1
|
Makihara K, Kunieda K, Yamada S, Yamaguchi M, Nakamura T, Terada Y. High-resolution MRI for human embryos with isotropic 10 μm resolution at 9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107545. [PMID: 37683315 DOI: 10.1016/j.jmr.2023.107545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Magnetic resonance (MR) microscopy of human embryos has contributed significantly to the development of human embryology. Higher-resolution MR microscopy will have obvious benefits, for example, in visualizing small structures that are blurred or lost in lower-resolution images, providing detailed information on the development and growth of various organs, and improving the accuracy of MR volumetry. However, high-resolution MR microscopy has yet to be realized because of many technical challenges. In this study, therefore, we have performed high-resolution MR microscopy for human embryos with isotropic resolutions of (12 μm)3 at full sampling and (10 μm)3 at compressed sensing, which far exceeds the resolution of previous embryonic MR studies. The hardware and the pulse sequence were improved to achieve higher spatial resolution. Line profile, signal-to-noise ratio, and histogram analysis using phantom images were performed to verify that the resolution and the voxel size were identical. Comparison with optical microscopy images of embryo specimens at the same developmental stage was performed to confirm that the microstructures were well delineated. Our results show that imaging at this high resolution effectively depicts the microstructures of human embryos. This technology is the cornerstone for constructing an unprecedented high-quality atlas that will contribute to the development of human embryology.
Collapse
Affiliation(s)
- Kazuyuki Makihara
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Kunieda
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Yamaguchi
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwanoha 6-5-1, Kashiwa, Chiba, Japan
| | - Takashi Nakamura
- Molecular Characterization Unit, Center for Sustainable Resource Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Yasuhiko Terada
- Institute of Pure and Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Ivanov D, De Martino F, Formisano E, Fritz FJ, Goebel R, Huber L, Kashyap S, Kemper VG, Kurban D, Roebroeck A, Sengupta S, Sorger B, Tse DHY, Uludağ K, Wiggins CJ, Poser BA. Magnetic resonance imaging at 9.4 T: the Maastricht journey. MAGMA (NEW YORK, N.Y.) 2023; 36:159-173. [PMID: 37081247 PMCID: PMC10140139 DOI: 10.1007/s10334-023-01080-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging. 9.4 T offers increases in sensitivity and contrast, but the technical ultra-high field (UHF) challenges, such as field inhomogeneities and constraints set by RF power deposition, are exacerbated compared to 7 T. This article reviews some of the 9.4 T work done in Maastricht. Functional imaging experiments included blood oxygenation level-dependent (BOLD) and blood-volume weighted (VASO) fMRI using different readouts. BOLD benefits from shorter T2* at 9.4 T while VASO from longer T1. We show examples of both ex vivo and in vivo anatomical imaging. For many applications, pTx and optimized coils are essential to harness the full potential of 9.4 T. Our experience shows that, while considerable effort was required compared to our 7 T scanner, we could obtain high-quality anatomical and functional data, which illustrates the potential of MR acquisitions at even higher field strengths. The practical challenges of working with a relatively unique system are also discussed.
