1
|
Houlgreave MS, Dyke K, Berrington A, Jackson SR. Investigating Neurometabolite Changes in Response to Median Nerve Stimulation. Brain Behav 2025; 15:e70250. [PMID: 39779218 PMCID: PMC11710890 DOI: 10.1002/brb3.70250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Rhythmic median nerve stimulation (MNS) at 10 Hz has been shown to cause a substantial reduction in tic frequency in individuals with Tourette syndrome. The mechanism of action is currently unknown but is hypothesized to involve entrainment of oscillations within the sensorimotor cortex. OBJECTIVE We used functional magnetic resonance spectroscopy (fMRS) to explore the dynamic effects of MNS on neurometabolite concentrations. METHODS Here, we investigated the effects of rhythmic and arrhythmic 10 Hz MNS on glutamate (Glu) and GABA concentrations in the contralateral sensorimotor cortex in 15 healthy controls, using a blocked fMRS design. We used a Mescher-Garwood-semi-localized by adiabatic selective refocusing (MEGA-sLASER) sequence at 7 T. RESULTS Our results show no difference in the difference-from-baseline measures between the two stimulation conditions. Looking at the effect of MNS over both conditions there is a trend for an initial increase in Glu/tCr (total creatine) followed by a decrease over time, whereas GABA/tCr decreased during each stimulation block. CONCLUSIONS These results suggest that despite entrainment of oscillations during rhythmic MNS, there are no significant differences in the tonic neuromodulatory effects of rhythmic and arrhythmic stimulation. The reduction in Glu over the course of stimulation may reflect a decrease in the glutamatergic firing due to adaptation. This may make it less likely that an involuntary movement is generated during continuous stimulation.
Collapse
Affiliation(s)
- Mairi S. Houlgreave
- School of PsychologyUniversity of Nottingham University ParkNottinghamUK
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of Nottingham University ParkNottinghamUK
| | - Katherine Dyke
- School of PsychologyUniversity of Nottingham University ParkNottinghamUK
| | - Adam Berrington
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of Nottingham University ParkNottinghamUK
| | - Stephen R. Jackson
- School of PsychologyUniversity of Nottingham University ParkNottinghamUK
- Institute of Mental Health, School of MedicineUniversity of Nottingham University ParkNottinghamUK
| |
Collapse
|
2
|
Mullins PG. Considerations for event-related gamma-aminobutyric acid functional magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2024; 37:e5215. [PMID: 39051103 DOI: 10.1002/nbm.5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
The use of sequential proton magnetic resonance spectroscopy (MRS) to follow glutamate and gamma-aminobutyric acid (GABA) changes during functional task-based paradigms, functional MRS (fMRS), has increased. This technique has been used to investigate GABA dynamics during both sensory and behavioural tasks, usually with long 'block design' paradigms. Recently, there has been an increase in interest in the use of short stimuli and 'event-related' tasks. While changes in glutamate can be readily followed by collecting multiple individual transients (or shots), measurement of GABA, especially at 3 T, is usually performed using editing techniques like Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS), which by its nature is a dual shot approach. This poses problems when considering an event-related experiment, where it is unclear when GABA may change, or how this may affect the individual subspectra of the MEGA-PRESS acquisition. To address this issue, MEGA-PRESS data were simulated to reflect the effect of a transient change in GABA concentration due to a short event-related stimulus. The change in GABA was simulated for both the ON and OFF subspectra, and the effect of three different conditions (increase only during ON acquisition, increase during OFF acquisition and increase across both) on the corresponding edited GABA spectrum was modelled. Results show that a transient increase in GABA that only occurs during the ON subspectral acquisition, while not changing the results much from when GABA is changed across both conditions, will give a much larger change in the edited GABA spectrum than a transient increase that occurs only during the OFF subspectral acquisition. These results suggest that researchers should think carefully about the design of any event-related fMRS studies using MEGA-PRESS, as well as the analysis of other functional paradigms where transient changes in GABA may be expected. Experimental design considerations are therefore discussed, and suggestions are made.
Collapse
Affiliation(s)
- Paul G Mullins
- School of Psychology and Sport and Exercise Science, Bangor University, Bangor, Gwynedd, UK
| |
Collapse
|
3
|
Li H, Rodríguez-Nieto G, Chalavi S, Seer C, Mikkelsen M, Edden RAE, Swinnen SP. MRS-assessed brain GABA modulation in response to task performance and learning. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:22. [PMID: 39217354 PMCID: PMC11366171 DOI: 10.1186/s12993-024-00248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gamma-aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the human brain, has long been considered essential in human behavior in general and learning in particular. GABA concentration can be quantified using magnetic resonance spectroscopy (MRS). Using this technique, numerous studies have reported associations between baseline GABA levels and various human behaviors. However, regional GABA concentration is not fixed and may exhibit rapid modulation as a function of environmental factors. Hence, quantification of GABA levels at several time points during the performance of tasks can provide insights into the dynamics of GABA levels in distinct brain regions. This review reports on findings from studies using repeated measures (n = 41) examining the dynamic modulation of GABA levels in humans in response to various interventions in the perceptual, motor, and cognitive domains to explore associations between GABA modulation and human behavior. GABA levels in a specific brain area may increase or decrease during task performance or as a function of learning, depending on its precise involvement in the process under investigation. Here, we summarize the available evidence and derive two overarching hypotheses regarding the role of GABA modulation in performance and learning. Firstly, training-induced increases in GABA levels appear to be associated with an improved ability to differentiate minor perceptual differences during perceptual learning. This observation gives rise to the 'GABA increase for better neural distinctiveness hypothesis'. Secondly, converging evidence suggests that reducing GABA levels may play a beneficial role in effectively filtering perceptual noise, enhancing motor learning, and improving performance in visuomotor tasks. Additionally, some studies suggest that the reduction of GABA levels is related to better working memory and successful reinforcement learning. These observations inspire the 'GABA decrease to boost learning hypothesis', which states that decreasing neural inhibition through a reduction of GABA in dedicated brain areas facilitates human learning. Additionally, modulation of GABA levels is also observed after short-term physical exercise. Future work should elucidate which specific circumstances induce robust GABA modulation to enhance neuroplasticity and boost performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Morelli M, Dudzikowska K, Deelchand DK, Quinn AJ, Mullins PG, Apps MAJ, Wilson M. Functional Magnetic Resonance Spectroscopy of Prolonged Motor Activation using Conventional and Spectral GLM Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594270. [PMID: 38798416 PMCID: PMC11118477 DOI: 10.1101/2024.05.15.594270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Functional MRS (fMRS) is a technique used to measure metabolic changes in response to increased neuronal activity, providing unique insights into neurotransmitter dynamics and neuroenergetics. In this study we investigate the response of lactate and glutamate levels in the motor cortex during a sustained motor task using conventional spectral fitting and explore the use of a novel analysis approach based on the application of linear modelling directly to the spectro-temporal fMRS data. Methods fMRS data were acquired at a field strength of 3 Tesla from 23 healthy participants using a short echo-time (28ms) semi-LASER sequence. The functional task involved rhythmic hand clenching over a duration of 8 minutes and standard MRS preprocessing steps, including frequency and phase alignment, were employed. Both conventional spectral fitting and direct linear modelling were applied, and results from participant-averaged spectra and metabolite-averaged individual analyses were compared. Results We observed a 20% increase in lactate in response to the motor task, consistent with findings at higher magnetic field strengths. However, statistical testing showed some variability between the two averaging schemes and fitting algorithms. While lactate changes were supported by the direct spectral modelling approach, smaller increases in glutamate (2%) were inconsistent. Exploratory spectral modelling identified a 4% decrease in aspartate, aligning with conventional fitting and observations from prolonged visual stimulation. Conclusion We demonstrate that lactate dynamics in response to a prolonged motor task are observed using short-echo time semi-LASER at 3 Tesla, and that direct linear modelling of fMRS data is a useful complement to conventional analysis. Future work includes mitigating spectral confounds, such as scalp lipid contamination and lineshape drift, and further validation of our novel direct linear modelling approach through experimental and simulated datasets.
Collapse
Affiliation(s)
- Maria Morelli
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Katarzyna Dudzikowska
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Dinesh K. Deelchand
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew J. Quinn
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | | | - Matthew A. J. Apps
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| | - Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Oh H, Berrington A, Auer DP, Babourina-Brooks B, Faas H, Jung JY. A preliminary study of dynamic neurochemical changes in the dorsolateral prefrontal cortex during working memory. Eur J Neurosci 2024; 59:2075-2086. [PMID: 38409515 DOI: 10.1111/ejn.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Working memory (WM) is one of the fundamental cognitive functions associated with the dorsolateral prefrontal cortex (DLPFC). However, the neurochemical mechanisms of WM, including the dynamic changes in neurometabolites such as glutamate and GABA in the DLPFC, remain unclear. Here, we investigated WM-related glutamate and GABA changes, alongside hemodynamic responses in the DLPFC, using a combination of functional magnetic resonance spectroscopy (fMRS) and functional magnetic resonance imaging (fMRI). During a WM task, we measured Glx (glutamate + glutamine) and GABA levels using GABA editing MEscher-GArwood Point REsolved Spectroscopy (MEGA-PRESS) sequence and blood-oxygen-level-dependent (BOLD) signal changes. In the DLPFC, we observed elevated Glx levels and increased BOLD signal changes during a 2-back task. Specifically, the Glx levels in the DLPFC were significantly higher during the 2-back task compared with fixation, although this difference was not significant when compared with a 0-back task. However, Glx levels during the 0-back task were higher than during fixation. Furthermore, there was a positive correlation between Glx levels in the DLPFC during the 2-back task and the corresponding BOLD signal changes. Notably, higher Glx increases were associated with increased DLPFC activation and lower WM task performance in individuals. No notable changes in DLPFC GABA levels were observed during WM processing. These findings suggest that the modulation of glutamatergic activity in the DLPFC may play a crucial role in both working memory processing and its associated performance outcomes.
