1
|
Fotiadis P, McKinstry-Wu AR, Weinstein SM, Cook PA, Elliott M, Cieslak M, Duda JT, Satterthwaite TD, Shinohara RT, Proekt A, Kelz MB, Detre JA, Bassett DS. Changes in brain connectivity and neurovascular dynamics during dexmedetomidine-induced loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616650. [PMID: 39416182 PMCID: PMC11482825 DOI: 10.1101/2024.10.04.616650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding the neurophysiological changes that occur during loss and recovery of consciousness is a fundamental aim in neuroscience and has marked clinical relevance. Here, we utilize multimodal magnetic resonance neuroimaging to investigate changes in regional network connectivity and neurovascular dynamics as the brain transitions from wakefulness to dexmedetomidine-induced unconsciousness, and finally into early-stage recovery of consciousness. We observed widespread decreases in functional connectivity strength across the whole brain, and targeted increases in structure-function coupling (SFC) across select networks-especially the cerebellum-as individuals transitioned from wakefulness to hypnosis. We also observed robust decreases in cerebral blood flow (CBF) across the whole brain-especially within the brainstem, thalamus, and cerebellum. Moreover, hypnosis was characterized by significant increases in the amplitude of low-frequency fluctuations (ALFF) of the resting-state blood oxygen level-dependent signal, localized within visual and somatomotor regions. Critically, when transitioning from hypnosis to the early stages of recovery, functional connectivity strength and SFC-but not CBF-started reverting towards their awake levels, even before behavioral arousal. By further testing for a relationship between connectivity and neurovascular alterations, we observed that during wakefulness, brain regions with higher ALFF displayed lower functional connectivity with the rest of the brain. During hypnosis, brain regions with higher ALFF displayed weaker coupling between structural and functional connectivity. Correspondingly, brain regions with stronger functional connectivity strength during wakefulness showed greater reductions in CBF with the onset of hypnosis. Earlier recovery of consciousness was associated with higher baseline (awake) levels of functional connectivity strength, CBF, and ALFF, as well as female sex. Across our findings, we also highlight the role of the cerebellum as a recurrent marker of connectivity and neurovascular changes between states of consciousness. Collectively, these results demonstrate that induction of, and emergence from dexmedetomidine-induced unconsciousness are characterized by widespread changes in connectivity and neurovascular dynamics.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew R. McKinstry-Wu
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M. Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Philip A. Cook
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Elliott
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey T. Duda
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D. Satterthwaite
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Proekt
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max B. Kelz
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
2
|
Li R, Zhuo Z, Hong Y, Yao Z, Li Z, Wang Y, Jiang J, Wang L, Jia Z, Sun M, Zhang Y, Li W, Ren Q, Zhang Y, Duan Y, Liu Y, Wei H, Zhang Y, Chappell M, Shi H, Liu Y, Xu J. Effects of the Fasting-Postprandial State on Arterial Spin Labeling MRI-Based Cerebral Perfusion Quantification in Alzheimer's Disease. J Magn Reson Imaging 2024; 60:2173-2183. [PMID: 38544434 DOI: 10.1002/jmri.29348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND The fasting-postprandial state remains an underrecognized confounding factor for quantifying cerebral blood flow (CBF) in the cognitive assessment and differential diagnosis of Alzheimer's disease (AD). PURPOSE To investigate the effects of fasting-postprandial state on arterial spin labeling (ASL)-based CBF in AD patients. STUDY TYPE Prospective. SUBJECTS Ninety-two subjects (mean age = 62.5 ± 6.4 years; females 29.3%), including 30 with AD, 32 with mild cognitive impairment (MCI), and 30 healthy controls (HCs). Differential diagnostic models were developed with a 4:1 training to testing set ratio. FIELD STRENGTH/SEQUENCE 3-T, T1-weighted imaging using gradient echo and pseudocontinuous ASL imaging using turbo spin echo. ASSESSMENT Two ASL scans were acquired to quantify fasting state and postprandial state regional CBFs based on an automated anatomical labeling atlas. Two-way ANOVA was used to assess the effects of fasting/postprandial state and disease state (AD, MCI, and HC) on regional CBF. Pearson's correlation analysis was conducted between regional CBF and cognitive scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]). The diagnostic performances of the fasting state, postprandial state, and mixed state (random mixing of the fasting and postprandial state CBF) in differential diagnosis of AD were conducted using support vector machine and logistic regression models. STATISTICAL TESTS Two-way ANOVA, Pearson's correlation, and area under the curve (AUC) of diagnostic model were performed. P values <0.05 indicated statistical significance. RESULTS Fasting-state CBF was correlated with cognitive scores in more brain regions (17 vs. 4 [MMSE] and 15 vs. 9 [MoCA]) and had higher absolute correlation coefficients than postprandial-state CBF. In the differential diagnosis of AD patients from MCI patients and HCs, fasting-state CBF outperformed mixed-state CBF, which itself outperformed postprandial-state CBF. DATA CONCLUSION Compared with postprandial CBF, fasting-state CBF performed better in terms of cognitive score correlations and in differentiating AD patients from MCI patients and HCs. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Runzhi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Hong
- Health Management Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zeshan Yao
- Jingjinji National Center of Technology Innovation, Beijing, China
| | | | - Yanli Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiwei Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Linlin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ziyan Jia
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mengfan Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenyi Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiwei Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanling Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yechuan Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Michael Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Guo B, Mao T, Tao R, Fu S, Deng Y, Liu Z, Wang M, Wang R, Zhao W, Chai Y, Jiang C, Rao H. Test-retest reliability and time-of-day variations of perfusion imaging at rest and during a vigilance task. Cereb Cortex 2024; 34:bhae212. [PMID: 38771245 DOI: 10.1093/cercor/bhae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.