Collapse
Affiliation(s)
- Dimo Ivanov
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| | - Federico De Martino
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Elia Formisano
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Francisco J Fritz
- Institute of Systems Neuroscience, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Sriranga Kashyap
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Valentin G Kemper
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Denizhan Kurban
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Alard Roebroeck
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | | | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Desmond H Y Tse
- Scannexus BV, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Krembil Brain Institute, Koerner Scientist in MR Imaging, University Health Network Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Christopher J Wiggins
- Imaging Core Facility (INM-ICF), Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
3
|
Ma Y, Bruce IP, Yeh CH, Petrella JR, Song AW, Truong TK. Column-based cortical depth analysis of the diffusion anisotropy and radiality in submillimeter whole-brain diffusion tensor imaging of the human cortical gray matter in vivo. Neuroimage 2023; 270:119993. [PMID: 36863550 PMCID: PMC10037338 DOI: 10.1016/j.neuroimage.2023.119993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
High-resolution diffusion tensor imaging (DTI) can noninvasively probe the microstructure of cortical gray matter in vivo. In this study, 0.9-mm isotropic whole-brain DTI data were acquired in healthy subjects with an efficient multi-band multi-shot echo-planar imaging sequence. A column-based analysis that samples the fractional anisotropy (FA) and radiality index (RI) along radially oriented cortical columns was then performed to quantitatively analyze the FA and RI dependence on the cortical depth, cortical region, cortical curvature, and cortical thickness across the whole brain, which has not been simultaneously and systematically investigated in previous studies. The results showed characteristic FA and RI vs. cortical depth profiles, with an FA local maximum and minimum (or two inflection points) and a single RI maximum at intermediate cortical depths in most cortical regions, except for the postcentral gyrus where no FA peaks and a lower RI were observed. These results were consistent between repeated scans from the same subjects and across different subjects. They were also dependent on the cortical curvature and cortical thickness in that the characteristic FA and RI peaks were more pronounced i) at the banks than at the crown of gyri or at the fundus of sulci and ii) as the cortical thickness increases. This methodology can help characterize variations in microstructure along the cortical depth and across the whole brain in vivo, potentially providing quantitative biomarkers for neurological disorders.
Collapse
Affiliation(s)
- Yixin Ma
- Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Room 414, Durham, NC 27710, United States; Medical Physics Graduate Program, Duke University, Durham, NC, United States
| | - Iain P Bruce
- Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Room 414, Durham, NC 27710, United States; Department of Neurology, Duke University, Durham, NC, United States
| | - Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| | - Jeffrey R Petrella
- Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Room 414, Durham, NC 27710, United States; Medical Physics Graduate Program, Duke University, Durham, NC, United States; Department of Radiology, Duke University, Durham, NC, United States
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Room 414, Durham, NC 27710, United States; Medical Physics Graduate Program, Duke University, Durham, NC, United States; Department of Radiology, Duke University, Durham, NC, United States.
| | - Trong-Kha Truong
- Brain Imaging and Analysis Center, Duke University, 40 Duke Medicine Circle, Room 414, Durham, NC 27710, United States; Medical Physics Graduate Program, Duke University, Durham, NC, United States; Department of Radiology, Duke University, Durham, NC, United States.
| |
Collapse
|
4
|
Jia F, Liao Y, Li X, Ye Z, Li P, Zhou X, Li Q, Wang S, Ning G, Qu H. Preliminary Study on Quantitative Assessment of the Fetal Brain Using MOLLI T1 Mapping Sequence. J Magn Reson Imaging 2022; 56:1505-1512. [PMID: 35394092 DOI: 10.1002/jmri.28195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Prenatal quantitative evaluation of myelin is important. However, few techniques are suitable for the quantitative evaluation of fetal myelination. PURPOSE To optimize a modified Look-Locker inversion recovery (MOLLI) T1 mapping sequence for fetal brain development study. STUDY TYPE Prospective observational preliminary cohort study. POPULATION A total of 71 women with normal fetuses divided into mid-pregnancy (gestational age 24-28 weeks, N = 25) and late pregnancy (gestational age > 28 weeks, N = 46) groups. FIELD STRENGTH/SEQUENCE A 3 T/MOLLI sequence. ASSESSMENT T1 values were measured in pedunculus cerebri, basal ganglia, thalamus, posterior limb of the