1
|
Marth AA, von Deuster C, Sommer S, Feuerriegel GC, Goller SS, Sutter R, Nanz D. Accelerated High-Resolution Deep Learning Reconstruction Turbo Spin Echo MRI of the Knee at 7 T. Invest Radiol 2024; 59:831-837. [PMID: 38960863 DOI: 10.1097/rli.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
OBJECTIVES The aim of this study was to compare the image quality of 7 T turbo spin echo (TSE) knee images acquired with varying factors of parallel-imaging acceleration reconstructed with deep learning (DL)-based and conventional algorithms. MATERIALS AND METHODS This was a prospective single-center study. Twenty-three healthy volunteers underwent 7 T knee magnetic resonance imaging. Two-, 3-, and 4-fold accelerated high-resolution fat-signal-suppressing proton density (PD-fs) and T1-weighted coronal 2D TSE acquisitions with an encoded voxel volume of 0.31 × 0.31 × 1.5 mm 3 were acquired. Each set of raw data was reconstructed with a DL-based and a conventional Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) algorithm. Three readers rated image contrast, sharpness, artifacts, noise, and overall quality. Friedman analysis of variance and the Wilcoxon signed rank test were used for comparison of image quality criteria. RESULTS The mean age of the participants was 32.0 ± 8.1 years (15 male, 8 female). Acquisition times at 4-fold acceleration were 4 minutes 15 seconds (PD-fs, Supplemental Video is available at http://links.lww.com/RLI/A938 ) and 3 minutes 9 seconds (T1, Supplemental Video available at http://links.lww.com/RLI/A939 ). At 4-fold acceleration, image contrast, sharpness, noise, and overall quality of images reconstructed with the DL-based algorithm were significantly better rated than the corresponding GRAPPA reconstructions ( P < 0.001). Four-fold accelerated DL-reconstructed images scored significantly better than 2- to 3-fold GRAPPA-reconstructed images with regards to image contrast, sharpness, noise, and overall quality ( P ≤ 0.031). Image contrast of PD-fs images at 2-fold acceleration ( P = 0.087), image noise of T1-weighted images at 2-fold acceleration ( P = 0.180), and image artifacts for both sequences at 2- and 3-fold acceleration ( P ≥ 0.102) of GRAPPA reconstructions were not rated differently than those of 4-fold accelerated DL-reconstructed images. Furthermore, no significant difference was observed for all image quality measures among 2-fold, 3-fold, and 4-fold accelerated DL reconstructions ( P ≥ 0.082). CONCLUSIONS This study explored the technical potential of DL-based image reconstruction in accelerated 2D TSE acquisitions of the knee at 7 T. DL reconstruction significantly improved a variety of image quality measures of high-resolution TSE images acquired with a 4-fold parallel-imaging acceleration compared with a conventional reconstruction algorithm.
Collapse
Affiliation(s)
- Adrian Alexander Marth
- From the Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland (A.A.M., C.v.D., S.S., D.N.); Department of Radiology, Balgrist University Hospital, Zurich, Switzerland (A.A.M., G.C.F., S.S.G., R.S.); Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Zurich, Switzerland (C.v.D., S.S.); and Medical Faculty, University of Zurich, Zurich, Switzerland (R.S., D.N.)
| | | | | | | | | | | | | |
Collapse
|
2
|
He T, Pang Z, Yin Y, Xue H, Pang Y, Song H, Li J, Bai R, Qin A, Kong X. Micron-resolution Imaging of Cortical Bone under 14 T Ultrahigh Magnetic Field. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300959. [PMID: 37339792 PMCID: PMC10460861 DOI: 10.1002/advs.202300959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/11/2023] [Indexed: 06/22/2023]
Abstract
Compact, mineralized cortical bone tissues are often concealed on magnetic resonance (MR) images. Recent development of MR instruments and pulse techniques has yielded significant advances in acquiring anatomical and physiological information from cortical bone despite its poor 1 H signals. This work demonstrates the first MR research on cortical bones under an ultrahigh magnetic field of 14 T. The 1 H signals of different mammalian species exhibit multi-exponential decays of three characteristic T2 or T2 * values: 0.1-0.5 ms, 1-4 ms, and 4-8 ms. Systematic sample comparisons attribute these T2 /T2 * value ranges to collagen-bound water, pore water, and lipids, respectively. Ultrashort echo time (UTE) imaging under 14 T yielded spatial resolutions of 20-80 microns, which resolves the 3D anatomy of the Haversian canals. The T2 * relaxation characteristics further allow spatial classifications of collagen, pore water and lipids in human specimens. The study achieves a record of the spatial resolution for MR imaging in bone and shows that ultrahigh-field MR has the unique ability to differentiate the soft and organic compartments in bone tissues.
Collapse
Affiliation(s)
- Tian He
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Zhenfeng Pang
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Yu Yin
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Huadong Xue
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Yichuan Pang
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Haixin Song
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Jianhua Li
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
| | - Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT)College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhou310027China
- School of MedicineZhejiang UniversityHangzhou310058China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of OrthopaedicsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011China
| | - Xueqian Kong
- Department of ChemistryZhejiang UniversityHangzhou310027China
- Department of RehabilitationSir Run Run Shaw HospitalCollege of MedicineZhejiang UniversityHangzhou310016China
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghai200240China
| |
Collapse
|
3
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:brainsci12101366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
- Correspondence: (K.T.); (E.T.)
