1
|
Yang M, Liu Y, Yue Z, Yang G, Jiang X, Cai Y, Zhang Y, Yang X, Li D, Chen L. Transcranial photobiomodulation on the left inferior frontal gyrus enhances Mandarin Chinese L1 and L2 complex sentence processing performances. BRAIN AND LANGUAGE 2024; 256:105458. [PMID: 39197357 DOI: 10.1016/j.bandl.2024.105458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
This study investigated the causal enhancing effect of transcranial photobiomodulation (tPBM) over the left inferior frontal gyrus (LIFG) on syntactically complex Mandarin Chinese first language (L1) and second language (L2) sentence processing performances. Two (L1 and L2) groups of participants (thirty per group) were recruited to receive the double-blind, sham-controlled tPBM intervention via LIFG, followed by the sentence processing, the verbal working memory (WM), and the visual WM tasks. Results revealed a consistent pattern for both groups: (a) tPBM enhanced sentence processing performance but not verbal WM for linear processing of unstructured sequences and visual WM performances; (b) Participants with lower sentence processing performances under sham tPBM benefited more from active tPBM. Taken together, the current study substantiated that tPBM enhanced L1 and L2 sentence processing, and would serve as a promising and cost-effective noninvasive brain stimulation (NIBS) tool for future applications on upregulating the human language faculty.
Collapse
Affiliation(s)
- Mingchuan Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Zhaoqian Yue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Guang Yang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Xu Jiang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China
| | - Yuqi Zhang
- School of Chinese as a Second Language, Peking University, Beijing 100871, China
| | - Xiujie Yang
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Li
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing 100875, China; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute of Educational System Science, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Wu J, Cheng Y, Qu X, Kang T, Cai Y, Wang P, Zaccarella E, Friederici AD, Hartwigsen G, Chen L. Continuous Theta-Burst Stimulation on the Left Posterior Inferior Frontal Gyrus Perturbs Complex Syntactic Processing Stability in Mandarin Chinese. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:608-627. [PMID: 38939729 PMCID: PMC11210936 DOI: 10.1162/nol_a_00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/12/2024] [Indexed: 06/29/2024]
Abstract
The structure of human language is inherently hierarchical. The left posterior inferior frontal gyrus (LpIFG) is proposed to be a core region for constructing syntactic hierarchies. However, it remains unclear whether LpIFG plays a causal role in syntactic processing in Mandarin Chinese and whether its contribution depends on syntactic complexity, working memory, or both. We addressed these questions by applying inhibitory continuous theta-burst stimulation (cTBS) over LpIFG. Thirty-two participants processed sentences containing embedded relative clauses (i.e., complex syntactic processing), syntactically simpler coordinated sentences (i.e., simple syntactic processing), and non-hierarchical word lists (i.e., word list processing) after receiving real or sham cTBS. We found that cTBS significantly increased the coefficient of variation, a representative index of processing stability, in complex syntactic processing (esp., when subject relative clause was embedded) but not in the other two conditions. No significant changes in d' and reaction time were detected in these conditions. The findings suggest that (a) inhibitory effect of cTBS on the LpIFG might be prominent in perturbing the complex syntactic processing stability but subtle in altering the processing quality; and (b) the causal role of the LpIFG seems to be specific for syntactic processing rather than working memory capacity, further evidencing their separability in LpIFG. Collectively, these results support the notion of the LpIFG as a core region for complex syntactic processing across languages.
Collapse
Affiliation(s)
- Junjie Wu
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Tianmin Kang
- Department of Psychology, Skidmore College, Saratoga Springs, NY, USA
| | - Yimin Cai
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Peng Wang
- Institute of Psychology, University of Regensburg, Regensburg, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Educational System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Abbott N, Love T. Bridging the Divide: Brain and Behavior in Developmental Language Disorder. Brain Sci 2023; 13:1606. [PMID: 38002565 PMCID: PMC10670267 DOI: 10.3390/brainsci13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Developmental language disorder (DLD) is a heterogenous neurodevelopmental disorder that affects a child's ability to comprehend and/or produce spoken and/or written language, yet it cannot be attributed to hearing loss or overt neurological damage. It is widely believed that some combination of genetic, biological, and environmental factors influences brain and language development in this population, but it has been difficult to bridge theoretical accounts of DLD with neuroimaging findings, due to heterogeneity in language impairment profiles across individuals and inconsistent neuroimaging findings. Therefore, the purpose of this overview is two-fold: (1) to summarize the neuroimaging literature (while drawing on findings from other language-impaired populations, where appropriate); and (2) to briefly review the theoretical accounts of language impairment patterns in DLD, with the goal of bridging the disparate findings. As will be demonstrated with this overview, the current state of the field suggests that children with DLD have atypical brain volume, laterality, and activation/connectivity patterns in key language regions that likely contribute to language difficulties. However, the precise nature of these differences and the underlying neural mechanisms contributing to them remain an open area of investigation.