Collapse
Affiliation(s)
- Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ruiwen Tao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Shanna Fu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Zhihui Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Mengmeng Wang
- Business School, NingboTech University, Ningbo 315199, China
| | - Ruosi Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Weiwei Zhao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Ya Chai
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai 201620, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
4
|
Dipasquale O, Cohen A, Martins D, Zelaya F, Turkheimer F, Veronese M, Mehta MA, Williams SCR, Yang B, Banerjee S, Wang Y. Molecular-enriched functional connectivity in the human brain using multiband multi-echo simultaneous ASL/BOLD fMRI. Sci Rep 2023; 13:11751. [PMID: 37474568 PMCID: PMC10359289 DOI: 10.1038/s41598-023-38573-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Receptor-enriched analysis of functional connectivity by targets (REACT) is a strategy to enrich functional MRI (fMRI) data with molecular information on the neurotransmitter distribution density in the human brain, providing a biological basis to the functional connectivity (FC) analysis. Although this approach has been used in BOLD fMRI studies only so far, extending its use to ASL imaging would provide many advantages, including the more direct link of ASL with neuronal activity compared to BOLD and its suitability for pharmacological MRI studies assessing drug effects on baseline brain function. Here, we applied REACT to simultaneous ASL/BOLD resting-state fMRI data of 29 healthy subjects and estimated the ASL and BOLD FC maps related to six molecular systems. We then compared the ASL and BOLD FC maps in terms of spatial similarity, and evaluated and compared the test-retest reproducibility of each modality. We found robust spatial patterns of molecular-enriched FC for both modalities, moderate similarity between BOLD and ASL FC maps and comparable reproducibility for all but one molecular-enriched functional networks. Our findings showed that ASL is as informative as BOLD in detecting functional circuits associated with specific molecular pathways, and that the two modalities may provide complementary information related to these circuits.
Collapse
Affiliation(s)
- Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| | - Alexander Cohen
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
5
|
Williams SCR, Mazibuko N, O'Daly O, Zurth C, Patrick F, Kappeler C, Kuss I, Cole PE. Comparison of Cerebral Blood Flow in Regions Relevant to Cognition After Enzalutamide, Darolutamide, and Placebo in Healthy Volunteers: A Randomized Crossover Trial. Target Oncol 2023; 18:403-413. [PMID: 37103658 DOI: 10.1007/s11523-023-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Off-target central nervous system (CNS) effects are associated with androgen receptor (AR)-targeting treatments for prostate cancer. Darolutamide is a structurally distinct AR inhibitor with low blood-brain barrier penetration. OBJECTIVE We compared cerebral blood flow (CBF) in grey matter and specific regions related to cognition after darolutamide, enzalutamide, or placebo administration, using arterial spin-label magnetic resonance imaging (ASL-MRI). METHODS This phase I, randomized, placebo-controlled, three-period crossover study administered single doses of darolutamide, enzalutamide, or placebo to 23 healthy males (aged 18-45 years) at 6-week intervals. ASL-MRI mapped CBF 4 h post-treatment. Treatments were compared using paired t-tests. RESULTS Drug concentrations during scans confirmed similar unbound exposure of darolutamide and enzalutamide, with complete washout between treatments. A significant localized 5.2% (p = 0.01) and 5.9% (p < 0.001) CBF reduction in the temporo-occipital cortices was observed for enzalutamide versus placebo and versus darolutamide, respectively, with no significant differences for darolutamide versus placebo. Enzalutamide reduced CBF in all prespecified regions, with significant reductions versus placebo (3.9%, p = 0.045) and versus darolutamide (4.4%, p = 0.037) in the left and right dorsolateral prefrontal cortices, respectively. Darolutamide showed minimal changes in CBF versus placebo in cognition-relevant regions. CONCLUSIONS Darolutamide did not significantly alter CBF, consistent with its low blood-brain barrier penetration and low risk of CNS-related adverse events. A significant reduction in CBF was observed with enzalutamide. These results may be relevant to cognitive function with early and extended use of second-generation AR inhibitors, and warrant further investigation in patients with prostate cancer. TRIAL REGISTRATION NUMBER NCT03704519; date of registration: October 2018.
