1
|
Sajonz BEA, Frommer ML, Reisert M, Blazhenets G, Schröter N, Rau A, Prokop T, Reinacher PC, Rijntjes M, Urbach H, Meyer PT, Coenen VA. Disbalanced recruitment of crossed and uncrossed cerebello-thalamic pathways during deep brain stimulation is predictive of delayed therapy escape in essential tremor. Neuroimage Clin 2024; 41:103576. [PMID: 38367597 PMCID: PMC10944187 DOI: 10.1016/j.nicl.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.
Collapse
Affiliation(s)
- Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Marvin L Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Schröter
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Michel Rijntjes
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for Deep Brain Stimulation, University of Freiburg, Germany
| |
Collapse
|
2
|
Neufeld J, Maier S, Revers M, Reisert M, Kuja-Halkola R, Tebartz van Elst L, Bölte S. Reduced brain connectivity along the autism spectrum controlled for familial confounding by co-twin design. Sci Rep 2023; 13:13124. [PMID: 37573391 PMCID: PMC10423238 DOI: 10.1038/s41598-023-39876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/01/2023] [Indexed: 08/14/2023] Open
Abstract
Previous studies on brain connectivity correlates of autism have often focused on selective connections and yielded inconsistent results. By applying global fiber tracking and utilizing a within-twin pair design, we aimed to contribute to a more unbiased picture of white matter connectivity in association with clinical autism and autistic traits. Eighty-seven twin pairs (n = 174; 55% monozygotic; 24 with clinical autism) underwent diffusion tensor imaging. Linear regressions assessed within-twin pair associations between structural brain connectivity of anatomically defined brain regions and both clinical autism and autistic traits. These were explicitly adjusted for IQ, other neurodevelopmental/psychiatric conditions and multiple testing, and implicitly for biological sex, age, and all genetic and environmental factors shared by twins. Both clinical autism and autistic traits were associated with reductions in structural connectivity. Twins fulfilling diagnostic criteria for clinical autism had decreased brainstem-cuneus connectivity compared to their co-twins without clinical autism. Further, twins with higher autistic traits had decreased connectivity of the left hippocampus with the left fusiform and parahippocampal areas. These associations were also significant in dizygotic twins alone. Reduced brainstem-cuneus connectivity might point towards alterations in low-level visual processing in clinical autism while higher autistic traits seemed to be more associated with reduced connectivity in networks involving the hippocampus and the fusiform gyrus, crucial especially for processing of faces and other (higher order) visual processing. The observed associations were likely influenced by both genes and environment.
Collapse
Affiliation(s)
- Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health & Stockholm Health Care Services, Karolinska Institutet & Region Stockholm, Stockholm, Sweden.
| | - Simon Maier
- Department for Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center University of Freiburg, Freiburg, Germany
| | - Mirian Revers
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health & Stockholm Health Care Services, Karolinska Institutet & Region Stockholm, Stockholm, Sweden
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center of the University of Freiburg, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ludger Tebartz van Elst
- Department for Psychiatry and Psychotherapy, Section for Experimental Neuropsychiatry, Medical Center University of Freiburg, Freiburg, Germany
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health & Stockholm Health Care Services, Karolinska Institutet & Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| |
Collapse
|
3
|
Weiller C, Reisert M, Glauche V, Musso M, Rijntjes M. The dual-loop model for combining external and internal worlds in our brain. Neuroimage 2022; 263:119583. [PMID: 36007823 DOI: 10.1016/j.neuroimage.2022.119583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Intelligible communication with others as well as covert conscious thought requires us to combine a representation of the external world with inner abstract concepts. Interaction with the external world through sensory perception and motor execution is arranged as sequences in time and space, whereas abstract thought and invariant categories are independent of the moment. Using advanced MRI-based fibre tracking on high resolution data from 183 participants in the Human Connectome Project, we identified two large supramodal systems comprising specific cortical regions and their connecting fibre tracts; a dorsal one for processing of sequences in time and space, and a ventral one for concepts and categories. We found that two hub regions exist in the executive front and the perceptive back of the brain where these two cognitive processes converge, constituting a dual-loop model. The hubs are located in the onto- and phylogenetically youngest regions of the cortex. We propose that this hub feature serves as the neural substrate for the more abstract sense of syntax in humans, i.e. for the system populating sequences with content in all cognitive domains. The hubs bring together two separate systems (dorsal and ventral) at the front and the back of the brain and create a closed-loop. The closed-loop facilitates recursivity and forethought, which we use twice; namely, for communication with others about things that are not there and for covert thought.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany.
| | - Marco Reisert
- Department of Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| | - Volkmar Glauche
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| | - Mariachristina Musso
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center, Faculty of Medicine, University of Freiburg; Breisacher Street 64, Freiburg D- 79104, Germany
| |
Collapse
|
4
|
Ciavarro M, Grande E, Bevacqua G, Morace R, Ambrosini E, Pavone L, Grillea G, Vangelista T, Esposito V. Structural Brain Network Reorganization Following Anterior Callosotomy for Colloid Cysts: Connectometry and Graph Analysis Results. Front Neurol 2022; 13:894157. [PMID: 35923826 PMCID: PMC9340207 DOI: 10.3389/fneur.2022.894157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction:The plasticity of the neural circuits after injuries has been extensively investigated over the last decades. Transcallosal microsurgery for lesions affecting the third ventricle offers an interesting opportunity to investigate the whole-brain white matter reorganization occurring after a selective resection of the genu of the corpus callosum (CC).MethodDiffusion MRI (dMRI) data and neuropsychological testing were collected pre- and postoperatively in six patients with colloid cysts, surgically treated with a transcallosal-transgenual approach. Longitudinal connectometry analysis on dMRI data and graph analysis on structural connectivity matrix were implemented to analyze how white matter pathways and structural network topology reorganize after surgery.ResultsAlthough a significant worsening in cognitive functions (e.g., executive and memory functioning) at early postoperative, a recovery to the preoperative status was observed at 6 months. Connectometry analysis, beyond the decrease of quantitative anisotropy (QA) near the resection cavity, showed an increase of QA in the body and forceps major CC subregions, as well as in the left intra-hemispheric corticocortical associative fibers. Accordingly, a reorganization of structural network topology was observed between centrality increasing in the left hemisphere nodes together with a rise in connectivity strength among mid and posterior CC subregions and cortical nodes.ConclusionA structural reorganization of intra- and inter-hemispheric connective fibers and structural network topology were observed following the resection of the genu of the CC. Beyond the postoperative transient cognitive impairment, it could be argued anterior CC resection does not preclude neural plasticity and may subserve the long-term postoperative cognitive recovery.
