1
|
Goodkey K, Wischmeijer A, Perrin L, Watson AES, Qureshi L, Cordelli DM, Toni F, Gnazzo M, Benedicenti F, Elmaleh-Bergès M, Low KJ, Voronova A. Olfactory bulb anomalies in KBG syndrome mouse model and patients. BMC Med 2024; 22:158. [PMID: 38616269 PMCID: PMC11017579 DOI: 10.1186/s12916-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.
Collapse
Affiliation(s)
- Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada
| | - Anita Wischmeijer
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Adrianne E S Watson
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada
| | - Leenah Qureshi
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Duccio Maria Cordelli
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, UOC Neuropsichiatria Dell'età Pediatrica, Bologna, Italy
| | - Francesco Toni
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Programma Di Neuroradiologia Con Tecniche Ad Elevata Complessità (PNTEC), Bologna, Italy
| | - Maria Gnazzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Francesco Benedicenti
- Clinical Genetics Service and Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | | | - Karen J Low
- Department of Academic Child Health, Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
- Clinical Genetics Service, St. Michaels Hospital, Bristol, UK
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Women and Children's Health Research Institute, University of Alberta, 5-083 Edmonton Clinic Health Academy, Edmonton, AB, T6G 1C9, Canada.
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
2
|
Huang L, Hardyman F, Edwards M, Galliano E. Deprivation-Induced Plasticity in the Early Central Circuits of the Rodent Visual, Auditory, and Olfactory Systems. eNeuro 2024; 11:ENEURO.0435-23.2023. [PMID: 38195533 PMCID: PMC11059429 DOI: 10.1523/eneuro.0435-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Francesca Hardyman
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Megan Edwards
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| | - Elisa Galliano
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB23EL Cambridge, United Kingdom
| |
Collapse
|
3
|
Rallapalli H, Bayin NS, Goldman H, Maric D, Nieman BJ, Koretsky AP, Joyner AL, Turnbull DH. Cell specificity of Manganese-enhanced MRI signal in the cerebellum. Neuroimage 2023; 276:120198. [PMID: 37245561 PMCID: PMC10330770 DOI: 10.1016/j.neuroimage.2023.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States; Gurdon Institute, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Hannah Goldman
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Brian J Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Canada; Medical Biophysics, University of Toronto, Toronto, Canada; Ontario Institute for Cancer Research, Toronto, Canada
| | - Alan P Koretsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| | - Daniel H Turnbull
- Department of Radiology, NYU Langone Radiology - Center for Biomedical Imaging, New York University School of Medicine, 660 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
4
|
Tang H, Li Y, Tang W, Zhu J, Parker GC, Zhang JH. Endogenous Neural Stem Cell-induced Neurogenesis after Ischemic Stroke: Processes for Brain Repair and Perspectives. Transl Stroke Res 2023; 14:297-303. [PMID: 36057034 DOI: 10.1007/s12975-022-01078-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Ischemic stroke is a very common cerebrovascular accident that occurred in adults and causes higher risk of neural deficits. After ischemic stroke, patients are often left with severe neurological deficits. Therapeutic strategies for ischemic stroke might mitigate neuronal loss due to delayed neural cell death in the penumbra or seek to replace dead neural cells in the ischemic core. Currently, stem cell therapy is the most promising approach for inducing neurogenesis for neural repair after ischemic stroke. Stem cell treatments include transplantation of exogenous stem cells but also stimulating endogenous neural stem cells (NSCs) proliferation and differentiation into neural cells. In this review, we will discuss endogenous NSCs-induced neurogenesis after ischemic stroke and provide perspectives for the therapeutic effects of endogenous NSCs in ischemic stroke. Our review would inform future therapeutic development not only for patients with ischemic stroke but also with other neurological deficits.