Collapse
Affiliation(s)
- Steven C R Williams
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.
| | - Ndaba Mazibuko
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | | | - Fiona Patrick
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
- Oxford Institute of Clinical Psychology Training and Research, The Oxford Centre for Psychological Health, Oxford Health NHS Foundation Trust and University of Oxford, Oxford, UK
| | | | - Iris Kuss
- Clinical Development, Oncology, Bayer AG, Berlin, Germany
| | - Patricia E Cole
- Imaging Strategy Oncology, Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA
| |
Collapse
|
6
|
Candelaria-Cook FT, Schendel ME, Flynn L, Cerros C, Hill DE, Stephen JM. Disrupted dynamic functional network connectivity in fetal alcohol spectrum disorders. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:687-703. [PMID: 36880528 PMCID: PMC10281251 DOI: 10.1111/acer.15046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can result in harmful and long-lasting neurodevelopmental changes. Children with PAE or a fetal alcohol spectrum disorder (FASD) have decreased white matter volume and resting-state spectral power compared to typically developing controls (TDC) and impaired resting-state static functional connectivity. The impact of PAE on resting-state dynamic functional network connectivity (dFNC) is unknown. METHODS Using eyes-closed and eyes-open magnetoencephalography (MEG) resting-state data, global dFNC statistics and meta-states were examined in 89 children aged 6-16 years (51 TDC, 38 with FASD). Source analyzed MEG data were used as input to group spatial independent component analysis to derive functional networks from which the dFNC was calculated. RESULTS During eyes-closed, relative to TDC, participants with FASD spent a significantly longer time in state 2, typified by anticorrelation (i.e., decreased connectivity) within and between default mode network (DMN) and visual network (VN), and state 4, typified by stronger internetwork correlation. The FASD group exhibited greater dynamic fluidity and dynamic range (i.e., entered more states, changed from one meta-state to another more often, and traveled greater distances) than TDC. During eyes-open, TDC spent significantly more time in state 1, typified by positive intra- and interdomain connectivity with modest correlation within the frontal network (FN), while participants with FASD spent a larger fraction of time in state 2, typified by anticorrelation within and between DMN and VN and strong correlation within and between FN, attention network, and sensorimotor network. CONCLUSIONS There are important resting-state dFNC differences between children with FASD and TDC. Participants with FASD exhibited greater dynamic fluidity and dynamic range and spent more time in states typified by anticorrelation within and between DMN and VN, and more time in a state typified by high internetwork connectivity. Taken together, these network aberrations indicate that prenatal alcohol exposure has a global effect on resting-state connectivity.
Collapse
Affiliation(s)
| | - Megan E. Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Lucinda Flynn
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Dina E. Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Julia M. Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Troudi A, Tensaouti F, Baudou E, Péran P, Laprie A. Arterial Spin Labeling Perfusion in Pediatric Brain Tumors: A Review of Techniques, Quality Control, and Quantification. Cancers (Basel) 2022; 14:4734. [PMID: 36230655 PMCID: PMC9564035 DOI: 10.3390/cancers14194734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) technique for measuring cerebral blood flow (CBF). This noninvasive technique has added a new dimension to the study of several pediatric tumors before, during, and after treatment, be it surgery, radiotherapy, or chemotherapy. However, ASL has three drawbacks, namely, a low signal-to-noise-ratio, a minimum acquisition time of 3 min, and limited spatial summarize current resolution. This technique requires quality control before ASL-CBF maps can be extracted and before any clinical investigations can be conducted. In this review, we describe ASL perfusion principles and techniques, summarize the most recent advances in CBF quantification, report technical advances in ASL (resting-state fMRI ASL, BOLD fMRI coupled with ASL), set out guidelines for ASL quality control, and describe studies related to ASL-CBF perfusion and qualitative and semi-quantitative ASL weighted-map quantification, in healthy children and those with pediatric brain tumors.