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Correspondence: (K.T.); (E.T.)
| |
Collapse
|
4
|
Inam O, Qureshi M, Laraib Z, Akram H, Omer H. GPU accelerated Cartesian GRAPPA reconstruction using CUDA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107175. [PMID: 35259611 DOI: 10.1016/j.jmr.2022.107175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE GRAPPA (Generalized Auto-calibrating Partially Parallel Acquisition) is an advanced parallel MRI reconstruction method (pMRI) that enables under-sampled data acquisition with multiple receiver coils to reduce the MRI scan time and reconstructs artifact free image from the acquired under-sampled data. However, the reduction in MRI scan time comes at the expense of long reconstruction time. It is because the GRAPPA reconstruction time shows exponential growth with increasing number of receiver coils. Consequently, the conventional CPU platforms may not adhere to the requirements of fast data processing for MR image reconstruction. METHODS Graphics Processing Units (GPUs) have recently emerged as a viable commodity hardware to reduce the reconstruction time of pMRI methods. This paper presents a novel GPU based implementation of GRAPPA using custom built CUDA kernels, to meet the rising demands of fast MRI processing. The proposed framework exploits intrinsic parallelism in the calibration and synthesis phases of GRAPPA reconstruction process, aiming to achieve high speed MR image reconstruction for various GRAPPA configuration settings using different number of receiver coils, auto-calibration signals (ACS), sizes of GRAPPA kernel and acceleration factors. In-vivo experiments (using 8, 12 and 30 receiver coils) are performed to compare the performance of the proposed GPU accelerated GRAPPA with the CPU based GRAPPA extensions and GPU counterpart. RESULTS The results indicate that the proposed method achieves up to ≈47.8× , ≈17× and ≈3.8× speed up gains over multicore CPU (single thread), multicore CPU (8 thread) and Gadgetron (GPU based GRAPPA) respectively, without compromising the reconstruction accuracy. CONCLUSIONS The proposed method reduces the GRAPPA reconstruction time by employing the calibration phase (GRAPPA weights estimation) and synthesis phase (interpolation) on GPU. Our study shows that the proposed GPU based parallel framework for GRAPPA reconstruction provides a solution for high-speed image reconstruction while maintaining the quality of the reconstructed images.
Collapse
Affiliation(s)
- Omair Inam
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan.
| | - Mahmood Qureshi
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan.
| | - Zoia Laraib
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Hamza Akram
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Hammad Omer
- Medical Image Processing Research Group (MIPRG), Department of Electrical & Computer Engineering, COMSATS University Islamabad, Pakistan.
| |
Collapse
|
5
|
Abstract
SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.
Collapse
|
6
|
Zhong Z, Sun K, Dan G, Luo Q, Farzaneh-Far A, Karaman MM, Zhou XJ. Visualization of Human Aortic Valve Dynamics Using Magnetic Resonance Imaging with Sub-Millisecond Temporal Resolution. J Magn Reson Imaging 2021; 54:1246-1254. [PMID: 33761166 PMCID: PMC8440328 DOI: 10.1002/jmri.27603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Visualization of aortic valve dynamics is important in diagnosing valvular diseases but is challenging to perform with magnetic resonance imaging (MRI) due to the limited temporal resolution. PURPOSE To develop an MRI technique with sub-millisecond temporal resolution and demonstrate its application in visualizing rapid aortic valve opening and closing in human subjects in comparison with echocardiography and conventional MRI techniques. STUDY TYPE Prospective. POPULATION Twelve healthy subjects. FIELD STRENGTH/SEQUENCE 3 T; gradient-echo-train-based sub-millisecond periodic event encoded imaging (get-SPEEDI) and balanced steady-state free precession (bSSFP). ASSESSMENT Images were acquired using get-SPEEDI with a temporal resolution of 0.6 msec. get-SPEEDI was triggered by an electrocardiogram so that each echo in the gradient echo train corresponded to an image at a specific time point, providing a time-resolved characterization of aortic valve dynamics. For comparison, bSSFP was also employed with 12 msec and 24 msec temporal resolutions, respectively. The durations of the aortic valve rapid opening (Tro ), rapid closing (Trc ), and the maximal aortic valve area (AVA) normalized to height were measured with all three temporal resolutions. M-mode echocardiograms with a temporal resolution of 0.8 msec were obtained for further comparison. STATISTICAL TEST Parameters were compared between the three sequences, together with the echocardiography results, with a Mann-Whitney U test. RESULTS Significantly shorter Tro (mean ± SD: 27.5 ± 6.7 msec) and Trc (43.8 ± 11.6 msec) and larger maximal AVA/height (2.01 ± 0.29 cm2 /m) were measured with get-SPEEDI compared to either bSSFP sequence (Tro of 56.3 ± 18.8 and 63.8 ± 20.2 msec; Trc of 68.2 ± 16.6 and 72.8 ± 18.2 msec; maximal AVA/height of 1.63 ± 0.28 and 1.65 ± 0.32 cm2 /m for 12 msec and 24 msec temporal resolutions, respectively, P < 0.05). In addition, the get-SPEEDI results were more consistent with those measured using echocardiography, especially for Tro (29.0 ± 4.1 msec, P = 0.79) and Trc (41.6 ± 4.3 msec, P = 0.16). DATA CONCLUSION: get-SPEEDI allows for visualization of human aortic valve dynamics and provided values closer to those measured using echocardiography than the bSSFP sequences. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Zheng Zhong
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL
| | - Afshin Farzaneh-Far
- Department of Radiology, University of Illinois at Chicago, Chicago, IL
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - M. Muge Karaman
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL
- Department of Radiology, University of Illinois at Chicago, Chicago, IL
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
7
|
Engel M, Kasper L, Wilm B, Dietrich B, Patzig F, Vionnet L, Pruessmann KP. Mono-planar T-Hex: Speed and flexibility for high-resolution 3D imaging. Magn Reson Med 2021; 87:272-280. [PMID: 34398985 PMCID: PMC9292510 DOI: 10.1002/mrm.28979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
Purpose The aim of this work is the reconciliation of high spatial and temporal resolution for MRI. For this purpose, a novel sampling strategy for 3D encoding is proposed, which provides flexible k‐space segmentation along with uniform sampling density and benign filtering effects related to signal decay. Methods For time‐critical MRI applications such as functional MRI (fMRI), 3D k‐space is usually sampled by stacking together 2D trajectories such as echo planar imaging (EPI) or spiral readouts, where each shot covers one k‐space plane. For very high temporal and medium to low spatial resolution, tilted hexagonal sampling (T‐Hex) was recently proposed, which allows the acquisition of a larger k‐space volume per excitation than can be covered with a planar readout. Here, T‐Hex is described in a modified version where it instead acquires a smaller k‐space volume per shot for use with medium temporal and high spatial resolution. Results Mono‐planar T‐Hex sampling provides flexibility in the choice of speed, signal‐to‐noise ratio (SNR), and contrast for rapid MRI acquisitions. For use with a conventional gradient system, it offers the greatest benefit in a regime of high in‐plane resolution <1 mm. The sampling scheme is combined with spirals for high sampling speed as well as with more conventional EPI trajectories. Conclusion Mono‐planar T‐Hex sampling combines fast 3D encoding with SNR efficiency and favorable depiction characteristics regarding noise amplification and filtering effects from T2∗ decay, thereby providing flexibility in the choice of imaging parameters. It is attractive both for high‐resolution time series such as fMRI and for applications that require rapid anatomical imaging.