Collapse
Affiliation(s)
- Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China
| | - Yao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Graham C Parker
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
5
|
Murray HC, Saar G, Bai L, Bouraoud N, Dodd S, Highet B, Ryan B, Curtis MA, Koretsky A, Belluscio L. Progressive Spread of Beta-amyloid Pathology in an Olfactory-driven Amyloid Precursor Protein Mouse Model. Neuroscience 2023; 516:113-124. [PMID: 36716914 PMCID: PMC10065898 DOI: 10.1016/j.neuroscience.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Years before Alzheimer's disease (AD) is diagnosed, patients experience an impaired sense of smell, and β-amyloid plaques accumulate within the olfactory mucosa and olfactory bulb (OB). The olfactory vector hypothesis proposes that external agents cause β-amyloid to aggregate and spread from the OB to connected downstream brain regions. To reproduce the slow accumulation of β-amyloid that occurs in human AD, we investigated the progressive accumulation of β-amyloid across the brain using a conditional mouse model that overexpresses a humanized mutant form of the amyloid precursor protein (hAPP) in olfactory sensory neurons. Using design-based stereology, we show the progressive accumulation of β-amyloid plaques within the OB and cortical olfactory regions with age. We also observe reduced OB volumes in these mice when hAPP expression begins prior-to but not post-weaning which we tracked using manganese-enhanced MRI. We therefore conclude that the reduced OB volume does not represent progressive degeneration but rather disrupted OB development. Overall, our data demonstrate that hAPP expression in the olfactory epithelium can lead to the accumulation and spread of β-amyloid through the olfactory system into the hippocampus, consistent with an olfactory system role in the early stages of β-amyloid-related AD progression.
Collapse
Affiliation(s)
- Helen C Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand; Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Galit Saar
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Li Bai
- Circuits, Synapses and Molecular Signaling Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Blake Highet
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand.
| | - Brigid Ryan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand.
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland 1023, New Zealand.
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
6
|
Li K, Figarella K, Su X, Kovalchuk Y, Gorzolka J, Neher JJ, Mojtahedi N, Casadei N, Hedrich UBS, Garaschuk O. Endogenous but not sensory-driven activity controls migration, morphogenesis and survival of adult-born juxtaglomerular neurons in the mouse olfactory bulb. Cell Mol Life Sci 2023; 80:98. [PMID: 36932186 PMCID: PMC10023654 DOI: 10.1007/s00018-023-04753-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023]
Abstract
The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons.
Collapse
Affiliation(s)
- Kaizhen Li
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Katherine Figarella
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Xin Su
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Yury Kovalchuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Jessika Gorzolka
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Jonas J Neher
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Nima Mojtahedi
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Center Tübingen, Tübingen, Germany
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
7
|
Kulason S, Ratnanather JT, Miller MI, Kamath V, Hua J, Yang K, Ma M, Ishizuka K, Sawa A. A comparative neuroimaging perspective of olfaction and higher-order olfactory processing: on health and disease. Semin Cell Dev Biol 2022; 129:22-30. [PMID: 34462249 PMCID: PMC9900497 DOI: 10.1016/j.semcdb.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.
Collapse
Affiliation(s)
- Sue Kulason
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - J Tilak Ratnanather
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael I Miller
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA; Johns Hopkins Schizophrenia Center, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Khodanovich MY, Anan’ina TV, Krutenkova EP, Akulov AE, Kudabaeva MS, Svetlik MV, Tumentceva YA, Shadrina MM, Naumova AV. Challenges and Practical Solutions to MRI and Histology Matching and Measurements Using Available ImageJ Software Tools. Biomedicines 2022; 10:1556. [PMID: 35884861 PMCID: PMC9313422 DOI: 10.3390/biomedicines10071556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Traditionally histology is the gold standard for the validation of imaging experiments. Matching imaging slices and histological sections and the precise outlining of corresponding tissue structures are difficult. Challenges are based on differences in imaging and histological slice thickness as well as tissue shrinkage and alterations after processing. Here we describe step-by-step instructions that might be used as a universal pathway to overlay MRI and histological images and for a correlation of measurements between imaging modalities. The free available (Fiji is just) ImageJ software tools were used for regions of interest transformation (ROIT) and alignment using a rat brain MRI as an example. The developed ROIT procedure was compared to a manual delineation of rat brain structures. The ROIT plugin was developed for ImageJ to enable an automatization of the image processing and structural analysis of the rodent brain.
Collapse
Affiliation(s)
- Marina Y. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Tatyana V. Anan’ina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Elena P. Krutenkova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Andrey E. Akulov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Avenue, 630090 Novosibirsk, Russia;
| | - Marina S. Kudabaeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Mikhail V. Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Yana A. Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Maria M. Shadrina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
| | - Anna V. Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Russia. 36, Lenina Ave., 634050 Tomsk, Russia; (T.V.A.); len-- (E.P.K.); (M.S.K.); (M.V.S.); (Y.A.T.); (M.M.S.); (A.V.N.)
