chang Y, Zhao S, Jones JA, Chen X, Gan C, Wu X, Dai G, Li J, Shen Y, Liu P, Liu H. The left inferior frontal gyrus is causally linked to vocal feedback control: evidence from high-definition transcranial alternating current stimulation. Cereb Cortex 2022; 33:5625-5635. [PMID: 36376991 DOI: 10.1093/cercor/bhac447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Current models of speech motor control propose a role for the left inferior frontal gyrus (IFG) in feedforward control of speech production. There is evidence, however, that has implicated the functional relevance of the left IFG for the neuromotor processing of vocal feedback errors. The present event-related potential (ERP) study examined whether the left IFG is causally linked to auditory feedback control of vocal production with high-definition transcranial alternating current stimulation (HD-tACS). After receiving active or sham HD-tACS over the left IFG at 6 or 70 Hz, 20 healthy adults vocalized the vowel sounds while hearing their voice unexpectedly pitch-shifted by ±200 cents. The results showed that 6 or 70 Hz HD-tACS over the left IFG led to larger magnitudes and longer latencies of vocal compensations for pitch perturbations paralleled by larger ERP P2 responses than sham HD-tACS. Moreover, there was a lack of frequency specificity that showed no significant differences between 6 and 70 Hz HD-tACS. These findings provide first causal evidence linking the left IFG to vocal pitch regulation, suggesting that the left IFG is an important part of the feedback control network that mediates vocal compensations for auditory feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Yichen Chang
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Shuzhi Zhao
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jeffery A Jones
- Wilfrid Laurier University Psychology Department and Laurier Centre for Cognitive Neuroscience, , Waterloo, Ontario N2L 3C5 , Canada
| | - Xi Chen
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Chu Gan
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Xiuqin Wu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Guangyan Dai
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jingting Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Ying Shen
- The First Affiliated Hospital of Nanjing Medical University Rehabilitation Medicine Center, , Nanjing 210029 , China
| | - Peng Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Hanjun Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
- Zhongshan School of Medicine, Sun Yat-sen University Guangdong Provincial Key Laboratory of Brain Function and Disease, , Guangzhou 510080 , China
| |
Collapse
|
11
|
Emotion schema effects on associative memory differ across emotion categories at the behavioural, physiological and neural level: Emotion schema effects on associative memory differs for disgust and fear. Neuropsychologia 2022; 172:108257. [PMID: 35561814 DOI: 10.1016/j.neuropsychologia.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022]
Abstract
Previous behavioural and neuroimaging studies have consistently reported that memory is enhanced for associations congruent or incongruent with the structure of prior knowledge, termed as schemas. However, it remains unclear if similar effects arise with emotion-related associations, and whether they depend on the type of emotions. Here, we addressed this question using a novel face-word pair association paradigm combined with fMRI and eye-tracking techniques. In two independent studies, we demonstrated and replicated that both congruency with emotion schemas and emotion category interact to affect associative memory. Overall, memory retrieval was higher for faces from pairs congruent vs. incongruent with emotion schemas, paralleled by a greater recruitment of left inferior frontal gyrus (IFG) during successful encoding. However, emotion schema effects differed across two negative emotion categories. Disgust was remembered better than fear, and only disgust activated left IFG stronger during encoding of congruent vs. incongruent pairs, suggestive of deeper semantic processing for the associations. On the contrary, encoding of congruent fear vs. disgust-related pairs was accompanied with greater activity in right fusiform gyrus (FG), suggesting a stronger sensory processing of faces. In addition, successful memory formation for congruent disgust pairs was associated with a higher pupil dilation index related to sympathetic activation, longer gaze time on words compared to faces, and more gaze switches between paired words and faces. This was reversed for fear-related congruent pairs where the faces attracted longer gaze time (compared to words). Overall, our results provide converging evidence from behavioural, physiological, and neural measures to suggest that congruency with available emotion schemas influence memory associations in a similar manner to semantic schemas. However, these effects vary across distinct emotion categories, pointing to a differential role of semantic processing and visual attention processes in the modulation of memory by disgust and fear, respectively.
Collapse
|
12
|
Haesevoets T, Van Hiel A, De Cremer D, Delplanque J, De Coninck S, Van Overwalle F. The myth of the extra mile: Psychological processes and neural mechanisms underlying overcompensation effects. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2022. [DOI: 10.1016/j.jesp.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
McCall JD, Vivian Dickens J, Mandal AS, DeMarco AT, Fama ME, Lacey EH, Kelkar A, Medaglia JD, Turkeltaub PE. Structural disconnection of the posterior medial frontal cortex reduces speech error monitoring. Neuroimage Clin 2022; 33:102934. [PMID: 34995870 PMCID: PMC8739872 DOI: 10.1016/j.nicl.2021.102934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/25/2021] [Accepted: 12/31/2021] [Indexed: 11/29/2022]
Abstract
Optimal performance in any task relies on the ability to detect and correct errors. The anterior cingulate cortex and the broader posterior medial frontal cortex (pMFC) are active during error processing. However, it is unclear whether damage to the pMFC impairs error monitoring. We hypothesized that successful error monitoring critically relies on connections between the pMFC and broader cortical networks involved in executive functions and the task being monitored. We tested this hypothesis in the context of speech error monitoring in people with post-stroke aphasia. Diffusion weighted images were collected in 51 adults with chronic left-hemisphere stroke and 37 age-matched control participants. Whole-brain connectomes were derived using constrained spherical deconvolution and anatomically-constrained probabilistic tractography. Support vector regressions identified white matter connections in which lost integrity in stroke survivors related to reduced error detection during confrontation naming. Lesioned connections to the bilateral pMFC were related to reduce error monitoring, including many connections to regions associated with speech production and executive function. We conclude that connections to the pMFC support error monitoring. Error monitoring in speech production is supported by the structural connectivity between the pMFC and regions involved in speech production, comprehension, and executive function. Interactions between pMFC and other task-relevant processors may similarly be critical for error monitoring in other task contexts.