Collapse
Affiliation(s)
- Marco Ciavarro
- Mediterranean Neurological Institute Neuromed (IRCCS) Neuromed, Pozzilli, Italy
- *Correspondence: Marco Ciavarro
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele d'Annunzio University, Chieti, Italy
| | | | - Roberta Morace
- Mediterranean Neurological Institute Neuromed (IRCCS) Neuromed, Pozzilli, Italy
| | - Ettore Ambrosini
- Department of General Psychology, University of Padua, Padua, Italy
- Department of Neuroscience, University of Padua, Padua, Italy
- Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Luigi Pavone
- Mediterranean Neurological Institute Neuromed (IRCCS) Neuromed, Pozzilli, Italy
| | - Giovanni Grillea
- Mediterranean Neurological Institute Neuromed (IRCCS) Neuromed, Pozzilli, Italy
| | - Tommaso Vangelista
- Mediterranean Neurological Institute Neuromed (IRCCS) Neuromed, Pozzilli, Italy
| | - Vincenzo Esposito
- Mediterranean Neurological Institute Neuromed (IRCCS) Neuromed, Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Koch PJ, Girard G, Brügger J, Cadic-Melchior AG, Beanato E, Park CH, Morishita T, Wessel MJ, Pizzolato M, Canales-Rodríguez EJ, Fischi-Gomez E, Schiavi S, Daducci A, Piredda GF, Hilbert T, Kober T, Thiran JP, Hummel FC. Evaluating reproducibility and subject-specificity of microstructure-informed connectivity. Neuroimage 2022; 258:119356. [PMID: 35659995 DOI: 10.1016/j.neuroimage.2022.119356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Tractography enables identifying and evaluating the healthy and diseased brain's white matter pathways from diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the performance of these techniques is the lack of ground truth brain data. In this study, we compared the performance of two relevant microstructure-informed tractography methods, SIFT2 and COMMIT, by assessing the subject specificity and reproducibility of their derived white matter pathways. Specifically, twenty healthy young subjects were scanned at eight different time points at two different sites. Subject specificity and reproducibility were evaluated using the whole-brain connectomes and a subset of 29 white matter bundles. Our results indicate that although the raw tractograms are more vulnerable to the presence of false-positive connections, they are highly reproducible, suggesting that the estimation bias is subject-specific. This high reproducibility was preserved when microstructure-informed tractography algorithms were used to filter the raw tractograms. Moreover, the resulting track-density images depicted a more uniform coverage of streamlines throughout the white matter, suggesting that these techniques could increase the biological meaning of the estimated fascicles. Notably, we observed an increased subject specificity by employing connectivity pre-processing techniques to reduce the underlaying noise and the data dimensionality (using principal component analysis), highlighting the importance of these tools for future studies. Finally, no strong bias from the scanner site or time between measurements was found. The largest intraindividual variance originated from the sole repetition of data measurements (inter-run).
Collapse
Affiliation(s)
- Philipp J Koch
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Neurology, University of Lübeck, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, 23562 Lübeck, Germany
| | - Gabriel Girard
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| | - Julia Brügger
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Andéol G Cadic-Melchior
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Marco Pizzolato
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Elda Fischi-Gomez
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Translational Machine Learning Lab, Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Simona Schiavi
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Alessandro Daducci
- Diffusion Imaging and Connectivity Estimation (DICE) Lab, Department of Computer Science, University of Verona, Verona, Italy
| | - Gian Franco Piredda
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Tom Hilbert
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Tobias Kober
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- CIBM Center for Biomedical Imaging, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland; Clinical Neuroscience, University Hospital of Geneva (HUG), Geneva, Switzerland
| |
Collapse
|
6
|
Nickel K, Perlov E, Reisert M, Runge K, Friedel E, Denzel D, Ebert D, Endres D, Domschke K, Tebartz van Elst L, Maier S. Altered transcallosal fiber count and volume in high-functioning adults with autism spectrum disorder. Psychiatry Res Neuroimaging 2022; 322:111464. [PMID: 35220205 DOI: 10.1016/j.pscychresns.2022.111464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
An altered pattern of information processing has been hypothesized in autism spectrum disorder (ASD), characterized by enhanced local network connectivity and reduced long-distance communication. Previous findings of impaired white matter integrity in the genu and the body of the corpus callosum already indicated reduced long-distance connectivity in patients with ASD. However, it remained unclear how this reduced white matter integrity affects the structural connectivity of the corresponding brain areas. To this end, we analyzed magnetic resonance images (MRI) from 30 participants with high-functioning ASD and 30 typically developed individuals using a global tracking approach to estimate the fiber count and volume of the transcallosal fiber tracts of the five corpus callosum subsections. A reduced fiber count and fiber volume in the anterior subsection of the corpus callosum was detected, supporting the hypothesis of reduced long-distance connectivity in ASD.