Collapse
Affiliation(s)
- Abir Troudi
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Fatima Tensaouti
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| | - Eloise Baudou
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Patrice Péran
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
| | - Anne Laprie
- Toulouse Neuro Imaging Center (ToNIC), INSERM-University of Toulouse Paul Sebatier, 31300 Toulouse, France
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute-Oncopole, 31300 Toulouse, France
| |
Collapse
|
8
|
Ren B, Tan L, Song Y, Li D, Xue B, Lai X, Gao Y. Cerebral Small Vessel Disease: Neuroimaging Features, Biochemical Markers, Influencing Factors, Pathological Mechanism and Treatment. Front Neurol 2022; 13:843953. [PMID: 35775047 PMCID: PMC9237477 DOI: 10.3389/fneur.2022.843953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
Cerebral small vessel disease (CSVD) is the most common chronic vascular disease involving the whole brain. Great progress has been made in clinical imaging, pathological mechanism, and treatment of CSVD, but many problems remain. Clarifying the current research dilemmas and future development direction of CSVD can provide new ideas for both basic and clinical research. In this review, the risk factors, biological markers, pathological mechanisms, and the treatment of CSVD will be systematically illustrated to provide the current research status of CSVD. The future development direction of CSVD will be elucidated by summarizing the research difficulties.
Collapse
Affiliation(s)
- Beida Ren
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Ling Tan
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuebo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Danxi Li
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Bingjie Xue
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditonal Chinese Medicine, Beijing, China
| | - Xinxing Lai
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Nakamura Y, Uematsu A, Okanoya K, Koike S. The effect of acquisition duration on cerebral blood flow-based resting-state functional connectivity. Hum Brain Mapp 2022; 43:3184-3194. [PMID: 35338768 PMCID: PMC9189081 DOI: 10.1002/hbm.25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Resting-state functional connectivity (rs-FC) is widely used to examine the functional architecture of the brain, and the blood-oxygenation-level-dependent (BOLD) signal is often utilized for determining rs-FC. However, the BOLD signal is susceptible to various factors that have less influence on the cerebral blood flow (CBF). Therefore, CBF could comprise an alternative for determining rs-FC. Since acquisition duration is one of the essential parameters for obtaining reliable rs-FC, we investigated the effect of acquisition duration on CBF-based rs-FC to examine the reliability of CBF-based rs-FC. Nineteen participants underwent CBF scanning for a total duration of 50 min. Variance of CBF-based rs-FC within the whole brain and 13 large-scale brain networks at various acquisition durations was compared to that with a 50-min duration using the Levene's test. Variance of CBF-based rs-FC at any durations did not differ from that at a 50-min duration (p > .05). Regarding variance of rs-FC within each large-scale brain network, the acquisition duration required to obtain reliable estimates of CBF-based rs-FC was shorter than 10 min and varied across large-scale brain networks. Altogether, an acquisition duration of at least 10 min is required to obtain reliable CBF-based rs-FC. These results indicate that CBF-based resting-state functional magnetic resonance imaging (rs-fMRI) with more than 10 min of total acquisition duration could be an alternative method to BOLD-based rs-fMRI to obtain reliable rs-FC.