Collapse
Affiliation(s)
- Joshua D McCall
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA
| | - J Vivian Dickens
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ayan S Mandal
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Psychiatry Department, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Mackenzie E Fama
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Department of Speech, Language, and Hearing Sciences, The George Washington University, DC 20052, USA
| | - Elizabeth H Lacey
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20010, USA
| | - Apoorva Kelkar
- Psychology Department, Drexel University, Philadelphia, PA 19104, USA
| | - John D Medaglia
- Psychology Department, Drexel University, Philadelphia, PA 19104, USA; Neurology Department, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery and Neurology Department, Georgetown University Medical Center, Washington, DC 20007, USA; Research Division, MedStar National Rehabilitation Hospital, Washington, DC 20010, USA; Rehabilitation Medicine Department, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
14
|
Runnqvist E, Chanoine V, Strijkers K, Pattamadilok C, Bonnard M, Nazarian B, Sein J, Anton JL, Dorokhova L, Belin P, Alario FX. Cerebellar and Cortical Correlates of Internal and External Speech Error Monitoring. Cereb Cortex Commun 2021; 2:tgab038. [PMID: 34296182 PMCID: PMC8237718 DOI: 10.1093/texcom/tgab038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022] Open
Abstract
An event-related functional magnetic resonance imaging study examined how speakers inspect their own speech for errors. Concretely, we sought to assess 1) the role of the temporal cortex in monitoring speech errors, linked with comprehension-based monitoring; 2) the involvement of the cerebellum in internal and external monitoring, linked with forward modeling; and 3) the role of the medial frontal cortex for internal monitoring, linked with conflict-based monitoring. In a word production task priming speech errors, we observed enhanced involvement of the right posterior cerebellum for trials that were correct, but on which participants were more likely to make a word as compared with a nonword error (contrast of internal monitoring). Furthermore, comparing errors to correct utterances (contrast of external monitoring), we observed increased activation of the same cerebellar region, of the superior medial cerebellum, and of regions in temporal and medial frontal cortex. The presence of the cerebellum for both internal and external monitoring indicates the use of forward modeling across the planning and articulation of speech. Dissociations across internal and external monitoring in temporal and medial frontal cortex indicate that monitoring of overt errors is more reliant on vocal feedback control.
Collapse
Affiliation(s)
- Elin Runnqvist
- Aix-Marseille Université, CNRS, LPL, Aix-en-Provence 13100, France
| | - Valérie Chanoine
- Aix-Marseille Université, CNRS, LPL, Aix-en-Provence 13100, France
- Institute of Language, Communication and the Brain, Aix-en-Provence 13100, France
| | | | | | | | - Bruno Nazarian
- Centre IRM, Marseille 13005, France
- Aix-Marseille Université, CNRS, INT 13005, Marseille, France
| | - Julien Sein
- Centre IRM, Marseille 13005, France
- Aix-Marseille Université, CNRS, INT 13005, Marseille, France
| | - Jean-Luc Anton
- Centre IRM, Marseille 13005, France
- Aix-Marseille Université, CNRS, INT 13005, Marseille, France
| | - Lydia Dorokhova
- Aix-Marseille Université, CNRS, LPL, Aix-en-Provence 13100, France
| | - Pascal Belin
- Aix-Marseille Université, CNRS, INT 13005, Marseille, France
| | | |
Collapse
|
15
|
Adamczyk P, Jáni M, Ligeza TS, Płonka O, Błądziński P, Wyczesany M. On the Role of Bilateral Brain Hypofunction and Abnormal Lateralization of Cortical Information Flow as Neural Underpinnings of Conventional Metaphor Processing Impairment in Schizophrenia: An fMRI and EEG Study. Brain Topogr 2021; 34:537-554. [PMID: 33973137 PMCID: PMC8195899 DOI: 10.1007/s10548-021-00849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/05/2021] [Indexed: 01/05/2023]
Abstract
Figurative language processing (e.g. metaphors) is commonly impaired in schizophrenia. In the present study, we investigated the neural activity and propagation of information within neural circuits related to the figurative speech, as a neural substrate of impaired conventional metaphor processing in schizophrenia. The study included 30 schizophrenia outpatients and 30 healthy controls, all of whom were assessed with a functional Magnetic Resonance Imaging (fMRI) and electroencephalography (EEG) punchline-based metaphor comprehension task including literal (neutral), figurative (metaphorical) and nonsense (absurd) endings. The blood oxygenation level-dependent signal was recorded with 3T MRI scanner and direction and strength of cortical information flow in the time course of task processing was estimated with a 64-channel EEG input for directed transfer function. The presented results revealed that the behavioral manifestation of impaired figurative language in schizophrenia is related to the hypofunction in the bilateral fronto-temporo-parietal brain regions (fMRI) and various differences in effective connectivity in the fronto-temporo-parietal circuit (EEG). Schizophrenia outpatients showed an abnormal pattern of connectivity during metaphor processing which was related to bilateral (but more pronounced at the left hemisphere) hypoactivation of the brain. Moreover, we found reversed lateralization patterns, i.e. a rightward-shifted pattern during metaphor processing in schizophrenia compared to the control group. In conclusion, the presented findings revealed that the impairment of the conventional metaphor processing in schizophrenia is related to the bilateral brain hypofunction, which supports the evidence on reversed lateralization of the language neural network and the existence of compensatory recruitment of alternative neural circuits in schizophrenia.
Collapse
Affiliation(s)
- Przemysław Adamczyk
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland.
| | - Martin Jáni
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland.,Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Tomasz S Ligeza
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Olga Płonka
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| | - Piotr Błądziński
- Community Psychiatry and Psychosis Research Center, Chair of Psychiatry, Medical College, Jagiellonian University, Kraków, Poland
| | - Miroslaw Wyczesany
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060, Kraków, Poland
| |
Collapse
|
16
|
Lin Z, Tam F, Churchill NW, Schweizer TA, Graham SJ. Tablet Technology for Writing and Drawing during Functional Magnetic Resonance Imaging: A Review. SENSORS 2021; 21:s21020401. [PMID: 33430023 PMCID: PMC7826671 DOI: 10.3390/s21020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful modality to study brain activity. To approximate naturalistic writing and drawing behaviours inside the scanner, many fMRI-compatible tablet technologies have been developed. The digitizing feature of the tablets also allows examination of behavioural kinematics with greater detail than using paper. With enhanced ecological validity, tablet devices have advanced the fields of neuropsychological tests, neurosurgery, and neurolinguistics. Specifically, tablet devices have been used to adopt many traditional paper-based writing and drawing neuropsychological tests for fMRI. In functional neurosurgery, tablet technologies have enabled intra-operative brain mapping during awake craniotomy in brain tumour patients, as well as quantitative tremor assessment for treatment outcome monitoring. Tablet devices also play an important role in identifying the neural correlates of writing in the healthy and diseased brain. The fMRI-compatible tablets provide an excellent platform to support naturalistic motor responses and examine detailed behavioural kinematics.