internal capsule, temporal white matter, occipital white matter, frontal white matter, and parietal white matter by two radiologists (11 and 16 years of experience, respectively). STATISTICAL TESTS The Kruskal-Wallis test was used for reginal comparison. For each region of interest (ROI), differences in T1 values between the mid and late pregnancy groups were assessed by the Mann Whitney U test. Pearson correlation coefficients (r) were used to evaluate the correlations between T1 values and gestational age for each ROI. Intraobserver and interobserver agreement was determined by the intraclass correlation coefficient (ICC). A P value <0.05 was considered statistically significant. RESULTS Interobserver and intraobserver agreements of T1 were good for all ROIs (all ICCs > 0.700). There were significant differences in T1 values between lobal white matter and deep regions, respectively. Significant T1 values differences were found between middle and late pregnancy groups in pedunculus cerebri, basal ganglion, thalamus, posterior limb of the internal capsule, temporal, and occipital white matter. The T1 values showed significantly negative correlations with gestational weeks in pedunculus cerebri (r = -0.80), basal ganglion (r = -0.60), thalamus (r = -0.68), and posterior limb of the internal capsule (r = -0.77). DATA CONCLUSION The T1 values of fetal brain may be assessed using the MOLLI sequence and may reflect the myelination. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Fenglin Jia
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhijun Ye
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Pei Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoyue Zhou
- MR Collaborations, Siemens Healthineers, Shanghai, People's Republic of China
| | - Qing Li
- MR Collaborations, Siemens Healthineers, Shanghai, People's Republic of China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, People's Republic of China
| | - Gang Ning
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
5
|
Foit NA, Yung S, Lee HM, Bernasconi A, Bernasconi N, Hong SJ. A whole-brain 3D myeloarchitectonic atlas: Mapping the Vogt-Vogt legacy to the cortical surface. Neuroimage 2022; 263:119617. [PMID: 36084859 DOI: 10.1016/j.neuroimage.2022.119617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention. Here, we present the neocortical surface-based myeloarchitectonic atlas based on the histology-derived maps of the Vogt-Vogt school and its 2D translation by Nieuwenhuys. In addition to a myeloarchitectonic parcellation, our package includes intracortical laminar profiles of myelin content based on Vogt-Vogt-Hopf original publications. Histology-derived myelin density mapped on our atlas demonstrated a close overlap with in vivo quantitative MRI markers for myelin and relates to cytoarchitectural features. Complementing the existing battery of approaches for digital cartography, the whole-brain myeloarchitectonic atlas offers an opportunity to validate imaging surrogate markers of myelin in both health and disease.
Collapse
Affiliation(s)
- Niels A Foit
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Seles Yung
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Hyo Min Lee
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, QC, Canada; Center for the Developing Brain, Child Mind Institute, NY, USA; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
6
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
7
|
Immunomagnetic microscopy of tumor tissues using quantum sensors in diamond. Proc Natl Acad Sci U S A 2022; 119:2118876119. [PMID: 35082154 PMCID: PMC8812536 DOI: 10.1073/pnas.2118876119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Histological imaging is essential for the biomedical research and clinical diagnosis of human cancer. Although optical microscopy provides a standard method, it is a persistent goal to develop new imaging methods for more precise histological examination. Here, we use nitrogen-vacancy centers in diamond as quantum sensors and demonstrate micrometer-resolution immunomagnetic microscopy (IMM) for human tumor tissues. We immunomagnetically labeled cancer biomarkers in tumor tissues with magnetic nanoparticles and imaged them in a 400-nm resolution diamond-based magnetic microscope. There is barely magnetic background in tissues, and the IMM can resist the impact of a light background. The distribution of biomarkers in the high-contrast magnetic images was reconstructed as that of the magnetic moment of magnetic nanoparticles by employing deep-learning algorithms. In the reconstructed magnetic images, the expression intensity of the biomarkers was quantified with the absolute magnetic signal. The IMM has excellent signal stability, and the magnetic signal in our samples had not changed after more than 1.5 y under ambient conditions. Furthermore, we realized multimodal imaging of tumor tissues by combining IMM with hematoxylin-eosin staining, immunohistochemistry, or immunofluorescence microscopy in the same tissue section. Overall, our study provides a different histological method for both molecular mechanism research and accurate diagnosis of human cancer.