Collapse
Affiliation(s)
- Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Evgeniy Perlov
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Luzerner Psychiatrie, Hospital St. Urban, St. Urban, Switzerland
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evelyn Friedel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Denzel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Ebert
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Maier S, Joos A, Tebartz van Elst L, Ebert D, Endres D, Domschke K, Lahmann C, Zeeck A, Runge K, Denzel D, Reisert M, Nickel K. Reduced structural connectivity in the corpus callosum in patients with anorexia nervosa. EUROPEAN EATING DISORDERS REVIEW 2022; 30:341-352. [DOI: 10.1002/erv.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Andreas Joos
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
- Center for Basics in Neuromodulation, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Claas Lahmann
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Almut Zeeck
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Dominik Denzel
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany
| |
Collapse
|
8
|
Coenen VA, Sajonz BE, Reinacher PC, Kaller CP, Urbach H, Reisert M. A detailed analysis of anatomical plausibility of crossed and uncrossed streamline rendition of the dentato-rubro-thalamic tract (DRT(T)) in a commercial stereotactic planning system. Acta Neurochir (Wien) 2021; 163:2809-2824. [PMID: 34181083 PMCID: PMC8437929 DOI: 10.1007/s00701-021-04890-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Background An increasing number of neurosurgeons use display of the dentato-rubro-thalamic tract (DRT) based on diffusion weighted imaging (dMRI) as basis for their routine planning of stimulation or lesioning approaches in stereotactic tremor surgery. An evaluation of the anatomical validity of the display of the DRT with respect to modern stereotactic planning systems and across different tracking environments has not been performed. Methods Distinct dMRI and anatomical magnetic resonance imaging (MRI) data of high and low quality from 9 subjects were used. Six subjects had repeated MRI scans and therefore entered the analysis twice. Standardized DICOM structure templates for volume of interest definition were applied in native space for all investigations. For tracking BrainLab Elements (BrainLab, Munich, Germany), two tensor deterministic tracking (FT2), MRtrix IFOD2 (https://www.mrtrix.org), and a global tracking (GT) approach were used to compare the display of the uncrossed (DRTu) and crossed (DRTx) fiber structure after transformation into MNI space. The resulting streamlines were investigated for congruence, reproducibility, anatomical validity, and penetration of anatomical way point structures. Results In general, the DRTu can be depicted with good quality (as judged by waypoints). FT2 (surgical) and GT (neuroscientific) show high congruence. While GT shows partly reproducible results for DRTx, the crossed pathway cannot be reliably reconstructed with the other (iFOD2 and FT2) algorithms. Conclusion Since a direct anatomical comparison is difficult in the individual subjects, we chose a comparison with two research tracking environments as the best possible “ground truth.” FT2 is useful especially because of its manual editing possibilities of cutting erroneous fibers on the single subject level. An uncertainty of 2 mm as mean displacement of DRTu is expectable and should be respected when using this approach for surgical planning. Tractographic renditions of the DRTx on the single subject level seem to be still illusive.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany.
- Medical Faculty of Freiburg University, Freiburg, Germany.
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Bastian E Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Christoph P Kaller
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - Horst Urbach
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - M Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Radiology - Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
9
|
Coenen VA, Döbrössy MD, Teo SJ, Wessolleck J, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Spittau B, Leupold J, von Elverfeldt D, Schlaepfer TE, Reisert M. Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI. Brain Struct Funct 2021; 227:23-47. [PMID: 34482443 PMCID: PMC8741702 DOI: 10.1007/s00429-021-02373-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Uncertainties
concerning anatomy and function of cortico-subcortical projections have arisen during the recent years. A clear distinction between cortico-subthalamic (hyperdirect) and cortico-tegmental projections (superolateral medial forebrain bundle, slMFB) so far is elusive. Deep Brain Stimulation (DBS) of the slMFB (for major depression, MD and obsessive compulsive disorders, OCD) has on the one hand been interpreted as actually involving limbic (prefrontal) hyperdirect pathways. On the other hand slMFB’s stimulation region in the mesencephalic ventral tegmentum is said to impact on other structures too, going beyond the antidepressant (or anti OCD) efficacy of sole modulation of the cortico-tegmental reward-associated pathways. We have here used a normative diffusion MRT template (HCP, n = 80) for long-range tractography and augmented this dataset with ex-vivo high resolution data (n = 1) in a stochastic brain space. We compared this data with histological information and used the high resolution ex-vivo data set to scrutinize the mesencephalic tegmentum for small fiber pathways present. Our work resolves an existing ambiguity between slMFB and prefrontal hyperdirect pathways which—for the first time—are described as co-existent. DBS of the slMFB does not appear to modulate prefrontal hyperdirect cortico-subthalamic but rather cortico-tegmental projections. Smaller fiber structures in the target region—as far as they can be discerned—appear not to be involved in slMFB DBS. Our work enfeebles previous anatomical criticism and strengthens the position of the slMFB DBS target for its use in MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany. .,Medical Faculty of Freiburg University, Freiburg, Germany. .,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany. .,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany.