Collapse
Affiliation(s)
- Zhongmin Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Fred Tam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Simon J. Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Correspondence:
| |
Collapse
|
17
|
Meekings S, Scott SK. Error in the Superior Temporal Gyrus? A Systematic Review and Activation Likelihood Estimation Meta-Analysis of Speech Production Studies. J Cogn Neurosci 2020; 33:422-444. [PMID: 33326327 DOI: 10.1162/jocn_a_01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evidence for perceptual processing in models of speech production is often drawn from investigations in which the sound of a talker's voice is altered in real time to induce "errors." Methods of acoustic manipulation vary but are assumed to engage the same neural network and psychological processes. This paper aims to review fMRI and PET studies of altered auditory feedback and assess the strength of the evidence these studies provide for a speech error correction mechanism. Studies included were functional neuroimaging studies of speech production in neurotypical adult humans, using natural speech errors or one of three predefined speech manipulation techniques (frequency altered feedback, delayed auditory feedback, and masked auditory feedback). Seventeen studies met the inclusion criteria. In a systematic review, we evaluated whether each study (1) used an ecologically valid speech production task, (2) controlled for auditory activation caused by hearing the perturbation, (3) statistically controlled for multiple comparisons, and (4) measured behavioral compensation correlating with perturbation. None of the studies met all four criteria. We then conducted an activation likelihood estimation meta-analysis of brain coordinates from 16 studies that reported brain responses to manipulated over unmanipulated speech feedback, using the GingerALE toolbox. These foci clustered in bilateral superior temporal gyri, anterior to cortical fields typically linked to error correction. Within the limits of our analysis, we conclude that existing neuroimaging evidence is insufficient to determine whether error monitoring occurs in the posterior superior temporal gyrus regions proposed by models of speech production.
Collapse
|
18
|
Gollan TH, Smirnov DS, Salmon DP, Galasko D. Failure to stop autocorrect errors in reading aloud increases in aging especially with a positive biomarker for Alzheimer's disease. Psychol Aging 2020; 35:1016-1025. [PMID: 32584071 PMCID: PMC8357184 DOI: 10.1037/pag0000550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study examined the effects of aging and CSF biomarkers of Alzheimer's disease (AD) on the ability to control production of unexpected words in connected speech elicited by reading aloud. Fifty-two cognitively healthy participants aged 66-86 read aloud 6 paragraphs with 10 malapropisms including 5 on content words (e.g., "window cartons" that elicited autocorrect errors to "window curtains") and 5 on function words (e.g., "thus concept" that elicited autocorrections to "this concept") and completed a battery of neuropsychological tests including a standardized Stroop task. Reading aloud elicited more autocorrect errors on function than content words, but these were equally correlated with age and Aβ1-42 levels. The ability to stop autocorrect errors declined in aging and with lower (more AD-like) levels of Aβ1-42, and multiplicatively so, such that autocorrect errors were highest in the oldest-old with the lowest Aβ1-42 levels. Critically, aging effects were significant even when controlling statistically for Aβ1-42. Finally, both autocorrect and Stroop errors were correlated with Aβ1-42, but only autocorrect errors captured unique variance in predicting Aβ1-42 levels. Reading aloud requires simultaneous planning and monitoring of upcoming speech. These results suggest that healthy aging leads to decline in the ability to intermittently monitor for and detect conflict during speech planning and that subtle cognitive changes in preclinical AD magnify this aging deficit. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Tamar H. Gollan
- Department of Psychiatry, University of California, San Diego
| | - Denis S. Smirnov
- Department of Neurosciences, University of California, San Diego
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
19
|
Adaptation to pitch-altered feedback is independent of one's own voice pitch sensitivity. Sci Rep 2020; 10:16860. [PMID: 33033324 PMCID: PMC7544828 DOI: 10.1038/s41598-020-73932-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/23/2020] [Indexed: 01/17/2023] Open
Abstract
Monitoring voice pitch is a fine-tuned process in daily conversations as conveying accurately the linguistic and affective cues in a given utterance depends on the precise control of phonation and intonation. This monitoring is thought to depend on whether the error is treated as self-generated or externally-generated, resulting in either a correction or inflation of errors. The present study reports on two separate paradigms of adaptation to altered feedback to explore whether participants could behave in a more cohesive manner once the error is of comparable size perceptually. The vocal behavior of normal-hearing and fluent speakers was recorded in response to a personalized size of pitch shift versus a non-specific size, one semitone. The personalized size of shift was determined based on the just-noticeable difference in fundamental frequency (F0) of each participant’s voice. Here we show that both tasks successfully demonstrated opposing responses to a constant and predictable F0 perturbation (on from the production onset) but these effects barely carried over once the feedback was back to normal, depicting a pattern that bears some resemblance to compensatory responses. Experiencing a F0 shift that is perceived as self-generated (because it was precisely just-noticeable) is not enough to force speakers to behave more consistently and more homogeneously in an opposing manner. On the contrary, our results suggest that the type of the response as well as the magnitude of the response do not depend in any trivial way on the sensitivity of participants to their own voice pitch. Based on this finding, we speculate that error correction could possibly occur even with a bionic ear, typically even when F0 cues are too subtle for cochlear implant users to detect accurately.
Collapse
|
20
|
Wagner-Altendorf TA, Gottschlich C, Robert C, Cirkel A, Heldmann M, Münte TF. The Suppression of Taboo Word Spoonerisms Is Associated With Altered Medial Frontal Negativity: An ERP Study. Front Hum Neurosci 2020; 14:368. [PMID: 33088266 PMCID: PMC7498727 DOI: 10.3389/fnhum.2020.00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
The constant internal monitoring of speech is a crucial feature to ensure the fairly error-free process of speech production. It has been argued that internal speech monitoring takes place through detection of conflict between different response options or “speech plans.” Speech errors are thought to occur because two (or more) competing speech plans become activated, and the speaker is unable to inhibit the erroneous plan(s) prior to vocalization. A prime example for a speech plan that has to be suppressed is the involuntary utterance of a taboo word. The present study seeks to examine the suppression of involuntary taboo word utterances. We used the “Spoonerisms of Laboratory Induced Predisposition” (SLIP) paradigm to elicit two competing speech plans, one being correct and one embodying either a taboo word or a non-taboo word spoonerism. Behavioral data showed that inadequate speech plans generally were effectively suppressed, although more effectively in the taboo word spoonerism condition. Event-related potential (ERP) analysis revealed a broad medial frontal negativity (MFN) after the target word pair presentation, interpreted as reflecting conflict detection and resolution to suppress the inadequate speech plan. The MFN was found to be more pronounced in the taboo word spoonerism compared to the neutral word spoonerism condition, indicative of a higher level of conflict when subjects suppressed the involuntary utterance of taboo words.