Collapse
Affiliation(s)
- Noelle Abbott
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| | - Tracy Love
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| |
Collapse
|
4
|
Murphy E, Forseth KJ, Donos C, Snyder KM, Rollo PS, Tandon N. The spatiotemporal dynamics of semantic integration in the human brain. Nat Commun 2023; 14:6336. [PMID: 37875526 PMCID: PMC10598228 DOI: 10.1038/s41467-023-42087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Language depends critically on the integration of lexical information across multiple words to derive semantic concepts. Limitations of spatiotemporal resolution have previously rendered it difficult to isolate processes involved in semantic integration. We utilized intracranial recordings in epilepsy patients (n = 58) who read written word definitions. Descriptions were either referential or non-referential to a common object. Semantically referential sentences enabled high frequency broadband gamma activation (70-150 Hz) of the inferior frontal sulcus (IFS), medial parietal cortex, orbitofrontal cortex (OFC) and medial temporal lobe in the left, language-dominant hemisphere. IFS, OFC and posterior middle temporal gyrus activity was modulated by the semantic coherence of non-referential sentences, exposing semantic effects that were independent of task-based referential status. Components of this network, alongside posterior superior temporal sulcus, were engaged for referential sentences that did not clearly reduce the lexical search space by the final word. These results indicate the existence of complementary cortical mosaics for semantic integration in posterior temporal and inferior frontal cortex.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Kiefer J Forseth
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cristian Donos
- Faculty of Physics, University of Bucharest, Măgurele, 077125, Bucharest, Romania
| | - Kathryn M Snyder
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Patrick S Rollo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Friehs MA, Siodmiak J, Donzallaz MC, Matzke D, Numssen O, Frings C, Hartwigsen G. No effects of 1 Hz offline TMS on performance in the stop-signal game. Sci Rep 2023; 13:11565. [PMID: 37463991 PMCID: PMC10354051 DOI: 10.1038/s41598-023-38841-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023] Open
Abstract
Stopping an already initiated action is crucial for human everyday behavior and empirical evidence points toward the prefrontal cortex playing a key role in response inhibition. Two regions that have been consistently implicated in response inhibition are the right inferior frontal gyrus (IFG) and the more superior region of the dorsolateral prefrontal cortex (DLPFC). The present study investigated the effect of offline 1 Hz transcranial magnetic stimulation (TMS) over the right IFG and DLPFC on performance in a gamified stop-signal task (SSG). We hypothesized that perturbing each area would decrease performance in the SSG, albeit with a quantitative difference in the performance decrease after stimulation. After offline TMS, functional short-term reorganization is possible, and the domain-general area (i.e., the right DLPFC) might be able to compensate for the perturbation of the domain-specific area (i.e., the right IFG). Results showed that 1 Hz offline TMS over the right DLPFC and the right IFG at 110% intensity of the resting motor threshold had no effect on performance in the SSG. In fact, evidence in favor of the null hypothesis was found. One intriguing interpretation of this result is that within-network compensation was triggered, canceling out the potential TMS effects as has been suggested in recent theorizing on TMS effects, although the presented results do not unambiguously identify such compensatory mechanisms. Future studies may result in further support for this hypothesis, which is especially important when studying reactive response in complex environments.
Collapse
Affiliation(s)
- Maximilian A Friehs
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- School of Psychology, University College Dublin, Dublin, Ireland.
- Psychology of Conflict Risk and Safety, University of Twente, Enschede, The Netherlands.
| | - Julia Siodmiak
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- University of Gdansk, Gdańsk, Poland
| | - Michelle C Donzallaz
- Department of Psychology, Psychological Methods Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Dora Matzke
- Department of Psychology, Psychological Methods Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Ole Numssen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian Frings
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Ntemou E, Svaldi C, Jonkers R, Picht T, Rofes A. Verb and sentence processing with TMS: A systematic review and meta-analysis. Cortex 2023; 162:38-55. [PMID: 36965338 DOI: 10.1016/j.cortex.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Transcranial magnetic stimulation (TMS) has provided relevant evidence regarding the neural correlates of language. The aim of the present study is to summarize and assess previous findings regarding linguistic levels (i.e., semantic and morpho-syntactic) and brain structures utilized during verb and sentence processing. To do that, we systematically reviewed TMS research on verb and sentence processing in healthy speakers, and meta-analyzed TMS-induced effects according to the region of stimulation and experimental manipulation. Findings from 45 articles show that approximately half of the reviewed work focuses on the embodiment of action verbs. The majority of studies (60%) target only one cortical region in relation to a specific linguistic process. Frontal areas are most frequently stimulated in connection to morphosyntactic processes and action verb semantics, and temporoparietal regions in relation to integration of sentential meaning and thematic role assignment. A meta-analysis of 72 effect sizes of the reviewed papers indicates that TMS has a small overall effect size, but effect sizes for anterior compared to posterior regions do not differ for semantic or morphosyntactic contrasts. Our findings stress the need to increase the number of targeted areas, while using the same linguistic contrasts in order to disentangle the contributions of different cortical regions to distinct linguistic processes.
Collapse
Affiliation(s)
- Effrosyni Ntemou
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), University of Groningen (NL), University of Potsdam (DE), Newcastle University (UK), Macquarie University (AU), the Netherlands; Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, the Netherlands; Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cheyenne Svaldi
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), University of Groningen (NL), University of Potsdam (DE), Newcastle University (UK), Macquarie University (AU), the Netherlands; Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, the Netherlands
| | - Roel Jonkers
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, the Netherlands
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Adrià Rofes
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Coetzee JP, Johnson MA, Lee Y, Wu AD, Iacoboni M, Monti MM. Dissociating Language and Thought in Human Reasoning. Brain Sci 2022; 13:brainsci13010067. [PMID: 36672048 PMCID: PMC9856203 DOI: 10.3390/brainsci13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
What is the relationship between language and complex thought? In the context of deductive reasoning there are two main views. Under the first, which we label here the language-centric view, language is central to the syntax-like combinatorial operations of complex reasoning. Under the second, which we label here the language-independent view, these operations are dissociable from the mechanisms of natural language. We applied continuous theta burst stimulation (cTBS), a form of noninvasive neuromodulation, to healthy adult participants to transiently inhibit a subregion of Broca's area (left BA44) associated in prior work with parsing the syntactic relations of natural language. We similarly inhibited a subregion of dorsomedial frontal cortex (left medial BA8) which has been associated with core features of logical reasoning. There was a significant interaction between task and stimulation site. Post hoc tests revealed that performance on a linguistic reasoning task, but not deductive reasoning task, was significantly impaired after inhibition of left BA44, and performance on a deductive reasoning task, but not linguistic reasoning task, was decreased after inhibition of left medial BA8 (however not significantly). Subsequent linear contrasts supported this pattern. These novel results suggest that deductive reasoning may be dissociable from linguistic processes in the adult human brain, consistent with the language-independent view.