Collapse
Affiliation(s)
- Hyerin Oh
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Adam Berrington
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Dorothee P Auer
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Ben Babourina-Brooks
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Henryk Faas
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Je Young Jung
- School of Psychology, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Kanagasabai K, Palaniyappan L, Théberge J. Precision of metabolite-selective MRS measurements of glutamate, GABA and glutathione: A review of human brain studies. NMR IN BIOMEDICINE 2024; 37:e5071. [PMID: 38050448 DOI: 10.1002/nbm.5071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023]
Abstract
Single-voxel proton magnetic resonance spectroscopy (SV 1 H-MRS) is an in vivo noninvasive imaging technique used to detect neurotransmitters and metabolites. It enables repeated measurements in living participants to build explanatory neurochemical models of psychiatric symptoms and testing of therapeutic approaches. Given the tight link among glutamate, gamma-amino butyric acid (GABA), glutathione and glutamine within the cellular machinery, MRS investigations of neurocognitive and psychiatric disorders must quantify a network of metabolites simultaneously to capture the pathophysiological states of interest. Metabolite-selective sequences typically provide improved metabolite isolation and spectral modelling simplification for a single metabolite at a time. Non-metabolite-selective sequences provide information on all detectable human brain metabolites, but feature many signal overlaps and require complicated spectral modelling. Although there are short-echo time (TE) MRS sequences that do not use spectral editing and are optimised to target either glutamate, GABA or glutathione, these approaches usually imply a precision tradeoff for the remaining two metabolites. Given the interest in assessing psychiatric and neurocognitive diseases that involve excitation-inhibition imbalances along with oxidative stress, there is a need to survey the literature on the quantification precision of current metabolite-selective MRS techniques. In this review, we locate and describe 17 studies that report on the quality of simultaneously acquired MRS metabolite data in the human brain. We note several factors that influence the data quality for single-shot acquisition of multiple metabolites of interest using metabolite-selective MRS: (1) internal in vivo references; (2) brain regions of interests; (3) field strength of scanner; and/or (4) optimised acquisition parameters. We also highlight the strengths and weaknesses of various SV spectroscopy techniques that were able to quantify in vivo glutamate, GABA and glutathione simultaneously. The insights from this review will assist in the development of new MRS pulse sequences for simultaneous, selective measurements of these metabolites and simplified spectral modelling.
Collapse
Affiliation(s)
- Kesavi Kanagasabai
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Imaging, St. Joseph's Health Care Centre, London, Ontario, Canada
| |
Collapse
|
7
|
Rasooli A, Chalavi S, Li H, Seer C, Adab HZ, Mantini D, Sunaert S, Mikkelsen M, Edden RAE, Swinnen SP. Neural correlates of transfer of learning in motor coordination tasks: role of inhibitory and excitatory neurometabolites. Sci Rep 2024; 14:3251. [PMID: 38331950 PMCID: PMC10853253 DOI: 10.1038/s41598-024-53901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
We aimed to investigate transfer of learning, whereby previously acquired skills impact new task learning. While it has been debated whether such transfer may yield positive, negative, or no effects on performance, very little is known about the underlying neural mechanisms, especially concerning the role of inhibitory (GABA) and excitatory (Glu) (measured as Glu + glutamine (Glx)) neurometabolites, as measured by magnetic resonance spectroscopy (MRS). Participants practiced a bimanual coordination task across four days. The Experimental group trained a task variant with the right hand moving faster than the left (Task A) for three days and then switched to the opposite variant (Task B) on Day4. The control group trained Task B across four days. MRS data were collected before, during, and after task performance on Day4 in the somatosensory (S1) and visual (MT/V5) cortex. Results showed that both groups improved performance consistently across three days. On Day4, the Experimental group experienced performance decline due to negative task transfer while the control group continuously improved. GABA and Glx concentrations obtained during task performance showed no significant group-level changes. However, individual Glx levels during task performance correlated with better (less negative) transfer performance. These findings provide a first window into the neurochemical mechanisms underlying task transfer.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hong Li
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, KU Leuven, Tervuurse Vest 101, Building De Nayer, Room 02.11, 3001, Leuven, Belgium.
| |
Collapse
|
8
|
Yakovlev A, Gritskova A, Manzhurtsev A, Ublinskiy M, Menshchikov P, Vanin A, Kupriyanov D, Akhadov T, Semenova N. Dynamics of γ-aminobutyric acid concentration in the human brain in response to short visual stimulation. MAGMA (NEW YORK, N.Y.) 2024; 37:39-51. [PMID: 37715877 DOI: 10.1007/s10334-023-01118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE To find a possible quantitative relation between activation-induced fast (< 10 s) changes in the γ-aminobutyric acid (GABA) level and the amplitude of a blood oxygen level-dependent contrast (BOLD) response (according to magnetic resonance spectroscopy [MRS] and functional magnetic resonance imaging [fMRI]). MATERIALS AND METHODS fMRI data and MEGA-PRESS magnetic resonance spectra [echo time (TE)/repetition time (TR) = 68 ms/1500 ms] of an activated area in the visual cortex of 33 subjects were acquired using a 3 T MR scanner. Stimulation was performed by presenting an image of a flickering checkerboard for 3 s, repeated with an interval of 13.5 s. The time course of GABA and creatine (Cr) concentrations and the width and height of resonance lines were obtained with a nominal time resolution of 1.5 s. Changes in the linewidth and height of n-acetylaspartate (NAA) and Cr signals were used to determine the BOLD effect. RESULTS In response to the activation, the BOLD-corrected GABA + /Cr ratio increased by 5.0% (q = 0.027) and 3.8% (q = 0.048) at 1.6 and 3.1 s, respectively, after the start of the stimulus. Time courses of Cr and NAA signal width and height reached a maximum change at the 6th second (~ 1.2-1.5%, q < 0.05). CONCLUSION The quick response of the observed GABA concentration to the short stimulus is most likely due to a release of GABA from vesicles followed by its packaging back into vesicles.
Collapse
Affiliation(s)
- Alexey Yakovlev
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation.
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation.
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation.
| | - Alexandra Gritskova
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Petr Menshchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- LLC Philips Healthcare, 13 Sergeya Makeeva Str., Moscow, 123022, Russian Federation
| | - Anatoly Vanin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
| | - Dmitriy Kupriyanov
- LLC Philips Healthcare, 13 Sergeya Makeeva Str., Moscow, 123022, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Paediatric Surgery and Traumatology, Bol'shaya Polyanka St. 22, Moscow, 119180, Russian Federation
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 119334, Russian Federation
- Moscow State University, Leninskie Gory Str. 1, Moscow, 119991, Russian Federation
| |
Collapse
|
9
|
Weng G, Slotboom J, Schucht P, Ermiş E, Wiest R, Klöppel S, Peter J, Zubak I, Radojewski P. Simultaneous multi-region detection of GABA+ and Glx using 3D spatially resolved SLOW-editing and EPSI-readout at 7T. Neuroimage 2024; 286:120511. [PMID: 38184158 DOI: 10.1016/j.neuroimage.2024.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024] Open
Abstract
GABA+ and Glx (glutamate and glutamine) are widely studied metabolites, yet the commonly used magnetic resonance spectroscopy (MRS) techniques have significant limitations, including sensitivity to B0 and B1+-inhomogeneities, limited bandwidth of MEGA-pulses, high SAR which is accentuated at 7T. To address these limitations, we propose SLOW-EPSI method, employing a large 3D MRSI coverage and achieving a high resolution down to 0.26 ml. Simulation results demonstrate the robustness of SLOW-editing for both GABA+ and Glx against B0 and B1+-inhomogeneities within the range of [-0.3, +0.3] ppm and [40 %, 250 %], respectively. Two protocols, both utilizing a 70 mm thick FOV slab, were employed to target distinct brain regions in vivo, differentiated by their orientation: transverse and tilted. Protocol 1 (n = 11) encompassed 5 locations (cortical gray matter, white matter, frontal lobe, parietal lobe, and cingulate gyrus). Protocol 2 (n = 5) involved 9 locations (cortical gray matter, white matter, frontal lobe, occipital lobe, cingulate gyrus, caudate nucleus, hippocampus, putamen, and inferior thalamus). Quantitative analysis of GABA+ and Glx was conducted in a stepwise manner. First, B1+/B1--inhomogeneities were corrected using water reference data. Next, GABA+ and Glx values were calculated employing spectral fitting. Finally, the GABA+ level for each selected region was compared to the global Glx within the same subject, generating the GABA+/Glx_global ratio. Our findings from two protocols indicate that the GABA+/Glx_global level in cortical gray matter was approximately 16 % higher than in white matter. Elevated GABA+/Glx_global levels acquired with protocol 2 were observed in specific regions such as the caudate nucleus (0.118±0.067), putamen (0.108±0.023), thalamus (0.092±0.036), and occipital cortex (0.091±0.010), when compared to the cortical gray matter (0.079±0.012). Overall, our results highlight the effectiveness of SLOW-EPSI as a robust and efficient technique for accurate measurements of GABA+ and Glx at 7T. In contrast to previous SVS and 2D-MRSI based editing sequences with which only one or a limited number of brain regions can be measured simultaneously, the method presented here measures GABA+ and Glx from any brain area and any arbitrarily shaped volume that can be flexibly selected after the examination. Quantification of GABA+ and Glx across multiple brain regions through spectral fitting is achievable with a 9-minute acquisition. Additionally, acquisition times of 18-27 min (GABA+) and 9-18 min (Glx) are required to generate 3D maps, which are constructed using Gaussian fitting and peak integration.