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Wessolleck
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of Freiburg University, Freiburg, Germany.,Institute of Forensic Medicine, Medical Center of Freiburg University, Freiburg, Germany
| | - Björn Spittau
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, Bielefeld, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas E Schlaepfer
- Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.,Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center of Freiburg University, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Weiller C, Reisert M, Peto I, Hennig J, Makris N, Petrides M, Rijntjes M, Egger K. The ventral pathway of the human brain: A continuous association tract system. Neuroimage 2021; 234:117977. [PMID: 33757905 DOI: 10.1016/j.neuroimage.2021.117977] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
The brain hemispheres can be divided into an upper dorsal and a lower ventral system. Each system consists of distinct cortical regions connected via long association tracts. The tracts cross the central sulcus or the limen insulae to connect the frontal lobe with the posterior brain. The dorsal stream is associated with sensorimotor mapping. The ventral stream serves structural analysis and semantics in different domains, as visual, acoustic or space processing. How does the prefrontal cortex, regarded as the platform for the highest level of integration, incorporate information from these different domains? In the current view, the ventral pathway consists of several separate tracts, related to different modalities. Originally the assumption was that the ventral path is a continuum, covering all modalities. The latter would imply a very different anatomical basis for cognitive and clinical models of processing. To further define the ventral connections, we used cutting-edge in vivo global tractography on high-resolution diffusion tensor imaging (DTI) data from 100 normal subjects from the human connectome project and ex vivo preparation of fiber bundles in the extreme capsule of 8 humans using the Klingler technique. Our data showed that ventral stream tracts, traversing through the extreme capsule, form a continuous band of fibers that fan out anteriorly to the prefrontal cortex, and posteriorly to temporal, occipital and parietal cortical regions. Introduction of additional volumes of interest in temporal and occipital lobes differentiated between the inferior fronto-occipital fascicle (IFOF) and uncinate fascicle (UF). Unequivocally, in both experiments, in all subjects a connection between the inferior frontal and middle-to-posterior temporal cortical region, otherwise known as the temporo-frontal extreme capsule fascicle (ECF) from nonhuman primate brain-tracing experiments was identified. In the human brain, this tract connects the language domains of "Broca's area" and "Wernicke's area". The differentiation in the three tracts, IFOF, UF and ECF seems arbitrary, all three pass through the extreme capsule. Our data show that the ventral pathway represents a continuum. The three tracts merge seamlessly and streamlines showed considerable overlap in their anterior and posterior course. Terminal maps identified prefrontal cortex in the frontal lobe and association cortex in temporal, occipital and parietal lobes as streamline endings. This anatomical substrate potentially facilitates the prefrontal cortex to integrate information across different domains and modalities.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany.
| | - Marco Reisert
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivo Peto
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jürgen Hennig
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikos Makris
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Hosp JA, Reisert M, von Kageneck C, Rijntjes M, Weiller C. Approximation to pain-signaling network in humans by means of migraine. Hum Brain Mapp 2021; 42:766-779. [PMID: 33112461 PMCID: PMC7814755 DOI: 10.1002/hbm.25261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Nociceptive signals are processed within a pain-related network of the brain. Migraine is a rather specific model to gain insight into this system. Brain networks may be described by white matter tracts interconnecting functionally defined gray matter regions. Here, we present an overview of the migraine-related pain network revealed by this strategy. Based on diffusion tensor imaging data from subjects in the Human Connectome Project (HCP) database, we used a global tractography approach to reconstruct white matter tracts connecting brain regions that are known to be involved in migraine-related pain signaling. This network includes an ascending nociceptive pathway, a descending modulatory pathway, a cortical processing system, and a connection between pain-processing and modulatory areas. The insular cortex emerged as the central interface of this network. Direct connections to visual and auditory cortical association fields suggest a potential neural basis of phono- or photophobia and aura phenomena. The intra-axonal volume (Vintra ) as a measure of fiber integrity based on diffusion microstructure was extracted using an innovative supervised machine learning approach in form of a Bayesian estimator. Self-reported pain levels of HCP subjects were positively correlated with tract integrity in subcortical tracts. No correlation with pain was found for the cortical processing systems.
Collapse
Affiliation(s)
- Jonas Aurel Hosp
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| | - Marco Reisert
- Faculty of Medicine, Department of Stereotactic and Functional NeurosurgeryUniversity of FreiburgFreiburgGermany
- Department of Medical PhysicsFreiburg University Medical CenterFreiburgGermany
| | - Charlotte von Kageneck
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| | - Michel Rijntjes
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| | - Cornelius Weiller
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| |
Collapse
|
12
|
Reisert M, Weiller C, Hosp JA. Displaying the autonomic processing network in humans - a global tractography approach. Neuroimage 2021; 231:117852. [PMID: 33582271 DOI: 10.1016/j.neuroimage.2021.117852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of the internal homeostasis is modulated by the central autonomic system. So far, the view of this system is determined by animal and human research focusing on cortical and subcortical grey substance regions. To provide an overview based on white matter architecture, we used a global tractography approach to reconstruct a network of tracts interconnecting brain regions that are known to be involved in autonomic processing. Diffusion weighted imaging data were obtained from subjects of the human connectome project (HCP) database. Resulting tracts are in good agreement with previous studies assuming a division of the central autonomic system into a cortical (CAN) and a subcortical network (SAN): the CAN consist of three subsystems that encompass all cerebral lobes and overlap within the insular cortex: a parieto-anterior-temporal pathway (PATP), an occipito-posterior-temporo-frontal pathway (OPTFP) and a limbic pathway. The SAN on the other hand connects the hypothalamus to the periaqueductal grey and locus coeruleus, before it branches into a dorsal and a lateral part that target autonomic nuclei in the rostral medulla oblongata. Our approach furthermore reveals how the CAN and SAN are interconnected: the hypothalamus can be considered as the interface-structure of the SAN, whereas the insula is the central hub of the CAN. The hypothalamus receives input from prefrontal cortical fields but is also connected to the ventral apex of the insular cortex. Thus, a holistic view of the central autonomic system could be created that may promote the understanding of autonomic signaling under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- M Reisert
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medical Physics, Freiburg University Medical Center, Freiburg, Germany
| | - C Weiller
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - J A Hosp
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
13
|
Konopleva L, Il'yasov KA, Teo SJ, Coenen VA, Kaller CP, Reisert M. Robust intra-individual estimation of structural connectivity by Principal Component Analysis. Neuroimage 2020; 226:117483. [PMID: 33271269 DOI: 10.1016/j.neuroimage.2020.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
Fiber tractography based on diffusion-weighted MRI provides a non-invasive characterization of the structural connectivity of the human brain at the macroscopic level. Quantification of structural connectivity strength is challenging and mainly reduced to "streamline counting" methods. These are however highly dependent on the topology of the connectome and the particular specifications for seeding and filtering, which limits their intra-subject reproducibility across repeated measurements and, in consequence, also confines their validity. Here we propose a novel method for increasing the intra-subject reproducibility of quantitative estimates of structural connectivity strength. To this end, the connectome is described by a large matrix in positional-orientational space and reduced by Principal Component Analysis to obtain the main connectivity "modes". It was found that the proposed method is quite robust to structural variability of the data.