Collapse
Affiliation(s)
- John P. Coetzee
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA
- VA Palo Alto Health Care System, Polytrauma Division, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Micah A. Johnson
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Youngzie Lee
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Allan D. Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute (BRI), University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Marco Iacoboni
- Brain Research Institute (BRI), University of California Los Angeles, Los Angeles, CA 90095, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Martin M. Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute (BRI), University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Injury Research Center (BIRC), Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-825-8546
| |
Collapse
|
8
|
Maran M, Numssen O, Hartwigsen G, Zaccarella E. Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Front Psychol 2022; 13:968836. [PMID: 36619118 PMCID: PMC9815778 DOI: 10.3389/fpsyg.2022.968836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.
Collapse
Affiliation(s)
- Matteo Maran
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany,*Correspondence: Matteo Maran,
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
9
|
van der Burght CL, Numssen O, Schlaak B, Goucha T, Hartwigsen G. Differential contributions of inferior frontal gyrus subregions to sentence processing guided by intonation. Hum Brain Mapp 2022; 44:585-598. [PMID: 36189774 PMCID: PMC9842926 DOI: 10.1002/hbm.26086] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
Auditory sentence comprehension involves processing content (semantics), grammar (syntax), and intonation (prosody). The left inferior frontal gyrus (IFG) is involved in sentence comprehension guided by these different cues, with neuroimaging studies preferentially locating syntactic and semantic processing in separate IFG subregions. However, this regional specialisation has not been confirmed with a neurostimulation method. Consequently, the causal role of such a specialisation remains unclear. This study probed the role of the posterior IFG (pIFG) for syntactic processing and the anterior IFG (aIFG) for semantic processing with repetitive transcranial magnetic stimulation (rTMS) in a task that required the interpretation of the sentence's prosodic realisation. Healthy participants performed a sentence completion task with syntactic and semantic decisions, while receiving 10 Hz rTMS over either left aIFG, pIFG, or vertex (control). Initial behavioural analyses showed an inhibitory effect on accuracy without task-specificity. However, electric field simulations revealed differential effects for both subregions. In the aIFG, stronger stimulation led to slower semantic processing, with no effect of pIFG stimulation. In contrast, we found a facilitatory effect on syntactic processing in both aIFG and pIFG, where higher stimulation strength was related to faster responses. Our results provide first evidence for the functional relevance of left aIFG in semantic processing guided by intonation. The stimulation effect on syntactic responses emphasises the importance of the IFG for syntax processing, without supporting the hypothesis of a pIFG-specific involvement. Together, the results support the notion of functionally specialised IFG subregions for diverse but fundamental cues for language processing.
Collapse
Affiliation(s)
- Constantijn L. van der Burght
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany,Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany,Psychology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegen
| | - Ole Numssen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Benito Schlaak
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Tomás Goucha
- Department of NeuropsychologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and PlasticityMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
10
|
Kemmerer D. Revisiting the relation between syntax, action, and left BA44. Front Hum Neurosci 2022; 16:923022. [PMID: 36211129 PMCID: PMC9537576 DOI: 10.3389/fnhum.2022.923022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many lines of research that have been exploring how embodiment contributes to cognition, one focuses on how the neural substrates of language may be shared, or at least closely coupled, with those of action. This paper revisits a particular proposal that has received considerable attention-namely, that the forms of hierarchical sequencing that characterize both linguistic syntax and goal-directed action are underpinned partly by common mechanisms in left Brodmann area (BA) 44, a cortical region that is not only classically regarded as part of Broca's area, but is also a core component of the human Mirror Neuron System. First, a recent multi-participant, multi-round debate about this proposal is summarized together with some other relevant findings. This review reveals that while the proposal is supported by a variety of theoretical arguments and empirical results, it still faces several challenges. Next, a narrower application of the proposal is discussed, specifically involving the basic word order of subject (S), object (O), and verb (V) in simple transitive clauses. Most languages are either SOV or SVO, and, building on prior work, it is argued that these strong syntactic tendencies derive from how left BA44 represents the sequential-hierarchical structure of goal-directed actions. Finally, with the aim of clarifying what it might mean for syntax and action to have "common" neural mechanisms in left BA44, two different versions of the main proposal are distinguished. Hypothesis 1 states that the very same neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action, whereas Hypothesis 2 states that anatomically distinct but functionally parallel neural mechanisms in left BA44 subserve some aspects of hierarchical sequencing for syntax and action. Although these two hypotheses make different predictions, at this point neither one has significantly more explanatory power than the other, and further research is needed to elaborate and test them.
Collapse
Affiliation(s)
- David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IND, United States
- Department of Psychological Sciences, Purdue University, West Lafayette, IND, United States
| |
Collapse
|
11
|
Wang P, He Y, Maess B, Yue J, Chen L, Brauer J, Friederici AD, Knösche TR. Alpha power during task performance predicts individual language comprehension. Neuroimage 2022; 260:119449. [PMID: 35835340 DOI: 10.1016/j.neuroimage.2022.119449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 06/15/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022] Open
Abstract
Alpha power attenuation during cognitive task performing has been suggested to reflect a process of release of inhibition, increase of excitability, and thereby benefit the improvement of performance. Here, we hypothesized that changes in individual alpha power during the execution of a complex language comprehension task may correlate with the individual performance in that task. We tested this using magnetoencephalography (MEG) recorded during comprehension of German sentences of different syntactic complexity. Results showed that neither the frequency nor the power of the spontaneous oscillatory activity at rest were associated with the individual performance. However, during the execution of a sentences processing task, the individual alpha power attenuation did correlate with individual language comprehension performance. Source reconstruction localized these effects in left temporal-parietal brain regions known to be associated with language processing and their right-hemisphere homologues. Our results support the notion that in-task attenuation of individual alpha power is related to the essential mechanisms of the underlying cognitive processes, rather than merely to general phenomena like attention or vigilance.