Collapse
Affiliation(s)
- Maria Engel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Lars Kasper
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.,Translational Neuromodeling Unit, IBT, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bertram Wilm
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Benjamin Dietrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franz Patzig
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Laetitia Vionnet
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev 2021; 128:467-478. [PMID: 34245758 DOI: 10.1016/j.neubiorev.2021.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Laboratory animal research has provided significant knowledge into the function of cortical circuits at the laminar level, which has yet to be fully leveraged towards insights about human brain function on a similar spatiotemporal scale. The use of functional magnetic resonance imaging (fMRI) in conjunction with neural models provides new opportunities to gain important insights from current knowledge. During the last five years, human studies have demonstrated the value of high-resolution fMRI to study laminar-specific activity in the human brain. This is mostly performed at ultra-high-field strengths (≥ 7 T) and is known as laminar fMRI. Advancements in laminar fMRI are beginning to open new possibilities for studying questions in basic cognitive neuroscience. In this paper, we first review recent methodological advances in laminar fMRI and describe recent human laminar fMRI studies. Then, we discuss how the use of laminar fMRI can help bridge the gap between cortical circuit models and human cognition.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Laurentius Huber
- MR-Methods Group, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Frässle S, Aponte EA, Bollmann S, Brodersen KH, Do CT, Harrison OK, Harrison SJ, Heinzle J, Iglesias S, Kasper L, Lomakina EI, Mathys C, Müller-Schrader M, Pereira I, Petzschner FH, Raman S, Schöbi D, Toussaint B, Weber LA, Yao Y, Stephan KE. TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Front Psychiatry 2021; 12:680811. [PMID: 34149484 PMCID: PMC8206497 DOI: 10.3389/fpsyt.2021.680811] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Psychiatry faces fundamental challenges with regard to mechanistically guided differential diagnosis, as well as prediction of clinical trajectories and treatment response of individual patients. This has motivated the genesis of two closely intertwined fields: (i) Translational Neuromodeling (TN), which develops "computational assays" for inferring patient-specific disease processes from neuroimaging, electrophysiological, and behavioral data; and (ii) Computational Psychiatry (CP), with the goal of incorporating computational assays into clinical decision making in everyday practice. In order to serve as objective and reliable tools for clinical routine, computational assays require end-to-end pipelines from raw data (input) to clinically useful information (output). While these are yet to be established in clinical practice, individual components of this general end-to-end pipeline are being developed and made openly available for community use. In this paper, we present the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) software package, an open-source collection of building blocks for computational assays in psychiatry. Collectively, the tools in TAPAS presently cover several important aspects of the desired end-to-end pipeline, including: (i) tailored experimental designs and optimization of measurement strategy prior to data acquisition, (ii) quality control during data acquisition, and (iii) artifact correction, statistical inference, and clinical application after data acquisition. Here, we review the different tools within TAPAS and illustrate how these may help provide a deeper understanding of neural and cognitive mechanisms of disease, with the ultimate goal of establishing automatized pipelines for predictions about individual patients. We hope that the openly available tools in TAPAS will contribute to the further development of TN/CP and facilitate the translation of advances in computational neuroscience into clinically relevant computational assays.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eduardo A. Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Saskia Bollmann
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Charlestown, MA, United States
| | - Kay H. Brodersen
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Cao T. Do
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Olivia K. Harrison
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Samuel J. Harrison
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sandra Iglesias
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Lars Kasper
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Techna Institute, University Health Network, Toronto, ON, Canada
| | - Ekaterina I. Lomakina
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Christoph Mathys
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Interacting Minds Center, Aarhus University, Aarhus, Denmark
| | - Matthias Müller-Schrader
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Inês Pereira
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Frederike H. Petzschner
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sudhir Raman
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Dario Schöbi
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Birte Toussaint
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Lilian A. Weber
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yu Yao
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Versteeg E, van der Velden TA, van Leeuwen CC, Borgo M, Huijing ER, Hendriks AD, Hendrikse J, Klomp DWJ, Siero JCW. A plug-and-play, lightweight, single-axis gradient insert design for increasing spatiotemporal resolution in echo planar imaging-based brain imaging. NMR IN BIOMEDICINE 2021; 34:e4499. [PMID: 33619838 PMCID: PMC8244051 DOI: 10.1002/nbm.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
The goal of this study was to introduce and evaluate the performance of a lightweight, high-performance, single-axis (z-axis) gradient insert design primarily intended for high-resolution functional magnetic resonance imaging, and aimed at providing both ease of use and a boost in spatiotemporal resolution. The optimal winding positions of the coil were obtained using a genetic algorithm with a cost function that balanced gradient performance (minimum 0.30 mT/m/A) and field linearity (≥16 cm linear region). These parameters were verified using field distribution measurements by B0 -mapping. The correction of geometrical distortions was performed using theoretical field distribution of the coil. Simulations and measurements were performed to investigate the echo planar imaging echo-spacing reduction due to the improved gradient performance. The resulting coil featured a 16-cm linear region, a weight of 45 kg, an installation time of 15 min, and a maximum gradient strength and slew rate of 200 mT/m and 1300 T/m/s, respectively, when paired with a commercially available gradient amplifier (940 V/630 A). The field distribution measurements matched the theoretically expected field. By utilizing the theoretical field distribution, geometrical distortions were corrected to within 6% of the whole-body gradient reference image in the target region. Compared with a whole-body gradient set, a maximum reduction in echo-spacing of a factor of 2.3 was found, translating to a 344 μs echo-spacing, for a field of view of 192 mm, a receiver bandwidth of 920 kHz and a gradient amplitude of 112 mT/m. We present a lightweight, single-axis gradient insert design that can provide high gradient performance and an increase in spatiotemporal resolution with correctable geometrical distortions while also offering a short installation time of less than 15 min and minimal system modifications.