Collapse
Affiliation(s)
- Lidia Konopleva
- Institute of Physics, Kazan (Volga Region) Federal University, Russia.
| | - Kamil A Il'yasov
- Institute of Physics, Kazan (Volga Region) Federal University, Russia
| | - Shi Jia Teo
- Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Volker A Coenen
- Department of Stereotaxy and Functional Neurosurgery, Medical Center, University of Freiburg, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Medical Center, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Marco Reisert
- Department of Stereotaxy and Functional Neurosurgery, Medical Center, University of Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Hamamci A. Cellular Automata Tractography: Fast Geodesic Diffusion MR Tractography and Connectivity Based Segmentation on the GPU. Neuroinformatics 2020; 18:25-41. [PMID: 30997599 DOI: 10.1007/s12021-019-09425-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Geodesic based tractography on diffusion magnetic resonance data is a method to devise long distance connectivities among the brain regions. In this study, cellular automata technique is applied to the geodesic tractography problem and the algorithm is implemented on a graphics processing unit. Cellular automaton based method is preferable to current techniques due to its parallel nature and ability to solve the connectivity based segmentation problem with the same computational complexity, which has important applications in neuroimaging. An application to prior-less tracking and connectivity based segmentation of corpus callosum fibers is presented as an example. A geodesic tractography based corpus callosum atlas is provided, which reveals high projections to the cortical language areas. The developed method not only allows fast computation especially for segmentation but also provides a powerful and intuitive framework, suitable to derive new algorithms to perform connectivity calculations and allowing novel applications.
Collapse
Affiliation(s)
- Andac Hamamci
- Faculty of Engineering, Department of Biomedical Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
15
|
Chirchiglia D, Chirchiglia P, Latorre D. An update of the imaging and diagnostic techniques in use for the preservation of eloquent areas in brain tumor surgery – An opinion paper. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Morgan VL, Rogers BP, Anderson AW, Landman BA, Englot DJ. Divergent network properties that predict early surgical failure versus late recurrence in temporal lobe epilepsy. J Neurosurg 2020; 132:1324-1333. [PMID: 30952126 PMCID: PMC6778487 DOI: 10.3171/2019.1.jns182875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objectives of this study were to identify functional and structural network properties that are associated with early versus long-term seizure outcomes after mesial temporal lobe epilepsy (mTLE) surgery and to determine how these compare to current clinically used methods for seizure outcome prediction. METHODS In this case-control study, 26 presurgical mTLE patients and 44 healthy controls were enrolled to undergo 3-T MRI for functional and structural connectivity mapping across an 8-region network of mTLE seizure propagation, including the hippocampus (left and right), insula (left and right), thalamus (left and right), one midline precuneus, and one midline mid-cingulate. Seizure outcome was assessed annually for up to 3 years. Network properties and current outcome prediction methods related to early and long-term seizure outcome were investigated. RESULTS A network model was previously identified across 8 patients with seizure-free mTLE. Results confirmed that whole-network propagation connectivity patterns inconsistent with the mTLE model predict early surgical failure. In those patients with networks consistent with the mTLE network, specific bilateral within-network hippocampal to precuneus impairment (rather than unilateral impairment ipsilateral to the seizure focus) was associated with mild seizure recurrence. No currently used clinical variables offered the same ability to predict long-term outcome. CONCLUSIONS It is known that there are important clinical differences between early surgical failure that lead to frequent disabling seizures and late recurrence of less frequent mild seizures. This study demonstrated that divergent network connectivity variability, whole-network versus within-network properties, were uniquely associated with these disparate outcomes.
Collapse
Affiliation(s)
- Victoria L. Morgan
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W. Anderson
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A. Landman
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Dario J. Englot
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Reid LB, Cespedes MI, Pannek K. How many streamlines are required for reliable probabilistic tractography? Solutions for microstructural measurements and neurosurgical planning. Neuroimage 2020; 211:116646. [PMID: 32084566 DOI: 10.1016/j.neuroimage.2020.116646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022] Open
Abstract
Diffusion MRI tractography is commonly used to delineate white matter tracts. These delineations can be used for planning neurosurgery or for identifying regions of interest from which microstructural measurements can be taken. Probabilistic tractography produces different delineations each time it is run, potentially leading to microstructural measurements or anatomical delineations that are not reproducible. Generating a sufficiently large number of streamlines is required to avoid this scenario, but what constitutes "sufficient" is difficult to assess and so streamline counts are typically chosen in an arbitrary or qualitative manner. This work explores several factors influencing tractography reliability and details two methods for estimating this reliability. The first method automatically estimates the number of streamlines required to achieve reliable microstructural measurements, whilst the second estimates the number of streamlines required to achieve a reliable binarised trackmap than can be used clinically. Using these methods, we calculated the number of streamlines required to achieve a range of quantitative reproducibility criteria for three anatomical tracts in 40 Human Connectome Project datasets. Actual reproducibility was checked by repeatedly generating the tractograms with the calculated numbers of streamlines. We found that the required number of streamlines varied strongly by anatomical tract, image resolution, number of diffusion directions, the degree of reliability desired, the microstructural measurement of interest, and/or the specifics on how the tractogram was converted to a binary volume. The proposed methods consistently predicted streamline counts that achieved the target reproducibility. Implementations are made available to enable the scientific community to more-easily achieve reproducible tractography.