Collapse
Affiliation(s)
| | | | - Carina Robert
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Anna Cirkel
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|
21
|
van de Ven V, Waldorp L, Christoffels I. Hippocampus plays a role in speech feedback processing. Neuroimage 2020; 223:117319. [PMID: 32882376 DOI: 10.1016/j.neuroimage.2020.117319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
There is increasing evidence that the hippocampus is involved in language production and verbal communication, although little is known about its possible role. According to one view, hippocampus contributes semantic memory to spoken language. Alternatively, hippocampus is involved in the processing the (mis)match between expected sensory consequences of speaking and the perceived speech feedback. In the current study, we re-analysed functional magnetic resonance (fMRI) data of two overt picture-naming studies to test whether hippocampus is involved in speech production and, if so, whether the results can distinguish between a "pure memory" versus a "prediction" account of hippocampal involvement. In both studies, participants overtly named pictures during scanning while hearing their own speech feedback unimpededly or impaired by a superimposed noise mask. Results showed decreased hippocampal activity when speech feedback was impaired, compared to when feedback was unimpeded. Further, we found increased functional coupling between auditory cortex and hippocampus during unimpeded speech feedback, compared to impaired feedback. Finally, we found significant functional coupling between a hippocampal/supplementary motor area (SMA) interaction term and auditory cortex, anterior cingulate cortex and cerebellum during overt picture naming, but not during listening to one's own pre-recorded voice. These findings indicate that hippocampus plays a role in speech production that is in accordance with a "prediction" view of hippocampal functioning.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | | | - Ingrid Christoffels
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
22
|
Abstract
As all human activities, verbal communication is fraught with errors. It is estimated that humans produce around 16,000 words per day, but the word that is selected for production is not always correct and neither is the articulation always flawless. However, to facilitate communication, it is important to limit the number of errors. This is accomplished via the verbal monitoring mechanism. A body of research over the last century has uncovered a number of properties of the mechanisms at work during verbal monitoring. Over a dozen routes for verbal monitoring have been postulated. However, to date a complete account of verbal monitoring does not exist. In the current paper we first outline the properties of verbal monitoring that have been empirically demonstrated. This is followed by a discussion of current verbal monitoring models: the perceptual loop theory, conflict monitoring, the hierarchical state feedback control model, and the forward model theory. Each of these models is evaluated given empirical findings and theoretical considerations. We then outline lacunae of current theories, which we address with a proposal for a new model of verbal monitoring for production and perception, based on conflict monitoring models. Additionally, this novel model suggests a mechanism of how a detected error leads to a correction. The error resolution mechanism proposed in our new model is then tested in a computational model. Finally, we outline the advances and predictions of the model.
Collapse
|
23
|
Abstract
Speakers occasionally make speech errors, which may be detected and corrected. According to the comprehension-based account proposed by Levelt, Roelofs, and Meyer (1999) and Roelofs (2004), speakers detect errors by using their speech comprehension system for the monitoring of overt as well as inner speech. According to the production-based account of Nozari, Dell, and Schwartz (2011), speakers may use their comprehension system for external monitoring but error detection in internal monitoring is based on the amount of conflict within the speech production system, assessed by the anterior cingulate cortex (ACC). Here, I address three main arguments of Nozari et al. and Nozari and Novick (2017) against a comprehension-based account of internal monitoring, which concern cross-talk interference between inner and overt speech, a double dissociation between comprehension and self-monitoring ability in patients with aphasia, and a domain-general error-related negativity in the ACC that is allegedly independent of conscious awareness. I argue that none of the arguments are conclusive, and conclude that comprehension-based monitoring remains a viable account of self-monitoring in speaking.
Collapse
|
24
|
Roelofs A. On (Correctly Representing) Comprehension-Based Monitoring in Speaking: Rejoinder to Nozari (2020). J Cogn 2020; 3:20. [PMID: 32944683 PMCID: PMC7473236 DOI: 10.5334/joc.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Misunderstanding exists about what constitutes comprehension-based monitoring in speaking and what it empirically implies. Here, I make clear that the use of the speech comprehension system is the defining property of comprehension-based monitoring rather than conscious and deliberate processing, as maintained by Nozari (2020). Therefore, contrary to what Nozari claims, my arguments in Roelofs (2020) are suitable for addressing her criticisms raised against comprehension-based monitoring. Also, I indicate that Nozari does not correctly describe my view in a review of her paper. Finally, I further clarify what comprehension-based monitoring entails empirically, thereby dealing with Nozari's new criticisms and inaccurate descriptions of empirical findings. I conclude that comprehension-based monitoring remains a viable account of self-monitoring in speaking.
Collapse
Affiliation(s)
- Ardi Roelofs
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Nijmegen, NL
| |
Collapse
|
25
|
Nozari N. A Comprehension- or a Production-Based Monitor? Response to Roelofs (2020). J Cogn 2020; 3:19. [PMID: 32944682 PMCID: PMC7473204 DOI: 10.5334/joc.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
Roelofs (2020) has put forth a rebuttal of the criticisms raised against comprehension-based monitoring and has also raised a number of objections against production-based monitors. In this response, I clarify that the model defended by Roelofs is not a comprehension-based monitor, but belongs to a class of monitoring models which I refer to as production-perception models. I review comprehension-based and production-perception models, highlight the strength of each, and point out the differences between them. I then discuss the limitations of both for monitoring production at higher levels, which has been the motivation for production-based monitors. Next, I address the specific criticisms raised by Roelofs (2020) in light of the current evidence. I end by presenting several lines of arguments that preclude a single monitoring mechanism as meeting all the demands of monitoring in a task as complex as communication. A more fruitful avenue is perhaps to focus on what theories are compatible with the nature of representations at specific levels of the production system and with specific aims of monitoring in language production.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, US
- Center for Neural Basis Cognition (CNBC), US
| |
Collapse
|
26
|
Lind A, Hartsuiker RJ. Self-Monitoring in Speech Production: Comprehending the Conflict Between Conflict- and Comprehension-Based Accounts. J Cogn 2020; 3:16. [PMID: 32944679 PMCID: PMC7473181 DOI: 10.5334/joc.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Affiliation(s)
- Andreas Lind
- Lund University Cognitive Science, Lund University, SE
| | | |
Collapse
|
27
|
Mandal AS, Fama ME, Skipper-Kallal LM, DeMarco AT, Lacey EH, Turkeltaub PE. Brain structures and cognitive abilities important for the self-monitoring of speech errors. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:319-338. [PMID: 34676371 PMCID: PMC8528269 DOI: 10.1162/nol_a_00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/20/2020] [Indexed: 06/13/2023]
Abstract
The brain structures and cognitive abilities necessary for successful monitoring of one's own speech errors remain unknown. We aimed to inform self-monitoring models by examining the neural and behavioral correlates of phonological and semantic error detection in individuals with post-stroke aphasia. First, we determined whether detection related to other abilities proposed to contribute to monitoring according to various theories, including naming ability, fluency, word-level auditory comprehension, sentence-level auditory comprehension, and executive function. Regression analyses revealed that fluency and executive scores were independent predictors of phonological error detection, while a measure of word-level comprehension related to semantic error detection. Next, we used multivariate lesion-symptom mapping to determine lesion locations associated with reduced error detection. Reduced overall error detection related to damage to a region of frontal white matter extending into dorsolateral prefrontal cortex (DLPFC). Detection of phonological errors related to damage to the same areas, but the lesion-behavior association was stronger, suggesting the localization for overall error detection was driven primarily by phonological error detection. These findings demonstrate that monitoring of different error types relies on distinct cognitive functions, and provide causal evidence for the importance of frontal white matter tracts and DLPFC for self-monitoring of speech.