Collapse
|
8
|
Nazemorroaya A, Aghaeifar A, Shiozawa T, Hirt B, Schulz H, Scheffler K, Hagberg GE. Developing formalin-based fixative agents for post mortem brain MRI at 9.4 T. Magn Reson Med 2021; 87:2481-2494. [PMID: 34931721 DOI: 10.1002/mrm.29122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop fixative agents for high-field MRI with suitable dielectric properties and measure MR properties in immersion-fixed brain tissue. METHODS Dielectric properties of formalin-based agents were assessed (100 MHz-4.5 GHz), and four candidate fixatives with/without polyvinylpyrrolidone (PVP) and different salt concentrations were formulated. B1 field and MR properties (T1 , R 2 ∗ , R2 , R 2 ' , and magnetic susceptibility [QSM]) were observed in white and gray matter of pig brain samples during 0.5-35 days of immersion fixation. The kinetics were fitted using exponential functions. The immersion time required to reach maximum R 2 ∗ values at different tissue depths was used to estimate the Medawar coefficient for fixative penetration. The effect of replacing the fixatives with Fluoroinert and phosphate-buffered saline as embedding media was also evaluated. RESULTS The dielectric properties of formalin were nonlinearly modified by increasing amounts of additives. With 5% PVP and 0.04% NaCl, the dielectric properties and B1 field reflected in vivo conditions. The highest B1 values were found in white matter with PVP and varied significantly with tissue depth and embedding media, but not with immersion time. The MR properties depended on PVP yielding lower T1 , higher R 2 ∗ , more paramagnetic QSM values, and a lower Medawar coefficient (0.9 mm / h ; without PVP: 1.5). Regardless of fixative, switching to phosphate-buffered saline as embedder caused a paramagnetic shift in QSM and decreased R 2 ∗ that progressed during 1 month of storage, whereas no differences were found with Fluorinert. CONCLUSION In vivo-like B1 fields can be achieved in formalin fixatives using PVP and a low salt concentration, yielding lower T1 , higher R 2 ∗ , and more paramagnetic QSM than without additives. The kinetics of R 2 ∗ allowed estimation of fixative tissue penetration.
Collapse
Affiliation(s)
- Azadeh Nazemorroaya
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ali Aghaeifar
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Hildegard Schulz
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Biomedical Magnetic Resonance, Eberhard Karl's University of Tübingen, Tübingen, Germany
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Biomedical Magnetic Resonance, Eberhard Karl's University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Guo H, Wang Y, Qiu L, Huang X, He C, Zhang J, Gong Q. Structural and Functional Abnormalities in Knee Osteoarthritis Pain Revealed With Multimodal Magnetic Resonance Imaging. Front Hum Neurosci 2021; 15:783355. [PMID: 34912202 PMCID: PMC8667073 DOI: 10.3389/fnhum.2021.783355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
The knee osteoarthritis (KOA) pain is the most common form of arthritis pain affecting millions of people worldwide. Long-term KOA pain causes motor impairment and affects affective and cognitive functions. However, little is known about the structural and functional abnormalities induced by long-term KOA pain. In this work, high-resolution structural magnetic resonance imaging (sMRI) and resting-state functional MRI (rs-fMRI) data were acquired in patients with KOA and age-, sex-matched healthy controls (HC). Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuation (fALFF) were used to study the structural and functional abnormalities in patients with KOA. Compared with HC, patients with KOA showed reduced GMV in bilateral insula and bilateral hippocampus, and reduced fALFF in left cerebellum, precentral gyrus, and the right superior occipital gyrus. Patients with KOA also showed increased fALFF in left insula and bilateral hippocampus. In addition, the abnormal GMV in left insula and fALFF in left fusiform were closely correlated with the pain severity or disease duration. These results indicated that long KOA pain leads to brain structural and functional impairments in motor, visual, cognitive, and affective functions that related to brain areas. Our findings may facilitate to understand the neural basis of KOA pain and the future therapy to relieve disease symptoms.