- Department of Radiology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| |
Collapse
|
9
|
Liu L, Dodd S, Hunt RD, Pothayee N, Atanasijevic T, Bouraoud N, Maric D, Moseman EA, Gossa S, McGavern DB, Koretsky AP. Early detection of cerebrovascular pathology and protective antiviral immunity by MRI. eLife 2022; 11:e74462. [PMID: 35510986 PMCID: PMC9106335 DOI: 10.7554/elife.74462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) infections are a major cause of human morbidity and mortality worldwide. Even patients that survive, CNS infections can have lasting neurological dysfunction resulting from immune and pathogen induced pathology. Developing approaches to noninvasively track pathology and immunity in the infected CNS is crucial for patient management and development of new therapeutics. Here, we develop novel MRI-based approaches to monitor virus-specific CD8+ T cells and their relationship to cerebrovascular pathology in the living brain. We studied a relevant murine model in which a neurotropic virus (vesicular stomatitis virus) was introduced intranasally and then entered the brain via olfactory sensory neurons - a route exploited by many pathogens in humans. Using T2*-weighted high-resolution MRI, we identified small cerebral microbleeds as an early form of pathology associated with viral entry into the brain. Mechanistically, these microbleeds occurred in the absence of peripheral immune cells and were associated with infection of vascular endothelial cells. We monitored the adaptive response to this infection by developing methods to iron label and track individual virus specific CD8+ T cells by MRI. Transferred antiviral T cells were detected in the brain within a day of infection and were able to reduce cerebral microbleeds. These data demonstrate the utility of MRI in detecting the earliest pathological events in the virally infected CNS as well as the therapeutic potential of antiviral T cells in mitigating this pathology.
Collapse
Affiliation(s)
- Li Liu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Steve Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Ryan D Hunt
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Tatjana Atanasijevic
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - E Ashley Moseman
- Department of Immunology, Duke University School of MedicineDurhamUnited States
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Selamawit Gossa
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
10
|
Sun J, Chen L, Hu S, Song J, Wu J, Gu Y. Morphological basis of radial nerve dysfunction in newborns differs from that of no radial nerve dysfunction in adults in C5-C6-C7 injuries to the brachial plexus: a cadaveric study. Br J Neurosurg 2021; 35:643-649. [PMID: 34259110 DOI: 10.1080/02688697.2021.1947980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Injuries to the upper and middle trunks of brachial plexus result in dysfunction of radial nerves in newborns but do not in adults. We hypothesized that the radial nerve had a lower proportion of myelinated nerve fibers (MNFs) from the lower trunk in newborns than in adults, and in newborns those MNFs were less developed than MNFs in the radial nerve from the middle and upper trunks. METHODS We dissected bilateral brachial plexus of six newborn and six adult cadavers. The radial nerve and its fascicles were separated proximally to posterior divisions of the upper, middle and lower trunks, and fascicles of the radial nerve were harvested from three trunks to calculate respective percentage of MNFs accounting for the total number of MNFs in the radial nerve. We determined diameters of axons and g-ratios of MNFs in the radial nerve from three trunks. RESULTS Compared with adults, the percentage of MNFs in the radial nerve from the lower trunk was lower (p < 0.05), from the middle trunk higher (p < 0.05) and from the upper trunk similar (p > 0.05) in newborns, though MNF counts from three trunks were higher in newborns, respectively (p < 0.01, all). In newborns, MNFs in the radial nerve from the lower trunk had smaller axonal diameters and higher g-ratios than those from the middle and upper trunks (p < 0.017, all), while in adults there were no such differences. CONCLUSIONS Lower proportion of MNFs in the radial nerve from the lower trunk in newborns than in adults, and in newborns immaturity of MNFs from the lower trunk relative to MNFs from the middle and upper trunks may be the major morphological basis of difference in clinical appearances of radial nerve palsy caused by injuries to C5-C6-C7 between newborns and adults.