Collapse
Affiliation(s)
- Edwin Versteeg
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | - Erik R. Huijing
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Arjan D. Hendriks
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W. J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jeroen C. W. Siero
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Spinoza Center for NeuroimagingAmsterdamthe Netherlands
| |
Collapse
|
11
|
Huber LR, Poser BA, Kaas AL, Fear EJ, Dresbach S, Berwick J, Goebel R, Turner R, Kennerley AJ. Validating layer-specific VASO across species. Neuroimage 2021; 237:118195. [PMID: 34038769 DOI: 10.1016/j.neuroimage.2021.118195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.
Collapse
Affiliation(s)
- Laurentius Renzo Huber
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Benedikt A Poser
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Amanda L Kaas
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Elizabeth J Fear
- Hull-York-Medical-School (HYMS), University of York, York, United Kingdom
| | - Sebastian Dresbach
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Rainer Goebel
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Robert Turner
- Neurophysics Department Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
12
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics and impulse firing across cortical depth. Eur J Neurosci 2021; 54:4230-4245. [PMID: 33901325 DOI: 10.1111/ejn.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal arises as a consequence of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen ( CMR O 2 ) that in turn are modulated by changes in neural activity. Recent advances in imaging have achieved sub-millimetre resolution and allowed investigation of the BOLD response as a function of cortical depth. Here, we adapt our previous theory relating the BOLD signal to neural activity to produce a quantitative model that incorporates venous blood draining between cortical layers. The adjustable inputs to the model are the neural activity and a parameter governing this blood draining. A three-layer version for transient neural inputs and a multi-layer version for constant or tonic neural inputs are able to account for a variety of experimental results, including negative BOLD signals.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain and Mind Research Centre, University of Sydney, Camperdown, NSW, Australia
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
| | - Leslie Farnell
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - William G Gibson
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges. Neuroradiology 2021; 63:167-177. [PMID: 33388947 DOI: 10.1007/s00234-020-02629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Since the relatively recent regulatory approval for clinical use in both Europe and North America, 7-Tesla (T) MRI has been adopted for clinical practice at our institution. Based on this experience, this article reviews the unique features of 7-T MRI neuroimaging and addresses the challenges of establishing a 7-T MRI clinical practice. The underlying fundamental physics principals of high-field strength MRI are briefly reviewed. Scanner installation, safety considerations, and artifact mitigation techniques are discussed. Seven-tesla MRI case examples of neurologic diseases including epilepsy, vascular abnormalities, and tumor imaging are presented to illustrate specific applications of 7-T MRI. The advantages of 7-T MRI in conjunction with advanced neuroimaging techniques such as functional MRI are presented. Seven-tesla MRI produces more detailed information and, in some cases, results in specific diagnoses where previous 3-T studies were insufficient. Still, persistent technical issues for 7-T scanning present ongoing challenges for radiologists.
Collapse
|
14
|
Oran OF, Klassen LM, Gilbert KM, Gati JS, Menon RS. Elimination of low-inversion-efficiency induced artifacts in whole-brain MP2RAGE using multiple RF-shim configurations at 7 T. NMR IN BIOMEDICINE 2020; 33:e4387. [PMID: 32749022 DOI: 10.1002/nbm.4387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The magnetization-prepared two-rapid-gradient-echo (MP2RAGE) sequence is used for structural T1 -weighted imaging and T1 mapping of the human brain. In this sequence, adiabatic inversion RF pulses are commonly used, which require the B1+ magnitude to be above a certain threshold. Achieving this threshold in the whole brain may not be possible at ultra-high fields because of the short RF wavelength. This results in low-inversion regions especially in the inferior brain (eg cerebellum and temporal lobes), which is reflected as regions of bright signal in MP2RAGE images. This study aims at eliminating the low-inversion-efficiency induced artifacts in MP2RAGE images at 7 T. The proposed technique takes advantage of parallel RF transmission systems by splitting the brain into two overlapping slabs and calculating the complex weights of transmit channels (ie RF shims) on these slabs for excitation and inversion independently. RF shims were calculated using fast methods implemented in the standard workflow. The excitation RF pulse was designed to obtain slabs with flat plateaus and sharp edges. These slabs were joined into a single volume during the online image reconstruction. The two-slab strategy naturally results in a signal-to-noise ratio loss; however, it allowed the use of independent shims to make the B1+ field exceed the adiabatic threshold in the inferior brain, eliminating regions of low inversion efficiency. Accordingly, the normalized root-mean-square errors in the inversion were reduced to below 2%. The two-slab strategy was found to outperform subject-specific kT -point inversion RF pulses in terms of inversion error. The proposed strategy is a simple yet effective method to eliminate low-inversion-efficiency artifacts; consequently, MP2RAGE-based, artifact-free T1 -weighted structural images were obtained in the whole brain at 7 T.
Collapse
Affiliation(s)
- Omer F Oran
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Subtraction Maps Derived from Longitudinal Magnetic Resonance Imaging in Patients with Glioma Facilitate Early Detection of Tumor Progression. Cancers (Basel) 2020; 12:cancers12113111. [PMID: 33114383 PMCID: PMC7692500 DOI: 10.3390/cancers12113111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Progression of glioma is frequently characterized by increases or enhanced spread of a hyperintensity in fluid attenuated inversion recovery (FLAIR) sequences. However, changes in FLAIR signal over time can be subtle, and conventional (CONV) visual reading is time-consuming. The purpose of this monocentric, retrospective study was to compare CONV reading to reading of subtraction maps (SMs) for serial FLAIR imaging. FLAIR datasets of cranial 3-Tesla magnetic resonance imaging (MRI), acquired at two different time points (mean inter-scan interval: 5.4 ± 1.9 months), were considered per patient in a consecutive series of 100 patients (mean age: 49.0 ± 13.7 years) diagnosed with glioma (19 glioma World Health Organization [WHO] grade I and II, 81 glioma WHO grade III and IV). Two readers (R1 and R2) performed CONV and SM reading by assessing overall image quality and artifacts, alterations in tumor-associated FLAIR signal over time (stable/unchanged or progressive) including diagnostic confidence (1-very high to 5-very low diagnostic confidence), and time needed for reading. Gold-standard (GS) reading, including all available clinical and imaging information, was performed by a senior reader, revealing progressive FLAIR signal in 61 patients (tumor progression or recurrence in 38 patients, pseudoprogression in 10 patients, and unclear in the remaining 13 patients). SM reading used an officially certified and commercially available algorithm performing semi-automatic coregistration, intensity normalization, and color-coding to generate individual SMs. The approach of SM reading revealed FLAIR signal increases in a larger proportion of patients according to evaluations of both readers (R1: 61 patients/R2: 60 patients identified with FLAIR signal increase vs. R1: 45 patients/R2: 44 patients for CONV reading) with significantly higher diagnostic confidence (R1: 1.29 ± 0.48, R2: 1.26 ± 0.44 vs. R1: 1.73 ± 0.80, R2: 1.82 ± 0.85; p < 0.0001). This resulted in increased sensitivity (99.9% vs. 73.3%) with maintained high specificity (98.1% vs. 98.8%) for SM reading when compared to CONV reading. Furthermore, the time needed for SM reading was significantly lower compared to CONV assessments (p < 0.0001). In conclusion, SM reading may improve diagnostic accuracy and sensitivity while reducing reading time, thus potentially enabling earlier detection of disease progression.