Collapse
Affiliation(s)
- Hua Guo
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | - Lihua Qiu
- Radiology Department, The Second People's Hospital of Yibin, Yibin, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chengqi He
- Department of Rehabilitative Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Junran Zhang
- School of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Scholz A, Etzel R, May MW, Mahmutovic M, Tian Q, Ramos-Llordén G, Maffei C, Bilgiç B, Witzel T, Stockmann JP, Mekkaoui C, Wald LL, Huang SY, Yendiki A, Keil B. A 48-channel receive array coil for mesoscopic diffusion-weighted MRI of ex vivo human brain on the 3 T connectome scanner. Neuroimage 2021; 238:118256. [PMID: 34118399 PMCID: PMC8439104 DOI: 10.1016/j.neuroimage.2021.118256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
In vivo diffusion-weighted magnetic resonance imaging is limited in signal-to-noise-ratio (SNR) and acquisition time, which constrains spatial resolution to the macroscale regime. Ex vivo imaging, which allows for arbitrarily long scan times, is critical for exploring human brain structure in the mesoscale regime without loss of SNR. Standard head array coils designed for patients are sub-optimal for imaging ex vivo whole brain specimens. The goal of this work was to design and construct a 48-channel ex vivo whole brain array coil for high-resolution and high b-value diffusion-weighted imaging on a 3T Connectome scanner. The coil was validated with bench measurements and characterized by imaging metrics on an agar brain phantom and an ex vivo human brain sample. The two-segment coil former was constructed for a close fit to a whole human brain, with small receive elements distributed over the entire brain. Imaging tests including SNR and G-factor maps were compared to a 64-channel head coil designed for in vivo use. There was a 2.9-fold increase in SNR in the peripheral cortex and a 1.3-fold gain in the center when compared to the 64-channel head coil. The 48-channel ex vivo whole brain coil also decreases noise amplification in highly parallel imaging, allowing acceleration factors of approximately one unit higher for a given noise amplification level. The acquired diffusion-weighted images in a whole ex vivo brain specimen demonstrate the applicability and advantage of the developed coil for high-resolution and high b-value diffusion-weighted ex vivo brain MRI studies.
Collapse
Affiliation(s)
- Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany.
| | - Robin Etzel
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Markus W May
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany
| | - Qiyuan Tian
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Chiara Maffei
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgiç
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Thomas Witzel
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jason P Stockmann
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Susie Yi Huang
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Anastasia Yendiki
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), 14 Wiesenstrasse, Giessen 35390, Germany; Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
11
|
Boonstra JT, Michielse S, Roebroeck A, Temel Y, Jahanshahi A. Dedicated container for postmortem human brain ultra-high field magnetic resonance imaging. Neuroimage 2021; 235:118010. [PMID: 33819610 DOI: 10.1016/j.neuroimage.2021.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The emerging field of ultra-high field MRI (UHF-MRI, 7 Tesla and higher) provides the opportunity to image human brains at a higher resolution and with higher signal-to-noise ratios compared to the more widely available 1.5 and 3T scanners. Scanning postmortem tissue additionally allows for greatly increased scan times and fewer movement issues leading to improvements in image quality. However, typical postmortem neuroimaging routines involve placing the tissue within plastic bags that leave room for susceptibility artifacts from tissue-air interfaces, inadequate submersion, and leakage issues. To address these challenges in postmortem imaging, a custom-built nonferromagnetic container was developed that allows whole brain hemispheres to be scanned at sub-millimeter resolution within typical head-coils. METHOD The custom-built polymethylmethacrylaat container consists of a cylinder with a hemispheric side and a lid with valves on the adjacent side. This shape fits within common MR head-coils and allows whole hemispheres to be submerged and vacuum sealed within it reducing imaging artifacts that would otherwise arise at air-tissue boundaries. Two hemisphere samples were scanned on a Siemens 9.4T Magnetom MRI scanner. High resolution T2* weighted data was obtained with a custom 3D gradient echo (GRE) sequence and diffusion-weighted imaging (DWI) scans were obtained with a 3D kT-dSTEAM sequence along 48 directions. RESULTS The custom-built container proved to submerge and contain tissue samples effectively and showed no interferences with MR scanning acquisition. The 3D GRE sequence provided high resolution isotropic T2* weighted data at 250 μm which showed a clear visualization of gray and white matter structures. DWI scans allowed for dense reconstruction of structural white matter connections via tractography. CONCLUSION Using this custom-built container worked towards achieving high quality MR images of postmortem brain material. This procedure can have advantages over traditional schemes including utilization of a standardized protocol and the reduced likelihood of leakage. This methodology could be adjusted and used to improve typical postmortem imaging routines.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands.