Collapse
Affiliation(s)
- Yuko Nakamura
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan
| | - Akiko Uematsu
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazuo Okanoya
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Cognition and Behavior Joint Research Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinsuke Koike
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), Tokyo, Japan
| |
Collapse
|
10
|
Taso M, Munsch F, Zhao L, Alsop DC. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). J Cereb Blood Flow Metab 2021; 41:1899-1911. [PMID: 33444098 PMCID: PMC8327107 DOI: 10.1177/0271678x20982382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methods for imaging of cerebral blood flow do not typically resolve the cortex and thus underestimate flow. However, recent work with high-resolution MRI has emphasized the regional and depth-dependent structural, functional and relaxation times variations within the cortex. Using high-resolution Arterial Spin Labeling (ASL) and T1 mapping acquisitions, we sought to probe the effects of spatial resolution and tissue heterogeneity on cortical cerebral blood flow (CBF) measurements with ASL. We acquired high-resolution (1.6mm)3 whole brain ASL data in a cohort of 10 volunteers at 3T, along with T1 and transit-time (ATT) mapping, followed by group cortical surface-based analysis using FreeSurfer of the different measured parameters. Fully resolved regional analysis showed higher than average mid-thickness CBF in primary motor areas (+15%,p<0.002), frontal regions (+17%,p<0.01) and auditory cortex, while occipital regions had lower average CBF (-20%,p<10-5). ASL signal was higher towards the pial surface but correction for the shorter T1 near the white matter surface reverses this gradient, at least when using the low-resolution ATT map. Similar to structural measures, fully-resolved ASL CBF measures show significant differences across cortical regions. Depth-dependent variation of T1 in the cortex complicates interpretation of depth-dependent ASL signal and may have implications for the accurate CBF quantification at lower resolutions.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Li Zhao
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Sprugnoli G, Rossi S, Rotenberg A, Pascual-Leone A, El-Fakhri G, Golby AJ, Santarnecchi E. Personalised, image-guided, noninvasive brain stimulation in gliomas: Rationale, challenges and opportunities. EBioMedicine 2021; 70:103514. [PMID: 34391090 PMCID: PMC8365310 DOI: 10.1016/j.ebiom.2021.103514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
Malignant brain tumours are among the most aggressive human cancers, and despite intensive efforts made over the last decades, patients' survival has scarcely improved. Recently, high-grade gliomas (HGG) have been found to be electrically integrated with healthy brain tissue, a communication that facilitates tumour mitosis and invasion. This link to neuronal activity has provided new insights into HGG pathophysiology and opened prospects for therapeutic interventions based on electrical modulation of neural and synaptic activity in the proximity of tumour cells, which could potentially slow tumour growth. Noninvasive brain stimulation (NiBS), a group of techniques used in research and clinical settings to safely modulate brain activity and plasticity via electromagnetic or electrical stimulation, represents an appealing class of interventions to characterise and target the electrical properties of tumour-neuron interactions. Beyond neuronal activity, NiBS may also modulate function of a range of substrates and dynamics that locally interacts with HGG (e.g., vascular architecture, perfusion and blood-brain barrier permeability). Here we discuss emerging applications of NiBS in patients with brain tumours, covering potential mechanisms of action at both cellular, regional, network and whole-brain levels, also offering a conceptual roadmap for future research to prolong survival or promote wellbeing via personalised NiBS interventions.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy; Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Simone Rossi
- Brain investigation and Neuromodulation Laboratory (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Alexander Rotenberg
- Department of Neurology and Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew Senior Life, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann, Universitat Autonoma, Barcelona, Spain
| | - Georges El-Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra J Golby
- Image Guided Neurosurgery laboratory, Department of Neurosurgery and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Network differences based on arterial spin labeling related to anti-seizure medication response in focal epilepsy. Neuroradiology 2021; 64:313-321. [PMID: 34251501 DOI: 10.1007/s00234-021-02741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/30/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The aim of this study was to determine whether anti-seizure medication (ASM) response is associated with structural connectivity in diffusion tensor imaging (DTI) or functional co-variance network in arterial spin labeling (ASL) magnetic resonance imaging (MRI) in patients with focal epilepsy. METHODS In this retrospective study conducted at a tertiary hospital, we enrolled 105 patients with focal epilepsy, of which 64 patients were good ASM responders, and 41 patients were poor ASM responders. All patients showed normal MRI findings on visual inspection and underwent DTI and ASL MRI from August 2018 to July 2020, with regular follow-up for at least 12 months after epilepsy diagnosis while taking ASMs. We calculated the structural connectivity based on DTI and functional co-variance network based on ASL MRI by using graph theory and analyzed their differences in relation to the ASM response. RESULTS No differences were observed in structural connectivity between the good and poor ASM responders. However, significant differences were observed in functional co-variance network between the good and poor ASM responders. In comparison with good ASM responders, poor ASM responders showed a significantly greater characteristic path length (2.557 vs. 1.753, p = 0.034) and a lower local efficiency (2.311 vs. 3.927, p = 0.048). CONCLUSION Significant differences were observed in functional co-variance network based on ASL MRI between the good and poor ASM responders. These findings suggest that functional co-variance network could serve as a new biomarker of ASM response in focal epilepsy.