Collapse
Affiliation(s)
- P Wang
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany
| | - Y He
- Philipps University Marburg, Department of Psychiatry and Psychotherapy, Marburg, Germany
| | - B Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany
| | - J Yue
- Harbin Institute of Technology, Laboratory for Cognitive and Social Neuroscience, School of Management, Harbin, China
| | - L Chen
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; Beijing Normal University, College of Chinese Language and Culture, Beijing, China
| | - J Brauer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany; Friedrich Schiller University, Office of the Vice-President for Young Researchers, Jena, Germany
| | - A D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Leipzig, Germany
| | - T R Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Group, Leipzig, Germany.
| |
Collapse
|
12
|
Sheppard SM, Meier EL, Kim KT, Breining BL, Keator LM, Tang B, Caffo BS, Hillis AE. Neural correlates of syntactic comprehension: A longitudinal study. BRAIN AND LANGUAGE 2022; 225:105068. [PMID: 34979477 PMCID: PMC9232253 DOI: 10.1016/j.bandl.2021.105068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Broca's area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca's area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca's area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca's area can support syntactic processing after functional reorganization occurs.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Communication Sciences & Disorders, Chapman University, Irvine, CA 92618, United States.
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Kevin T Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Lynsey M Keator
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bohao Tang
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Brian S Caffo
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
13
|
Abubaker M, Al Qasem W, Kvašňák E. Working Memory and Cross-Frequency Coupling of Neuronal Oscillations. Front Psychol 2021; 12:756661. [PMID: 34744934 PMCID: PMC8566716 DOI: 10.3389/fpsyg.2021.756661] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
Collapse
Affiliation(s)
- Mohammed Abubaker
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Eugen Kvašňák
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
14
|
Chen L, Goucha T, Männel C, Friederici AD, Zaccarella E. Hierarchical syntactic processing is beyond mere associating: Functional magnetic resonance imaging evidence from a novel artificial grammar. Hum Brain Mapp 2021; 42:3253-3268. [PMID: 33822433 PMCID: PMC8193521 DOI: 10.1002/hbm.25432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 01/31/2023] Open
Abstract
Grammar is central to any natural language. In the past decades, the artificial grammar of the AnBn type in which a pair of associated elements can be nested in the other pair was considered as a desirable model to mimic human language syntax without semantic interference. However, such a grammar relies on mere associating mechanisms, thus insufficient to reflect the hierarchical nature of human syntax. Here, we test how the brain imposes syntactic hierarchies according to the category relations on linearized sequences by designing a novel artificial “Hierarchical syntactic structure‐building Grammar” (HG), and compare this to the AnBn grammar as a “Nested associating Grammar” (NG) based on multilevel associations. Thirty‐six healthy German native speakers were randomly assigned to one of the two grammars. Both groups performed a grammaticality judgment task on auditorily presented word sequences generated by the corresponding grammar in the scanner after a successful explicit behavioral learning session. Compared to the NG group, we found that the HG group showed a (a) significantly higher involvement of Brodmann area (BA) 44 in Broca's area and the posterior superior temporal gyrus (pSTG); and (b) qualitatively distinct connectivity between the two regions. Thus, the present study demonstrates that the build‐up process of syntactic hierarchies on the basis of category relations critically relies on a distinctive left‐hemispheric syntactic network involving BA 44 and pSTG. This indicates that our novel artificial grammar can constitute a suitable experimental tool to investigate syntax‐specific processes in the human brain.
Collapse
Affiliation(s)
- Luyao Chen
- College of Chinese Language and Culture, Beijing Normal University, Beijing.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tomás Goucha
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Claudia Männel
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Audiology and Phoniatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
15
|
Piai V, Nieberlein L, Hartwigsen G. Effects of transcranial magnetic stimulation over the left posterior superior temporal gyrus on picture-word interference. PLoS One 2020; 15:e0242941. [PMID: 33253319 PMCID: PMC7703954 DOI: 10.1371/journal.pone.0242941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/11/2020] [Indexed: 12/01/2022] Open
Abstract
Word-production theories argue that during language production, a concept activates multiple lexical candidates in left temporal cortex, and the intended word is selected from this set. Evidence for theories on spoken-word production comes, for example, from the picture-word interference task, where participants name pictures superimposed by congruent (e.g., picture: rabbit, distractor "rabbit"), categorically related (e.g., distractor "sheep"), or unrelated (e.g., distractor "fork") words. Typically, whereas congruent distractors facilitate naming, related distractors slow down picture naming relative to unrelated distractors, resulting in semantic interference. However, the neural correlates of semantic interference are debated. Previous neuroimaging studies have shown that the left mid-to-posterior STG (pSTG) is involved in the interference associated with semantically related distractors. To probe the functional relevance of this area, we targeted the left pSTG with focal repetitive transcranial magnetic stimulation (rTMS) while subjects performed a picture-word interference task. Unexpectedly, pSTG stimulation did not affect the semantic interference effect but selectively increased the congruency effect (i.e., faster naming with congruent distractors). The facilitatory TMS effect selectively occurred in the more difficult list with an overall lower name agreement. Our study adds new evidence to the causal role of the left pSTG in the interaction between picture and distractor representations or processing streams, only partly supporting previous neuroimaging studies. Moreover, the observed unexpected condition-specific facilitatory rTMS effect argues for an interaction of the task- or stimulus-induced brain state with the modulatory TMS effect. These issues should be systematically addressed in future rTMS studies on language production.