Collapse
Affiliation(s)
- Lee B Reid
- The Australian e-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Australia.
| | - Marcela I Cespedes
- The Australian e-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Australia
| | - Kerstin Pannek
- The Australian e-Health Research Centre, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Australia
| |
Collapse
|
18
|
Coenen VA, Schlaepfer TE, Sajonz B, Döbrössy M, Kaller CP, Urbach H, Reisert M. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin 2020; 25:102165. [PMID: 31954987 PMCID: PMC6965747 DOI: 10.1016/j.nicl.2020.102165] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Major depression (MD) and obsessive-compulsive disorder (OCD) are psychiatric diseases with a huge impact on individual well-being. Despite optimal treatment regiments a subgroup of patients remains treatment resistant and stereotactic surgery (stereotactic lesion surgery, SLS or Deep Brain Stimulation, DBS) might be an option. Recent research has described four networks related to MD and OCD (affect, reward, cognitive control, default network) but only on a cortical and the adjacent sub-cortical level. Despite the enormous impact of comparative neuroanatomy, animal science and stereotactic approaches a holistic theory of subcortical and cortical network interactions is elusive. Because of the dominant hierarchical rank of the neocortex, corticofugal approaches have been used to identify connections in subcortical anatomy without anatomical priors and in part confusing results. We here propose a different corticopetal approach by identifying subcortical networks and search for neocortical convergences thereby following the principle of phylogenetic and ontogenetic network development. MATERIAL AND METHODS This work used a diffusion tensor imaging data from a normative cohort (Human Connectome Project, HCP; n = 200) to describe eight subcortical fiber projection pathways (PPs) from subthalamic nucleus (STN), substantia nigra (SNR), red nucleus (RN), ventral tegmental area (VTA), ventrolateral thalamus (VLT) and mediodorsal thalamus (MDT) in a normative space (MNI). Subcortical and cortical convergences were described including an assignment of the specific pathways to MD/OCD-related networks. Volumes of activated tissue for different stereotactic stimulation sites and procedures were simulated to understand the role of the distinct networks, with respect to symptoms and treatment of OCD and MD. RESULTS The detailed course of eight subcortical PPs (stnPP, snrPP, rnPP, vlATR, vlATRc, mdATR, mdATRc, vtaPP/slMFB) were described together with their subcortical and cortical convergences. The anterior limb of the internal capsule can be subdivided with respect to network occurrences in ventral-dorsal and medio-lateral gradients. Simulation of stereotactic procedures for OCD and MD showed dominant involvement of mdATR/mdATRc (affect network) and vtaPP/slMFB (reward network). DISCUSSION Corticofugal search strategies for the evaluation of stereotactic approaches without anatomical priors often lead to confusing results which do not allow for a clear assignment of a procedure to an involved network. According to our simulation of stereotactic procedures in the treatment of OCD and MD, most of the target regions directly involve the reward (and affect) networks, while side-effects can in part be explained with a co-modulation of the control network. CONCLUSION The here proposed corticopetal approach of a hierarchical description of 8 subcortical PPs with subcortical and cortical convergences represents a new systematics of networks found in all different evolutionary and distinct parts of the human brain.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany; Center for Basics in Neuromodulation, Freiburg University, Germany.
| | - Thomas E Schlaepfer
- Department of Interventional Biological Psychiatry, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Bastian Sajonz
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Máté Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| | - Christoph P Kaller
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Horst Urbach
- Department of Neuroradiology, Freiburg University Medical Center and Medical Faculty of Freiburg University, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center and Medical Faculty of Freiburg University, Breisacher Strasse 64, Freiburg im Breisgau 79106, Germany
| |
Collapse
|
19
|
Hosp JA, Coenen VA, Rijntjes M, Egger K, Urbach H, Weiller C, Reisert M. Ventral tegmental area connections to motor and sensory cortical fields in humans. Brain Struct Funct 2019; 224:2839-2855. [PMID: 31440906 PMCID: PMC6778584 DOI: 10.1007/s00429-019-01939-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
In humans, sensorimotor cortical areas receive relevant dopaminergic innervation—although an anatomic description of the underlying fiber projections is lacking so far. In general, dopaminergic projections towards the cortex originate within the ventral tegmental area (VTA) and are organized in a meso-cortico-limbic system. Using a DTI-based global tractography approach, we recently characterized the superolateral branch of the medial forebrain bundle (slMFB), a prominent pathway providing dopaminergic (and other transmitters) innervation for the pre-frontal cortex (Coenen et al., NeuroImage Clin 18:770–783, 2018). To define the connections between VTA and sensory–motor cortical fields that should contain dopaminergic fibers, we use the slMFB as a key structure to lead our fiber selection procedure: using a similar tracking-seed and tractography algorithm, we describe a dorsal extension of this slMFB that covers sensorimotor fields that are dorsally appended to pre-frontal cortical areas. This “motorMFB”, that connects the VTA to sensorimotor cortical fields, can be further segregated into three sub-bundles with a seed-based fiber-selection strategy: A PFC bundle that is attendant to the pre-frontal cortex, passes the lateral VTA, runs through the border zone between the posterior and lateral ventral thalamic nucleus, and involves the pre- and postcentral gyrus. An MB bundle that is attendant to the mammillary bodies runs directly through the medial VTA, passes the lateral ventral thalamic nucleus, and involves the pre- and postcentral gyrus as well as the supplementary motor area (SMA) and the dorsal premotor cortex (dPMC). Finally, a BC bundle that is attendant to the brainstem and cerebellum runs through the lateral VTA, passes the anterior ventral thalamic nucleus, and covers the SMA, pre-SMA, and the dPMC. We, furthermore, included a fiber tracking of the well-defined dentato-rubro-thalamic tract (DRT) that is known to lie in close proximity with respect to fiber orientation and projection areas. As expected, the tract is characterized by a decussation at the ponto-mesencephal level and a projection covering the superior-frontal and precentral cortex. In addition to the physiological role of these particular bundles, the physiological and pathophysiological impact of dopaminergic signaling within sensorimotor cortical fields becomes discussed. However, some limitations have to be taken into account in consequence of the method: the transmitter content, the directionality, and the occurrence of interposed synaptic contacts cannot be specified.