| | - Stijn Michielse
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6202 AZ, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, P. Debyelaan 25, Maastricht, 6200 MD, the Netherlands
| |
Collapse
|
12
|
Kim S, Sakaie K, Blümcke I, Jones S, Lowe MJ. Whole-brain, ultra-high spatial resolution ex vivo MRI with off-the-shelf components. Magn Reson Imaging 2020; 76:39-48. [PMID: 33197550 DOI: 10.1016/j.mri.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ultra-high spatial resolution imaging of whole, ex vivo brains provides new opportunities to understand neurological disease. Recent work has demonstrated that 100 μm isotropic resolution can reveal anatomical details that are otherwise difficult to appreciate, but relied on fabrication facilities, fabrication expertise and programming expertise that is not available at clinical imaging sites that lack a dedicated research staff and resources. The purpose of this work is to describe a whole-brain, ultra-high spatial resolution imaging procedure for ex vivo specimens using equipment that can be purchased, assembled and implemented by most clinical sites. We provide enough detail so that other groups can readily reproduce the approach. METHODS A container and hardware for holding the brain fixed for long scan times was developed, along with a procedure for removing bubbles, which can cause artifact. Imaging was performed on a standard knee coil on a whole-body 7 T MRI at 170 μm isotropic spatial resolution. Five specimens were examined in Fomblin or formalin to evaluate consistency of image quality. RESULTS High quality images were acquired on all specimens. Anatomical features that are not readily observed at standard resolution, such as subthalamic nuclei, are readily observed. Disease-related features such as microscopic infarcts are also readily observed. CONCLUSIONS Ultra-high spatial resolution, whole-brain images can be readily achieved without specialized hardware and software development. The approach is expected to be valuable as a complement to histology and to discover relationships among pathology located at different places throughout the brain.
Collapse
Affiliation(s)
- Sanghoon Kim
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA
| | - Ken Sakaie
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA
| | - Ingmar Blümcke
- Institute of Neuropathology, Universitätsklinikum Erlangen, Schwabachanlage 6 (Kopfkliniken), 91054 Erlangen, Germany
| | - Stephen Jones
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA
| | - Mark J Lowe
- Imaging Institute, The Cleveland Clinic, 9500 Euclid Ave, Mail code U-15, Cleveland, OH 44195, USA.
| |
Collapse
|
13
|
Barbone GE, Bravin A, Mittone A, Kraiger MJ, Hrabě de Angelis M, Bossi M, Ballarini E, Rodriguez-Menendez V, Ceresa C, Cavaletti G, Coan P. Establishing sample-preparation protocols for X-ray phase-contrast CT of rodent spinal cords: Aldehyde fixations and osmium impregnation. J Neurosci Methods 2020; 339:108744. [DOI: 10.1016/j.jneumeth.2020.108744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
|
14
|
Kupeli A, Kocak M, Goktepeli M, Karavas E, Danisan G. Role of T1 mapping to evaluate brain aging in a healthy population. Clin Imaging 2020; 59:56-60. [DOI: 10.1016/j.clinimag.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 09/23/2019] [Indexed: 11/25/2022]
|
15
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
16
|
Ultra-high resolution and multi-shell diffusion MRI of intact ex vivo human brains using kT-dSTEAM at 9.4T. Neuroimage 2019; 202:116087. [DOI: 10.1016/j.neuroimage.2019.116087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023] Open
|
17
|
Edlow BL, Mareyam A, Horn A, Polimeni JR, Witzel T, Tisdall MD, Augustinack JC, Stockmann JP, Diamond BR, Stevens A, Tirrell LS, Folkerth RD, Wald LL, Fischl B, van der Kouwe A. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data 2019; 6:244. [PMID: 31666530 PMCID: PMC6821740 DOI: 10.1038/s41597-019-0254-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
We present an ultra-high resolution MRI dataset of an ex vivo human brain specimen. The brain specimen was donated by a 58-year-old woman who had no history of neurological disease and died of non-neurological causes. After fixation in 10% formalin, the specimen was imaged on a 7 Tesla MRI scanner at 100 µm isotropic resolution using a custom-built 31-channel receive array coil. Single-echo multi-flip Fast Low-Angle SHot (FLASH) data were acquired over 100 hours of scan time (25 hours per flip angle), allowing derivation of synthesized FLASH volumes. This dataset provides an unprecedented view of the three-dimensional neuroanatomy of the human brain. To optimize the utility of this resource, we warped the dataset into standard stereotactic space. We now distribute the dataset in both native space and stereotactic space to the academic community via multiple platforms. We envision that this dataset will have a broad range of investigational, educational, and clinical applications that will advance understanding of human brain anatomy in health and disease.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Department of Neurology, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA.