Collapse
Affiliation(s)
- Vitória Piai
- Donders Centre for Cognition, Radboud University, Nijmegen, the Netherlands
- Department of Medical Psychology, Donders Centre for Medical Neuroscience, Radboudumc, Nijmegen, the Netherlands
| | - Laura Nieberlein
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Friehs MA, Klaus J, Singh T, Frings C, Hartwigsen G. Perturbation of the right prefrontal cortex disrupts interference control. Neuroimage 2020; 222:117279. [PMID: 32828926 DOI: 10.1016/j.neuroimage.2020.117279] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/06/2023] Open
Abstract
Resolving cognitive interference is central for successful everyday cognition and behavior. The Stroop task is a classical measure of cognitive interference. In this task, participants have to resolve interference on a trial-by-trial basis and performance is also influenced by the trial history, as reflected in sequence effects. Previous neuroimaging studies have associated the left and right prefrontal cortex with successful performance in the Stroop task. Yet, the causal relevance of both regions for interference processing remains largely unclear. We probed the functional relevance of the left and right prefrontal cortex for interference control. In three sessions, 25 healthy participants received online repetitive transcranial magnetic stimulation (rTMS) over the left and right dorsolateral prefrontal cortex, and sham stimulation over the vertex. During each session, participants completed a verbal-response Stroop task. Relative to sham rTMS and rTMS over the left prefrontal cortex, rTMS over the right prefrontal cortex selectively disrupted the Stroop sequence effect (i.e., the congruency sequence effect; CSE). This effect was specific to sequential modulations of interference since rTMS did not affect the Stroop performance in the ongoing trial. Our results demonstrate the functional relevance of the right dorsolateral prefrontal cortex for the processing of interference control. This finding points towards process-specific lateralization within the prefrontal cortex. The observed process- and site-specific TMS effect provides new insights into the neurophysiological underpinnings of Stroop task performance and more general, the role of the prefrontal cortex in the processing of interference control.
Collapse
Affiliation(s)
- Maximilian A Friehs
- Department of Cognitive Psychology and Methodology, Trier University, Germany.
| | - Jana Klaus
- Department of Experimental Psychology, Utrecht University, the Netherlands
| | - Tarini Singh
- Department of Experimental Psychology, Halle University, Germany
| | - Christian Frings
- Department of Cognitive Psychology and Methodology, Trier University, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Germany
| |
Collapse
|
17
|
Orpella J, Ripollés P, Ruzzoli M, Amengual JL, Callejas A, Martinez-Alvarez A, Soto-Faraco S, de Diego-Balaguer R. Integrating when and what information in the left parietal lobe allows language rule generalization. PLoS Biol 2020; 18:e3000895. [PMID: 33137084 PMCID: PMC7660506 DOI: 10.1371/journal.pbio.3000895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/12/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
A crucial aspect when learning a language is discovering the rules that govern how words are combined in order to convey meanings. Because rules are characterized by sequential co-occurrences between elements (e.g., “These cupcakes are unbelievable”), tracking the statistical relationships between these elements is fundamental. However, purely bottom-up statistical learning alone cannot fully account for the ability to create abstract rule representations that can be generalized, a paramount requirement of linguistic rules. Here, we provide evidence that, after the statistical relations between words have been extracted, the engagement of goal-directed attention is key to enable rule generalization. Incidental learning performance during a rule-learning task on an artificial language revealed a progressive shift from statistical learning to goal-directed attention. In addition, and consistent with the recruitment of attention, functional MRI (fMRI) analyses of late learning stages showed left parietal activity within a broad bilateral dorsal frontoparietal network. Critically, repetitive transcranial magnetic stimulation (rTMS) on participants’ peak of activation within the left parietal cortex impaired their ability to generalize learned rules to a structurally analogous new language. No stimulation or rTMS on a nonrelevant brain region did not have the same interfering effect on generalization. Performance on an additional attentional task showed that this rTMS on the parietal site hindered participants’ ability to integrate “what” (stimulus identity) and “when” (stimulus timing) information about an expected target. The present findings suggest that learning rules from speech is a two-stage process: following statistical learning, goal-directed attention—involving left parietal regions—integrates “what” and “when” stimulus information to facilitate rapid rule generalization. This study uses repetitive transcranial stimulation to show that learning language rules from speech is a two-stage process; following statistical learning, goal-directed attention (involving left parietal regions) integrates "what" and "when" stimulus information to facilitate rapid rule generalization.
Collapse
Affiliation(s)
- Joan Orpella
- Cognition and Brain Plasticity Unit, IDIBELL, L’Hospitalet de Llobregat, Spain
- Dept of Cognition Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Psychology, New York University, New York, New York, United States of America
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York, United States of America
- Music and Auditory Research Laboratory (MARL), New York University, New York, New York, United States of America
- Center for Language, Music and Emotion (CLaME), New York University, New York, New York, United States of America
| | - Manuela Ruzzoli
- Center for Brain and Cognition, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Julià L. Amengual
- Centre de Neuroscience Cognitive Marc Jeannerod, CNRS UMR 5229, Université Claude Bernard Lyon I, Bron, France
| | - Alicia Callejas
- Cognition and Brain Plasticity Unit, IDIBELL, L’Hospitalet de Llobregat, Spain
- Departamento de Psicología Experimental, Facultad de Psicología y Centro de Investigación Mente, Cerebro y Comportamiento, Universidad de Granada, Granada, Spain
| | - Anna Martinez-Alvarez
- Cognition and Brain Plasticity Unit, IDIBELL, L’Hospitalet de Llobregat, Spain
- Dept of Cognition Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Developmental Psychology and Socialization, University of Padua, Italy
| | - Salvador Soto-Faraco
- Music and Auditory Research Laboratory (MARL), New York University, New York, New York, United States of America
- ICREA, Barcelona, Spain
| | - Ruth de Diego-Balaguer
- Cognition and Brain Plasticity Unit, IDIBELL, L’Hospitalet de Llobregat, Spain