Collapse
|
13
|
Lee DA, Lee HJ, Kim HC, Park KM. Temporal lobe epilepsy with or without hippocampal sclerosis: Structural and functional connectivity using advanced MRI techniques. J Neuroimaging 2021; 31:973-980. [PMID: 34110654 DOI: 10.1111/jon.12898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to investigate the differences in structural connectivity based on diffusion tensor imaging (DTI) and functional connectivity based on arterial spin labeling (ASL) MRI between temporal lobe epilepsy (TLE) patients with and without hippocampal sclerosis (HS). METHODS We enrolled 50 patients with TLE, including 25 patients with HS and 25 patients without HS, who underwent brain MRI, including DTI and ASL. We calculated the network parameters of structural connectivity based on DTI and functional connectivity based on ASL using a graph theoretical analysis. The parameters included global network measures (radius, diameter, characteristic path length, global efficiency, local efficiency, mean clustering coefficient, transitivity, assortative coefficient, and small-worldness index) and a local network measure (betweenness centrality). RESULTS The global and local network measures of structural connectivity were not different between TLE patients with and without HS. However, significant differences in functional connectivity existed between the two groups. The radius and diameter of the global network measures in the TLE patients with HS were significantly increased compared with those without HS (4.140 vs. 3.140, p = 0.045; 6.812 vs. 5.132, p = 0.049; respectively). No differences were detected between other global network measures of functional connectivity and local network measure. CONCLUSIONS Significant differences in global network measures of functional connectivity based on ASL existed between TLE patients with and without HS. These findings suggest that TLE patients with HS exhibit a more disconnected functional brain network than those without HS.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology and Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyung Chan Kim
- Department of Neurology and Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology and Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
14
|
Scarpato BS, Swardfager W, Eid M, Ploubidis GB, Cogo-Moreira H. Disentangling trait, occasion-specific, and accumulated situational effects of psychological distress in adulthood: evidence from the 1958 and 1970 British birth cohorts. Psychol Med 2021; 51:804-814. [PMID: 31910922 DOI: 10.1017/s0033291719003805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The trajectories of psychological distress differ between individuals, but these differences can be difficult to understand because the measures contain both consistent and situational features; however, in longitudinal studies these sources of information can be disentangled. In addition to occasion-specific features, interindividual differences can be decomposed into two sources of information: trait and carry-over effects between neighboring occasions that are not related to the trait (i.e. accumulated situational effects). METHODS To disentangle these three sources of variance throughout adulthood, the consistency (trait and accumulated situational effects) and occasion specificity of nine indicators of psychological distress from the Malaise Inventory were examined in two birth cohorts, the 1958 National Child Development Study (NCDS58), and the 1970 British Cohort Study (BCS70). RESULTS The scale was administered at ages 23, 33, 42, and 50 in NCDS58 (n = 7147), and at ages 26, 30, 34, and 42 in BCS70 (n = 6859). For each psychological symptom, more variance was consistent than occasion-specific. The majority of the consistency was due to trait variance as opposed to accumulated situational effects, indicating that an individual predisposed to be distressed at the beginning of the study remained more likely to be distressed over the whole period. Symptoms of rage were notably more consistent among males than females in both cohorts (78.1% and 81.3% variance explained by trait in NCDS58 and BCS70, respectively), and among females in the NCDS58 (69%). CONCLUSIONS Symptoms of psychological distress exhibited high stability throughout adulthood, especially among men, due mostly to interindividual trait differences.
