1
|
Sheppard SM, Goldberg EB, Sebastian R, Vitti E, Ruch K, Meier EL, Hillis AE. Augmenting Verb-Naming Therapy With Neuromodulation Decelerates Language Loss in Primary Progressive Aphasia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2025; 34:155-173. [PMID: 39666609 PMCID: PMC11745310 DOI: 10.1044/2024_ajslp-24-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE The purpose of the study was to evaluate Verb Network Strengthening Treatment (VNeST) paired with the transcranial direct current stimulation (tDCS) of the left inferior frontal gyrus, which was compared to VNeST paired with a sham stimulation in primary progressive aphasia (PPA). METHOD A double-blind, within-subject, sham-controlled crossover design was used. Eight participants with PPA were enrolled. Participants were enrolled in two treatment phases, one with VNeST plus real tDCS and one with VNeST plus sham. Participants received fifteen 1-hr sessions of VNeST in each phase. Linear mixed-effects models were used to compare changes between baseline and two follow-up time points (1 week and 8 weeks posttreatment) in naming trained verbs, untrained verbs, and untrained nouns; sentence production and comprehension; and producing content units and complete utterances in discourse. RESULTS VNeST was effective for significantly improving naming trained verbs and producing more complete utterances in discourse at 1 week posttreatment in both tDCS and sham conditions. A significant tDCS advantage yielded generalization of treatment effects to untrained verbs (at 1 week and 8 weeks posttreatment), sentence production (at 1 week posttreatment), and sentence comprehension (at 8 weeks posttreatment). Untrained verb naming and sentence comprehension declined when VNeST was not augmented with tDCS. CONCLUSIONS Our findings provide emerging evidence that VNeST paired with tDCS can improve word finding, and other language abilities, in people with PPA. VNeST without neuromodulation can improve trained verb naming, but untrained verbs will likely decline faster when VNeST is not augmented with tDCS. Future research is required with a larger sample size to continue investigating the potential of treating word finding with VNeST and tDCS in PPA. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27914325.
Collapse
Affiliation(s)
- Shannon M. Sheppard
- Department of Speech and Hearing Sciences, University of Washington, Seattle
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emilia Vitti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kristina Ruch
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Erin L. Meier
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
2
|
Farcy C, Chauvigné LAS, Laganaro M, Corre M, Ptak R, Guggisberg AG. Neural mechanisms underlying improved new-word learning with high-density transcranial direct current stimulation. Neuroimage 2024; 294:120649. [PMID: 38759354 DOI: 10.1016/j.neuroimage.2024.120649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
Neurobehavioral studies have provided evidence for the effectiveness of anodal tDCS on language production, by stimulation of the left Inferior Frontal Gyrus (IFG) or of left Temporo-Parietal Junction (TPJ). However, tDCS is currently not used in clinical practice outside of trials, because behavioral effects have been inconsistent and underlying neural effects unclear. Here, we propose to elucidate the neural correlates of verb and noun learning and to determine if they can be modulated with anodal high-definition (HD) tDCS stimulation. Thirty-six neurotypical participants were randomly allocated to anodal HD-tDCS over either the left IFG, the left TPJ, or sham stimulation. On day one, participants performed a naming task (pre-test). On day two, participants underwent a new-word learning task with rare nouns and verbs concurrently to HD-tDCS for 20 min. The third day consisted of a post-test of naming performance. EEG was recorded at rest and during naming on each day. Verb learning was significantly facilitated by left IFG stimulation. HD-tDCS over the left IFG enhanced functional connectivity between the left IFG and TPJ and this correlated with improved learning. HD-tDCS over the left TPJ enabled stronger local activation of the stimulated area (as indexed by greater alpha and beta-band power decrease) during naming, but this did not translate into better learning. Thus, tDCS can induce local activation or modulation of network interactions. Only the enhancement of network interactions, but not the increase in local activation, leads to robust improvement of word learning. This emphasizes the need to develop new neuromodulation methods influencing network interactions. Our study suggests that this may be achieved through behavioral activation of one area and concomitant activation of another area with HD-tDCS.
Collapse
Affiliation(s)
- Camille Farcy
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Lea A S Chauvigné
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Marina Laganaro
- Neuropsycholinguistics Laboratory, University of Geneva, Geneva, Switzerland
| | - Marion Corre
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Radek Ptak
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland
| | - Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva 1211, Switzerland; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Berne 3010, Switzerland.
| |
Collapse
|
3
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, García-Guerrero MA, Ibarretxe-Bilbao N, Ojeda N, Peña J. Enhancement of phonemic verbal fluency in multilingual young adults by transcranial random noise stimulation. Neuropsychologia 2024; 198:108882. [PMID: 38599569 DOI: 10.1016/j.neuropsychologia.2024.108882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Several studies have analyzed the effects of transcranial direct current stimulation on verbal fluency tasks in non-clinical populations. Nevertheless, the reported effects on verbal fluency are inconsistent. In addition, the effect of other techniques such as transcranial random noise stimulation (tRNS) on verbal fluency enhancement has yet to be studied in healthy multilingual populations. This study aims to explore the effects of tRNS on verbal fluency in healthy multilingual individuals. Fifty healthy multilingual (Spanish, English and Basque) adults were randomly assigned to a tRNS or sham group. Electrodes were placed on the left dorsolateral prefrontal cortex and left inferior frontal gyrus. All participants performed phonemic and semantic verbal fluency tasks before, during (online assessment) and immediately after (offline assessment) stimulation in three different languages. The results showed significantly better performance by participants who received tRNS in the phonemic verbal fluency tasks in Spanish (in the online and offline assessment) and English (in the offline assessment). No differences between conditions were found in Basque nor semantic verbal fluency. These findings suggests that tRNS on the left prefrontal cortex could help improve phonemic, yet not semantic, fluency in healthy multilingual adults.