Collapse
Affiliation(s)
- Jiayu Sun
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Liang Chen
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Shaonan Hu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jie Song
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jixin Wu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yudong Gu
- Department of Hand Surgery, Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| |
Collapse
|
11
|
Tissue-Specific Ferritin- and GFP-Based Genetic Vectors Visualize Neurons by MRI in the Intact and Post-Ischemic Rat Brain. Int J Mol Sci 2020; 21:ijms21238951. [PMID: 33255702 PMCID: PMC7728074 DOI: 10.3390/ijms21238951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Neurogenesis is considered to be a potential brain repair mechanism and is enhanced in stroke. It is difficult to reconstruct the neurogenesis process only from the histological sections taken from different animals at different stages of brain damage and restoration. Study of neurogenesis would greatly benefit from development of tissue-specific visualization probes. (2) Purpose: The study aimed to explore if overexpression of ferritin, a nontoxic iron-binding protein, under a doublecortin promoter can be used for non-invasive visualization of neurogenesis using magnetic resonance imaging (MRI). (3) Methods: Ferritin heavy chain (FerrH) was expressed in the adeno-associated viral backbone (AAV) under the doublecortin promoter (pDCX), specific for young neurons, in the viral construct AAV-pDCX-FerrH. Expression of the enhanced green fluorescent protein (eGFP) was used as an expression control (AAV-pDCX-eGFP). The viral vectors or phosphate-buffered saline (PBS) were injected intracerebrally into 18 adult male Sprague–Dawley rats. Three days before injection, rats underwent transient middle-cerebral-artery occlusion or sham operation. Animals were subjected to In vivo MRI study before surgery and on days 7, 14, 21, and 28 days after injection using a Bruker BioSpec 11.7 T scanner. Brain sections obtained on day 28 after injection were immunostained for ferritin, young (DCX) and mature (NeuN) neurons, and activated microglia/macrophages (CD68). Additionally, RT-PCR was performed to confirm ferritin expression. (4) Results: T2* images in post-ischemic brains of animals injected with AAV-pDCX-FerrH showed two distinct zones of MRI signal hypointensity in the ipsilesioned hemisphere starting from 14 days after viral injection—in the ischemic lesion and near the lateral ventricle and subventricular zone (SVZ). In sham-operated animals, only one zone of hypointensity near the lateral ventricle and SVZ was revealed. Immunochemistry showed that ferritin-expressing cells in ischemic lesions were macrophages (88.1%), while ferritin-expressing cells near the lateral ventricle in animals both after ischemia and sham operation were mostly mature (55.7% and 61.8%, respectively) and young (30.6% and 7.1%, respectively) neurons. RT-PCR confirmed upregulated expression of ferritin in the caudoputamen and corpus callosum. Surprisingly, in animals injected with AAV-pDCX-eGFP we similarly observed two zones of hypointensity on T2* images. Cellular studies also showed the presence of mature (81.5%) and young neurons (6.1%) near the lateral ventricle in both postischemic and sham-operated animals, while macrophages in ischemic lesions were ferritin-positive (98.2%). (5) Conclusion: Ferritin overexpression induced by injection of AAV-pDCX-FerrH was detected by MRI using T2*-weighted images, which was confirmed by immunochemistry showing ferritin in young and mature neurons. Expression of eGFP also caused a comparable reduced MR signal intensity in T2*-weighted images. Additional studies are needed to investigate the potential and tissue-specific features of the use of eGFP and ferritin expression in MRI studies.
Collapse
|
12
|
Shuboni-Mulligan DD, Chakravarty S, Mallett CL, Wolf AM, Dmitriev PM, Forton SM, Shapiro EM. In vivo serial MRI of age-dependent neural progenitor cell migration in the rat brain. Neuroimage 2019; 199:153-159. [PMID: 31152841 DOI: 10.1016/j.neuroimage.2019.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
The subventricular zone (SVZ) is a neurogenic niche in the mammalian brain, giving rise to migratory neural progenitor cells (NPC). In rodents, it is well-established that neurogenesis decreases with aging. MRI-based cell tracking has been used to measure various aspects of neurogenesis and NPC migration in rodents, yet it has not yet been validated in the context of age-related decrease in neurogenesis. This validation is critical to using these MRI techniques to study changes in neurogenesis that arise in diseases prevalent in aging populations and their combination with advanced cellular therapeutic approaches aiming to combat neurodegeneration. As such, in this work we used MRI-based cell tracking to measure endogenous neurogenesis and cell migration from the SVZ along the rostral migratory stream to the olfactory bulb, for 12 days duration, in rats aged 9 weeks to 2 years old. To enable the specific detection of NPCs by MRI, we injected micron sized particles of iron oxide (MPIOs) into the lateral ventricle to endogenously label cells within the SVZ, which then appeared as hypo-intensive spots within MR images. In vivo MRI data showed that the rate of NPC migration was significantly different between all ages examined, with decreases in the distance traveled and migration rate as age progressed. The total number of MPIO-labeled cells within the olfactory bulb on day 12, was significantly decreased when compared across ages in ex vivo high-resolution scans. We also demonstrate for the first-time, provocative preliminary data suggesting age-dependent MPIO uptake within the dentate gyrus (DG) as well. Histology to identify doublecortin-positive NPCs, verified the decrease in cell labeling as a function of aging, for both regions. The dramatic reduction of NPC labeling within the SVZ observed with MRI, validates the sensitivity of MRI-based cell tracking to neurogenic potential and demonstrates the importance of understanding the impact of age on the relationship of NPC and disease.