Collapse
Affiliation(s)
- Guodong Weng
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland.
| | - Johannes Slotboom
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, University Hospital and University of Bern, Switzerland
| | - Ekin Ermiş
- Department of Radiation Oncology, Inselspital, University Hospital and University of Bern, Switzerland
| | - Roland Wiest
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jessica Peter
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Irena Zubak
- Department of Neurosurgery, Inselspital, University Hospital and University of Bern, Switzerland
| | - Piotr Radojewski
- Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital and University of Bern, Switzerland; Translational Imaging Center, sitem-insel, Bern, Switzerland
| |
Collapse
|
10
|
Bell TK, Craven AR, Hugdahl K, Noeske R, Harris AD. Functional Changes in GABA and Glutamate during Motor Learning. eNeuro 2023; 10:ENEURO.0356-20.2023. [PMID: 36754626 PMCID: PMC9961379 DOI: 10.1523/eneuro.0356-20.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Functional magnetic resonance spectroscopy (fMRS) of GABA at 3 T poses additional challenges compared with fMRS of other metabolites because of the difficulties of measuring GABA levels; GABA is present in the brain at relatively low concentrations, and its signal is overlapped by higher concentration metabolites. Using 7 T fMRS, GABA levels have been shown to decrease specifically during motor learning (and not during a control task). Though the use of 7 T is appealing, access is limited. For GABA fMRS to be widely accessible, it is essential to develop this method at 3 T. Nine healthy right-handed participants completed a motor learning and a control button-pressing task. fMRS data were acquired from the left sensorimotor cortex during the task using a continuous GABA-edited MEGA-PRESS acquisition at 3 T. We found no significant changes in GABA+/tCr, Glx/tCr, or Glu/tCr levels in either task; however, we show a positive relationship between motor learning and glutamate levels both at rest and at the start of the task. Though further refinement and validation of this method is needed, this study represents a further step in using fMRS at 3 T to probe GABA levels in both healthy cognition and clinical disorders.
Collapse
Affiliation(s)
- Tiffany K Bell
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, NO-5020 Bergen, Norway
- Department of Clinical Engineering, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, NO-5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
- NORMENT Center for the Study of Mental Disorders, Oslo University Hospital HF, N-0450 Bergen, Norway
| | | | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
11
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
12
|
Manzhurtsev AV, Yakovlev AN, Bulanov PA, Menshchikov PE, Ublinskiy MV, Melnikov IA, Akhadov TA, Semenova NA. Macromolecular-Suppressed GABA-Edited MR Spectroscopy in the Posterior Cingulate Cortex of Patients With Acute Mild Traumatic Brain Injury. J Magn Reson Imaging 2022; 57:1433-1442. [PMID: 36053885 DOI: 10.1002/jmri.28410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) causes a number of molecular and cellular alterations. There is evidence of an imbalance between the main excitatory (glutamate, Glu) and the main inhibitory (gamma-aminobutyric acid [GABA]) neurotransmitters following mTBI. In vivo human GABA-Glu balance studies following mTBI are sparse. PURPOSE To investigate the effect of acute mTBI on the GABA concentration measured in the posterior cingulate cortex (PCC) of pediatric patients by using the macromolecular (MM)-suppressed GABA J-editing technique. STUDY TYPE Prospective patient and phantom. PARTICIPANTS A total of 14 pediatric patients (mean age 16.0 ± 1.7) with acute mTBI (<3 days after trauma; Glasgow Coma Scale 15) and 16 healthy volunteers (mean age 16.9 ± 2.8). Phantom: 524 cm3 sphere containing 10 mM glycine, 10 mM GABA. FIELD STRENGTH/SEQUENCE A 3 T, MEGA-PRESS pulse sequence. ASSESSMENT GABA spectra were processed in Gannet software. MM-suppressed GABA editing efficiency was derived from the phantom study. Absolute GABA and glutamate + glutamine (Glx) concentrations were quantified using different types of correction and compared between groups. N-acetyl aspartate (NAA) and choline (Cho) levels relative to tCr were also compared. STATISTICAL TESTS Shapiro-Wilk test, Mann-Whitney U test, Student t-test, Pearson or Spearman correlations. P < 0.01 was considered statistically significant. RESULTS The MM-suppressed GABA editing efficiency was 0.63. GABA signal fit error was <16% for all participants. The GABA concentration in the PCC of the mTBI group was significantly different from that in healthy controls: GABA/tCr was higher by 27%, absolute GABA concentration with different types of correction was higher by ≈17%. No significant differences were observed in Glx concentrations (P ≥ 0.32) or in Glx/tCr (P ≥ 0.1), NAA/tCr (P = 0.55), and Cho/tCr levels (P = 0.85). DATA CONCLUSION We report an increase in the GABA concentration in the PCC region in acute mTBI pediatric patients. This may suggest activation of GABA synthesis and impairment of the GABAergic system after acute mTBI. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Andrei V Manzhurtsev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation.,Moscow State University, Moscow, Russian Federation
| | - Alexey N Yakovlev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation.,N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| | - Petr A Bulanov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation.,Moscow State University, Moscow, Russian Federation.,Philips Healthcare, Moscow, Russian Federation
| | - Petr E Menshchikov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation.,Philips Healthcare, Moscow, Russian Federation
| | - Maxim V Ublinskiy
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya A Melnikov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation
| | - Tolib A Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation.,Moscow State University, Moscow, Russian Federation
| | - Natalia A Semenova
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation.,Moscow State University, Moscow, Russian Federation.,N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
13
|
Lim S, Xin L. γ-aminobutyric acid measurement in the human brain at 7 T: Short echo-time or Mescher-Garwood editing. NMR IN BIOMEDICINE 2022; 35:e4706. [PMID: 35102618 PMCID: PMC9285498 DOI: 10.1002/nbm.4706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The purposes of the current study were to introduce a Mescher-Garwood (MEGA) semi-adiabatic spin-echo full-intensity localization (MEGA-sSPECIAL) sequence with macromolecule (MM) subtraction and to compare the test-retest reproducibility of γ-aminobutyric acid (GABA) measurements at 7 T using the sSPECIAL and MEGA-sSPECIAL sequences. The MEGA-sSPECIAL editing scheme using asymmetric adiabatic and highly selective Gaussian pulses was used to compare its GABA measurement reproducibility with that of short echo-time (TE) sSPECIAL. Proton magnetic resonance spectra were acquired in the motor cortex (M1) and medial prefrontal cortex (mPFC) using the sSPECIAL (TR/TE = 4000/16 ms) and MEGA-sSPECIAL sequences (TR/TE = 4000/80 ms). The metabolites were quantified using LCModel with unsuppressed water spectra. The concentrations are reported in institutional units. The test-retest reproducibility was evaluated by scanning each subject twice. Between-session reproducibility was assessed using coefficients of variation (CVs), Pearson's r correlation coefficients, and intraclass correlation coefficients (ICCs). Intersequence agreement was evaluated using Pearson's r correlation coefficients and Bland-Altman plots. Regarding GABA measurements by sSPECIAL, the GABA concentrations were 0.92 ± 0.31 (IU) in the M1 and 1.56 ± 0.49 (IU) in the mPFC. This demonstrated strong between-session correlation across both regions (r = 0.81, p < 0.01; ICC = 0.82). The CVs between the two scans were 21.8% in the M1 and 10.2% in the mPFC. On the other hand, the GABA measurements by MEGA-sSPECIAL were 0.52 ± 0.04 (IU) in the M1 and 1.04 ± 0.24 (IU) in the mPFC. MEGA-sSPECIAL demonstrated strong between-session correlation across the two regions (r = 0.98, p < 0.001; ICC = 0.98) and lower CVs than sSPECIAL, providing 4.1% in the M1 and 5.8% in the mPFC. The MEGA-editing method showed better reproducibility of GABA measurements in both brain regions compared with the short-TE sSPECIAL method. Thus it is a more sensitive method with which to detect small changes in areas with low GABA concentrations. In GABA-rich brain regions, GABA measurements can be achieved reproducibly using both methods.
Collapse
Affiliation(s)
- Song‐I Lim
- Laboratory of Functional and Metabolic ImagingÉcole polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Lijing Xin
- CIBM Center for Biomedical ImagingSwitzerland
- Animal Imaging and TechnologyEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
14
|
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 2022; 42:911-934. [PMID: 35078383 PMCID: PMC9125492 DOI: 10.1177/0271678x221076570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Costa Fernandes J, Gama Marques J. A scoping review on paraneoplastic autoimmune limbic encephalitis (PALE) psychiatric manifestations. CNS Spectr 2022; 27:191-198. [PMID: 33121548 DOI: 10.1017/s1092852920001960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The term limbic encephalitis has been used with an oncological precedent for over 50 years and, since then, has been applied in relation to multiple antibodies found in its etiological process. Over the last decade, the psychiatric community has brought paraneoplastic autoimmune limbic encephalitis (PALE) to a new light, scattering the once known relationships between said screened antibodies responsible for causing limbic encephalitis. Due to the fact that some individuals with this condition have a psychiatric syndrome as an initial manifestation, the aim of this updated scoping review is to reestablish a causal relationship between the onconeuronal autoantibodies, both intracellular and extracellular, possible underlying malignancies and subsequent neuropsychiatric syndrome. In pair with it, there is the idea of sketching a cleaner thorough picture of what poses as psychiatric symptoms as well as possible therapeutics. Even though the always evolving epistemology of the neurosciences achieved a significant unveiling of what includes PALE in its relevant pathological subgroups, the amount of gray literature still is much superior, appealing to a further research with more randomized controlled trials, with larger populations, so that the results corroborate the small amount of data that already exist and posteriorly be applied in the general population.