Collapse
Affiliation(s)
- B S Scarpato
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
| | - W Swardfager
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - M Eid
- Department of Educational Science and Psychology, Freie Universität Berlin, Berlin, Germany
| | - G B Ploubidis
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, UK
| | - H Cogo-Moreira
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Brazil
- Centre for Longitudinal Studies, UCL Institute of Education, University College London, London, UK
| |
Collapse
|
15
|
Petersen KJ, Donahue MJ, Claassen DO. Mapping the orbitofrontal cortex using temporal fluctuations in cerebral blood flow. Brain Behav 2021; 11:e02034. [PMID: 33438840 PMCID: PMC7994685 DOI: 10.1002/brb3.2034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION The orbitofrontal cortex (OFC) is involved in diverse cognitive and behavioral processes including incentive valuation, decision-making, and reinforcement learning. Anatomic and cytoarchitectonic studies divide the OFC along both medial-lateral and rostral-caudal axes. OFC regions diverge in structure and function, assessed in vivo using white matter tractography and blood oxygenation level-dependent (BOLD) MRI, respectively. However, interpretation of T2 *-weighted BOLD is limited by susceptibility artifacts in the inferior frontal lobes, with the spatial pattern of these artifacts frequently assuming the geometry of OFC organization. Here, we utilize a novel perfusion-weighted arterial spin labeling (ASL) functional connectivity approach, which is minimally susceptibility-weighted, to test the hypothesis that OFC topology reflects correlated temporal hemodynamic activity. METHODS In healthy participants (n = 20; age = 29.5 ± 7.3), 3D ASL scans were acquired (TR/TE = 3,900/13 ms; spatial resolution = 3.8 mm isotropic). To evaluate reproducibility, follow-up scanning on a separate day was performed on a participant subset (n = 8). ASL-based connectivity was modeled for gray matter OFC voxels, and k-means clustering (k = 2-8) applied to correlation statistics. RESULTS These approaches revealed both medial-lateral and rostral-caudal OFC divisions, confirming our hypothesis. Longitudinal reproducibility testing revealed 84% voxel clustering agreement between sessions for the k = 2 solution. CONCLUSION To our knowledge, this constitutes the first in vivo cortical parcellation based on perfusion fluctuations. Our approach confirms functional OFC subdivisions predicted from anatomy using a less susceptibility-sensitive method than the conventional approach.
Collapse
Affiliation(s)
- Kalen J Petersen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Solis-Barquero SM, Echeverria-Chasco R, Calvo-Imirizaldu M, Cacho-Asenjo E, Martinez-Simon A, Vidorreta M, Dominguez PD, García de Eulate R, Fernandez-Martinez M, Fernández-Seara MA. Breath-Hold Induced Cerebrovascular Reactivity Measurements Using Optimized Pseudocontinuous Arterial Spin Labeling. Front Physiol 2021; 12:621720. [PMID: 33679436 PMCID: PMC7925895 DOI: 10.3389/fphys.2021.621720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
A pseudocontinuous arterial spin labeling (PCASL) sequence combined with background suppression and single-shot accelerated 3D RARE stack-of-spirals was used to evaluate cerebrovascular reactivity (CVR) induced by breath-holding (BH) in ten healthy volunteers. Four different models designed using the measured change in PETCO2 induced by BH were compared, for CVR quantification. The objective of this comparison was to understand which regressor offered a better physiological model to characterize the cerebral blood flow response under BH. The BH task started with free breathing of 42 s, followed by interleaved end-expiration BHs of 21 s, for ten cycles. The total scan time was 12 min and 20 s. The accelerated readout allowed the acquisition of PCASL data with better temporal resolution than previously used, without compromising the post-labeling delay. Elevated CBF was observed in most cerebral regions under hypercapnia, which was delayed with respect to the BH challenge. Significant statistical differences in CVR were obtained between the different models in GM (p < 0.0001), with ramp models yielding higher values than boxcar models and between the two tissues, GM and WM, with higher values in GM, in all the models (p < 0.0001). The adjustment of the ramp amplitude during each BH cycle did not improve the results compared with a ramp model with a constant amplitude equal to the mean PETCO2 change during the experiment.
Collapse
Affiliation(s)
| | - Rebeca Echeverria-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | - Elena Cacho-Asenjo
- Department of Anesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | - Antonio Martinez-Simon
- Department of Anesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Pablo D Dominguez
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | | | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
17
|
Opening or closing eyes at rest modulates the functional connectivity of V1 with default and salience networks. Sci Rep 2020; 10:9137. [PMID: 32499585 PMCID: PMC7272628 DOI: 10.1038/s41598-020-66100-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/14/2020] [Indexed: 01/07/2023] Open
Abstract
Current evidence suggests that volitional opening or closing of the eyes modulates brain activity and connectivity. However, how the eye state influences the functional connectivity of the primary visual cortex has been poorly investigated. Using the same scanner, fMRI data from two groups of participants similar in age, sex and educational level were acquired. One group (n = 105) performed a resting state with eyes closed, and the other group (n = 63) performed a resting state with eyes open. Seed-based voxel-wise functional connectivity whole-brain analyses were performed to study differences in the connectivity of the primary visual cortex. This region showed higher connectivity with the default mode and sensorimotor networks in the eyes closed group, but higher connectivity with the salience network in the eyes open group. All these findings were replicated using an open source shared dataset. These results suggest that opening or closing the eyes may set brain functional connectivity in an interoceptive or exteroceptive state.