Collapse
|
16
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Stirnberg R, Stöcker T. Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI. Magn Reson Med 2020; 85:1540-1551. [PMID: 32936488 DOI: 10.1002/mrm.28486] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A segmented k-space blipped-controlled aliasing in parallel imaging (skipped-CAIPI) sampling strategy for EPI is proposed, which allows for a flexible choice of EPI factor and phase encode bandwidth independent of the controlled aliasing in parallel imaging (CAIPI) sampling pattern. THEORY AND METHODS With previously proposed approaches, exactly two EPI trajectories were possible given a specific CAIPI pattern, either with slice gradient blips (blipped-CAIPI) or following a shot-selective CAIPI approach (higher resolution). Recently, interleaved multi-shot segmentation along shot-selective CAIPI trajectories has been applied for high-resolution anatomical imaging. For more flexibility and a broader range of applications, we propose segmentation along any blipped-CAIPI trajectory. Thus, all EPI factors and phase encode bandwidths available with traditional segmented EPI can be combined with controlled aliasing. RESULTS Temporal SNR maps of moderate-to-high-resolution time series acquisitions at varying undersampling factors demonstrate beneficial sampling alternatives to blipped-CAIPI or shot-selective CAIPI. Rapid high-resolution scans furthermore demonstrate SNR-efficient and motion-robust structural imaging with almost arbitrary EPI factor and minimal noise penalty. CONCLUSION Skipped-CAIPI sampling increases protocol flexibility for high spatiotemporal resolution EPI. In terms of SNR and efficiency, high-resolution functional or structural scans benefit vastly from a free choice of the CAIPI pattern. Even at moderate resolutions, the independence of sampling pattern, TE, and image matrix size is valuable for optimized functional protocol design. Although demonstrated with 3D-EPI, skipped-CAIPI is also applicable with simultaneous multislice EPI.
Collapse
Affiliation(s)
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Cichy RM, Oliva A. A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time. Neuron 2020; 107:772-781. [DOI: 10.1016/j.neuron.2020.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
|
19
|
Vizioli L, De Martino F, Petro LS, Kersten D, Ugurbil K, Yacoub E, Muckli L. Multivoxel Pattern of Blood Oxygen Level Dependent Activity can be sensitive to stimulus specific fine scale responses. Sci Rep 2020; 10:7565. [PMID: 32371891 PMCID: PMC7200825 DOI: 10.1038/s41598-020-64044-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
At ultra-high field, fMRI voxels can span the sub-millimeter range, allowing the recording of blood oxygenation level dependent (BOLD) responses at the level of fundamental units of neural computation, such as cortical columns and layers. This sub-millimeter resolution, however, is only nominal in nature as a number of factors limit the spatial acuity of functional voxels. Multivoxel Pattern Analysis (MVPA) may provide a means to detect information at finer spatial scales that may otherwise not be visible at the single voxel level due to limitations in sensitivity and specificity. Here, we evaluate the spatial scale of stimuli specific BOLD responses in multivoxel patterns exploited by linear Support Vector Machine, Linear Discriminant Analysis and Naïve Bayesian classifiers across cortical depths in V1. To this end, we artificially misaligned the testing relative to the training portion of the data in increasing spatial steps, then investigated the breakdown of the classifiers’ performances. A one voxel shift led to a significant decrease in decoding accuracy (p < 0.05) across all cortical depths, indicating that stimulus specific responses in a multivoxel pattern of BOLD activity exploited by multivariate decoders can be as precise as the nominal resolution of single voxels (here 0.8 mm isotropic). Our results further indicate that large draining vessels, prominently residing in proximity of the pial surface, do not, in this case, hinder the ability of MVPA to exploit fine scale patterns of BOLD signals. We argue that tailored analytical approaches can help overcoming limitations in high-resolution fMRI and permit studying the mesoscale organization of the human brain with higher sensitivities.
Collapse
Affiliation(s)
- Luca Vizioli
- CMRR, University of Minnesota, Minneapolis, MN, United States.
| | - Federico De Martino
- CMRR, University of Minnesota, Minneapolis, MN, United States.,Maastricht University, Maastricht, Netherlands
| | | | - Daniel Kersten
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Kamil Ugurbil
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | - Essa Yacoub
- CMRR, University of Minnesota, Minneapolis, MN, United States
| | - Lars Muckli
- University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Hendriks AD, D'Agata F, Raimondo L, Schakel T, Geerts L, Luijten PR, Klomp DW, Petridou N. Pushing functional MRI spatial and temporal resolution further: High-density receive arrays combined with shot-selective 2D CAIPIRINHA for 3D echo-planar imaging at 7 T. NMR IN BIOMEDICINE 2020; 33:e4281. [PMID: 32128898 PMCID: PMC7187278 DOI: 10.1002/nbm.4281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 05/04/2023]
Abstract
To be able to examine dynamic and detailed brain functions, the spatial and temporal resolution of 7 T MRI needs to improve. In this study, it was investigated whether submillimeter multishot 3D EPI fMRI scans, acquired with high-density receive arrays, can benefit from a 2D CAIPIRINHA sampling pattern, in terms of noise amplification (g-factor), temporal SNR and fMRI sensitivity. High-density receive arrays were combined with a shot-selective 2D CAIPIRINHA implementation for multishot 3D EPI sequences at 7 T. In this implementation, in contrast to conventional inclusion of extra kz gradient blips, specific EPI shots are left out to create a CAIPIRINHA shift and reduction of scan time. First, the implementation of the CAIPIRINHA sequence was evaluated with a standard receive setup by acquiring submillimeter whole brain T2 *-weighted anatomy images. Second, the CAIPIRINHA sequence was combined with high-density receive arrays to push the temporal resolution of submillimeter 3D EPI fMRI scans of the visual cortex. Results show that the shot-selective 2D CAIPIRINHA sequence enables a reduction in scan time for 0.5 mm isotropic 3D EPI T2 *-weighted anatomy scans by a factor of 4 compared with earlier reports. The use of the 2D CAIPIRINHA implementation in combination with high-density receive arrays, enhances the image quality of submillimeter 3D EPI scans of the visual cortex at high acceleration as compared to conventional SENSE. Both the g-factor and temporal SNR improved, resulting in a method that is more sensitive to the fMRI signal. Using this method, it is possible to acquire submillimeter single volume 3D EPI scans of the visual cortex in a subsecond timeframe. Overall, high-density receive arrays in combination with shot-selective 2D CAIPIRINHA for 3D EPI scans prove to be valuable for reducing the scan time of submillimeter MRI acquisitions.