- Dept of Cognition Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Kuhnke P, Beaupain MC, Cheung VKM, Weise K, Kiefer M, Hartwigsen G. Left posterior inferior parietal cortex causally supports the retrieval of action knowledge. Neuroimage 2020; 219:117041. [PMID: 32534127 DOI: 10.1016/j.neuroimage.2020.117041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/06/2020] [Indexed: 11/15/2022] Open
Abstract
Conceptual knowledge is central to human cognition. The left posterior inferior parietal lobe (pIPL) is implicated by neuroimaging studies as a multimodal hub representing conceptual knowledge related to various perceptual-motor modalities. However, the causal role of left pIPL in conceptual processing remains unclear. Here, we transiently disrupted left pIPL function with transcranial magnetic stimulation (TMS) to probe its causal relevance for the retrieval of action and sound knowledge. We compared effective TMS over left pIPL with sham TMS, while healthy participants performed three different tasks-lexical decision, action judgment, and sound judgment-on words with a high or low association to actions and sounds. We found that pIPL-TMS selectively impaired action judgments on low sound-low action words. For the first time, we directly related computational simulations of the TMS-induced electrical field to behavioral performance, which revealed that stronger stimulation of left pIPL is associated with worse performance for action but not sound judgments. These results indicate that left pIPL causally supports conceptual processing when action knowledge is task-relevant and cannot be compensated by sound knowledge. Our findings suggest that left pIPL is specialized for the retrieval of action knowledge, challenging the view of left pIPL as a multimodal conceptual hub.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Marie C Beaupain
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vincent K M Cheung
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Konstantin Weise
- Methods and Development Group 'Brain Networks', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
19
|
Xu K, Wu DH, Duann JR. Dynamic brain connectivity attuned to the complexity of relative clause sentences revealed by a single-trial analysis. Neuroimage 2020; 217:116920. [PMID: 32422404 DOI: 10.1016/j.neuroimage.2020.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022] Open
Abstract
To explore the issue of how the human brain processes sentences with different levels of complexity, we sought to compare the neural substrates underlying the processing of Chinese subject-extracted relative clause (SRC) and object-extracted relative clause (ORC) sentences in a trial-by-trial fashion. Previous neuroimaging studies have demonstrated that the involvement of the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) is critical for the processing of relative clause (RC) sentences. In this study, we employed independent component analysis (ICA) to decompose brain activity into a set of independent components. Then, the independent component maps were spatially normalized using a surface-based approach in order to further spatially correlate and match the equivalent components from individual participants. The selected equivalent components indicated that the LIFG and the LSTG were consistently engaged in sentence processing among the participants. Subsequently, we observed alterations in the functional coupling between the LIFG and the LSTG in response to SRCs and ORCs using a Granger causality analysis. Specifically, comprehending Chinese ORCs with a canonical word order only involved a unidirectional connection from the LIFG to the LSTG for the integration of lexical-syntactic information. On the other hand, comprehending Chinese SRCs required bi-directional connectivity between the LIFG and the LSTG to fulfill increased integration demands in reconstructing the argument hierarchy due to a non-canonical word order. Furthermore, through a single-trial analysis, the strength of the connectivity from the LIFG to the LSTG was found to be significantly correlated with the complexity of the SRC sentences as quantified by eye-tracking measures. These findings indicated that the effective connectivity from the LIFG to the LSTG played an important role in the comprehension of complex sentences and that enhanced strength of this connectivity might reflect increased integration demands and restructuring attempts during sentence processing. Taken together, the results of the present study reveal that interregional interaction in the brain network for sentence processing can be dynamically engaged in response to different levels of complexity and also shed some light on the interpretation of neuroimaging and behavioral evidence when accounting for the nature of sentence complexity during reading.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan; Institute of Modern Languages and Linguistics, Fudan University, Shanghai, 200433, China
| | - Denise H Wu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, 32001, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA, 92093, USA; Institute of Education, National Chiao Tung University, Hsinchu, 30010, Taiwan.
| |
Collapse
|
20
|
Ishkhanyan B, Michel Lange V, Boye K, Mogensen J, Karabanov A, Hartwigsen G, Siebner HR. Anterior and Posterior Left Inferior Frontal Gyrus Contribute to the Implementation of Grammatical Determiners During Language Production. Front Psychol 2020; 11:685. [PMID: 32395113 PMCID: PMC7197372 DOI: 10.3389/fpsyg.2020.00685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
The left inferior frontal gyrus (IFG) is a key region for language comprehension and production. Previous studies point to a preferential involvement of left anterior IFG (aIFG) in lexical and semantic processes, while the posterior IFG (pIFG) has been implicated in supporting syntactic and phonological processes. Here we used focal neuronavigated transcranial magnetic stimulation (TMS) to probe the functional involvement of left IFG in lexical and grammatical processing at the sentence level. We applied 10 Hz TMS effective or sham bursts to left aIFG and pIFG, while healthy volunteers performed an adjective-noun production task contrasting grammatical and lexical determiners. For each trial, we measured the time from the stimulus onset to the moment of articulation (response time) and the time from articulation onset to the end of articulation (duration). Focal TMS of IFG generally delayed response times. The TMS-induced delay in response times was relatively stronger for the grammatical condition compared to the lexical condition, when TMS targeted aIFG. Articulation of the determiner was generally shorter in trials presenting grammatical determiners relative to lexical determiners. The shorter articulation time for grammar determiners was facilitated by effective TMS to pIFG. Together, the effects of TMS on task performance provide novel evidence for a joint involvement of anterior and posterior parts of left IFG in implementing grammatical determiners during language production, suggesting an involvement of aIFG in the initiation and pIFG in the production of grammatically appropriate verbal responses at the sentence level.