Collapse
Affiliation(s)
| | - Leire Zubiaurre-Elorza
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | | | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain.
| |
Collapse
|
4
|
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024; 12:1146. [PMID: 38927353 PMCID: PMC11200721 DOI: 10.3390/biomedicines12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The neurobiological effects of transcranial direct current stimulation (tDCS) have still not been unequivocally clarified. Some studies have suggested that the application of tDCS over the inferior frontal gyrus (IFG) enhances different aspects of cognition in healthy and neurological individuals, exerting neural changes over the target area and its neural surroundings. In this systematic review, randomized sham-controlled trials in healthy and neurological adults were selected through a database search to explore whether tDCS over the IFG combined with cognitive training modulates functional connectivity or neural changes. Twenty studies were finally included, among which twelve measured tDCS effects through functional magnetic resonance (fMRI), two through functional near-infrared spectroscopy (fNIRS), and six through electroencephalography (EEG). Due to the high heterogeneity observed across studies, data were qualitatively described and compared to assess reliability. Overall, studies that combined fMRI and tDCS showed widespread changes in functional connectivity at both local and distant brain regions. The findings also suggested that tDCS may also modulate electrophysiological changes underlying the targeted area. However, these outcomes were not always accompanied by corresponding significant behavioral results. This work raises the question concerning the general efficacy of tDCS, the implications of which extend to the steadily increasing tDCS literature.
Collapse
Affiliation(s)
- Raffaele Di Fuccio
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Anna Lardone
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Mariagiovanna De Luca
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| | - Leila Ali
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Pierpaolo Limone
- Department of Psychology and Educational Sciences, Telematic University of Pegaso, Piazza dei Santi Apostoli 49, 00187 Rome, Italy; (R.D.F.); (L.A.); (P.L.)
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Via Porta di Massa 1, 80133 Naples, Italy; (A.L.); (M.D.L.)
| |
Collapse
|
5
|
Dai J, Xiao Y, Chen G, Gu Z, Xu K. Anodal transcranial direct current stimulation enhances response inhibition and attention allocation in fencers. PeerJ 2024; 12:e17288. [PMID: 38699193 PMCID: PMC11064870 DOI: 10.7717/peerj.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background The aim of this study is to investigate the acute effects of anodal transcranial direct current stimulation (tDCS) on reaction time, response inhibition and attention in fencers. Methods Sixteen professional female fencers were recruited, and subjected to anodal tDCS and sham stimulation in the primary motor area (M1) one week apart in a randomized, crossover, single-blind design. A two-factor analysis of variance with repeated measures was used to analyze the effects of stimulation conditions (anodal stimulation, sham stimulation) and time (pre-stimulation, post-stimulation) on reaction time, response inhibition, and attention in fencers. Results The study found a significant improvement in response inhibition and attention allocation from pre-stimulation to post-stimulation following anodal tDCS but not after sham stimulation. There was no statistically significant improvement in reaction time and selective attention. Conclusions A single session of anodal tDCS could improve response inhibition, attention allocation in female fencers. This shows that tDCS has potential to improve aspects of an athlete's cognitive performance, although we do not know if such improvements would transfer to improved performance in competition. However, more studies involving all genders, large samples, and different sports groups are needed in the future to further validate the effect of tDCS in improving the cognitive performance of athletes.
Collapse
Affiliation(s)
- Jiansong Dai
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Yang Xiao
- Department of Graduate, Nanjing Sport Institute, Nanjing, China
| | - Gangrui Chen
- Department of Sport Research, Nanjing Sport Institute, Nanjing, China
| | - Zhongke Gu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Kai Xu
- Department of Sport and Health Sciences, Nanjing Sport Institute, Nanjing, China
| |
Collapse
|
6
|
Hartwigsen G, Lim JS, Bae HJ, Yu KH, Kuijf HJ, Weaver NA, Biesbroek JM, Kopal J, Bzdok D. Bayesian modelling disentangles language versus executive control disruption in stroke. Brain Commun 2024; 6:fcae129. [PMID: 38707712 PMCID: PMC11069117 DOI: 10.1093/braincomms/fcae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Stroke is the leading cause of long-term disability worldwide. Incurred brain damage can disrupt cognition, often with persisting deficits in language and executive capacities. Yet, despite their clinical relevance, the commonalities and differences between language versus executive control impairments remain under-specified. To fill this gap, we tailored a Bayesian hierarchical modelling solution in a largest-of-its-kind cohort (1080 patients with stroke) to deconvolve language and executive control with respect to the stroke topology. Cognitive function was assessed with a rich neuropsychological test battery including global cognitive function (tested with the Mini-Mental State Exam), language (assessed with a picture naming task), executive speech function (tested with verbal fluency tasks), executive control functions (Trail Making Test and Digit Symbol Coding Task), visuospatial functioning (Rey Complex Figure), as well as verbal learning and memory function (Soul Verbal Learning). Bayesian modelling predicted interindividual differences in eight cognitive outcome scores three months after stroke based on specific tissue lesion topologies. A multivariate factor analysis extracted four distinct cognitive factors that distinguish left- and right-hemispheric contributions to ischaemic tissue lesions. These factors were labelled according to the neuropsychological tests that had the strongest factor loadings: One factor delineated language and general cognitive performance and was mainly associated with damage to left-hemispheric brain regions in the frontal and temporal cortex. A factor for executive control summarized mental flexibility, task switching and visual-constructional abilities. This factor was strongly related to right-hemispheric brain damage of posterior regions in the occipital cortex. The interplay of language and executive control was reflected in two distinct factors that were labelled as executive speech functions and verbal memory. Impairments on both factors were mainly linked to left-hemispheric lesions. These findings shed light onto the causal implications of hemispheric specialization for cognition; and make steps towards subgroup-specific treatment protocols after stroke.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, 04109 Leipzig, Germany
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, 13620, South Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, 14068, Republic of Korea
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nick A Weaver
- Department of Neurology and Neurosurgery, Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology and Neurosurgery, Utrecht Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Neurology, Diakonessenhuis Hospital, 3582 KE Utrecht, The Netherlands
| | - Jakub Kopal
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2BA, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2BA, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec H2S 3H1, Canada
| |
Collapse
|
7
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
8
|
Lu H, Zhang Y, Qiu H, Zhang Z, Tan X, Huang P, Zhang M, Miao D, Zhu X. A new perspective for evaluating the efficacy of tACS and tDCS in improving executive functions: A combined tES and fNIRS study. Hum Brain Mapp 2024; 45:e26559. [PMID: 38083976 PMCID: PMC10789209 DOI: 10.1002/hbm.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Executive function enhancement is considered necessary for improving the quality of life of patients with neurological or psychiatric disorders, such as attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Alzheimer's disease. Transcranial electrical stimulation (tES) has been shown to have some beneficial effects on executive functioning, but the quantification of these improvements remains controversial. We aimed to explore the potential beneficial effects on executive functioning induced by the use of transcranial alternating current stimulation (tACS)/transcranial direct current stimulation (tDCS) on the right inferior frontal gyrus (IFG) and the accompanying brain function variations in the resting state. METHODS We recruited 229 healthy adults to participate in Experiments 1 (105 participants) and 2 (124 participants). The participants in each experiment were randomly divided into tACS, tDCS, and sham groups. The participants completed cognitive tasks to assess behavior related to three core components of executive functions. Functional near-infrared spectroscopy (fNIRS) was used to monitor the hemodynamic changes in crucial cortical regions in the resting state. RESULTS Inhibition and cognitive flexibility (excluding working memory) were significantly increased after tACS/tDCS, but there were no significant behavioral differences between the tACS and tDCS groups. fNIRS revealed that tDCS induced decreases in the functional connectivity (increased neural efficiency) of the relevant cortices. CONCLUSIONS Enhancement of executive function was observed after tES, and the beneficial effects of tACS/tDCS may need to be precisely evaluated via brain imaging indicators at rest. tDCS revealed better neural benefits than tACS during the stimulation phase. These findings might provide new insights for selecting intervention methods in future studies and for evaluating the clinical efficacy of tES.