Collapse
Affiliation(s)
- Arjan D. Hendriks
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
| | - Federico D'Agata
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
- Department of NeuroscienceUniversity of TurinTurinItaly
| | - Luisa Raimondo
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
- Spinoza Centre for NeuroimagingAmsterdamthe Netherlands
| | - Tim Schakel
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
| | | | - Peter R. Luijten
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W.J. Klomp
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
| | - Natalia Petridou
- Department of RadiologyCenter for Image Sciences, University Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
21
|
Image Artifact Management for Clinical Magnetic Resonance Imaging on a 7 T Scanner Using Single-Channel Radiofrequency Transmit Mode. Invest Radiol 2020; 54:781-791. [PMID: 31503079 DOI: 10.1097/rli.0000000000000598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this work was to devise mitigation strategies for addressing a range of image artifacts on a clinical 7 T magnetic resonance imaging scanner using the regulatory-approved single-channel radiofrequency transmit mode and vendor-supplied radiofrequency coils to facilitate clinical scanning within reasonable scan times. MATERIALS AND METHODS Optimized imaging sequence protocols were developed for routine musculoskeletal knee and neurological imaging. Sources of severe image nonuniformities were identified, and mitigation strategies were devised. A range of custom-made high permittivity dielectric pads were used to compensate for B1 and B1 inhomogeneities, and also for magnetic susceptibility-induced signal dropouts particularly in the basal regions of the temporal lobes and in the cerebellum. RESULTS Significant improvements in image uniformity were obtained using dielectric pads in the knee and brain. A combination of small voxels, reduced field of view B0 shimming, and high in-plane parallel imaging factors helped to minimize signal loss in areas of high susceptibility-induced field distortions. The high inherent signal-to-noise ratio at 7 T allowed for high receiver bandwidths and thin slices to minimize chemical shift artifacts. Intermittent artifacts due to radiofrequency inversion pulse limitations (power, bandwidth) were minimized with dielectric pads. A patient with 2 implanted metallic cranial fixation devices located within the radiofrequency transmit field was successfully imaged, with minimal image geometric distortions. CONCLUSIONS Challenges relating to severe image artifacts at 7 T using single-channel radiofrequency transmit functionality in the knee and brain were overcome using the approaches described in this article. The resultant high diagnostic image quality paves the way for incorporation of this technology into the routine clinical workflow. Further developmental efforts are required to expand the range of applications to other anatomical areas, and to expand the evidence- and knowledge-base relating to the safety of scanning patients with implanted metallic devices.
Collapse
|
22
|
FPGA-based hardware accelerator for SENSE (a parallel MR image reconstruction method). Comput Biol Med 2020; 117:103598. [PMID: 32072979 DOI: 10.1016/j.compbiomed.2019.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
Abstract
SENSE (Sensitivity Encoding) is a parallel MRI (pMRI) technique that allows accelerated data acquisition using multiple receiver coils and reconstructs the artifact-free images from the acquired under-sampled data. However, an increasing number of receiver coils has raised the computational demands of pMRI techniques to an extent where the reconstruction time on general purpose computers becomes impractically long for real-time MRI. Field Programmable Gate Arrays (FPGAs) have recently emerged as a viable hardware platform for accelerating pMRI algorithms (e.g. SENSE). However, recent efforts to accelerate SENSE using FPGAs have been focused on a fixed number of receiver coils (L=8) and acceleration factor (Af=2). This paper presents a novel 32-bit floating-point FPGA-based hardware accelerator for SENSE (HW-ACC-SENSE); having an ability to work in coordination with an on-chip ARM processor performing reconstructions for different values of L and Af. Moreover, the proposed design provides flexibility to integrate multiple units of HW-ACC-SENSE with an on-chip ARM processor, for low-latency image reconstruction. The VIVADO High-Level-Synthesis (HLS) tool has been used to design and implement the HW-ACC-SENSE on the Xilinx FPGA development board (ZCU102). A series of experiments has been performed on in-vivo datasets acquired using 8, 12 and 30 receiver coil elements. The performance of the proposed architecture is compared with the single thread and multi-thread CPU-based implementations of SENSE. The results show that the proposed design withstands the reconstruction quality of the SENSE algorithm while demonstrating a maximum speed-gain up to 298× over the CPU counterparts in our experiments.