Collapse
Affiliation(s)
- Jonas A Hosp
- Department of Neurology and Neuroscience, Freiburg University Medical Center, Breisacher Str. 64, 79106, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - V A Coenen
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - M Rijntjes
- Department of Neurology and Neuroscience, Freiburg University Medical Center, Breisacher Str. 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - K Egger
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Urbach
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C Weiller
- Department of Neurology and Neuroscience, Freiburg University Medical Center, Breisacher Str. 64, 79106, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany.,Department of Medical Physics, Freiburg University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Coenen VA, Schlaepfer TE, Bewernick B, Kilian H, Kaller CP, Urbach H, Li M, Reisert M. Frontal white matter architecture predicts efficacy of deep brain stimulation in major depression. Transl Psychiatry 2019; 9:197. [PMID: 31434867 PMCID: PMC6704187 DOI: 10.1038/s41398-019-0540-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/29/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022] Open
Abstract
Major depression is a frequent and severe disorder, with a combination of psycho- and pharmacotherapy most patients can be treated. However, ~20% of all patients suffering from major depressive disorder remain treatment resistant; a subgroup might be treated with deep brain stimulation (DBS). We present two trials of DBS to the superolateral medial forebrain bundle (slMFB DBS; FORESEE I and II). The goal was to identify informed features that allow to predict treatment response. Data from N = 24 patients were analyzed. Preoperative imaging including anatomical sequences (T1 and T2) and diffusion tensor imaging (DTI) magnetic resonance imaging sequences were used together with postoperative helical CT scans (for DBS electrode position). Pathway activation modeling (PAM) as well as preoperative structural imaging and morphometry was used to understand the response behavior of patients (MADRS). A left fronto-polar and partly orbitofrontal region was identified that showed increased volume in preoperative anatomical scans. Further statistical analysis shows that the volume of this "HUB-region" is predictive for later MADRS response from DBS. The HUB region connects to typical fiber pathways that have been addressed before in therapeutic DBS in major depression. Left frontal volume growth might indicate intrinsic activity upon disconnection form the main emotional network. The results are significant since for the first time we found an informed feature that might allow to identify and phenotype future responders for slMFB DBS. This is a clear step into the direction of personalized treatments.
Collapse
Affiliation(s)
- Volker A. Coenen
- 0000 0000 9428 7911grid.7708.8Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany ,grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurosurgery, Bonn University Medical Center, Bonn, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,grid.5963.9Neuromod, Center for Basics in NeuroModulation, Freiburg University, Freiburg, Germany
| | - Thomas E. Schlaepfer
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Psychiatry and Psychotherapy, Bonn University Medical Center, Bonn, Germany
| | - Bettina Bewernick
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Psychiatry and Psychotherapy, Bonn University Medical Center, Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Geronto-Psychiatry, Bonn University Medical Center, Bonn, Germany
| | - Hannah Kilian
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Interventional Biological Psychiatry, Freiburg University Medical Center, Freiburg, Germany
| | - Christoph P. Kaller
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,grid.5963.9BrainLinks/BrainTools, Cluster of Excellence, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - Horst Urbach
- grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0000 9428 7911grid.7708.8Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany ,0000 0000 8786 803Xgrid.15090.3dDivision of Neuroradiology/Department of Radiology, Bonn University Medical Center, Bonn, Germany
| | - Meng Li
- 0000 0000 9428 7911grid.7708.8Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany ,grid.5963.9Medical Faculty, Freiburg University, Freiburg, Germany ,0000 0001 2190 1447grid.10392.39Clinical Affective Neuroimaging Laboratory, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Freiburg, Germany. .,Medical Faculty, Freiburg University, Freiburg, Germany.