Collapse
Affiliation(s)
- Hongliang Lu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Yajuan Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Huake Qiu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Zhilong Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xuanyi Tan
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Peng Huang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Mingming Zhang
- Department of Psychology, College of EducationShanghai Normal UniversityShanghaiChina
| | - Danmin Miao
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xia Zhu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| |
Collapse
|
9
|
Abstract
Noninvasive brain stimulation (NIBS) techniques are widely used tools for the study and rehabilitation of cognitive functions. Different NIBS approaches aim to enhance or impair different cognitive processes. The methodological focus for achieving this has been on stimulation protocols that are considered either inhibitory or facilitatory. However, despite more than three decades of use, their application is based on incomplete and overly simplistic conceptualizations of mechanisms of action. Such misconception limits the usefulness of these approaches in the basic science and clinical domains. In this review, we challenge this view by arguing that stimulation protocols themselves are neither inhibitory nor facilitatory. Instead, we suggest that all induced effects reflect complex interactions of internal and external factors. Given these considerations, we present a novel model in which we conceptualize NIBS effects as an interaction between brain activity and the characteristics of the external stimulus. This interactive model can explain various phenomena in the brain stimulation literature that have been considered unexpected or paradoxical. We argue that these effects no longer seem paradoxical when considered from the viewpoint of state dependency.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Juha Silvanto
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, García-Guerrero MA, Ibarretxe-Bilbao N, Ojeda N, Peña J. Effects of transcranial electrical stimulation techniques on foreign vocabulary learning. Behav Brain Res 2023; 438:114165. [PMID: 36270464 DOI: 10.1016/j.bbr.2022.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/12/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
Although the use of transcranial electrical stimulation (tES) techniques on healthy population has been linked to facilitating language learning, studies on their effects on foreign language learning processes are scarce and results remain unclear. The objective of this study was to analyze whether tES enhances foreign language learning processes. Sixty-four healthy native Spanish-speaking participants were randomly assigned to four groups (transcranial direct current, transcranial random noise, tDCS-tRNS stimulation, or sham). They completed two intervention sessions with a two-week gap in between. During the first session the participants received stimulation (1.5 mA) while learning new English words and then performed recall and recognition tasks. Learning was assessed at follow-up, two weeks later. No differences in learning between groups were observed in the first session (F(1,61)= .86; p = .36). At follow-up, significantly higher learning accuracy was observed after tRNS compared to sham (p = .037). These results suggest that tRNS could be helpful in improving the processes involved in foreign language vocabulary learning.
Collapse
Affiliation(s)
- Yolanda Balboa-Bandeira
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - M Acebo García-Guerrero
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain.
| |
Collapse
|
11
|
Kuhnke P, Beaupain MC, Arola J, Kiefer M, Hartwigsen G. Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neurosci Biobehav Rev 2023; 144:104994. [PMID: 36509206 DOI: 10.1016/j.neubiorev.2022.104994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Conceptual knowledge plays a pivotal role in human cognition. Grounded cognition theories propose that concepts consist of perceptual-motor features represented in modality-specific perceptual-motor cortices. However, it is unclear whether conceptual processing consistently engages modality-specific areas. Here, we performed an activation likelihood estimation (ALE) meta-analysis across 212 neuroimaging experiments on conceptual processing related to 7 perceptual-motor modalities (action, sound, visual shape, motion, color, olfaction-gustation, and emotion). We found that conceptual processing consistently engages brain regions also activated during real perceptual-motor experience of the same modalities. In addition, we identified multimodal convergence zones that are recruited for multiple modalities. In particular, the left inferior parietal lobe (IPL) and posterior middle temporal gyrus (pMTG) are engaged for three modalities: action, motion, and sound. These "trimodal" regions are surrounded by "bimodal" regions engaged for two modalities. Our findings support a novel model of the conceptual system, according to which conceptual processing relies on a hierarchical neural architecture from modality-specific to multimodal areas up to an amodal hub.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Marie C Beaupain
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Johannes Arola
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
12
|
Xu LX, Geng XM, Zhang JL, Guo XY, Potenza MN, Zhang JT. Neuromodulation treatments of problematic use of the Internet. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Xu M, Gao Y, Zhang H, Zhang B, Lyu T, Tan Z, Li C, Li X, Huang X, Kong Q, Xiao J, Kranz GS, Li S, Chang J. Modulations of static and dynamic functional connectivity among brain networks by electroacupuncture in post-stroke aphasia. Front Neurol 2022; 13:956931. [PMID: 36530615 PMCID: PMC9751703 DOI: 10.3389/fneur.2022.956931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Post-stroke aphasia (PSA) is a language disorder caused by left hemisphere stroke. Electroacupuncture (EA) is a minimally invasive therapeutic option for PSA treatment. Tongli (HT5) and Xuanzhong (GB39), two important language-associated acupoints, are frequently used in the rehabilitation of patients with PSA. Preliminary evidence indicated functional activation in distributed cortical areas upon HT5 and GB39 stimulation. However, research on the modulation of dynamic and static functional connectivity (FC) in the brain by EA in PSA is lacking. Method This study aimed to investigate the PSA-related effects of EA stimulation at HT5 and GB39 on neural processing. Thirty-five participants were recruited, including 19 patients with PSA and 16 healthy controls (HCs). The BOLD signal was analyzed by static independent component analysis, generalized psychophysiological interactions, and dynamic independent component analysis, considering variables such as age, sex, and years of education. Results The results revealed that PSA showed activated clusters in the left putamen, left postcentral gyrus (PostCG), and left angular gyrus in the salience network (SN) compared to the HC group. The interaction effect on temporal properties of networks showed higher variability of SN (F = 2.23, positive false discovery rate [pFDR] = 0.017). The interaction effect on static FC showed increased functional coupling between the right calcarine and right lingual gyrus (F = 3.16, pFDR = 0.043). For the dynamic FC, at the region level, the interaction effect showed lower variability and higher frequencies of circuit 3, with the strongest connections between the supramarginal gyrus and posterior cingulum (F = 5.42, pFDR = 0.03), middle cingulum and PostCG (F = 5.27, pFDR = 0.036), and triangle inferior frontal and lingual gyrus (F = 5.57, pFDR = 0.026). At the network level, the interaction effect showed higher variability in occipital network-language network (LN) and cerebellar network (CN) coupling, with stronger connections between the LN and CN (F = 4.29, pFDR = 0.042). Dynamic FC values between the triangle inferior frontal and lingual gyri were anticorrelated with transcribing, describing, and dictating scores in the Chinese Rehabilitation Research Center for Chinese Standard Aphasia Examination. Discussion These findings suggest that EA stimulation may improve language function, as it significantly modulated the nodes of regions/networks involved in the LN, SN, CN, occipital cortex, somatosensory regions, and cerebral limbic system.
Collapse
Affiliation(s)
- Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,Key Laboratory of Chinese Internal Medicine Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China,Ying Gao
| | - Hua Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binlong Zhang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianli Lyu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongjian Tan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolin Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Huang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiao Kong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Xiao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Shuren Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jingling Chang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Jingling Chang
| |
Collapse
|
14
|
Li T, Chang Y, Zhao S, Jones JA, Chen X, Gan C, Wu X, Dai G, Li J, Shen Y, Liu P, Liu H. The left inferior frontal gyrus is causally linked to vocal feedback control: evidence from high-definition transcranial alternating current stimulation. Cereb Cortex 2022; 33:5625-5635. [PMID: 36376991 DOI: 10.1093/cercor/bhac447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Current models of speech motor control propose a role for the left inferior frontal gyrus (IFG) in feedforward control of speech production. There is evidence, however, that has implicated the functional relevance of the left IFG for the neuromotor processing of vocal feedback errors. The present event-related potential (ERP) study examined whether the left IFG is causally linked to auditory feedback control of vocal production with high-definition transcranial alternating current stimulation (HD-tACS). After receiving active or sham HD-tACS over the left IFG at 6 or 70 Hz, 20 healthy adults vocalized the vowel sounds while hearing their voice unexpectedly pitch-shifted by ±200 cents. The results showed that 6 or 70 Hz HD-tACS over the left IFG led to larger magnitudes and longer latencies of vocal compensations for pitch perturbations paralleled by larger ERP P2 responses than sham HD-tACS. Moreover, there was a lack of frequency specificity that showed no significant differences between 6 and 70 Hz HD-tACS. These findings provide first causal evidence linking the left IFG to vocal pitch regulation, suggesting that the left IFG is an important part of the feedback control network that mediates vocal compensations for auditory feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Yichen Chang
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Shuzhi Zhao
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jeffery A Jones
- Wilfrid Laurier University Psychology Department and Laurier Centre for Cognitive Neuroscience, , Waterloo, Ontario N2L 3C5 , Canada
| | - Xi Chen
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Chu Gan
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Xiuqin Wu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Guangyan Dai
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Jingting Li
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Ying Shen
- The First Affiliated Hospital of Nanjing Medical University Rehabilitation Medicine Center, , Nanjing 210029 , China
| | - Peng Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
| | - Hanjun Liu
- The First Affiliated Hospital, Sun Yat-sen University Department of Rehabilitation Medicine, , Guangzhou 510080 , China
- Zhongshan School of Medicine, Sun Yat-sen University Guangdong Provincial Key Laboratory of Brain Function and Disease, , Guangzhou 510080 , China
| |
Collapse
|
15
|
Sheppard SM, Goldberg EB, Sebastian R, Walker A, Meier EL, Hillis AE. Transcranial Direct Current Stimulation Paired With Verb Network Strengthening Treatment Improves Verb Naming in Primary Progressive Aphasia: A Case Series. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:1736-1754. [PMID: 35605599 PMCID: PMC9531928 DOI: 10.1044/2022_ajslp-21-00272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE There are few evidence-based treatments for language deficits in primary progressive aphasia (PPA). PPA treatments are often adopted from the poststroke aphasia literature. The poststroke aphasia literature has shown promising results using Verb Network Strengthening Treatment (VNeST), a behavioral therapy that focuses on improving naming by producing verbs and their arguments in phrases and sentences. Emerging research in poststroke aphasia and PPA has shown promising results pairing behavioral language therapy with transcranial direct current stimulation (tDCS). METHOD This study used a double-blind, within-subjects, sham-controlled crossover design to study the effect of anodal tDCS applied to left inferior frontal gyrus (IFG) plus VNeST versus VNeST plus sham stimulation in two individuals with nonfluent variant PPA and one individual with logopenic variant PPA. Participants received two phases of treatment, each with 15 1-hr sessions of VNeST. One phase paired VNeST with tDCS stimulation, and one with sham. For each phase, language testing was conducted at baseline, and at 1 week and 8 weeks posttreatment conclusion. For each participant, treatment efficacy was evaluated for each treatment phase by comparing the mean change in accuracy between baseline and the follow-up time points for naming trained verbs (primary outcome measure), untrained verbs, and nouns on the Object and Action Naming Battery. Mean change from baseline was also directly compared between tDCS and sham phases at each time point. RESULTS Results revealed a different pattern of outcomes for each of the participants. A tDCS advantage was not found for trained verbs for any participant. Two participants with nonfluent variant PPA had a tDCS advantage for generalization to naming of untrained verbs, which was apparent at 1 week and 8 weeks posttreatment. One participant with nonfluent variant also showed evidence of generalization to sentence production in the tDCS phase. CONCLUSION VNeST plus anodal tDCS stimulation of left IFG shows promising results for improving naming in PPA.