Collapse
Affiliation(s)
- Ayan S. Mandal
- University of Cambridge, Department of Psychiatry, Cambridge, UK
- Georgetown University Medical Center, Center for Brain Plasticity and Recovery and Department of Neurology, Washington, DC
| | - Mackenzie E. Fama
- Georgetown University Medical Center, Center for Brain Plasticity and Recovery and Department of Neurology, Washington, DC
- Towson University, Department of Audiology, Speech-Language Pathology, and Deaf Studies, Towson, MD
| | - Laura M. Skipper-Kallal
- Georgetown University Medical Center, Center for Brain Plasticity and Recovery and Department of Neurology, Washington, DC
| | - Andrew T. DeMarco
- Georgetown University Medical Center, Center for Brain Plasticity and Recovery and Department of Neurology, Washington, DC
| | - Elizabeth H. Lacey
- Georgetown University Medical Center, Center for Brain Plasticity and Recovery and Department of Neurology, Washington, DC
- MedStar National Rehabilitation Hospital, Research Division, Washington, DC
| | | |
Collapse
|
28
|
Neocortical activity tracks the hierarchical linguistic structures of self-produced speech during reading aloud. Neuroimage 2020; 216:116788. [DOI: 10.1016/j.neuroimage.2020.116788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
|
29
|
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum Brain Mapp 2020; 41:3253-3265. [PMID: 32311207 PMCID: PMC7375103 DOI: 10.1002/hbm.25012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging view of dystonia is that of a large‐scale functional network disorder, in which the communication is disrupted between sensorimotor cortical areas, basal ganglia, thalamus, and cerebellum. The structural underpinnings of functional alterations in dystonia are, however, poorly understood. Notably, it is unclear whether structural changes form a larger‐scale dystonic network or rather remain focal to isolated brain regions, merely underlying their functional abnormalities. Using diffusion‐weighted imaging and graph theoretical analysis, we examined inter‐regional white matter connectivity of the whole‐brain structural network in two different forms of task‐specific focal dystonia, writer's cramp and laryngeal dystonia, compared to healthy individuals. We show that, in addition to profoundly altered functional network in focal dystonia, its structural connectome is characterized by large‐scale aberrations due to abnormal transfer of prefrontal and parietal nodes between neural communities and the reorganization of normal hub architecture, commonly involving the insula and superior frontal gyrus in patients compared to controls. Other prominent common changes involved the basal ganglia, parietal and cingulate cortical regions, whereas premotor and occipital abnormalities distinctly characterized the two forms of dystonia. We propose a revised pathophysiological model of focal dystonia as a disorder of both functional and structural connectomes, where dystonia form‐specific abnormalities underlie the divergent mechanisms in the development of distinct clinical symptomatology. These findings may guide the development of novel therapeutic strategies directed at targeted neuromodulation of pathophysiological brain regions for the restoration of their structural and functional connectivity.
Collapse
Affiliation(s)
- Sandra Hanekamp
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina Simonyan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Ben-Shachar MS, Shmueli M, Jacobson SW, Meintjes EM, Molteno CD, Jacobson JL, Berger A. Prenatal Alcohol Exposure Alters Error Detection During Simple Arithmetic Processing: An Electroencephalography Study. Alcohol Clin Exp Res 2019; 44:114-124. [PMID: 31742737 DOI: 10.1111/acer.14244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Arithmetic is the domain of academic achievement most consistently related to prenatal alcohol exposure (PAE). Error detection, an important aspect of arithmetic processing, can be examined in a mathematical verification task. Electroencephalographic (EEG) studies using such tasks have shown bursts of synchronized theta-band activity in response to errors. We assessed this activity for error detection in adolescents with PAE and typically developing (TD) matched controls. We predicted that the PAE group would show smaller theta bursts during error detection and weaker responses depending on the size of the error discrepancy. METHODS Participants' mothers were recruited during pregnancy and interviewed about their alcohol consumption using a timeline follow-back interview. Participants were followed from infancy and diagnosed for fetal alcohol syndrome (FAS) or partial FAS (PFAS) by expert dysmorphologists. EEGs were recorded for 48 adolescents during a verification task, which required differentiation between correct/incorrect solutions to simple equations; incorrect solutions had small or large deviations from correct solutions. RESULTS Performance was good-excellent. The PAE group showed lower accuracy than the TD group: Accuracy was inversely related to diagnosis severity. The TD and heavily exposed (HE) nonsyndromal groups showed the expected differentiation in theta-burst activity between correct/incorrect equations, but the FAS/PFAS groups did not. Degree of impairment in brain response to errors reflected severity of diagnosis: The HE group showed the same differentiation between correct/incorrect solutions as TD but failed to differentiate between levels of discrepancy; PFAS showed theta reactions only in response to large error discrepancies; and FAS did not respond to small or large discrepancies. CONCLUSIONS Arithmetical error-related theta activity is altered by PAE and can be used to distinguish between exposed and nonexposed individuals and within diagnostic groups, supporting the use of numerical and quantitative processing patterns to derive a neurocognitive profile that could facilitate diagnosis and treatment of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Mattan S Ben-Shachar
- Department of Psychology, Faculty of Humanities and Social Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Shmueli
- Department of Psychology, Faculty of Humanities and Social Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan.,Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrea Berger
- Department of Psychology, Faculty of Humanities and Social Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
31
|
Discourse management during speech perception: A functional magnetic resonance imaging (fMRI) study. Neuroimage 2019; 202:116047. [DOI: 10.1016/j.neuroimage.2019.116047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
|
32
|
Hansen SJ, McMahon KL, de Zubicaray GI. Neural Mechanisms for Monitoring and Halting of Spoken Word Production. J Cogn Neurosci 2019; 31:1946-1957. [PMID: 31418336 DOI: 10.1162/jocn_a_01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
During conversation, speakers monitor their own and others' output so they can alter their production adaptively, including halting it if needed. We investigated the neural mechanisms of monitoring and halting in spoken word production by employing a modified stop signal task during fMRI. Healthy participants named target pictures and withheld their naming response when presented with infrequent auditory words as stop signals. We also investigated whether the speech comprehension system monitors inner (i.e., prearticulatory) speech via the output of phonological word form encoding as proposed by the perceptual loop theory [Levelt, W. J. M. Speaking: From intention to articulation. Cambridge, MA: MIT Press, 1989] by presenting stop signals phonologically similar to the target picture name (e.g., cabbage-CAMEL). The contrast of successful halting versus naming revealed extensive BOLD signal responses in bilateral inferior frontal gyrus, preSMA, and superior temporal gyrus. Successful versus unsuccessful halting of speech was associated with increased BOLD signal bilaterally in the posterior middle temporal, frontal, and parietal lobes and decreases bilaterally in the posterior and left anterior superior temporal gyrus and right inferior frontal gyrus. These results show, for the first time, the neural mechanisms engaged during both monitoring and interrupting speech production. However, we failed to observe any differential effects of phonological similarity in either the behavioral or neural data, indicating monitoring of inner versus external speech might involve different mechanisms.