Collapse
Affiliation(s)
- João Costa Fernandes
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João Gama Marques
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Clínica de Psiquiatria Geral e Transcultural, Hospital Júlio de Matos, Centro Hospitalar Psiquiátrico de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Maes C, Cuypers K, Peeters R, Sunaert S, Edden RAE, Gooijers J, Swinnen SP. Task-Related Modulation of Sensorimotor GABA+ Levels in Association with Brain Activity and Motor Performance: A Multimodal MRS-fMRI Study in Young and Older Adults. J Neurosci 2022; 42:1119-1130. [PMID: 34876470 PMCID: PMC8824510 DOI: 10.1523/jneurosci.1154-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest an important role of the principal inhibitory neurotransmitter GABA for motor performance in the context of aging. Nonetheless, as previous magnetic resonance spectroscopy (MRS) studies primarily reported resting-state GABA levels, much less is known about transient changes in GABA levels during motor task performance and how these relate to behavior and brain activity patterns. Therefore, we investigated GABA+ levels of left primary sensorimotor cortex (SM1) acquired before, during, and after execution of a unimanual/bimanual action selection task in 30 (human) young adults (YA; age 24.5 ± 4.1, 15 male) and 30 older adults (OA; age 67.8 ± 4.9, 14 male). In addition to task-related MRS data, task-related functional magnetic resonance imaging (fMRI) data were acquired. Behavioral results indicated lower motor performance in OA as opposed to YA, particularly in complex task conditions. MRS results demonstrated lower GABA+ levels in OA as compared with YA. Furthermore, a transient task-related decrease of GABA+ levels was observed, regardless of age. Notably, this task-induced modulation of GABA+ levels was linked to task-related brain activity patterns in SM1 such that a more profound task-induced instantaneous lowering of GABA+ was related to higher SM1 activity. Additionally, higher brain activity was related to better performance in the bimanual conditions, despite some age-related differences. Finally, the modulatory capacity of GABA+ was positively related to motor performance in OA but not YA. Together, these results underscore the importance of transient dynamical changes in neurochemical content for brain function and behavior, particularly in the context of aging.SIGNIFICANCE STATEMENT Emerging evidence designates an important role to regional GABA levels in motor control, especially in the context of aging. However, it remains unclear whether changes in GABA levels emerge when executing a motor task and how these changes relate to brain activity patterns and performance. Here, we identified a transient decrease of sensorimotor GABA+ levels during performance of an action selection task across young adults (YA) and older adults (OA). Interestingly, whereas a more profound GABA+ modulation related to higher brain activity across age groups, its association with motor performance differed across age groups. Within OA, our results highlighted a functional merit of a task-related release from inhibitory tone, i.e. lowering regional GABA+ levels was associated with task-relevant brain activity.
Collapse
Affiliation(s)
- Celine Maes
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
- REVAL Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek 3590, Belgium
| | - Ronald Peeters
- Translational MRI and Radiology, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven 3000, Belgium
| | - Stefan Sunaert
- Translational MRI and Radiology, Department of Imaging and Pathology, KU Leuven and University Hospital Leuven, Leuven 3000, Belgium
| | - Richard A E Edden
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21218
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21218
| | - Jolien Gooijers
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
17
|
Finkelman T, Furman-Haran E, Paz R, Tal A. Quantifying the excitatory-inhibitory balance: A comparison of SemiLASER and MEGA-SemiLASER for simultaneously measuring GABA and glutamate at 7T. Neuroimage 2021; 247:118810. [PMID: 34906716 DOI: 10.1016/j.neuroimage.2021.118810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022] Open
Abstract
The importance of the excitatory-inhibitory (E/I) balance in a wide range of cognitive and behavioral processes has prompted a commensurate interest in methods for reliably quantifying it. Proton Magnetic Resonance Spectroscopy (1H-MRS) remains the only method capable of safely and non-invasively measuring the concentrations of the brain's major excitatory (glutamate) and inhibitory (γ-aminobutyric-acid, GABA) neurotransmitters in-vivo. MRS relies on spectral Mescher-Garwood (MEGA) editing techniques at 3T to distinguish GABA from its overlapping resonances. However, with the increased spectral resolution at ultrahigh field strengths of 7T and above, non-edited spectroscopic techniques become potential viable alternatives to MEGA based approaches, and also address some of their shortcomings, such as signal loss, sensitivity to transmitter inhomogeneities and temporal resolution. We present a comprehensive comparison of both edited and non-edited strategies at 7T for simultaneously quantifying glutamate and GABA from the dorsal anterior cingulate cortex (dACC), and evaluate their reproducibility and relative bias. The combined root-mean-square test-retest reproducibility of Glu and GABA (CVE/I) was as low as 13.3% for unedited MRS at TE=80 ms using SemiLASER localization, while edited MRS at TE=80 ms yielded CVE/I=20% and 21% for asymmetric and symmetric MEGA editing, respectively. An unedited SemiLASER acquisition using a shorter echo time of TE=42 ms yielded CVE/I as low as 24.9%. Our results show that non-edited sequences at an echo time of 80 ms provide better reproducibility than either edited sequences at the same TE, or non-edited sequences at a shorter TE of 42 ms. This is supported by numerical simulations and is driven in part by a pseudo-singlet appearance of the GABA multiplets at TE=80 ms, and the excellent spectral resolution at 7T. Our results uphold a transition to non-edited MRS for monitoring the E/I balance at ultrahigh fields, and stress the importance of using a properly-optimized echo time.
Collapse
Affiliation(s)
- Tal Finkelman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel; Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzel St., Rehovot 7610001, Israel.
| |
Collapse
|
18
|
Dolfen N, Veldman MP, Gann MA, von Leupoldt A, Puts NAJ, Edden RAE, Mikkelsen M, Swinnen S, Schwabe L, Albouy G, King BR. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun Biol 2021; 4:1033. [PMID: 34475515 PMCID: PMC8413374 DOI: 10.1038/s42003-021-02535-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA). This knowledge gap is surprising given the known role of GABA in neuroplasticity subserving learning and memory. The current study thus examined: a) the effects of motor learning and stress on striatal and hippocampal GABA levels; and b) how learning- and stress-induced changes in GABA relate to the neural correlates of learning. To do so, fifty-three healthy young adults were exposed to a stressful or non-stressful control intervention before motor sequence learning. Striatal and hippocampal GABA levels were assessed at baseline and post-intervention/learning using magnetic resonance spectroscopy. Regression analyses indicated that stress modulated the link between striatal GABA levels and functional plasticity in both the hippocampus and striatum during learning as measured with fMRI. This study provides evidence for a role of GABA in the stress-induced modulation of striatal and hippocampal systems.
Collapse
Affiliation(s)
- Nina Dolfen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Mareike A Gann
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | | | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| | - Bradley R King
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Koush Y, de Graaf RA, Kupers R, Dricot L, Ptito M, Behar KL, Rothman DL, Hyder F. Metabolic underpinnings of activated and deactivated cortical areas in human brain. J Cereb Blood Flow Metab 2021; 41:986-1000. [PMID: 33472521 PMCID: PMC8054719 DOI: 10.1177/0271678x21989186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Neuroimaging with functional MRI (fMRI) identifies activated and deactivated brain regions in task-based paradigms. These patterns of (de)activation are altered in diseases, motivating research to understand their underlying biochemical/biophysical mechanisms. Essentially, it remains unknown how aerobic metabolism of glucose to lactate (aerobic glycolysis) and excitatory-inhibitory balance of glutamatergic and GABAergic neuronal activities vary in these areas. In healthy volunteers, we investigated metabolic distinctions of activating visual cortex (VC, a task-positive area) using a visual task and deactivating posterior cingulate cortex (PCC, a task-negative area) using a cognitive task. We used fMRI-guided J-edited functional MRS (fMRS) to measure lactate, glutamate plus glutamine (Glx) and γ-aminobutyric acid (GABA), as indicators of aerobic glycolysis and excitatory-inhibitory balance, respectively. Both lactate and Glx increased upon activating VC, but did not change upon deactivating PCC. Basal GABA was negatively correlated with BOLD responses in both brain areas, but during functional tasks GABA decreased in VC upon activation and GABA increased in PCC upon deactivation, suggesting BOLD responses in relation to baseline are impacted oppositely by task-induced inhibition. In summary, opposite relations between BOLD response and GABAergic inhibition, and increases in aerobic glycolysis and glutamatergic activity distinguish the BOLD response in (de)activated areas.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ron Kupers
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium
| | - Maurice Ptito
- School of Optometry, Université de Montreal, Montreal, Canada
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Ip IB, Bridge H. Investigating the neurochemistry of the human visual system using magnetic resonance spectroscopy. Brain Struct Funct 2021; 227:1491-1505. [PMID: 33900453 PMCID: PMC9046312 DOI: 10.1007/s00429-021-02273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Biochemical processes underpin the structure and function of the visual cortex, yet our understanding of the fundamental neurochemistry of the visual brain is incomplete. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive brain imaging tool that allows chemical quantification of living tissue by detecting minute differences in the resonant frequency of molecules. Application of MRS in the human brain in vivo has advanced our understanding of how the visual brain consumes energy to support neural function, how its neural substrates change as a result of disease or dysfunction, and how neural populations signal during perception and plasticity. The aim of this review is to provide an entry point to researchers interested in investigating the neurochemistry of the visual system using in vivo measurements. We provide a basic overview of MRS principles, and then discuss recent findings in four topics of vision science: (i) visual perception, plasticity in the (ii) healthy and (iii) dysfunctional visual system, and (iv) during visual stimulation. Taken together, evidence suggests that the neurochemistry of the visual system provides important novel insights into how we perceive the world.