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Andreas Horn
- Movement Disorders & Neuromodulation Section, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - M Dylan Tisdall
- Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean C Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Jason P Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Bram R Diamond
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Lee S Tirrell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Rebecca D Folkerth
- City of New York Office of the Chief Medical Examiner, and New York University School of Medicine, New York, NY, 10016, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Charlestown, MA, 02129, USA
| |
Collapse
|
18
|
Lemaire JJ, De Salles A, Coll G, El Ouadih Y, Chaix R, Coste J, Durif F, Makris N, Kikinis R. MRI Atlas of the Human Deep Brain. Front Neurol 2019; 10:851. [PMID: 31507507 PMCID: PMC6718608 DOI: 10.3389/fneur.2019.00851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Mastering detailed anatomy of the human deep brain in clinical neurosciences is challenging. Although numerous pioneering works have gathered a large dataset of structural and topographic information, it is still difficult to transfer this knowledge into practice, even with advanced magnetic resonance imaging techniques. Thus, classical histological atlases continue to be used to identify structures for stereotactic targeting in functional neurosurgery. Physicians mainly use these atlases as a template co-registered with the patient's brain. However, it is possible to directly identify stereotactic targets on MRI scans, enabling personalized targeting. In order to help clinicians directly identify deep brain structures relevant to present and future medical applications, we built a volumetric MRI atlas of the deep brain (MDBA) on a large scale (infra millimetric). Twelve hypothalamic, 39 subthalamic, 36 telencephalic, and 32 thalamic structures were identified, contoured, and labeled. Nineteen coronal, 18 axial, and 15 sagittal MRI plates were created. Although primarily designed for direct labeling, the anatomic space was also subdivided in twelfths of AC-PC distance, leading to proportional scaling in the coronal, axial, and sagittal planes. This extensive work is now available to clinicians and neuroscientists, offering another representation of the human deep brain ([https://hal.archives-ouvertes.fr/] [hal-02116633]). The atlas may also be used by computer scientists who are interested in deciphering the topography of this complex region.