Collapse
|
33
|
Ito A, Kawachi Y, Kawasaki I, Fujii T. Effect of aging on choice-induced cognitive conflict. Behav Brain Res 2019; 363:94-102. [PMID: 30710611 DOI: 10.1016/j.bbr.2019.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/01/2022]
Abstract
When individuals are forced to choose between similarly preferable alternatives, a negatively arousing cognitive conflict occurs, and the preference attitudes toward the chosen and rejected alternatives diverge. This phenomenon, often referred to as "cognitive dissonance", is of interest in psychological and decision neuroscience research. The dorsal anterior cingulate cortex (dACC) is involved in representing the cognitive conflict induced by difficult-choice tasks. Previous studies have shown age-related decline of the dACC function. However, whether the heightened activity of the dACC regarding cognitive conflict, and choice-induced preference change that behaviorally occur in young subjects also occur in the elderly is unclear. Furthermore, recent studies have noted substantial methodological flaw with the free-choice paradigm that often used in studies focusing on cognitive dissonance. Here, we used functional magnetic resonance imaging (fMRI) and a modified free-choice paradigm to formally test the effect of aging on choice-induced cognitive conflict. In the young participants, behavioral data confirmed the existence of cognitive conflict and preference change for the alternatives that they rejected in the difficult-choice trials. The imaging data revealed that the right dACC displayed an interaction effect associated with cognitive conflict. In contrast, we did not observe such effects in the elderly participants. These suggest a possibility that elderly people likely feel less cognitive dissonance.
Collapse
Affiliation(s)
- Ayahito Ito
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Japan.
| | - Yousuke Kawachi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Japan
| | - Iori Kawasaki
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Japan
| | - Toshikatsu Fujii
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Japan
| |
Collapse
|
34
|
Howard CM, Smith LL, Coslett HB, Buxbaum LJ. The role of conflict, feedback, and action comprehension in monitoring of action errors: Evidence for internal and external routes. Cortex 2019; 115:184-200. [PMID: 30831536 DOI: 10.1016/j.cortex.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022]
Abstract
The mechanisms and brain regions underlying error monitoring in complex action are poorly understood, yet errors and impaired error correction in these tasks are hallmarks of apraxia, a common disorder associated with left hemisphere stroke. Accounts of monitoring of language posit an internal route by which production planning or competition between candidate representations provide predictive signals that monitoring is required to prevent error, and an external route in which output is monitored using the comprehension system. Abnormal reliance on the external route has been associated with damage to brain regions critical for sensory-motor transformation and a pattern of gradual error 'clean-up' called conduite d'approche (CD). Action pantomime data from 67 participants with left hemisphere stroke were consistent with versions of internal route theories positing that competition signals monitoring requirements. Support Vector Regression Lesion Symptom Mapping (SVR-LSM) showed that lesions in the inferior parietal, posterior temporal, and arcuate fasciculus/superior longitudinal fasciculus predicted action conduite d'approche, overlapping the regions previously observed in the language domain. A second experiment with 12 patients who produced substantial action CD assessed whether factors impacting the internal route (action production ability, competition) versus external route (vision of produced actions, action comprehension) influenced correction attempts. In these 'high CD' patients, vision of produced actions and integrity of gesture comprehension interacted to determine successful error correction, supporting external route theories. Viewed together, these and other data suggest that skilled actions are monitored both by an internal route in which conflict aids in detection and correction of errors during production planning, and an external route that detects mismatches between produced actions and stored knowledge of action appearance. The parallels between language and action monitoring mechanisms and neuroanatomical networks pave the way for further exploration of common and distinct processes across these domains.
Collapse
Affiliation(s)
| | - Louisa L Smith
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | | |
Collapse
|
35
|
Gauvin HS, McMahon KL, Meinzer M, de Zubicaray GI. The Shape of Things to Come in Speech Production: A Functional Magnetic Resonance Imaging Study of Visual Form Interference during Lexical Access. J Cogn Neurosci 2019; 31:913-921. [PMID: 30747589 DOI: 10.1162/jocn_a_01382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Studies of context effects in speech production have shown that semantic feature overlap produces interference in naming of categorically related objects. In neuroimaging studies, this semantic interference effect is consistently associated with involvement of left superior and middle temporal gyri. However, at least part of this effect has recently been shown to be attributable to visual form similarity, as categorically related objects typically share visual features. This fMRI study examined interference produced by visual form overlap in the absence of a category relation in a picture-word interference paradigm. Both visually similar and visually dissimilar distractors led to increased BOLD responses in the left inferior frontal gyrus compared with the congruent condition. Naming pictures in context with a distractor word denoting an object visually similar in form slowed RTs compared with unrelated words and was associated with reduced activity in the left posterior middle temporal gyrus. This area is reliably observed in lexical level processing during language production tasks. No significant differential activity was observed in areas typically engaged by early perceptual or conceptual feature level processing or in areas proposed to be engaged by postlexical language processes, suggesting that visual form interference does not arise from uncertainty or confusion during perceptual or conceptual identification or after lexical processing. We conclude that visual form interference has a lexical locus, consistent with the predictions of competitive lexical selection models.
Collapse
Affiliation(s)
| | - Katie L McMahon
- Queensland University of Technology.,Royal Brisbane & Women's Hospital
| | | | | |
Collapse
|
36
|
Abstract
Objective Inner speech, or the ability to talk to yourself in your head, is one of the most ubiquitous phenomena of everyday experience. Recent years have seen growing interest in the role and function of inner speech in various typical and cognitively impaired populations. Although people vary in their ability to produce inner speech, there is currently no test battery which can be used to evaluate people's inner speech ability. Here we developed a test battery which can be used to evaluate individual differences in the ability to access the auditory word form internally. Methods We developed and standardized five tests: rhyme judgment of pictures and written words, homophone judgment of written words and non-words, and judgment of lexical stress of written words. The tasks were administered to adult healthy native British English speakers (age range 20-72, n = 28-97, varies between tests). Results In all tests, some items were excluded based on low success rates among participants, or documented regional variability in accent. Level of education, but not age, correlated with task performance for some of the tasks, and there were no gender difference in performance. Conclusion A process of standardization resulted in a battery of tests which can be used to assess natural variability of inner speech abilities among English speaking adults.