Collapse
Affiliation(s)
- Shannon M. Sheppard
- Department of Communication Sciences and Disorders, Chapman University, Irvine, CA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emily B. Goldberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rajani Sebastian
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexandra Walker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
16
|
Is Early Bilingual Experience Associated with Greater Fluid Intelligence in Adults? LANGUAGES 2022. [DOI: 10.3390/languages7020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging evidence suggests that early bilingual experience constrains the development of attentional processes in infants, and that some of these early bilingual adaptations could last into adulthood. However, it is not known whether the early adaptations in the attentional domain alter more general cognitive abilities. If they do, then we would expect that bilingual adults who learned their second language early in life would score more highly across cognitive tasks than bilingual adults who learned their second language later in life. To test this hypothesis, 170 adult participants were administered a well-established (non-verbal) measure of fluid intelligence: Raven’s Advanced Progressive Matrices (RAPM). Fluid intelligence (the ability to solve novel reasoning problems, independent of acquired knowledge) is highly correlated with numerous cognitive abilities across development. Performance on the RAPM was greater in bilinguals than monolinguals, and greater in ‘early bilinguals’ (adults who learned their second language between 0–6 years) than ‘late bilinguals’ (adults who learned their second language after age 6 years). The groups did not significantly differ on a proxy of socioeconomic status. These results suggest that the difference in fluid intelligence between bilinguals and monolinguals is not a consequence of bilingualism per se, but of early adaptive processes. However, the finding may depend on how bilingualism is operationalized, and thus needs to be replicated with a larger sample and more detailed measures.
Collapse
|
17
|
Matar SJ, Newton C, Sorinola IO, Pavlou M. Transcranial Direct-Current Stimulation as an Adjunct to Verb Network Strengthening Treatment in Post-stroke Chronic Aphasia: A Double-Blinded Randomized Feasibility Study. Front Neurol 2022; 13:722402. [PMID: 35309584 PMCID: PMC8924047 DOI: 10.3389/fneur.2022.722402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background Difficulties in discourse production are common in post-stroke chronic aphasia. Previous studies have found that speech and language therapy combined with transcranial direct-current stimulation (tDCS) may improve language skills like naming and enhance aphasia treatment outcomes. However, very few studies have investigated the effect of tDCS when combined with interventions for improving higher level language skills such as the Verb Network Strengthening Treatment (VNeST). Aims This study aimed to determine the feasibility of anodal tDCS as an adjunct to VNeST to improve discourse production in post-stroke chronic aphasia. Methods Six people with post-stroke chronic aphasia took part in this double-blinded randomized feasibility study. Participants were randomly allocated to either the experimental group receiving a 6-week block of once weekly VNeST sessions combined with active tDCS over the left inferior frontal gyrus (LIFG) or a control group that received VNeST with sham stimulation. Feasibility outcomes included screening, eligibility, retention, and completion rates, and adverse events. Preliminary response to intervention was also examined using discourse production, functional communication, quality of life, psychological state, and cognition outcomes. Results Overall 19 individuals were screened and ten met the inclusion criteria. Six individuals provided consent and participated in the study giving a consent rate of 60%. Participant retention and completion rates were 100% and no adverse effects were reported. Exploratory analyses revealed promising changes (i.e., estimated large effect size) in discourse production measures across discourse language tasks and functional communication for the active tDCS group. Conclusions Our results support the feasibility of tDCS as an adjunct to VNeST. Preliminary findings provide motivation for future large-scale studies to better understand the potential of tDCS as a safe and economical tool for enhancing rehabilitation in chronic aphasia.
Collapse
Affiliation(s)
- Shereen J. Matar
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Caroline Newton
- Division of Psychology and Language Sciences, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Isaac O. Sorinola
- Department of Population Health Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Marousa Pavlou
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- *Correspondence: Marousa Pavlou
| |
Collapse
|
18
|
Khan A, Yuan K, Bao SC, Ti CHE, Tariq A, Anjum N, Tong RKY. Can Transcranial Electrical Stimulation Facilitate Post-stroke Cognitive Rehabilitation? A Systematic Review and Meta-Analysis. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:795737. [PMID: 36188889 PMCID: PMC9397778 DOI: 10.3389/fresc.2022.795737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/11/2022] [Indexed: 01/12/2023]
Abstract
Background Non-invasive brain stimulation methods have been widely utilized in research settings to manipulate and understand the functioning of the human brain. In the last two decades, transcranial electrical stimulation (tES) has opened new doors for treating impairments caused by various neurological disorders. However, tES studies have shown inconsistent results in post-stroke cognitive rehabilitation, and there is no consensus on the effectiveness of tES devices in improving cognitive skills after the onset of stroke. Objectives We aim to systematically investigate the efficacy of tES in improving post-stroke global cognition, attention, working memory, executive functions, visual neglect, and verbal fluency. Furthermore, we aim to provide a pathway to an effective use of stimulation paradigms in future studies. Methods Preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed. Randomized controlled trials (RCTs) were systematically searched in four different databases, including Medline, Embase, Pubmed, and PsychInfo. Studies utilizing any tES methods published in English were considered for inclusion. Standardized mean difference (SMD) for each cognitive domain was used as the primary outcome measure. Results The meta-analysis includes 19 studies assessing at least one of the six cognitive domains. Five RCTs studying global cognition, three assessing visual neglect, five evaluating working memory, three assessing attention, and nine studies focusing on aphasia were included for meta-analysis. As informed by the quantitative analysis of the included studies, the results favor the efficacy of tES in acute improvement in aphasic deficits (SMD = 0.34, CI = 0.02-0.67, p = 0.04) and attention deficits (SMD = 0.59, CI = -0.05-1.22, p = 0.07), however, no improvement was observed in any other cognitive domains. Conclusion The results favor the efficacy of tES in an improvement in aphasia and attentive deficits in stroke patients in acute, subacute, and chronic stages. However, the outcome of tES cannot be generalized across cognitive domains. The difference in the stimulation montages and parameters, diverse cognitive batteries, and variable number of training sessions may have contributed to the inconsistency in the outcome. We suggest that in future studies, experimental designs should be further refined, and standardized stimulation protocols should be utilized to better understand the therapeutic effect of stimulation.