Collapse
Affiliation(s)
- Byurakn Ishkhanyan
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus, Denmark
| | - Violaine Michel Lange
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kasper Boye
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
21
|
Xu K, Duann JR. Brain connectivity in the left frontotemporal network dynamically modulated by processing difficulty: Evidence from Chinese relative clauses. PLoS One 2020; 15:e0230666. [PMID: 32271773 PMCID: PMC7144993 DOI: 10.1371/journal.pone.0230666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 03/05/2020] [Indexed: 11/18/2022] Open
Abstract
Although the connection between the left inferior frontal gyrus (LIFG) and the left superior temporal gyrus (LSTG) has been found to be essential for the comprehension of relative clause (RC) sentences, it remains unclear how the LIFG and the LSTG interact with each other, especially during the processing of Chinese RC sentences with different processing difficulty. This study thus conducted a 2 × 2 (modifying position × extraction position) factorial analyses to examine how these two factors influences regional brain activation. The results showed that, regardless of the modifying position, greater activation in the LIFG was consistently elicited in Chinese subject-extracted relative clauses (SRCs) with non-canonical word order than object-extracted relative clauses (ORCs) with canonical word order, implying that the LIFG subserving the ordering process primarily contributes to the processing of information with increased integration demands due to the non-canonical sequence. Moreover, the directional connection between the LIFG and the LSTG appeared to be modulated by different modifying positions. When the RC was at the subject-modifying position, the effective connectivity from the LIFG to the LSTG was dominantly activated for sentence comprehension; whereas when the RC was at the object-modifying position thus being more difficult, it might be the feedback mechanism from the LSTG back to the LIFG that took place in sentence processing. These findings reveal that brain activation in between the LIFG and the LSTG may be dynamically modulated by different processing difficulty and suggest the relative specialization but extensive collaboration involved in the LIFG and the LSTG for sentence comprehension.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Institute for Neural Computation, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Xu K, Wu DH, Duann JR. Enhanced left inferior frontal to left superior temporal effective connectivity for complex sentence comprehension: fMRI evidence from Chinese relative clause processing. BRAIN AND LANGUAGE 2020; 200:104712. [PMID: 31704517 DOI: 10.1016/j.bandl.2019.104712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 09/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Previous studies investigating the processing of complex sentences have demonstrated the involvement of the left inferior frontal gyrus (LIFG) and left superior temporal gyrus (LSTG), which might subserve ordering and storage of linguistic components, respectively, for sentence comprehension. However, how these brain regions are interconnected, especially during the processing of Chinese sentences, need to be further explored. In this study, the neural network supporting the comprehension of Chinese relative clause was identified. Both the LIFG and LSTG exhibited higher activation in processing subject-extracted relative clauses (SRCs) than object-extracted relative clauses (ORCs). Moreover, a Granger causality analysis revealed that the effective connectivity from the LIFG to LSTG was significant only when participants read Chinese SRCs, which were argued to be more difficult than ORCs. Contrary to the observations of an SRC advantage in most other languages, the present results provide clear neuroimaging evidence for an ORC advantage in Chinese.
Collapse
Affiliation(s)
- Kunyu Xu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan
| | - Denise H Wu
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan 32001, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Kroczek LO, Gunter TC, Rysop AU, Friederici AD, Hartwigsen G. Contributions of left frontal and temporal cortex to sentence comprehension: Evidence from simultaneous TMS-EEG. Cortex 2019; 115:86-98. [DOI: 10.1016/j.cortex.2019.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/03/2018] [Accepted: 01/15/2019] [Indexed: 02/03/2023]
|
24
|
Knyazev GG, Savostyanov AN, Bocharov AV, Tamozhnikov SS, Kozlova EA, Leto IV, Slobodskaya HR. Cross-Frequency Coupling in Developmental Perspective. Front Hum Neurosci 2019; 13:158. [PMID: 31139068 PMCID: PMC6527755 DOI: 10.3389/fnhum.2019.00158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
It is generally assumed that different electroencephalogram (EEG) frequency bands are somehow related to different computational modes in the brain. Integration of these computational modes is reflected in the phenomenon of cross-frequency coupling (CFC). On slow temporal scales, CFC may reflect trait-like properties, which posits a question of its developmental trends. This is the first study that explored source-level CFC measures in a developmental perspective using both cross-sectional and longitudinal designs. CFC measures demonstrated good test-retest stability and proved to be higher in adults in cortical areas participating in sensory-motor integration, response inhibition, and attentional control. In children, greater CFC was observed in parietal regions involved in self-centered cognition. Over the period from 7 to 10 years, CFC demonstrated nonlinear growth trajectories. Introversion was associated with higher CFC in cortical areas related to emotion, attention, and social cognition, implying that the association between introversion and CFC appears early in the development.
Collapse
Affiliation(s)
- Gennady G Knyazev
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Alexander N Savostyanov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Humanitarian Department, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey V Bocharov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Humanitarian Department, Novosibirsk State University, Novosibirsk, Russia
| | - Sergey S Tamozhnikov
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Elena A Kozlova
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Irina V Leto
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Helena R Slobodskaya
- Laboratory of Psychophysiology of Individual Differences, Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,Humanitarian Department, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
25
|
Klaus J, Hartwigsen G. Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production. Hum Brain Mapp 2019; 40:3279-3287. [PMID: 30969004 DOI: 10.1002/hbm.24597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
While the involvement of the left inferior frontal gyrus (IFG) in language production is undisputed, the role of specific subregions at different representational levels remains unclear. Some studies suggest a division of anterior and posterior regions for semantic and phonological processing, respectively. Crucially, evidence thus far only comes from correlative neuroimaging studies, but the functional relevance of the involvement of these subregions during a given task remains elusive. We applied repetitive transcranial magnetic stimulation (rTMS) over anterior and posterior IFG (aIFG/pIFG), and vertex as a control site, while participants performed a category member and a rhyme generation task. We found a functional-anatomical double dissociation between tasks and subregions. Naming latencies were significantly delayed in the semantic task when rTMS was applied to aIFG (relative to pIFG and vertex). In contrast, we observed a facilitation of naming latencies in the phonological task when rTMS was applied to pIFG (relative to aIFG and vertex). The results provide first causal evidence for the notion that anterior portions of the IFG are selectively recruited for semantic processing while posterior regions are functionally specific for phonological processing during word production. These findings shed light on the functional parcellation of the left IFG in language production.