Collapse
Affiliation(s)
- I Betina Ip
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Holly Bridge
- Wellcome Centre for Integrative Neuroimaging, FMRIB Building, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
21
|
Dwyer GE, Craven AR, Bereśniewicz J, Kazimierczak K, Ersland L, Hugdahl K, Grüner R. Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T. Front Hum Neurosci 2021; 15:644079. [PMID: 33841118 PMCID: PMC8024522 DOI: 10.3389/fnhum.2021.644079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
The blood oxygen level dependent (BOLD) effect that provides the contrast in functional magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through this, may be used as an indirect measure of cerebral blood flow related to neural activity. By acquiring MR-spectra interleaved with frames without water suppression, it may be possible to image the BOLD effect and associated metabolic changes simultaneously through changes in the linewidth of the unsuppressed water peak. The purpose of this study was to implement this approach with the MEGA-PRESS sequence, widely considered to be the standard sequence for quantitative measurement of GABA at field strengths of 3 T and lower, to observe how changes in both glutamate (measured as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants whilst undergoing intrascanner visual stimulation in the form of a red and black radial checkerboard, alternating at 8 Hz, in 90 s blocks comprising 30 s of visual stimulation followed by 60 s of rest. Results show very strong agreement between the changes in the linewidth of the unsuppressed water signal and the canonical haemodynamic response function as well as a strong, negative, but not statistically significant, correlation with the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from this experiment suggest that the unsuppressed water signal provides a reliable measure of the BOLD effect and that correlations with associated changes in GABA and Glx levels may also be measured. However, discrepancies between metabolite levels as measured from the difference and OFF spectra raise questions regarding the reliability of the respective methods.
Collapse
Affiliation(s)
- Gerard Eric Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Alexander R Craven
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Justyna Bereśniewicz
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | - Katarzyna Kazimierczak
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Lars Ersland
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Hugdahl
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Renate Grüner
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway.,Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital, University of Bergen, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway.,Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
22
|
Manzhurtsev A, Menschchikov P, Yakovlev A, Ublinskiy M, Bozhko O, Kupriyanov D, Akhadov T, Varfolomeev S, Semenova N. 3T MEGA-PRESS study of N-acetyl aspartyl glutamate and N-acetyl aspartate in activated visual cortex. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:555-568. [PMID: 33591453 DOI: 10.1007/s10334-021-00912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To measure N-acetyl aspartyl glutamate (NAAG) and N-acetyl aspartate (NAA) concentrations in visual cortex activated by a continuous stimulation in a 3 T field. METHODS NAAG and NAA spectra were obtained with MEGA-PRESS pulse sequence (TE/TR = 140/2000 ms; δONNAAG/δOFFNAAG = 4.61/4.15 ppm; δONNAA/δOFFNAA = 4.84/4.38 ppm) in 14 healthy volunteers at rest and upon stimulation by a radial checkerboard flickering at a frequency of 8 Hz. Spectra of all subjects were frequency and phase aligned and then averaged. Additionally, to obtain the time-dependency data, spectra were divided into time sections of 64 s each. The intensities of NAA, NAAG and lactate + macromolecular (Lac + MM) signals were defined by integration of the real part of spectra. The heights of the central resonance of NAAG and NAA signals were measured. RESULTS The NAAG and NAA concentrations, measured with 2.5% and 0.5% error, respectively, were unaffected by visual activation. A significant increase in the Lac + MM signal by ~ 12% is clearly observed. No stimulation-induced time dependency was found for NAAG or NAA, while the increase in Lac + MM was gradual. The concentration values in visual cortex are in good agreement with the 7 T MRS measurements: [NAAG] = 1.55 mM, [NAA] = 11.95 mM. CONCLUSION The MEGA-PRESS pulse sequence together with the spectral preprocessing techniques allowed to demonstrate that the concentrations of NAAG and NAA in the visual cortex remain constant during continuous visual stimulation within the margin of error. An increase in the lactate signal intensity signifies the activation of the anaerobic glycolysis in activated visual cortex.
Collapse
Affiliation(s)
- Andrei Manzhurtsev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation. .,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation. .,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.
| | - Petr Menschchikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Alexei Yakovlev
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Maxim Ublinskiy
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| | - Olga Bozhko
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Dmitrii Kupriyanov
- LLC Philips Healthcare, 13, Sergeya Makeeva St., 123022, Moscow, Russian Federation
| | - Tolib Akhadov
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation
| | - Sergei Varfolomeev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation
| | - Natalia Semenova
- Clinical and Research Institute of Emergency Pediatric Surgery and Trauma, Bol´shaya Polyanka St. 22, 119180, Moscow, Russian Federation.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation.,Moscow State University, Leninskie Gory st., 1, 119991, Moscow, Russian Federation.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, 119334, Moscow, Russian Federation
| |
Collapse
|
23
|
Jelen LA, Lythgoe DJ, Jackson JB, Howard MA, Stone JM, Egerton A. Imaging Brain Glx Dynamics in Response to Pressure Pain Stimulation: A 1H-fMRS Study. Front Psychiatry 2021; 12:681419. [PMID: 34393848 PMCID: PMC8357306 DOI: 10.3389/fpsyt.2021.681419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Glutamate signalling is increasingly implicated across a range of psychiatric, neurological and pain disorders. Reliable methodologies are needed to probe the glutamate system and understand glutamate dynamics in vivo. Functional magnetic resonance spectroscopy (1H-fMRS) is a technique that allows measurement of glutamatergic metabolites over time in response to task conditions including painful stimuli. In this study, 18 healthy volunteers underwent 1H-fMRS during a pressure-pain paradigm (8 blocks of REST and 8 blocks of PAIN) across two separate sessions. During each session, estimates of glutamate + glutamine (Glx), scaled to total creatine (tCr = creatine + phosphocreatine) were determined for averaged REST and PAIN conditions within two separate regions of interest: the anterior cingulate cortex (ACC) and dorsal ACC (dACC). A two-way repeated measures analysis of variance determined a significant main effect of CONDITION (p = 0.025), with higher Glx/tCr during PAIN compared to REST across combined sessions, in the dACC ROI only. However, increases in dACC Glx/tCr during PAIN compared to REST showed limited reliability and reproducibility across sessions. Future test-retest 1H-fMRS studies should examine modified or alternative paradigms to determine more reliable methodologies to challenge the glutamate system that may then be applied in patient groups and experimental medicine studies.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.,South London and Maudsley National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - David J Lythgoe
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jade B Jackson
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.,Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Howard
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - James M Stone
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.,South London and Maudsley National Health Service (NHS) Foundation Trust, London, United Kingdom.,Department of Neuroscience and Imaging, University of Sussex, Brighton, United Kingdom
| | - Alice Egerton
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Increased Glutamate concentrations during prolonged motor activation as measured using functional Magnetic Resonance Spectroscopy at 3T. Neuroimage 2020; 223:117338. [DOI: 10.1016/j.neuroimage.2020.117338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
|
25
|
Johnstone A, Grigoras I, Petitet P, Capitão LP, Stagg CJ. A single, clinically relevant dose of the GABA B agonist baclofen impairs visuomotor learning. J Physiol 2020; 599:307-322. [PMID: 33085094 PMCID: PMC7611062 DOI: 10.1113/jp280378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Baclofen is a GABAB agonist prescribed as a treatment for spasticity in stroke, brain injury and multiple sclerosis patients, who are often undergoing concurrent motor rehabilitation. Decreasing GABAergic inhibition is a key feature of motor learning and so there is a possibility that GABA agonist drugs, such as baclofen, could impair these processes, potentially impacting rehabilitation. Here, we examined the effect of 10 mg of baclofen, in 20 young healthy individuals, and found that the drug impaired retention of visuomotor learning with no significant effect on motor sequence learning. Overall baclofen did not alter transcranial magnetic stimulation-measured GABAB inhibition, although the change in GABAB inhibition correlated with aspects of visuomotor learning retention. Further work is needed to investigate whether taking baclofen impacts motor rehabilitation in patients. ABSTRACT The GABAB agonist baclofen is taken daily as a treatment for spasticity by millions of stroke, brain injury and multiple sclerosis patients, many of whom are also undergoing motor rehabilitation. However, decreases in GABA are suggested to be a key feature of human motor learning, which raises questions about whether drugs increasing GABAergic activity may impair motor learning and rehabilitation. In this double-blind, placebo-controlled study, we investigated whether a single 10 mg dose of the GABAB agonist baclofen impaired motor sequence learning and visuomotor learning in 20 young healthy participants of both sexes. Participants trained on visuomotor and sequence learning tasks using their right hand. Transcranial magnetic stimulation (TMS) measures of corticospinal excitability, GABAA (short-interval intracortical inhibition, 2.5 ms) and GABAB (long-interval intracortical inhibition, 150 ms) receptor activation were recorded from left M1. Behaviourally, baclofen caused a significant reduction of visuomotor aftereffect (F1,137.8 = 6.133, P = 0.014) and retention (F1,130.7 = 4.138, P = 0.044), with no significant changes to sequence learning. There were no overall changes to TMS measured GABAergic inhibition with this low dose of baclofen. This result confirms the causal importance of GABAB inhibition in mediating visuomotor learning and suggests that chronic baclofen use could negatively impact aspects of motor rehabilitation.