Collapse
Affiliation(s)
- Ahsan Khan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Yuan
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Chun Hang Eden Ti
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Abdullah Tariq
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Nimra Anjum
- Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China,Hong Kong Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China,*Correspondence: Raymond Kai-Yu Tong
| |
Collapse
|
19
|
Anodal tDCS over Broca's area improves fast mapping and explicit encoding of novel vocabulary. Neuropsychologia 2022; 168:108156. [PMID: 35026217 DOI: 10.1016/j.neuropsychologia.2022.108156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/09/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
Abstract
An accumulating body of evidence suggests that transcranial direct current stimulation (tDCS) can be used to modulate speech processing both in healthy individuals and in patients with speech disorders. There has been, however, no comprehensive study of effects of tDCS of the core language areas in relation to the main word-learning mechanisms. Two principal strategies have been posited as important for natural word acquisition: explicit encoding (EE) which relies on direct instructions and repetition of material, and fast mapping (FM) which operates implicitly, via context-based inference or deduction. We used anodal and cathodal tDCS of Broca's and Wernicke's areas to assess effects of stimulation site and polarity on novel word acquisition in both EE and FM regimes. 160 participants, divided into five groups, received 15 min of cathodal or anodal tDCS over one of the two areas or a sham (placebo) stimulation before learning eight novel words, presented ten times each in a short naturalistic audio-visual word-picture association session, fully counterbalanced across different learning regimes. Behavioural outcome of novel word acquisition was measured immediately after the training in a free recall task, which showed elevated accuracy in all real stimulation groups in comparison with sham stimulation; however, this effect only reached full significance after anodal tDCS of Broca's area. Comparisons between the two learning modes indicated that Broca's anodal tDCS significantly improved both implicit and explicit acquisition of novel vocabulary in comparison with sham tDCS, without, however, any significant differences between EE and FM regimes as such. The results indicate involvement of the left inferior-frontal neocortex in the learning of novel vocabulary and suggest a possibility to promote different types of word acquisition using anodal tDCS of this area.
Collapse
|
20
|
Ren P, Ma M, Wu D, Ma Y. Frontopolar tDCS Induces Frequency-Dependent Changes of Spontaneous Low-Frequency Fluctuations: A Resting-State fMRI Study. Cereb Cortex 2021; 32:3542-3552. [PMID: 34918029 DOI: 10.1093/cercor/bhab432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique that can modulate cortical excitability and behavioral performance. However, its effects on spontaneous low-frequency fluctuations of brain activity are still poorly understood. Here, we systematically investigated the frontopolar tDCS effects on resting-state brain activity and connectivity. Twelve healthy participants were recruited and received anode, cathode, and sham stimulation in a randomized order. Resting-state functional magnetic resonance imaging was performed before and after stimulation. Functional connectivity was calculated to examine tDCS effects within and beyond the frontopolar network. To assess the frequency-dependent changes of brain activity, fractional amplitude of low-frequency fluctuations (fALFF) was computed in the slow-4 (0.027-0.073 Hz) and slow-5 (0.01-0.027 Hz) bands. The results showed anodal tDCS-induced widespread connectivity reduction within and beyond the frontopolar network. Regardless of tDCS polarity, stimulation effect on fALFF was significantly larger in slow-5 band compared with the slow-4. Notably, anodal tDCS-induced connectivity changes were associated with pre-tDCS fALFF in slow-4 band, showing positive correlations in the frontal regions and negative correlations in the temporal regions. Our findings imply that tDCS-induced brain alterations may be frequency-dependent, and pre-tDCS regional brain activity could be used to predict post-tDCS connectivity changes.
Collapse
Affiliation(s)
- Ping Ren
- The Division of Geriatric Psychiatry, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China.,The Division of Geriatric Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong 518020, China.,Institute of Biophysics, The Chinese Academy of Sciences, Beijing 100101, China
| | - Manxiu Ma
- Institute of Biophysics, The Chinese Academy of Sciences, Beijing 100101, China.,Fralin Biomedical Research Institute, Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA
| | - Donghui Wu
- The Division of Geriatric Psychiatry, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China.,The Division of Geriatric Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong 518020, China
| | - Yuanye Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
21
|
Sliwinska MW, Elson R, Pitcher D. Stimulating parietal regions of the multiple-demand cortex impairs novel vocabulary learning. Neuropsychologia 2021; 162:108047. [PMID: 34610342 DOI: 10.1016/j.neuropsychologia.2021.108047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022]
Abstract
Neuroimaging research demonstrated that the early stages of learning engage domain-general networks, non-specialist brain regions that process a wide variety of cognitive tasks. Those networks gradually disengage as learning progresses and learned information becomes processed in brain networks specialised for the specific function (e.g., language). In the current study, we used repetitive transcranial magnetic stimulation (rTMS) in the form of continuous theta burst stimulation (cTBS) to test whether stimulation of the bilateral parietal region of the domain-general network impairs learning new vocabulary, indicating its causal engagement in this process. Twenty participants, with no prior knowledge of Polish, learned Polish words for well-known objects across three training stages. The first training stage started with cTBS applied to either the experimental domain-general bilateral parietal site or the control bilateral precentral site. Immediately after cTBS, the vocabulary training commenced. A different set of words was learned for each site. Immediately after the training stage, participants performed a novel vocabulary test, designed to measure their knowledge of the new words and the effect of stimulation on learning. To measure stimulation effect when the words were more established in the mental lexicon, participants received additional training on the same words but without cTBS (second training stage) and then the full procedures from the first training stage were repeated (third training stage). Results demonstrated that stimulation impaired novel word learning when applied to the bilateral parietal site at the first stage of learning only. This effect was not present when newly learned words were used more proficiently in the third training stage, or at any learning stage during control site stimulation. Our results show that the bilateral parietal region of the domain-general network causally contributes to the successful learning of novel words.