Collapse
Affiliation(s)
- Jean-Jacques Lemaire
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Antonio De Salles
- Department of Neurosurgery, Radiation Oncology, HCOR Neuroscience, São Paulo, Brazil
| | - Guillaume Coll
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Youssef El Ouadih
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Rémi Chaix
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Jérôme Coste
- Service de Neurochirurgie, CHU Clermont-Ferrand, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Franck Durif
- Service de Neurologie, Centre National de la Recherche Scientifique, CHU Clermont-Ferrand, Université Clermont Auvergne, Engineering School SIGMA Clermont, Clermont-Ferrand, France
| | - Nikos Makris
- Surgical Planning Laboratory, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA, United States
| | - Ron Kikinis
- Surgical Planning Laboratory, Center for Morphometric Analysis, A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Brigham and Women's Hospital, Boston, MA, United States.,Robert Greenes Distinguished Director of Biomedical Informatics, Brigham and Women's Hospital, Boston, MA, United States.,Computer Science Department, Fraunhofer MEVIS, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Hildebrand S, Schueth A, Herrler A, Galuske R, Roebroeck A. Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples. Sci Rep 2019; 9:10880. [PMID: 31350519 PMCID: PMC6659684 DOI: 10.1038/s41598-019-47336-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023] Open
Abstract
Optical clearing techniques and light sheet microscopy have transformed fluorescent imaging of rodent brains, and have provided a crucial alternative to traditional confocal or bright field techniques for thin sections. However, clearing and labeling human brain tissue through all cortical layers and significant portions of a cortical area, has so far remained extremely challenging, especially for formalin fixed adult cortical tissue. Here, we present MASH (Multiscale Architectonic Staining of Human cortex): a simple, fast and low-cost cytoarchitectonic labeling approach for optically cleared human cortex samples, which can be applied to large (up to 5 mm thick) formalin fixed adult brain samples. A suite of small-molecule fluorescent nuclear and cytoplasmic dye protocols in combination with new refractive index matching solutions allows deep volume imaging. This greatly reduces time and cost of imaging cytoarchitecture in thick samples and enables classification of cytoarchitectonic layers over the full cortical depth. We demonstrate application of MASH to large archival samples of human visual areas, characterizing cortical architecture in 3D from the scale of cortical areas to that of single cells. In combination with scalable light sheet imaging and data analysis, MASH could open the door to investigation of large human cortical systems at cellular resolution and in the context of their complex 3-dimensional geometry.
Collapse
Affiliation(s)
- Sven Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht, The Netherlands
| | - Anna Schueth
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht, The Netherlands
| | - Andreas Herrler
- Department of Anatomy & Embryology, Faculty of Health, Medicine & Life Science, Maastricht University, Maastricht, The Netherlands
| | - Ralf Galuske
- Systems Neurophysiology, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
20
|
Roebroeck A, Miller KL, Aggarwal M. Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances. NMR IN BIOMEDICINE 2019; 32:e3941. [PMID: 29863793 PMCID: PMC6492287 DOI: 10.1002/nbm.3941] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 05/23/2023]
Abstract
This review discusses ex vivo diffusion magnetic resonance imaging (dMRI) as an important research tool for neuroanatomical investigations and the validation of in vivo dMRI techniques, with a focus on the human brain. We review the challenges posed by the properties of post-mortem tissue, and discuss state-of-the-art tissue preparation methods and recent advances in pulse sequences and acquisition techniques to tackle these. We then review recent ex vivo dMRI studies of the human brain, highlighting the validation of white matter orientation estimates and the atlasing and mapping of large subcortical structures. We also give particular emphasis to the delineation of layered gray matter structure with ex vivo dMRI, as this application illustrates the strength of its mesoscale resolution over large fields of view. We end with a discussion and outlook on future and potential directions of the field.
Collapse
Affiliation(s)
- Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | | | - Manisha Aggarwal
- Department of RadiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
21
|
Dusek P, Madai VI, Huelnhagen T, Bahn E, Matej R, Sobesky J, Niendorf T, Acosta-Cabronero J, Wuerfel J. The choice of embedding media affects image quality, tissue R 2 * , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T. Magn Reson Med 2018; 81:2688-2701. [PMID: 30506939 DOI: 10.1002/mrm.27595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2 * -weighted) MR images, (3) effective transverse relaxation rate (R2 * ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2 * and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2 * . Imaging with agarose, D2 O, and Galden returned lower R2 * values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2 * behaviors) for formalin and agarose. CONCLUSIONS Embedding media affect gradient-echo image quality, R2 * , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2 * causing noisier data and increased QSM variance.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.,Department of Radiology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erik Bahn
- Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Praha, Czech Republic.,Department of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany.,Medical Imaging Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Switzerland
| |
Collapse
|