Collapse
Affiliation(s)
- Sharon Geva
- Department of Clinical Neurosciences, University of Cambridge, R3 Neurosciences - Box 83, Addenbrooke's Hospital, Cambridge, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, R3 Neurosciences - Box 83, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
37
|
Piai V, Zheng X. Speaking waves: Neuronal oscillations in language production. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Mineroff Z, Blank IA, Mahowald K, Fedorenko E. A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size. Neuropsychologia 2018; 119:501-511. [PMID: 30243926 PMCID: PMC6191329 DOI: 10.1016/j.neuropsychologia.2018.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Complex cognitive processes, including language, rely on multiple mental operations that are carried out by several large-scale functional networks in the frontal, temporal, and parietal association cortices of the human brain. The central division of cognitive labor is between two fronto-parietal bilateral networks: (a) the multiple demand (MD) network, which supports executive processes, such as working memory and cognitive control, and is engaged by diverse task domains, including language, especially when comprehension gets difficult; and (b) the default mode network (DMN), which supports introspective processes, such as mind wandering, and is active when we are not engaged in processing external stimuli. These two networks are strongly dissociated in both their functional profiles and their patterns of activity fluctuations during naturalistic cognition. Here, we focus on the functional relationship between these two networks and a third network: (c) the fronto-temporal left-lateralized "core" language network, which is selectively recruited by linguistic processing. Is the language network distinct and dissociated from both the MD network and the DMN, or is it synchronized and integrated with one or both of them? Recent work has provided evidence for a dissociation between the language network and the MD network. However, the relationship between the language network and the DMN is less clear, with some evidence for coordinated activity patterns and similar response profiles, perhaps due to the role of both in semantic processing. Here we use a novel fMRI approach to examine the relationship among the three networks: we measure the strength of activations in different language, MD, and DMN regions to functional contrasts typically used to identify each network, and then test which regions co-vary in their contrast effect sizes across 60 individuals. We find that effect sizes correlate strongly within each network (e.g., one language region and another language region, or one DMN region and another DMN region), but show little or no correlation for region pairs across networks (e.g., a language region and a DMN region). Thus, using our novel method, we replicate the language/MD network dissociation discovered previously with other approaches, and also show that the language network is robustly dissociated from the DMN, overall suggesting that these three networks contribute to high-level cognition in different ways and, perhaps, support distinct computations. Inter-individual differences in effect sizes therefore do not simply reflect general differences in vascularization or attention, but exhibit sensitivity to the functional architecture of the brain. The strength of activation in each network can thus be probed separately in studies that attempt to link neural variability to behavioral or genetic variability.
Collapse
Affiliation(s)
| | | | | | - Evelina Fedorenko
- Massachusetts Institute of Technology, USA; Harvard Medical School, USA; Massachusetts General Hospital, USA.
| |
Collapse
|
39
|
Zhang H, Eppes A, Beatty-Martínez A, Navarro-Torres C, Diaz MT. Task difficulty modulates brain-behavior correlations in language production and cognitive control: Behavioral and fMRI evidence from a phonological go/no-go picture-naming paradigm. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:964-981. [PMID: 29923097 PMCID: PMC6301137 DOI: 10.3758/s13415-018-0616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants' behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain-behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain-behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.
Collapse
Affiliation(s)
- Haoyun Zhang
- Pennsylvania State University, University Park, PA, 16802, USA
| | - Anna Eppes
- Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | - Michele T Diaz
- Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
40
|
Emotional language production: Time course, behavioral and electrophysiological correlates. Neuropsychologia 2018; 117:241-252. [DOI: 10.1016/j.neuropsychologia.2018.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/15/2022]
|
41
|
The Effect of Anterior Cingulate Cortex Direct Current Stimulation on Speech Monitoring Ability in Individuals with Aphasia: A Randomized, Double-Blinded Study. ARCHIVES OF NEUROSCIENCE 2018. [DOI: 10.5812/archneurosci.62055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Freund M, Nozari N. Is adaptive control in language production mediated by learning? Cognition 2018; 176:107-130. [PMID: 29550688 DOI: 10.1016/j.cognition.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/18/2022]
Abstract
Recent work using the Picture Word Interference (PWI) paradigm has revealed that language production, similar to non-verbal tasks, shows a robust Congruency Sequence Effect (CSE), defined as a decreased congruency effect following incongruent trials. Although CSE is considered an index of adaptive control, its mechanism is debated. In two experiments, we tested the predictions of a learning model of adaptive control in production, using a task-switching paradigm fully balanced to evaluate CSE on a PWI trial as a function of the congruency of a 2-back PWI trial (within-task CSE), as well as a 1-back trial belonging to a different task (cross-task CSE). The second task was a visuospatial task with congruent and incongruent trials in Experiment 1, and a self-paced reading task with ambiguous and unambiguous sentences in Experiment 2 that imposed a gap between the two PWI trials twice as long of that in Experiment 1. A learning model posits that CSE is the result of changes to the connection weights between task-specific representations and a control center, which leads to two predictions in our paradigm: (a) a robust within-task CSE unaffected by the intervening trial and the gap duration, and (b) an absent or reversed cross-task CSE. These predictions were contrasted with two versions of an activation model of CSE. In accord with the predictions of the learning model, we found robust within-task CSE in PWI in both Experiments with a comparable effect size. Similarly, evidence of within-task CSE was also found in the visuospatial and sentence reading tasks. On the other hand, examination of cross-task CSE from PWI to the other tasks and vice versa revealed either absent or reversed CSE. Collectively, these results support a learning model of adaptive control in language production.
Collapse
Affiliation(s)
- Michael Freund
- Department of Neurology, Johns Hopkins University, 1629 Thames Street, Suite 350, Baltimore, MD 21231, USA
| | - Nazbanou Nozari
- Department of Neurology, Johns Hopkins University, 1629 Thames Street, Suite 350, Baltimore, MD 21231, USA; Department of Cognitive Science, Johns Hopkins University, 1629 Thames Street, Suite 350, Baltimore, MD 21231, USA.
| |
Collapse
|
43
|
Clark CN, Golden HL, McCallion O, Nicholas JM, Cohen MH, Slattery CF, Paterson RW, Fletcher PD, Mummery CJ, Rohrer JD, Crutch SJ, Warren JD. Music models aberrant rule decoding and reward valuation in dementia. Soc Cogn Affect Neurosci 2018; 13:192-202. [PMID: 29186630 PMCID: PMC5827340 DOI: 10.1093/scan/nsx140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 01/03/2023] Open
Abstract
Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias.
Collapse
Affiliation(s)
- Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Oliver McCallion
- Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Miriam H Cohen
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine F Slattery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Phillip D Fletcher
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
44
|
Second-Language Learning Ability Revealed by Resting-State Functional Connectivity. J Neurosci 2018; 36:6141-3. [PMID: 27277791 DOI: 10.1523/jneurosci.0917-16.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/27/2016] [Indexed: 01/14/2023] Open
|
45
|
Alemi R, Batouli SAH, Behzad E, Ebrahimpoor M, Oghabian MA. Not single brain areas but a network is involved in language: Applications in presurgical planning. Clin Neurol Neurosurg 2018; 165:116-128. [PMID: 29334640 DOI: 10.1016/j.clineuro.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. PATIENTS AND METHODS In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. RESULTS The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. CONCLUSION This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function.