Collapse
Affiliation(s)
- Ainslie Johnstone
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Psychiatry, OHBA, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Ioana Grigoras
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Psychiatry, OHBA, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Pierre Petitet
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Experimental Psychology, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Liliana P Capitão
- Department of Psychiatry, University of Oxford, Oxford, UK.,Oxford Health NHS Foundation Trust, Oxford, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Department of Psychiatry, OHBA, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
No Effect of Anodal tDCS on Verbal Episodic Memory Performance and Neurotransmitter Levels in Young and Elderly Participants. Neural Plast 2020; 2020:8896791. [PMID: 33029128 PMCID: PMC7528151 DOI: 10.1155/2020/8896791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023] Open
Abstract
Healthy ageing is accompanied by cognitive decline that affects episodic memory processes in particular. Studies showed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may counteract this cognitive deterioration by increasing excitability and inducing neuroplasticity in the targeted cortical region. While stimulation gains are more consistent in initial low performers, relying solely on behavioural measures to predict treatment benefits does not suffice for a reliable implementation of this method as a therapeutic option. Hence, an exploration of the underlying neurophysiological mechanisms regarding the differential stimulation effect is warranted. Glutamatergic metabolites (Glx) and γ-aminobutyric acid (GABA) are involved in learning and memory processes and can be influenced with tDCS; wherefore, they present themselves as potential biomarkers for tDCS-induced behavioural gains, which are affiliated with neuroplasticity processes. In the present randomized, double-blind, sham-controlled, crossover study, 33 healthy young and 22 elderly participants received anodal tDCS to their left DLPFC during the encoding phase of a verbal episodic memory task. Using MEGA-PRESS edited magnetic resonance spectroscopy (MRS), Glx and GABA levels were measured in the left DLPFC before and after the stimulation period. Further, we tested whether baseline performance and neurotransmitter levels predicted subsequent gains. No beneficial group effects of tDCS emerged in either verbal retrieval performances or neurotransmitter concentrations. Moreover, baseline performance levels did not predict stimulation-induced cognitive gains, nor did Glx or GABA levels. Nevertheless, exploratory analyses suggested a predictive value of the Glx : GABA ratio, with lower ratios at baseline indicating greater tDCS-related gains in delayed recall performance. This highlights the importance of further studies investigating neurophysiological mechanisms underlying previously observed stimulation-induced cognitive benefits and their respective interindividual heterogeneity.
Collapse
|
27
|
Wilson M. Adaptive baseline fitting for 1 H MR spectroscopy analysis. Magn Reson Med 2020; 85:13-29. [PMID: 32797656 DOI: 10.1002/mrm.28385] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Accurate baseline modeling is essential for reliable MRS analysis and interpretation-particularly at short echo-times, where enhanced metabolite information coincides with elevated baseline interference. The degree of baseline smoothness is a key analysis parameter for metabolite estimation, and in this study, a new method is presented to estimate its optimal value. METHODS An adaptive baseline fitting algorithm (ABfit) is described, incorporating a spline basis into a frequency-domain analysis model, with a penalty parameter to enforce baseline smoothness. A series of candidate analyses are performed over a range of smoothness penalties, as part of a 4-stage algorithm, and the Akaike information criterion is used to estimate the appropriate penalty. ABfit is applied to a set of simulated spectra with differing baseline features and experimentally acquired 2D MRSI-both at a field strength of 3 Tesla. RESULTS Simulated analyses demonstrate metabolite errors result from 2 main sources: bias from an inflexible baseline (underfitting) and increased variance from an overly flexible baseline (overfitting). In the case of an ideal flat baseline, ABfit is shown to correctly estimate a highly rigid baseline, and for more realistic spectra a reasonable compromise between bias and variance is found. Analysis of experimentally acquired data demonstrates good agreement with known correlations between metabolite ratios and the contributing volumes of gray and white matter tissue. CONCLUSIONS ABfit has been shown to perform accurate baseline estimation and is suitable for fully automated routine MRS analysis.
Collapse
Affiliation(s)
- Martin Wilson
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
28
|
Temporal Dynamics of GABA and Glx in the Visual Cortex. eNeuro 2020; 7:ENEURO.0082-20.2020. [PMID: 32571964 PMCID: PMC7429906 DOI: 10.1523/eneuro.0082-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 01/24/2023] Open
Abstract
Magnetic resonance spectroscopy (MRS) can be used in vivo to quantify neurometabolite concentration and provide evidence for the involvement of different neurotransmitter systems (e.g., inhibitory and excitatory) in sensory and cognitive processes. The relatively low signal-to-noise ratio of MRS measurements has shaped the types of questions that it has been used to address. In particular, temporal resolution is often sacrificed in MRS studies to achieve a signal sufficient to produce a reliable estimate of neurometabolite concentration. Here we apply novel analyses with large datasets from human participants (both sexes) to reveal the dynamics of GABA+ and Glx in visual cortex while participants are at rest (with eyes closed) and compare this with changes in posterior cingulate cortex from a previously collected dataset (under different conditions). We find that the dynamic concentration of GABA+ and Glx in visual cortex drifts in opposite directions; that is, GABA+ decreases while Glx increases over time. Further, we find that in visual, but not posterior cingulate cortex, the concentration of GABA+ predicts that of Glx 120 s later, such that a change in GABA+ is correlated with a subsequent opposite change in Glx. Together, these results expose novel temporal trends and interdependencies of primary neurotransmitters in visual cortex. More broadly, we demonstrate the feasibility of using MRS to investigate in vivo dynamic changes of neurometabolites.
Collapse
|
29
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
30
|
Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of Cortical GABA and Glutamate in Young Adults With Autism Spectrum Disorder. Autism Res 2020; 13:1111-1129. [PMID: 32297709 DOI: 10.1002/aur.2300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder, possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evidence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cortex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls. Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysical visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups, with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals. Autism Res 2020, 13: 1111-1129. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectroscopy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism. In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical adults. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Michael-Paul Schallmo
- Department of Psychology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
31
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Yakovlev A, Manzhurtsev A, Menshchikov P, Ublinskiy M, Bozhko O, Akhadov T, Semenova N. The Effect of Visual Stimulation on GABA and Macromolecule Levels in the Human Brain in vivo. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920010248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Functional magnetic resonance spectroscopy in patients with schizophrenia and bipolar affective disorder: Glutamate dynamics in the anterior cingulate cortex during a working memory task. Eur Neuropsychopharmacol 2019; 29:222-234. [PMID: 30558824 DOI: 10.1016/j.euroneuro.2018.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
The glutamate system is implicated in the pathophysiology of schizophrenia and mood disorders. Using functional magnetic resonance spectroscopy (1H-fMRS), it is possible to monitor glutamate dynamically in activated brain areas and may give a closer estimate of glutamatergic neurotransmission than standard magnetic resonance spectroscopy. 14 patients with schizophrenia, 15 patients with bipolar disorder II (BPII) and 14 healthy volunteers underwent a 15 min N-back task in a 48s block design during 1H-fMRS acquisition. Data from the first, second and third 16s group of 8 spectra for each block were analysed to measure levels of glutamate and Glx (glutamate + glutamine), scaled to total creatine (TCr), across averaged 0-back and 2-back conditions. A 6 × 3 repeated-measures analysis of variance (rmANOVA) demonstrated a significant main effect of time for Glx/TCr (P = 0.022). There was a significant increase in Glu/TCr (P = 0.004) and Glx/TCr (P < 0.001) between the final spectra of the 0-back and first spectra of the 2-back condition in the healthy control group only. 2 × 2 rmANOVA revealed a significant time by group interaction for Glx/TCr (P = 0.019) across the 0-back condition, with levels reducing in healthy controls and increasing in the schizophrenia group. While healthy volunteers showed significant increases in glutamatergic measures between task conditions, the lack of such a response in patients with schizophrenia and BPII may reflect deficits in glutamatergic neurotransmission. Abnormal increases during periods of relatively low executive load, without the same dynamic modulation as healthy volunteers with increasing task difficulty, further suggests underlying abnormalities of glutamatergic neurotransmission in schizophrenia.
Collapse
|
34
|
Gröhn H, Gillick BT, Tkáč I, Bednařík P, Mascali D, Deelchand DK, Michaeli S, Meekins GD, Leffler-McCabe MJ, MacKinnon CD, Eberly LE, Mangia S. Influence of Repetitive Transcranial Magnetic Stimulation on Human Neurochemistry and Functional Connectivity: A Pilot MRI/MRS Study at 7 T. Front Neurosci 2019; 13:1260. [PMID: 31827419 PMCID: PMC6890551 DOI: 10.3389/fnins.2019.01260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation method commonly used in the disciplines of neuroscience, neurology, and neuropsychiatry to examine or modulate brain function. Low frequency rTMS (e.g., 1 Hz) is associated with a net suppression of cortical excitability, whereas higher frequencies (e.g., 5 Hz) purportedly increase excitability. Magnetic resonance spectroscopy (MRS) and resting-state functional MRI (rsfMRI) allow investigation of neurochemistry and functional connectivity, respectively, and can assess the influence of rTMS in these domains. This pilot study investigated the effects of rTMS on the primary motor cortex using pre and post MRS and rsfMRI assessments at 7 T. Seven right-handed males (age 27 ± 7 y.o.) underwent single-voxel MRS and rsfMRI before and about 30-min after rTMS was administered outside the scanner for 20-min over the primary motor cortex of the left (dominant) hemisphere. All participants received 1-Hz rTMS; one participant additionally received 5-Hz rTMS in a separate session. Concentrations of 17 neurochemicals were quantified in left and right motor cortices. Connectivity metrics included fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) of both motor cortices, strength of related brain networks, and inter-hemispheric connectivity. The group-analysis revealed few trends (i.e., uncorrected for multiple comparisons), including a mean increase in the concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) after the inhibitory rTMS protocol as compared to baseline in the stimulated (left) motor cortex (+8%, p = 0.043), along with a slight increase of total creatine (+2%, p = 0.018), and decrease of aspartate (-18%, p = 0.016). Additionally, GABA tended to decrease in the contralateral hemisphere (-6%, p = 0.033). No other changes of metabolite concentrations were found. Whereas functional connectivity outcomes did not exhibit trends of significant changes induced by rTMS, the percent changes of few connectivity metrics in both hemispheres were negatively correlated with GABA changes in the contralateral hemisphere. While studies in larger cohorts are needed to confirm these preliminary findings, our results indicate the safety and feasibility of detecting changes in key metabolites associated with neurotransmission after a single 1-Hz rTMS session, establishing the construct for future exploration of the neurochemical, and connectivity mechanisms of cortical responses to neuromodulation.