Collapse
Affiliation(s)
| | - Shatadru Chakravarty
- Department of Radiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Christiane L Mallett
- Department of Radiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alexander M Wolf
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | | | - Stacey M Forton
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Erik M Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Mallett CL, Shuboni-Mulligan DD, Shapiro EM. Tracking Neural Progenitor Cell Migration in the Rodent Brain Using Magnetic Resonance Imaging. Front Neurosci 2019; 12:995. [PMID: 30686969 PMCID: PMC6337062 DOI: 10.3389/fnins.2018.00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
The study of neurogenesis and neural progenitor cells (NPCs) is important across the biomedical spectrum, from learning about normal brain development and studying disease to engineering new strategies in regenerative medicine. In adult mammals, NPCs proliferate in two main areas of the brain, the subventricular zone (SVZ) and the subgranular zone, and continue to migrate even after neurogenesis has ceased within the rest of the brain. In healthy animals, NPCs migrate along the rostral migratory stream (RMS) from the SVZ to the olfactory bulb, and in diseased animals, NPCs migrate toward lesions such as stroke and tumors. Here we review how MRI-based cell tracking using iron oxide particles can be used to monitor and quantify NPC migration in the intact rodent brain, in a serial and relatively non-invasive fashion. NPCs can either be labeled directly in situ by injecting particles into the lateral ventricle or RMS, where NPCs can take up particles, or cells can be harvested and labeled in vitro, then injected into the brain. For in situ labeling experiments, the particle type, injection site, and image analysis methods have been optimized and cell migration toward stroke and multiple sclerosis lesions has been investigated. Delivery of labeled exogenous NPCs has allowed imaging of cell migration toward more sites of neuropathology, which may enable new diagnostic and therapeutic opportunities for as-of-yet untreatable neurological diseases.
Collapse
Affiliation(s)
- Christiane L. Mallett
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Dorela D. Shuboni-Mulligan
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Erik M. Shapiro
- Molecular and Cellular Imaging Laboratory, Department of Radiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Gundelach J, Koch M. Redirection of neuroblast migration from the rostral migratory stream into a lesion in the prefrontal cortex of adult rats. Exp Brain Res 2018; 236:1181-1191. [PMID: 29468384 DOI: 10.1007/s00221-018-5209-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/17/2018] [Indexed: 01/14/2023]
Abstract
Clinical treatment of structural brain damage today is largely limited to symptomatic approaches and the avoidance of secondary injury. However, neuronal precursor cells are constantly produced within specified regions of the mammalian brain throughout life. Here we evaluate the potential of the known chemoattractive properties of the glycoprotein laminin on neuroblasts to relocate the cells into damaged brain areas. Injection of a thin laminin tract, leading from the rostral migratory stream to an excitotoxic lesion within the medial prefrontal cortex of rats, enabled neuroblasts to migrate away from their physiological route towards the olfactory bulb into the lesion site. Once they reached the damaged tissue, they migrated further in a non-uniform orientation within the lesion. Furthermore, our data indicate that the process of diverted migration is still active 6 weeks after the treatment and that at least some of the neuroblasts are capable of maturing into adult neurons.
Collapse
Affiliation(s)
- Jannis Gundelach
- Department of Neuropharmacology, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany.
| | - Michael Koch
- Department of Neuropharmacology, Center for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| |
Collapse
|