Collapse
Affiliation(s)
- Magdalena W Sliwinska
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK; School of Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Ryan Elson
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK; School of Psychology, University of Nottingham, East Drive, Nottingham, NG7 2RD, UK
| | - David Pitcher
- School of Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| |
Collapse
|
22
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, Ibarretxe-Bilbao N, Ojeda N, Peña J. Effects of transcranial electrical stimulation techniques on second and foreign language learning enhancement in healthy adults: A systematic review and meta-analysis. Neuropsychologia 2021; 160:107985. [PMID: 34371068 DOI: 10.1016/j.neuropsychologia.2021.107985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transcranial electrical stimulation (tES) techniques have been used to enhance different cognitive domains such as language in healthy adults. While several reviews and meta-analysis have been conducted on the effects of tES on different language skills (picture naming, verbal fluency, word reading), there has been little research conducted to date on the effects of tES on the processes involved in foreign language learning. OBJECTIVE A meta-analysis was performed to quantify the effects of tES on foreign language learning processes (non-words, artificial grammar, and foreign languages), focusing on accuracy, response times and 1-week follow-up effects, if reported by the studies. RESULTS Eleven studies that had sham condition were reviewed. Nine of them were analyzed, including five using within-participant design, and four that employed between-participant design. The final analysis encompassed nine studies with 279 healthy participants. The analysis showed moderate enhancing effects of tES on overall language learning (g = 0.50, 95 % CI [0.29, 0.71], p = .0001). However, results were not significant on follow up data (g = 0.54, 95 % CI [-0.12, 1.20], p = .07), and on response times (g = 0.50, 95 % CI [-0.1, 1.18], p = .10). The effects were significantly moderated by years of education. CONCLUSIONS The results suggest that tES seems to enhance the mechanisms involved in foreign language learning; however, more research is needed to understand the impact scope of these techniques on language learning processes.
Collapse
Affiliation(s)
| | | | | | - Natalia Ojeda
- Department of Methods and Experimental Psychology, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, University of Deusto, Bilbao, Spain.
| |
Collapse
|
23
|
Bertocci MA, Chase HW, Graur S, Stiffler R, Edmiston EK, Coffman BA, Greenberg BD, Phillips ML. The impact of targeted cathodal transcranial direct current stimulation on reward circuitry and affect in Bipolar Disorder. Mol Psychiatry 2021; 26:4137-4145. [PMID: 31664174 PMCID: PMC7188575 DOI: 10.1038/s41380-019-0567-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Bipolar Disorder is costly and debilitating, and many treatments have side effects. Transcranial Direct Current Stimulation (tDCS) is a well-tolerated neuromodulation technique that may be a useful treatment for Bipolar Disorder if targeted to neural regions implicated in the disorder. One potential region is the left ventrolateral prefrontal cortex (vlPFC), which shows abnormally elevated activity during reward expectancy in individuals with Bipolar Disorder. We used a counterbalanced repeated measures design to assess the impact of cathodal (inhibitory) tDCS over the left vlPFC on reward circuitry activity, functional connectivity, and affect in adults with Bipolar Disorder, as a step toward developing novel interventions for individuals with the disorder. -1mA cathodal tDCS was administered over the left vlPFC versus a control region, left somatosensory cortex, concurrently with neuroimaging. Affect was assessed pre and post scan in remitted Bipolar Disorder (n = 27) and age/gender-matched healthy (n = 31) adults. Relative to cathodal tDCS over the left somatosensory cortex, cathodal tDCS over the left vlPFC lowered reward expectancy-related left ventral striatal activity (F(1,51) = 9.61, p = 0.003), and was associated with lower negative affect post scan, controlling for pre-scan negative affect, (F(1,49) = 5.57, p = 0.02) in all participants. Acute cathodal tDCS over the left vlPFC relative to the left somatosensory cortex reduces reward expectancy-related activity and negative affect post tDCS. Build on these findings, future studies can determine whether chronic cathodal tDCS over the left vlPFC has sustained effects on mood in individuals with Bipolar Disorder, to guide new treatment developments for the disorder.
Collapse
Affiliation(s)
- MA Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - HW Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - EK Edmiston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - BA Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - BD Greenberg
- Department of Psychiatry, Brown University, Butler Hospital and Providence VA Medical Center, Providence, RI, USA
| | - ML Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Friehs MA, Frings C, Hartwigsen G. Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neurosci Biobehav Rev 2021; 128:749-765. [PMID: 34271027 DOI: 10.1016/j.neubiorev.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Transcranial direct current stimulation (tDCS) is widely used to explore the role of various cortical regions for reactive response inhibition. In recent years, tDCS studies reported polarity-, time- and stimulation-site dependent effects on response inhibition. Given the large parameter space in which study designs, tDCS procedures and task procedures can differ, it is crucial to systematically explore the existing tDCS literature to increase the current understanding of potential modulatory effects and limitations of different approaches. We performed a systematic review on the modulatory effects of tDCS on response inhibition as measured by the Stop-Signal Task. The final dataset shows a large variation in methodology and heterogeneous effects of tDCS on performance. The most consistent result across studies is a performance enhancement due to anodal tDCS over the right prefrontal cortex. Partially sub-optimal choices in study design, methodology and lacking consistency in reporting procedures may impede valid conclusions and obscured the effects of tDCS on response inhibition in some previous studies. Finally, we outline future directions and areas to improve research.