| |
Collapse
|
21
|
Zhang F, Wu Y, Norton I, Rathi Y, Golby AJ, O'Donnell LJ. Test-retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering. Hum Brain Mapp 2019; 40:3041-3057. [PMID: 30875144 PMCID: PMC6548665 DOI: 10.1002/hbm.24579] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023] Open
Abstract
There are two popular approaches for automated white matter parcellation using diffusion MRI tractography, including fiber clustering strategies that group white matter fibers according to their geometric trajectories and cortical-parcellation-based strategies that focus on the structural connectivity among different brain regions of interest. While multiple studies have assessed test-retest reproducibility of automated white matter parcellations using cortical-parcellation-based strategies, there are no existing studies of test-retest reproducibility of fiber clustering parcellation. In this work, we perform what we believe is the first study of fiber clustering white matter parcellation test-retest reproducibility. The assessment is performed on three test-retest diffusion MRI datasets including a total of 255 subjects across genders, a broad age range (5-82 years), health conditions (autism, Parkinson's disease and healthy subjects), and imaging acquisition protocols (three different sites). A comprehensive evaluation is conducted for a fiber clustering method that leverages an anatomically curated fiber clustering white matter atlas, with comparison to a popular cortical-parcellation-based method. The two methods are compared for the two main white matter parcellation applications of dividing the entire white matter into parcels (i.e., whole brain white matter parcellation) and identifying particular anatomical fiber tracts (i.e., anatomical fiber tract parcellation). Test-retest reproducibility is measured using both geometric and diffusion features, including volumetric overlap (wDice) and relative difference of fractional anisotropy. Our experimental results in general indicate that the fiber clustering method produced more reproducible white matter parcellations than the cortical-parcellation-based method.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Ye Wu
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Isaiah Norton
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | - Yogesh Rathi
- Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusetts
| | | | | |
Collapse
|
22
|
Blood AJ, Kuster JK, Waugh JL, Levenstein JM, Multhaupt-Buell TJ, Sudarsky LR, Breiter HC, Sharma N. White Matter Changes in Cervical Dystonia Relate to Clinical Effectiveness of Botulinum Toxin Treatment. Front Neurol 2019; 10:265. [PMID: 31019484 PMCID: PMC6459077 DOI: 10.3389/fneur.2019.00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
In a previous report showing white matter microstructural hemispheric asymmetries medial to the pallidum in focal dystonias, we showed preliminary evidence that this abnormality was reduced 4 weeks after botulinum toxin (BTX) injections. In the current study we report the completed treatment study in a full-size cohort of CD patients (n = 14). In addition to showing a shift toward normalization of the hemispheric asymmetry, we evaluated clinical relevance of these findings by relating white matter changes to degree of symptom improvement. We also evaluated whether the magnitude of the white matter asymmetry before treatment was related to severity, laterality, duration of dystonia, and/or number of previous BTX injections. Our results confirm the findings of our preliminary report: we observed significant fractional anisotropy (FA) changes medial to the pallidum 4 weeks after BTX in CD participants that were not observed in controls scanned at the same interval. There was a significant relationship between magnitude of hemispheric asymmetry and dystonia symptom improvement, as measured by percent reduction in dystonia scale scores. There was also a trend toward a relationship between magnitude of pre-injection white matter asymmetry and symptom severity, but not symptom laterality, disorder duration, or number of previous BTX injections. Post-hoc analyses suggested the FA changes at least partially reflected changes in pathophysiology, but a dissociation between patient perception of benefit from injections and FA changes suggested the changes did not reflect changes to the primary "driver" of the dystonia. In contrast, there were no changes or group differences in DTI diffusivity measures, suggesting the hemispheric asymmetry in CD does not reflect irreversible white matter tissue loss. These findings support the hypothesis that central nervous system white matter changes are involved in the mechanism by which BTX exerts clinical benefit.
Collapse
Affiliation(s)
- Anne J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - John K Kuster
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jeff L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Division of Child Neurology, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Jacob M Levenstein
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | | | - Lewis R Sudarsky
- Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Hans C Breiter
- Mood and Motor Control Laboratory, Massachusetts General Hospital (MGH), Charlestown, MA, United States.,Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.,Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States.,Department of Neurology, Harvard Medical School, Boston, MA, United States.,Department Neurology, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Schumacher FK, Schumacher LV, Schelter BO, Kaller CP. Functionally dissociating ventro-dorsal components within the rostro-caudal hierarchical organization of the human prefrontal cortex. Neuroimage 2018; 185:398-407. [PMID: 30342976 DOI: 10.1016/j.neuroimage.2018.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
Cognitive control is proposed to rely on a rostral-to-caudal hierarchy of neural processing within the prefrontal cortex (PFC), with more rostral parts exerting control over more caudal parts. Anatomical and functional data suggest that this hierarchical organization of the PFC may be separated into a ventral and a dorsal component. Furthermore, recent studies indicate that the apex of the hierarchy resides within the mid-lateral rather the rostral PFC. However, investigating the hierarchical aspect of rostro-to-caudal processing requires quantification of the directed interactions between PFC regions. Using functional near-infrared spectroscopy (fNIRS) in a sample of healthy young adults we analyzed directed interactions between rostral and caudal PFC during passive watching of nature documentaries. Directed coherence (DC) as a measure of directed interaction was computed pairwise between 38 channels evenly distributed over the lateral prefrontal convexity. Results revealed an overall predominance of rostral-to-caudal directed interactions in the PFC that further dissociated along a ventro-dorsal axis: Dorsal regions exerted stronger rostro-caudally directed interactions on dorsal than on ventral regions and vice versa. Interactions between ventral and dorsal PFC were stronger from ventral to dorsal areas than vice versa. Results further support the notion that the mid-dorsolateral PFC constitutes the apex of the prefrontal hierarchy. Taken together these data provide novel evidence for parallel dorsal and ventral streams within the rostro-caudal hierarchical organization of the PFC. FNIRS-based analyses of directed interactions put forward a new perspective on the functional architecture of the prefrontal hierarchy and complement previous insights from functional magnetic resonance imaging.
Collapse
Affiliation(s)
- F K Schumacher
- Dept. of Neurology, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Freiburg Brain Imaging Center, University of Freiburg, 79106, Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, 79110, Freiburg, Germany
| | - L V Schumacher
- Dept. of Neurology, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Freiburg Brain Imaging Center, University of Freiburg, 79106, Freiburg, Germany; Medical Psychology and Medical Sociology, University of Freiburg, 79104, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, 79110, Freiburg, Germany
| | - B O Schelter
- BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, 79110, Freiburg, Germany; Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - C P Kaller
- Dept. of Neurology, Medical Center - University of Freiburg, 79106, Freiburg, Germany; Freiburg Brain Imaging Center, University of Freiburg, 79106, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, 79110, Freiburg, Germany; Dept. of Neuroradiology, Medical Center - University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|