Collapse
Affiliation(s)
- Razieh Alemi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Otorhinolaryngology, Faculty of Medicine, McGill University, Canada
| | - Seyed Amir Hossein Batouli
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Behzad
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Ebrahimpoor
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Neuroimaging and Analysis Group, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Nozari N. How Special Is Language Production? Perspectives From Monitoring and Control. PSYCHOLOGY OF LEARNING AND MOTIVATION 2018. [DOI: 10.1016/bs.plm.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Nozari N, Novick J. Monitoring and Control in Language Production. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2017. [DOI: 10.1177/0963721417702419] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Language research has provided insight into how speakers translate a thought into a sequence of sounds that ultimately becomes words, phrases, and sentences. Despite the complex stages involved in this process, relatively little is known about how we avoid and handle production and comprehension errors that would otherwise impede communication. We review current research on the mechanisms underlying monitoring and control of the language system, especially production, with particular emphasis on whether such monitoring is issued by domain-general or domain-specific procedures.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Neurology, Johns Hopkins University
- Department of Cognitive Science, Johns Hopkins University
| | - Jared Novick
- Department of Hearing and Speech Sciences, University of Maryland
- Program in Neuroscience and Cognitive Science, University of Maryland
- University of Maryland Center for Advanced Study of Language
| |
Collapse
|
48
|
Clark CN, Nicholas JM, Agustus JL, Hardy CJD, Russell LL, Brotherhood EV, Dick KM, Marshall CR, Mummery CJ, Rohrer JD, Warren JD. Auditory conflict and congruence in frontotemporal dementia. Neuropsychologia 2017; 104:144-156. [PMID: 28811257 PMCID: PMC5637159 DOI: 10.1016/j.neuropsychologia.2017.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/31/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022]
Abstract
Impaired analysis of signal conflict and congruence may contribute to diverse socio-emotional symptoms in frontotemporal dementias, however the underlying mechanisms have not been defined. Here we addressed this issue in patients with behavioural variant frontotemporal dementia (bvFTD; n = 19) and semantic dementia (SD; n = 10) relative to healthy older individuals (n = 20). We created auditory scenes in which semantic and emotional congruity of constituent sounds were independently probed; associated tasks controlled for auditory perceptual similarity, scene parsing and semantic competence. Neuroanatomical correlates of auditory congruity processing were assessed using voxel-based morphometry. Relative to healthy controls, both the bvFTD and SD groups had impaired semantic and emotional congruity processing (after taking auditory control task performance into account) and reduced affective integration of sounds into scenes. Grey matter correlates of auditory semantic congruity processing were identified in distributed regions encompassing prefrontal, parieto-temporal and insular areas and correlates of auditory emotional congruity in partly overlapping temporal, insular and striatal regions. Our findings suggest that decoding of auditory signal relatedness may probe a generic cognitive mechanism and neural architecture underpinning frontotemporal dementia syndromes.
Collapse
Affiliation(s)
- Camilla N Clark
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer M Nicholas
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom; London School of Hygiene and Tropical Medicine, University of London, London, United Kingdomt
| | - Jennifer L Agustus
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Christopher J D Hardy
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Emilie V Brotherhood
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Dick
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Charles R Marshall
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Catherine J Mummery
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
49
|
Echoes on the motor network: how internal motor control structures afford sensory experience. Brain Struct Funct 2017; 222:3865-3888. [DOI: 10.1007/s00429-017-1484-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
50
|
Adamczyk P, Wyczesany M, Domagalik A, Daren A, Cepuch K, Błądziński P, Cechnicki A, Marek T. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study. Neuroimage Clin 2017; 15:525-540. [PMID: 28652967 PMCID: PMC5473647 DOI: 10.1016/j.nicl.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/03/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022]
Abstract
Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing impairments in schizophrenia, which is accompanied by fronto-temporal hypoactivation.
Collapse
Key Words
- ABS, absurd/nonsensical punchline
- ACC, anterior cingulate cortex
- BA, Brodmann's area
- CON, healthy controls/control group
- Communication skills
- EEG, electroencephalography
- ERPs, EEG event-related potentials
- FDR, False Discovery Rate
- FUN, funny punchline
- FWHM, full-width-at-half-maximum
- Figurative meaning
- Functional magnetic resonance imaging
- GLM, general linear model
- Humor
- IFG, inferior frontal gyrus
- IPL, Inferior Parietal Lobule
- ISI, interstimulus-interval
- L, left hemisphere
- MFG, medial frontal gyrus
- MNI, Montreal Neurological Institute coordinates
- MOG, middle occipital gyrus
- MRI, magnetic resonance imaging
- MTG, middle temporal gyrus
- MoCA, Montreal Cognitive Assessment
- NEU, neutral/unfunny punchline
- PANSS, Positive and Negative Syndrome Scale
- PFC, prefrontal cortex
- R, right hemisphere
- RHLB, Right Hemisphere Language Battery
- RT, reaction time
- SCH, schizophrenia outpatients/clinical group
- SD, standard deviations
- SEM, standard error of the mean
- SFG, Superior Frontal Gyrus
- SOA, stimulus onset asynchrony
- STG, superior temporal gyrus
- Schizophrenia
- TP, temporal pole
- TPJ, temporoparietal junction
- ToM, theory of mind.
- dACC, dorsal anterior cingulate cortex
- dlPFC, dorsolateral prefrontal cortex
- dmMFG, dorsomedial Middle Frontal Gyrus
- fMRI, functional magnetic resonance imaging
- fNIRS, functional near-infrared spectroscopy
- k, number of voxels in analyzed cluster size
- ns, non-significant group difference
- pSTG, posterior Superior Temporal Gyrus
- sLORETA, standardized low resolution brain electromagnetic tomography analysis
Collapse
Affiliation(s)
- Przemysław Adamczyk
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland; Psychosis Research and Psychotherapy Unit, Association for the Development of Psychiatry and Community Care, Krakow, Poland.
| | - Miroslaw Wyczesany
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Domagalik
- Neurobiology Department, The Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur Daren
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland; Psychosis Research and Psychotherapy Unit, Association for the Development of Psychiatry and Community Care, Krakow, Poland
| | - Kamil Cepuch
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Piotr Błądziński
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland
| | - Andrzej Cechnicki
- Department of Community Psychiatry, Medical College, Jagiellonian University, Krakow, Poland; Psychosis Research and Psychotherapy Unit, Association for the Development of Psychiatry and Community Care, Krakow, Poland
| | - Tadeusz Marek
- Neurobiology Department, The Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|