Collapse
Affiliation(s)
- Heidi Gröhn
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ivan Tkáč
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Petr Bednařík
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Daniele Mascali
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Gregg D Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | | | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
Hong D, Rohani Rankouhi S, Thielen JW, van Asten JJA, Norris DG. A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T. PLoS One 2019; 14:e0223702. [PMID: 31603925 PMCID: PMC6788718 DOI: 10.1371/journal.pone.0223702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter, is challenging to measure using proton spectroscopy due to its relatively low concentration, J-coupling and overlapping signals from other metabolites. Currently, the prevalent methods for detecting GABA at ultrahigh field strengths (≥ 7 T) are GABA-editing and model fitting of non-editing single voxel spectra. These two acquisition approaches have their own advantages: the GABA editing approach directly measures the GABA resonance at 3 ppm, whereas the fitting approach on the non-editing spectrum allows the detection of multiple metabolites, and has an SNR advantage over longer echo time (TE) acquisitions. This study aims to compare these approaches for estimating GABA at 7 T. We use an interleaved sequence of semi-LASER (sLASER: TE = 38 ms) and MEGA-sLASER (TE = 80 ms). This simultaneous interleaved acquisition minimizes the differential effect of extraneous factors, and enables an accurate comparison of the two acquisition methods. Spectra were acquired with an 8 ml isotropic voxel at six different brain regions: anterior-cingulate cortex, dorsolateral-prefrontal cortex, motor cortex, occipital cortex, posterior cingulate cortex, and precuneus. Spectral fitting with LCModel quantified the GABA to total Cr (tCr: Creatine + Phosphocreatine) concentration ratio. After correcting the T2 relaxation time variation, GABA/tCr ratios were similar between the two acquisition approaches. GABA editing showed smaller spectral fitting error according to Cramér-Rao lower bound than the sLASER approach for all regions examined. We conclude that both acquisition methods show similar accuracy but the precision of the MEGA-editing approach is higher for GABA measurement. In addition, the 2.28 ppm GABA resonance was found to be important for estimating GABA concentration without macromolecule contamination in the GABA-edited acquisition, when utilizing spectral fitting with LCModel.
Collapse
Affiliation(s)
- Donghyun Hong
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
| | | | - Jan-Willem Thielen
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Jack J. A. van Asten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - David G. Norris
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
36
|
Comparison of Neurochemical and BOLD Signal Contrast Response Functions in the Human Visual Cortex. J Neurosci 2019; 39:7968-7975. [PMID: 31358655 DOI: 10.1523/jneurosci.3021-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 01/20/2023] Open
Abstract
We investigated the relationship between neurochemical and hemodynamic responses as a function of image contrast in the human primary visual cortex (V1). Simultaneously acquired BOLD-fMRI and single voxel proton MR spectroscopy signals were measured in V1 of 24 healthy human participants of either sex at 7 tesla field strength, in response to presentations (64 s blocks) of different levels of image contrast (3%, 12.5%, 50%, 100%). Our results suggest that complementary measures of neurotransmission and energy metabolism are in partial agreement: BOLD and glutamate signals were linear with image contrast; however, a significant increase in glutamate concentration was evident only at the highest intensity level. In contrast, GABA signals were steady across all intensity levels. These results suggest that neurochemical concentrations are maintained at lower ranges of contrast levels, which match the statistics of natural vision, and that high stimulus intensity may be critical to increase sensitivity to visually modulated glutamate signals in the early visual cortex using MR spectroscopy.SIGNIFICANCE STATEMENT Glutamate and GABA are the major excitatory and inhibitory neurotransmitters of the brain. To better understand the relationship between MRS-visible neurochemicals, the BOLD signal change, and stimulus intensity, we measured combined neurochemical and BOLD signals (combined fMRI-MRS) to different image contrasts in human V1 at 7 tesla. While a linear change to contrast was present for both signals, the increase in glutamate was significant only at the highest stimulus intensity. These results suggest that hemodynamic and neurochemical signals reflect common metabolic markers of neural activity, whereas the mismatch at lower contrast levels may indicate a sensitivity threshold for detecting neurochemical changes during visual processing. Our results highlight the challenge and importance of reconciling cellular and metabolic measures of neural activity in the human brain.
Collapse
|
37
|
Rideaux R, Goncalves NR, Welchman AE. Mixed-polarity random-dot stereograms alter GABA and Glx concentration in the early visual cortex. J Neurophysiol 2019; 122:888-896. [PMID: 31291136 PMCID: PMC6734395 DOI: 10.1152/jn.00208.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The offset between images projected onto the left and right retina (binocular disparity) provides a powerful cue to the three-dimensional structure of the environment. It was previously shown that depth judgements are better when images comprise both light and dark features, rather than only light or only dark elements. Since Harris and Parker (Nature 374: 808-811, 1995) discovered the "mixed-polarity benefit," there has been limited evidence supporting their hypothesis that the benefit is due to separate bright and dark channels. Goncalves and Welchman (Curr Biol 27: 1403-1412, 2017) observed that single- and mixed-polarity stereograms evoke different levels of positive and negative activity in a deep neural network trained on natural images to make depth judgements, which also showed the mixed-polarity benefit. Motivated by this discovery, we seek to test the potential for changes in the balance of excitation and inhibition that are produced by viewing these stimuli. In particular, we use magnetic resonance spectroscopy to measure Glx and GABA concentrations in the early visual cortex of adult humans during viewing of single- and mixed-polarity random-dot stereograms (RDS). We find that participants' Glx concentration is significantly higher, whereas GABA concentration is significantly lower, when mixed-polarity RDS are viewed than when single-polarity RDS are viewed. These results indicate that excitation and inhibition facilitate processing of single- and mixed-polarity stereograms in the early visual cortex to different extents, consistent with recent theoretical work (Goncalves NR, Welchman AE. Curr Biol 27: 1403-1412, 2017).NEW & NOTEWORTHY Depth judgements are better when images comprise both light and dark features, rather than only light or only dark elements. Using magnetic resonance spectroscopy, we show that adult human participants' Glx concentration is significantly higher whereas GABA concentration is significantly lower in the early visual cortex when participants view mixed-polarity random-dot stereograms (RDS) compared with single-polarity RDS. These results indicate that excitation and inhibition facilitate processing of single- and mixed-polarity stereograms in the early visual cortex to different extents.
Collapse
Affiliation(s)
- Reuben Rideaux
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Nuno R Goncalves
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Welchman
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Moser P, Hingerl L, Strasser B, Považan M, Hangel G, Andronesi OC, van der Kouwe A, Gruber S, Trattnig S, Bogner W. Whole-slice mapping of GABA and GABA + at 7T via adiabatic MEGA-editing, real-time instability correction, and concentric circle readout. Neuroimage 2019; 184:475-489. [PMID: 30243974 PMCID: PMC7212034 DOI: 10.1016/j.neuroimage.2018.09.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/20/2018] [Accepted: 09/15/2018] [Indexed: 01/29/2023] Open
Abstract
An adiabatic MEscher-GArwood (MEGA)-editing scheme, using asymmetric hyperbolic secant editing pulses, was developed and implemented in a B1+-insensitive, 1D-semiLASER (Localization by Adiabatic SElective Refocusing) MR spectroscopic imaging (MRSI) sequence for the non-invasive mapping of γ-aminobutyric acid (GABA) over a whole brain slice. Our approach exploits the advantages of edited-MRSI at 7T while tackling challenges that arise with ultra-high-field-scans. Spatial-spectral encoding, using density-weighted, concentric circle echo planar trajectory readout, enabled substantial MRSI acceleration and an improved point-spread-function, thereby reducing extracranial lipid signals. Subject motion and scanner instabilities were corrected in real-time using volumetric navigators optimized for 7T, in combination with selective reacquisition of corrupted data to ensure robust subtraction-based MEGA-editing. Simulations and phantom measurements of the adiabatic MEGA-editing scheme demonstrated stable editing efficiency even in the presence of ±0.15 ppm editing frequency offsets and B1+ variations of up to ±30% (as typically encountered in vivo at 7T), in contrast to conventional Gaussian editing pulses. Volunteer measurements were performed with and without global inversion recovery (IR) to study regional GABA levels and their underlying, co-edited, macromolecular (MM) signals at 2.99 ppm. High-quality in vivo spectra allowed mapping of pure GABA and MM-contaminated GABA+ (GABA + MM) along with Glx (Glu + Gln), with high-resolution (eff. voxel size: 1.4 cm3) and whole-slice coverage in 24 min scan time. Metabolic ratio maps of GABA/tNAA, GABA+/tNAA, and Glx/tNAA were correlated linearly with the gray matter fraction of each voxel. A 2.15-fold increase in gray matter to white matter contrast was observed for GABA when enabling IR, which we attribute to the higher abundance of macromolecules at 2.99 ppm in the white matter than in the gray matter. In conclusion, adiabatic MEGA-editing with 1D-semiLASER selection is as a promising approach for edited-MRSI at 7T. Our sequence capitalizes on the benefits of ultra-high-field MRSI while successfully mitigating the challenges related to B0/B1+ inhomogeneities, prolonged scan times, and motion/scanner instability artifacts. Robust and accurate 2D mapping has been shown for the neurotransmitters GABA and Glx.