Collapse
|
23
|
Havlicek M, Uludağ K. A dynamical model of the laminar BOLD response. Neuroimage 2020; 204:116209. [DOI: 10.1016/j.neuroimage.2019.116209] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/11/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
|
24
|
Improved cortical boundary registration for locally distorted fMRI scans. PLoS One 2019; 14:e0223440. [PMID: 31738777 PMCID: PMC6860425 DOI: 10.1371/journal.pone.0223440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/20/2019] [Indexed: 12/03/2022] Open
Abstract
With continuing advances in MRI techniques and the emergence of higher static field strengths, submillimetre spatial resolution is now possible in human functional imaging experiments. This has opened up the way for more specific types of analysis, for example investigation of the cortical layers of the brain. With this increased specificity, it is important to correct for the geometrical distortions that are inherent to echo planar imaging (EPI). Inconveniently, higher field strength also increases these distortions. The resulting displacements can easily amount to several millimetres and as such pose a serious problem for laminar analysis. We here present a method, Recursive Boundary Registration (RBR), that corrects distortions between an anatomical and an EPI volume. By recursively applying Boundary Based Registration (BBR) on progressively smaller subregions of the brain we generate an accurate whole-brain registration, based on the grey-white matter contrast. Explicit care is taken that the deformation does not break the topology of the cortical surface, which is an important requirement for several of the most common subsequent steps in laminar analysis. We show that RBR obtains submillimetre accuracy with respect to a manually distorted gold standard, and apply it to a set of human in vivo scans to show a clear increase in spacial specificity. RBR further automates the process of non-linear distortion correction. This is an important step towards routine human laminar fMRI for large field of view acquisitions. We provide the code for the RBR algorithm, as well as a variety of functions to better investigate registration performance in a public GitHub repository, https://github.com/TimVanMourik/OpenFmriAnalysis, under the GPL 3.0 license.
Collapse
|
25
|
Grajauskas LA, Frizzell T, Song X, D'Arcy RCN. White Matter fMRI Activation Cannot Be Treated as a Nuisance Regressor: Overcoming a Historical Blind Spot. Front Neurosci 2019; 13:1024. [PMID: 31636527 PMCID: PMC6787144 DOI: 10.3389/fnins.2019.01024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Despite past controversies, increasing evidence has led to acceptance that white matter activity is detectable using functional magnetic resonance imaging (fMRI). In spite of this, advanced analytic methods continue to be published that reinforce a historic bias against white matter activation by using it as a nuisance regressor. It is important that contemporary analyses overcome this blind spot in whole brain functional imaging, both to ensure that newly developed noise regression techniques are accurate, and to ensure that white matter, a vital and understudied part of the brain, is not ignored in functional neuroimaging studies.
Collapse
Affiliation(s)
- Lukas A Grajauskas
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
| | - Tory Frizzell
- ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaowei Song
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
| | - Ryan C N D'Arcy
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Vasung L, Charvet CJ, Shiohama T, Gagoski B, Levman J, Takahashi E. Ex vivo fetal brain MRI: Recent advances, challenges, and future directions. Neuroimage 2019; 195:23-37. [PMID: 30905833 PMCID: PMC6617515 DOI: 10.1016/j.neuroimage.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022] Open
Abstract
During early development, the fetal brain undergoes dynamic morphological changes. These changes result from neurogenic events, such as neuronal proliferation, migration, axonal elongation, retraction, and myelination. The duration and intensity of these events vary across species. Comparative assessments of these neurogenic events give us insight into evolutionary changes and the complexity of human brain development. Recent advances in magnetic resonance imaging (MRI), especially ex vivo MRI, permit characterizing and comparing fetal brain development across species. Comparative ex vivo MRI studies support the detection of species-specific differences that occur during early brain development. In this review, we provide a comprehensive overview of ex vivo MRI studies that characterize early brain development in humans, monkeys, cats, as well as rats/mice. Finally, we discuss the current advantages and limitations of ex vivo fetal brain MRI.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Christine J Charvet
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY, 14850, USA; Department of Psychology, Delaware State University, Dover, DE, 19901, USA
| | - Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Pediatrics, Chiba University Hospital, Inohana 1-8-1, Chiba-shi, Chiba, 2608670, Japan
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA.
| |
Collapse
|
27
|
The potential of MR-Encephalography for BCI/Neurofeedback applications with high temporal resolution. Neuroimage 2019; 194:228-243. [PMID: 30910728 DOI: 10.1016/j.neuroimage.2019.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
Real-time functional magnetic resonance imaging (rt-fMRI) enables the update of various brain-activity measures during an ongoing experiment as soon as a new brain volume is acquired. However, the recorded Blood-oxygen-level dependent (BOLD) signal also contains physiological artifacts such as breathing and heartbeat, which potentially cause misleading false positive effects especially problematic in brain-computer interface (BCI) and neurofeedback (NF) setups. The low temporal resolution of echo planar imaging (EPI) sequences (which is in the range of seconds) prevents a proper separation of these artifacts from the BOLD signal. MR-Encephalography (MREG) has been shown to provide the high temporal resolution required to unalias and correct for physiological fluctuations and leads to increased specificity and sensitivity for mapping task-based activation and functional connectivity as well as for detecting dynamic changes in connectivity over time. By comparing a simultaneous multislice echo planar imaging (SMS-EPI) sequence and an MREG sequence using the same nominal spatial resolution in an offline analysis for three different experimental fMRI paradigms (perception of house and face stimuli, motor imagery, Stroop task), the potential of this novel technique for future BCI and NF applications was investigated. First, adapted general linear model pre-whitening which accounts for the high temporal resolution in MREG was implemented to calculate proper statistical results and be able to compare these with the SMS-EPI sequence. Furthermore, the respiration- and cardiac pulsation-related signals were successfully separated from the MREG signal using independent component analysis which were then included as regressors for a GLM analysis. Only the MREG sequence allowed to clearly separate cardiac pulsation and respiration components from the signal time course. It could be shown that these components highly correlate with the recorded respiration and cardiac pulsation signals using a respiratory belt and fingertip pulse plethysmograph. Temporal signal-to-noise ratios of SMS-EPI and MREG were comparable. Functional connectivity analysis using partial correlation showed a reduced standard error in MREG compared to SMS-EPI. Also, direct time course comparisons by down-sampling the MREG signal to the SMS-EPI temporal resolution showed lower variance in MREG. In general, we show that the higher temporal resolution is beneficial for fMRI time course modeling and this aspect can be exploited in offline application but also, is especially attractive, for real-time BCI and NF applications.