Collapse
Affiliation(s)
- Jana Klaus
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany.,Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany.,Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Briggs RG, Chakraborty AR, Anderson CD, Abraham CJ, Palejwala AH, Conner AK, Pelargos PE, O'Donoghue DL, Glenn CA, Sughrue ME. Anatomy and white matter connections of the inferior frontal gyrus. Clin Anat 2019; 32:546-556. [DOI: 10.1002/ca.23349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Robert G. Briggs
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Arpan R. Chakraborty
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Christopher D. Anderson
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Carol J. Abraham
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Ali H. Palejwala
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Andrew K. Conner
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Panayiotis E. Pelargos
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Daniel L. O'Donoghue
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Chad A. Glenn
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| | - Michael E. Sughrue
- Department of NeurosurgeryUniversity of Oklahoma Health Sciences Center Oklahoma City Oklahoma
| |
Collapse
|
27
|
Chen L, Wu J, Fu Y, Kang H, Feng L. Neural substrates of word category information as the basis of syntactic processing. Hum Brain Mapp 2019; 40:451-464. [PMID: 30240492 PMCID: PMC6865558 DOI: 10.1002/hbm.24386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 01/19/2023] Open
Abstract
The ability to use word category information (WCI) for syntactic structure building has been hypothesized to be the essence of human language faculty. The neural substrate of the ability of using the WCI for the complex syntactic hierarchical structure processing, however, is yet unknown. Therefore, we directly conducted an fMRI experiment by using a pseudo-Chinese artificial language with syntactic structures containing a center-embedded relative clause. Thirty non-Chinese native (Korean) speakers were randomly divided into two groups: one acquired WCI and WCI-based syntactic rules (the WCI group) before the scanning session, and the other did not (the non-WCI group). Both groups were required to judge the grammaticality of the testing sentences, with critical long-distance dependencies between two elements (the main verb and the relativizer). Behaviorally, the WCI group's accuracy was significantly higher and its reaction time was shorter. The scanning results showed that the left superior temporal gyrus (STG) and Broca's area were more strongly activated for the WCI group, and the dynamic causal modeling analyses revealed a distinct effective connectivity pattern for this group. Therefore, the present research, for the first time, reveals that the activation of and the functional connectivity between Broca's area and the left STG play a critical role in the ability of the rule-based use of the WCI which is crucial for complex hierarchical structure building, and might be substantially corresponding to the "labeling competence" within the linguistic framework.
Collapse
Affiliation(s)
- Luyao Chen
- College of Chinese Language and Culture, Beijing Normal UniversityBeijingChina
- Department of NeuropsychologyMax Plank Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Junjie Wu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Yongben Fu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
| | - Huntae Kang
- College of Chinese Language and Culture, Beijing Normal UniversityBeijingChina
| | - Liping Feng
- College of Chinese Language and Culture, Beijing Normal UniversityBeijingChina
| |
Collapse
|
28
|
Perturbation of left posterior prefrontal cortex modulates top-down processing in sentence comprehension. Neuroimage 2018; 181:598-604. [PMID: 30055371 DOI: 10.1016/j.neuroimage.2018.07.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
Communication is an inferential process. In particular, language comprehension constantly requires top-down efforts, as often multiple interpretations are compatible with a given sentence. To assess top-down processing in the language domain, our experiment employed ambiguous sentences that allow for multiple interpretations (e.g., The client sued the murderer with the corrupt lawyer., where the corrupt lawyer could either belong to The client or the murderer). Interpretation thus depended on whether participants chunk the words of the sentence into short or long syntactic phrases. In principle, bottom-up acoustic information (i.e., the presence or absence of an intonational phrase boundary at the offset of the murderer) indicates one of the two possible interpretations. Yet, acoustic information often indicates interpretations that require words to be chunked into overly long phrases that would overburden working memory. Processing is biased against these demands, reflected in a top-down preference to chunk words into short rather than long phrases. It is often proposed, but also hotly debated, that the ability to chunk words into short phrases is subserved by the left inferior frontal gyrus (IFG). Here, we employed focal repetitive transcranial magnetic stimulation to perturb the left IFG, which resulted in a further decrease of the aptitude to tolerate long phrases, indicating the inability of the left IFG to assist the chunking of words into phrases. In contrast, the processing of auditory information was not affected. Our findings support a causal top-down role of the left inferior frontal gyrus in the chunking of words into phrases.
Collapse
|
29
|
Friedrich P, Anderson C, Schmitz J, Schlüter C, Lor S, Stacho M, Ströckens F, Grimshaw G, Ocklenburg S. Fundamental or forgotten? Is Pierre Paul Broca still relevant in modern neuroscience? Laterality 2018; 24:125-138. [DOI: 10.1080/1357650x.2018.1489827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Patrick Friedrich
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| | - Catrona Anderson
- Neural Basis of Memory Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Judith Schmitz
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| | - Caroline Schlüter
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| | - Stephanie Lor
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| | - Martin Stacho
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| | - Felix Ströckens
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| | - Gina Grimshaw
- Cognitive and Affective Neuroscience Lab, School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Sebastian Ocklenburg
- Institute of Cognitive Neuroscience, Biopsychology, Department of Psychology, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
30
|
Albouy P, Baillet S, Zatorre RJ. Driving working memory with frequency-tuned noninvasive brain stimulation. Ann N Y Acad Sci 2018; 1423:126-137. [PMID: 29707781 DOI: 10.1111/nyas.13664] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches.
Collapse
Affiliation(s)
- Philippe Albouy
- Montreal Neurological Institute, McGill University, Montreal, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
| |
Collapse
|
31
|
Neurological evaluation of the selection stage of metaphor comprehension in individuals with and without autism spectrum disorder. Neuroscience 2017; 361:19-33. [DOI: 10.1016/j.neuroscience.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022]
|
32
|
Qu J, Qian L, Chen C, Xue G, Li H, Xie P, Mei L. Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning. Front Hum Neurosci 2017; 11:424. [PMID: 28878640 PMCID: PMC5572377 DOI: 10.3389/fnhum.2017.00424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/07/2017] [Indexed: 01/30/2023] Open
Abstract
Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO) and fusiform gyrus (FG) before training was negatively associated with reaction time (RT) in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory.
Collapse
Affiliation(s)
- Jing Qu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal UniversityGuangzhou, China
| | - Liu Qian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal UniversityGuangzhou, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, IrvineIrvine, CA, United States
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Huiling Li
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal UniversityGuangzhou, China
| | - Peng Xie
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal UniversityGuangzhou, China
| | - Leilei Mei
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal UniversityGuangzhou, China
| |
Collapse
|