Collapse
Affiliation(s)
- Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MRI, Vienna, Austria.
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michal Považan
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gilbert Hangel
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Ovidiu C Andronesi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Lazarettgasse 14, A-1090, Vienna, Austria.
| |
Collapse
|
39
|
Kolasinski J, Hinson EL, Divanbeighi Zand AP, Rizov A, Emir UE, Stagg CJ. The dynamics of cortical GABA in human motor learning. J Physiol 2018; 597:271-282. [PMID: 30300446 PMCID: PMC6312422 DOI: 10.1113/jp276626] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022] Open
Abstract
Key points The ability to learn new motor skills is supported by plasticity in the structural and functional organisation of the primary motor cortex in the human brain. Changes inhibitory to signalling by GABA are thought to be crucial in inducing motor cortex plasticity. This study used magnetic resonance spectroscopy (MRS) to quantify the concentration of GABA in human motor cortex during a period of motor learning, as well as during a period of movement and a period at rest. We report evidence for a reduction in the MRS‐measured concentration of GABA specific to learning. Further, the GABA concentration early in the learning task was strongly correlated with the magnitude of subsequent learning: higher GABA concentrations were associated with poorer learning. The results provide initial insight into the neurochemical correlates of cortical plasticity associated with motor learning, specifically relevant in therapeutic efforts to induce cortical plasticity during recovery from stroke.
Abstract The ability to learn novel motor skills is a central part of our daily lives and can provide a model for rehabilitation after a stroke. However, there are still fundamental gaps in our understanding of the physiological mechanisms that underpin human motor plasticity. The acquisition of new motor skills is dependent on changes in local circuitry within the primary motor cortex (M1). This reorganisation has been hypothesised to be facilitated by a decrease in local inhibition via modulation of the neurotransmitter GABA, but this link has not been conclusively demonstrated in humans. Here, we used 7 T magnetic resonance spectroscopy to investigate the dynamics of GABA concentrations in human M1 during the learning of an explicit, serial reaction time task. We observed a significant reduction in GABA concentration during motor learning that was not seen in an equivalent motor task lacking a learnable sequence, nor during a passive resting task of the same duration. No change in glutamate was observed in any group. Furthermore, M1 GABA measured early in task performance was strongly correlated with the degree of subsequent learning, such that greater inhibition was associated with poorer subsequent learning. This result suggests that higher levels of cortical inhibition may present a barrier that must be surmounted in order to achieve an increase in M1 excitability, and hence encoding of a new motor skill. These results provide strong support for the mechanistic role of GABAergic inhibition in motor plasticity, raising questions regarding the link between population variability in motor learning and GABA metabolism in the brain. The ability to learn new motor skills is supported by plasticity in the structural and functional organisation of the primary motor cortex in the human brain. Changes inhibitory to signalling by GABA are thought to be crucial in inducing motor cortex plasticity. This study used magnetic resonance spectroscopy (MRS) to quantify the concentration of GABA in human motor cortex during a period of motor learning, as well as during a period of movement and a period at rest. We report evidence for a reduction in the MRS‐measured concentration of GABA specific to learning. Further, the GABA concentration early in the learning task was strongly correlated with the magnitude of subsequent learning: higher GABA concentrations were associated with poorer learning. The results provide initial insight into the neurochemical correlates of cortical plasticity associated with motor learning, specifically relevant in therapeutic efforts to induce cortical plasticity during recovery from stroke.
Collapse
Affiliation(s)
- James Kolasinski
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7DU, UK.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Emily L Hinson
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| | - Amir P Divanbeighi Zand
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7DU, UK
| | - Assen Rizov
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7DU, UK
| | - Uzay E Emir
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7DU, UK.,Purdue University School of Health Sciences, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7DU, UK.,Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
| |
Collapse
|
40
|
Mullins PG. Towards a theory of functional magnetic resonance spectroscopy (fMRS): A meta-analysis and discussion of using MRS to measure changes in neurotransmitters in real time. Scand J Psychol 2018; 59:91-103. [PMID: 29356002 DOI: 10.1111/sjop.12411] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023]
Abstract
Proton magnetic resonance spectroscopy is a powerful tool to investigate neurochemistry and physiology in vivo. Recently researchers have started to use MRS to measure neurotransmitter changes related to neural activity, so called functional MRS (fMRS). Particular interest has been placed on measuring glutamate changes associated with neural function, but differences are reported in the size of changes seen. This review discusses fMRS, and includes meta-analyses of the relative size of glutamate changes seen in fMRS, and the impact experimental design and stimulus paradigm may have. On average glutamate was found to increase by 6.97% (±1.739%) in response to neural activation. However, factors of experimental design may have a large impact on the size of these changes. For example an increase of 4.749% (±1.45%) is seen in block studies compared to an increase of 13.429% (±3.59) in studies using event related paradigms. The stimulus being investigated also seems to play a role with prolonged visual stimuli showing a small mean increase in glutamate of 2.318% (±1.227%) while at the other extreme, pain stimuli show a mean stimulation effect of 14.458% (±3.736%). These differences are discussed with regards to possible physiologic interpretations, as well experimental design implications.
Collapse
|
41
|
Talsma LJ, Broekhuizen JA, Huisman J, Slagter HA. No Evidence That Baseline Prefrontal Cortical Excitability (3T-MRS) Predicts the Effects of Prefrontal tDCS on WM Performance. Front Neurosci 2018; 12:481. [PMID: 30065625 PMCID: PMC6057111 DOI: 10.3389/fnins.2018.00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) is a promising tool to enhance working memory (WM) in clinical as well as healthy populations. Yet, tDCS does not affect everyone similarly: whereas tDCS improves WM in most individuals, some individuals do not, or actually show detriments in WM performance after stimulation. One hypothesis that has been put forward to account for individual differences in tDCS response is that baseline cortical excitability levels in the stimulated cortex may determine the strength and the direction of the effects of tDCS. Specifically, by locally affecting neuronal excitability, tDCS may interact with baseline cortical excitability levels, thereby pushing or pulling individuals toward or away from an optimal level of cortical functioning. In the current study, we put this hypothesis to the test with regard to prefrontal cortex stimulation and WM. In 20 healthy male participants, using magnetic resonance spectroscopy (MRS) at 3T, we measured concentrations of Glutamate and GABA in the lDLPFC and calculated individual Glutamate/GABA ratios as a measure for cortical excitability. Subsequently, in two stimulation sessions, we once applied anodal and once cathodal tDCS over the lDLPFC (20 min, 1 mA). Stimulation was always applied in the second block of three blocks of a WM updating task. Surprisingly, at the group-level, we found no effects of anodal or cathodal stimulation on WM performance. Yet, in line with previous studies, large individual variability was observed in the strength and direction of tDCS effects; whereas about half of the participants improved, the other half showed lower accuracy after stimulation. This was true for both anodal and cathodal tDCS. Nevertheless, contrary to our expectations, individual baseline prefrontal cortical excitability did not predict these individual differences in the effect of anodal or cathodal stimulation on WM accuracy. Future studies with larger sample sizes, which use higher magnetic field strengths (e.g., 7T) to measure cortical excitability and/or apply individualized stimulation protocols, are necessary to shed more light on the influence of baseline cortical excitability on effects of anodal and cathodal tDCS over lDLPFC on WM performance.
Collapse
Affiliation(s)
- Lotte J Talsma
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia A Broekhuizen
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| | - Job Huisman
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| | - Heleen A Slagter
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
42
|
Jelen LA, King S, Mullins PG, Stone JM. Beyond static measures: A review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia. J Psychopharmacol 2018; 32:497-508. [PMID: 29368979 DOI: 10.1177/0269881117747579] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormalities of the glutamate system are increasingly implicated in schizophrenia but their exact nature remains unknown. Proton magnetic resonance spectroscopy (1H-MRS), while fundamental in revealing glutamatergic alterations in schizophrenia, has, until recently, been significantly limited and thought to only provide static measures. Functional magnetic resonance spectroscopy (fMRS), which uses sequential scans for dynamic measurement of a range of brain metabolites in activated brain areas, has lately been applied to a variety of task or stimulus conditions, producing interesting insights into neurometabolite responses to neural activation. Here, we summarise the existing 1H-MRS studies of brain glutamate in schizophrenia. We then present a comprehensive review of research studies that have utilised fMRS, and lastly consider how fMRS methods might further the understanding of glutamatergic abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Luke A Jelen
- 1 The Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,2 South London and Maudsley NHS Foundation Trust, UK
| | - Sinead King
- 1 The Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Paul G Mullins
- 3 Bangor Imaging Unit, School of Psychology, Bangor University, Gwynedd, UK
| | - James M Stone
- 1 The Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
43
|
Henning A. Proton and multinuclear magnetic resonance spectroscopy in the human brain at ultra-high field strength: A review. Neuroimage 2017; 168:181-198. [PMID: 28712992 DOI: 10.1016/j.neuroimage.2017.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/27/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic Resonance Spectroscopy (MRS) allows for a non-invasive and non-ionizing determination of in vivo tissue concentrations and metabolic turn-over rates of more than 20 metabolites and compounds in the central nervous system of humans. The aim of this review is to give a comprehensive overview about the advantages, challenges and advances of ultra-high field MRS with regard to methodological development, discoveries and applications from its beginnings around 15 years ago up to the current state. The review is limited to human brain and spinal cord application at field strength of 7T and 9.4T and includes all relevant nuclei (1H, 31P, 13C).
Collapse
Affiliation(s)
- Anke Henning
- Max Plank Institute for Biological Cybernetics, Tübingen, Germany; Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany.
| |
Collapse
|