Collapse
|
28
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
29
|
Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K. A critical assessment of data quality and venous effects in sub-millimeter fMRI. Neuroimage 2019; 189:847-869. [PMID: 30731246 PMCID: PMC7737092 DOI: 10.1016/j.neuroimage.2019.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/07/2023] Open
Abstract
Advances in hardware, pulse sequences, and reconstruction techniques have made it possible to perform functional magnetic resonance imaging (fMRI) at sub-millimeter resolution while maintaining high spatial coverage and acceptable signal-to-noise ratio. Here, we examine whether sub-millimeter fMRI can be used as a routine method for obtaining accurate measurements of fine-scale local neural activity. We conducted fMRI in human visual cortex during a simple event-related visual experiment (7 T, gradient-echo EPI, 0.8-mm isotropic voxels, 2.2-s sampling rate, 84 slices), and developed analysis and visualization tools to assess the quality of the data. Our results fall along three lines of inquiry. First, we find that the acquired fMRI images, combined with appropriate surface-based processing, provide reliable and accurate measurements of fine-scale blood oxygenation level dependent (BOLD) activity patterns. Second, we show that the highly folded structure of cortex causes substantial biases on spatial resolution and data visualization. Third, we examine the well-recognized issue of venous contributions to fMRI signals. In a systematic assessment of large sections of cortex measured at a fine scale, we show that time-averaged T2*-weighted EPI intensity is a simple, robust marker of venous effects. These venous effects are unevenly distributed across cortex, are more pronounced in gyri and outer cortical depths, and are, to a certain degree, in consistent locations across subjects relative to cortical folding. Furthermore, we show that these venous effects are strongly correlated with BOLD responses evoked by the experiment. We conclude that sub-millimeter fMRI can provide robust information about fine-scale BOLD activity patterns, but special care must be exercised in visualizing and interpreting these patterns, especially with regards to the confounding influence of the brain's vasculature. To help translate these methodological findings to neuroscience research, we provide practical suggestions for both high-resolution and standard-resolution fMRI studies.
Collapse
Affiliation(s)
- Kendrick Kay
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA.
| | - Keith W Jamison
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| | - Ruyuan Zhang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| | - Eshed Margalit
- Stanford Neurosciences Institute, Stanford University, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| |
Collapse
|
30
|
Kashyap S, Ivanov D, Havlicek M, Sengupta S, Poser BA, Uludağ K. Resolving laminar activation in human V1 using ultra-high spatial resolution fMRI at 7T. Sci Rep 2018; 8:17063. [PMID: 30459391 PMCID: PMC6244001 DOI: 10.1038/s41598-018-35333-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/02/2018] [Indexed: 11/14/2022] Open
Abstract
The mesoscopic organization of the human neocortex is of great interest for cognitive neuroscience. However, fMRI in humans typically maps the functional units of cognitive processing on a macroscopic level. With the advent of ultra-high field MRI (≥7T), it has become possible to acquire fMRI data with sub-millimetre resolution, enabling probing the laminar and columnar circuitry in humans. Currently, laminar BOLD responses are not directly observed but inferred via data analysis, due to coarse spatial resolution of fMRI (e.g. 0.7-0.8 mm isotropic) relative to the extent of histological laminae. In this study, we introduce a novel approach for mapping the cortical BOLD response at the spatial scale of cortical layers and columns at 7T (an unprecedented 0.1 mm, either in the laminar or columnar direction). We demonstrate experimentally and using simulations, the superiority of the novel approach compared to standard approaches for human laminar fMRI in terms of effective spatial resolution in either laminar or columnar direction. In addition, we provide evidence that the laminar BOLD signal profile is not homogeneous even over short patches of cortex. In summary, the proposed novel approach affords the ability to directly study the mesoscopic organization of the human cortex, thus, bridging the gap between human cognitive neuroscience and invasive animal studies.
Collapse
Affiliation(s)
- Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, Netherlands.
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, Netherlands
| | - Martin Havlicek
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, Netherlands
| | - Shubharthi Sengupta
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, Netherlands
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV, Maastricht, Netherlands.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
31
|
Lobos RA, Kim TH, Hoge WS, Haldar JP. Navigator-Free EPI Ghost Correction With Structured Low-Rank Matrix Models: New Theory and Methods. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2390-2402. [PMID: 29993978 PMCID: PMC6309699 DOI: 10.1109/tmi.2018.2822053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Structured low-rank matrix models have previously been introduced to enable calibrationless MR image reconstruction from sub-Nyquist data, and such ideas have recently been extended to enable navigator-free echo-planar imaging (EPI) ghost correction. This paper presents a novel theoretical analysis which shows that, because of uniform subsampling, the structured low-rank matrix optimization problems for EPI data will always have either undesirable or non-unique solutions in the absence of additional constraints. This theory leads us to recommend and investigate problem formulations for navigator-free EPI that incorporate side information from either image-domain or k-space domain parallel imaging methods. The importance of using nonconvex low-rank matrix regularization is also identified. We demonstrate using phantom and in vivo data that the proposed methods are able to eliminate ghost artifacts for several navigator-free EPI acquisition schemes, obtaining better performance in comparison with the state-of-the-art methods across a range of different scenarios. Results are shown for both single-channel acquisition and highly accelerated multi-channel acquisition.
Collapse
|
32
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
33
|
Huber L, Tse DHY, Wiggins CJ, Uludağ K, Kashyap S, Jangraw DC, Bandettini PA, Poser BA, Ivanov D. Ultra-high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: Capabilities and challenges. Neuroimage 2018; 178:769-779. [PMID: 29890330 PMCID: PMC6100753 DOI: 10.1016/j.neuroimage.2018.06.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022] Open
Abstract
Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.
Collapse
Affiliation(s)
- Laurentius Huber
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA.
| | - Desmond H Y Tse
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Centre for Advanced Imaging, University of Queensland, Australia
| | | | - Kâmil Uludağ
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sriranga Kashyap
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - David C Jangraw
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, NIMH, NIH, Bethesda, MD, USA; FMRIF, NIMH, NIH, Bethesda, MD, USA
| | - Benedikt A Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Dimo Ivanov
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
34
|
Sati P. Diagnosis of multiple sclerosis through the lens of ultra-high-field MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:101-109. [PMID: 29705032 PMCID: PMC6022748 DOI: 10.1016/j.jmr.2018.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The long-standing relationship between ultra-high-field (7 T) MRI and multiple sclerosis (MS) has brought new insights to our understanding of lesion evolution and its associated pathology. With the recent FDA approval of a commercially available scanner, 7 T MRI is finally entering the clinic with great expectations about its potential added value. By looking through the prism of MS diagnosis, this perspective article discusses current limitations and prospects of 7 T MRI techniques relevant to helping clinicians diagnose patients encountered in daily practice.
Collapse
Affiliation(s)
- Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive MSC 1400, Building 10 Room 5C103, Bethesda, MD 20852, USA.
| |
Collapse
|