Collapse
|
18
|
Marquetand J, Vannoni S, Carboni M, Li Hegner Y, Stier C, Braun C, Focke NK. Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics. Brain Connect 2019; 9:539-553. [PMID: 31115272 DOI: 10.1089/brain.2019.0662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resting-state connectivity, for example, based on magnetoencephalography (MEG) or electroencephalography (EEG), is a widely used method for characterizing brain networks and a promising imaging biomarker. However, there is no established standard as to which method, modality, and analysis variant is preferable and there is only limited knowledge on the reproducibility, an important prerequisite for clinical application. We conducted an MEG-/high-density (hd)-EEG-study on 22 young healthy adults, who were measured twice in a scan/rescan design after 7 ± 2 days. Reliability of resting-state (15 min, eyes-closed) connectivity in source space was calculated via intraclass correlation coefficient (ICC) in classical frequency bands (delta-gamma). We investigated the reliability of two commonly used connectivity metrics, namely the imaginary part of coherency and the weighted phase-lag index and the influence of frequency band, vigilance, and the number of trials. We found a strong increase of reliability with more trials and relatively mild effects of vigilance. Reliability was excellent in the alpha band for MEG, as well as hd-EEG (ICC >0.85); in the theta band, reliability was good for MEG and poor for EEG. Other frequency bands showed lower reliability, with delta band being the worst. Furthermore, we investigated the spatial reliability of resting-state connectivity in a vertex-based approach, which reached fair to good reliability (ICC up to 0.67) with 5 min of data. Our results indicate that excellent reliability of global connectivity is achievable in alpha band, and vertex-based connectivity was still fair to good. Moreover, electrophysiological resting-state studies could benefit from more data than used previously. MEG and hd-EEG were similar in their overall performance but showed frequency band-specific differences.
Collapse
Affiliation(s)
- Justus Marquetand
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Silvia Vannoni
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,MEG-Center, University of Tübingen, Tübingen, Germany.,Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margherita Carboni
- EEG and Epilepsy, Neuroscience Department, University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland.,Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | - Yiwen Li Hegner
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,MEG-Center, University of Tübingen, Tübingen, Germany
| | - Christina Stier
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Clinical Neurophysiology, Georg-August University Göttingen, Göttingen, Germany
| | | | - Niels K Focke
- Department of Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Clinical Neurophysiology, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Yang FN, Xu S, Spaeth A, Galli O, Zhao K, Fang Z, Basner M, Dinges DF, Detre JA, Rao H. Test-retest reliability of cerebral blood flow for assessing brain function at rest and during a vigilance task. Neuroimage 2019; 193:157-166. [PMID: 30894335 DOI: 10.1016/j.neuroimage.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
Arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) is increasingly used to assess regional brain activity and cerebrovascular function in both healthy and clinical populations. ASL perfusion imaging provides a quantitative measure of regional brain activity by determining absolute cerebral blood flow (CBF) values at a resting state or during task performance. However, the comparative reliability of these ASL measures is not well characterized. It is also unclear whether the test-retest reliability of absolute CBF or task-induced CBF change measures would be comparable to the reliability of task performance. In this study, fifteen healthy participants were scanned three times in a strictly controlled in-laboratory study while at rest and during performing a simple and reliable psychomotor vigilance test (PVT). The reliability of absolute CBF and task-induced CBF changes was evaluated using the intraclass correlation coefficient (ICC) and compared to that of task performance. Absolute CBF showed excellent test-retest reliability across the three scans for both resting and PVT scans. The reliability of regional absolute CBF was comparable to that of behavioral measures of PVT performance, and was slightly higher during PVT scans as compared with resting scans. Task-induced regional CBF changes demonstrated only poor to moderate reliability across three scans. These findings suggest that absolute CBF measures are more reliable than task-induced CBF changes for characterizing regional brain function, especially for longitudinal and clinical studies.
Collapse
Affiliation(s)
- Fan Nils Yang
- Department of Psychology, Sun Yat-sen University, Guangzhou, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sihua Xu
- Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Spaeth
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Olga Galli
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ke Zhao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhuo Fang
- Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mathias Basner
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David F Dinges
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John A Detre
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hengyi Rao
- Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Liao P, Zhang J, Zeng K, Yang Y, Cai S, Guo G, Cai C. Referenceless distortion correction of gradient-echo echo-planar imaging under inhomogeneous magnetic fields based on a deep convolutional neural network. Comput Biol Med 2018; 100:230-238. [DOI: 10.1016/j.compbiomed.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 12/15/2022]
|