Collapse
Affiliation(s)
| | - Christian Frings
- Trier University, Department of Cognitive Psychology and Methodology, Trier, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive Brain Sciences, Leipzig, Germany
| |
Collapse
|
25
|
Suárez-García DMA, Birba A, Zimerman M, Diazgranados JA, Lopes da Cunha P, Ibáñez A, Grisales-Cárdenas JS, Cardona JF, García AM. Rekindling Action Language: A Neuromodulatory Study on Parkinson's Disease Patients. Brain Sci 2021; 11:887. [PMID: 34356122 PMCID: PMC8301982 DOI: 10.3390/brainsci11070887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Impairments of action semantics (a cognitive domain that critically engages motor brain networks) are pervasive in early Parkinson's disease (PD). However, no study has examined whether action semantic skills in persons with this disease can be influenced by non-invasive neuromodulation. Here, we recruited 22 PD patients and performed a five-day randomized, blinded, sham-controlled study to assess whether anodal transcranial direct current stimulation (atDCS) over the primary motor cortex, combined with cognitive training, can boost action-concept processing. On day 1, participants completed a picture-word association (PWA) task involving action-verb and object-noun conditions. They were then randomly assigned to either an atDCS (n = 11, 2 mA for 20 m) or a sham tDCS (n = 11, 2 mA for 30 s) group and performed an online PWA practice over three days. On day 5, they repeated the initial protocol. Relative to sham tDCS, the atDCS group exhibited faster reaction times for action (as opposed to object) concepts in the post-stimulation test. This result was exclusive to the atDCS group and held irrespective of the subjects' cognitive, executive, and motor skills, further attesting to its specificity. Our findings suggest that action-concept deficits in PD are distinctively grounded in motor networks and might be countered by direct neuromodulation of such circuits. Moreover, they provide new evidence for neurosemantic models and inform a thriving agenda in the embodied cognition framework.
Collapse
Affiliation(s)
- Diana M. A. Suárez-García
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Agustina Birba
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Máximo Zimerman
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
| | - Jesús A. Diazgranados
- Centro Médico de Atención Neurológica “Neurólogos de Occidente”, Santiago de Cali 76001, Colombia;
| | - Pamela Lopes da Cunha
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires C1425FQD, Argentina
| | - Agustín Ibáñez
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Trinity College Dublin (TCD), D02R590 Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago 8320000, Chile
| | - Johan S. Grisales-Cárdenas
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Juan Felipe Cardona
- Facultad de Psicología, Universidad del Valle, Santiago de Cali 76001, Colombia; (D.M.A.S.-G.); (J.S.G.-C.)
| | - Adolfo M. García
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Buenos Aires B1644BID, Argentina; (A.B.); (M.Z.); (P.L.d.C.); (A.I.)
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA 94143, USA
- Trinity College Dublin (TCD), D02R590 Dublin 2, Ireland
- Faculty of Education, National University of Cuyo (UNCuyo), Mendoza M5502GKA, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago 9170020, Chile
| |
Collapse
|
26
|
Kuhnke P, Kiefer M, Hartwigsen G. Task-Dependent Functional and Effective Connectivity during Conceptual Processing. Cereb Cortex 2021; 31:3475-3493. [PMID: 33677479 PMCID: PMC8196308 DOI: 10.1093/cercor/bhab026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Conceptual knowledge is central to cognition. Previous neuroimaging research indicates that conceptual processing involves both modality-specific perceptual-motor areas and multimodal convergence zones. For example, our previous functional magnetic resonance imaging (fMRI) study revealed that both modality-specific and multimodal regions respond to sound and action features of concepts in a task-dependent fashion (Kuhnke P, Kiefer M, Hartwigsen G. 2020b. Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cereb Cortex. 30:3938–3959.). However, it remains unknown whether and how modality-specific and multimodal areas interact during conceptual tasks. Here, we asked 1) whether multimodal and modality-specific areas are functionally coupled during conceptual processing, 2) whether their coupling depends on the task, 3) whether information flows top-down, bottom-up or both, and 4) whether their coupling is behaviorally relevant. We combined psychophysiological interaction analyses with dynamic causal modeling on the fMRI data of our previous study. We found that functional coupling between multimodal and modality-specific areas strongly depended on the task, involved both top-down and bottom-up information flow, and predicted conceptually guided behavior. Notably, we also found coupling between different modality-specific areas and between different multimodal areas. These results suggest that functional coupling in the conceptual system is extensive, reciprocal, task-dependent, and behaviorally relevant. We propose a new model of the conceptual system that incorporates task-dependent functional interactions between modality-specific and multimodal areas.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Markus Kiefer
- Department of Psychiatry, Ulm University, Ulm 89081, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
27
|
Nakashima S, Koeda M, Ikeda Y, Hama T, Funayama T, Akiyama T, Arakawa R, Tateno A, Suzuki H, Okubo Y. Effects of anodal transcranial direct current stimulation on implicit motor learning and language-related brain function: An fMRI study. Psychiatry Clin Neurosci 2021; 75:200-207. [PMID: 33576537 DOI: 10.1111/pcn.13208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/09/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
AIM Anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) is known as a useful application for improving depressive symptoms or cognitive performance. Antidepressive effects by anodal tDCS over the left DLPFC are expected, but the neural mechanisms of these effects are still unclear. Further, in depression, reduced performance and left prefrontal hypofunction during the verbal fluency task (VFT) are generally known. However, few studies have examined the effect of tDCS on the language-related cerebral network. We aimed to investigate whether anodal tDCS at the left DLPFC affects cognitive performance and the neural basis of verbal fluency. METHODS Nineteen healthy volunteers participated in this study. The effects of tDCS on cognitive behavior and cerebral function were evaluated by (i) performance and accuracy of implicit/explicit motor learning task (serial reaction time task/sequential finger-tapping task), and (ii) cerebral activation while the subjects were performing the VFT by using a functional MRI protocol of a randomized sham-controlled, within-subjects crossover design. RESULTS Reaction times of the implicit motor learning task were significantly faster with tDCS in comparison with the sham. Further, language-related left prefrontal-parahippocampal-parietal activation was significantly less with tDCS compared with the sham. Significant correlation was observed between shortened response time in serial reaction time task and decreased cerebral activation during VFT with tDCS. CONCLUSION Anodal tDCS over the left DLPFC could improve cognitive behavior of implicit motor learning by improving brain function of the frontoparietal-parahippocampal region related to motor learning, as well as language-related regions.
Collapse
Affiliation(s)
- Soichiro Nakashima
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yumiko Ikeda
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomoko Hama
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Takuya Funayama
- Anesthesiology and Clinical Physiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomi Akiyama
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Ryosuke Arakawa
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Amane Tateno
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshiro Okubo
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
28
|
Turker S, Hartwigsen G. Exploring the neurobiology of reading through non-invasive brain stimulation: A review. Cortex 2021; 141:497-521. [PMID: 34166905 DOI: 10.1016/j.cortex.2021.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Non-invasive brain stimulation (NIBS) has gained increasing popularity as a modulatory tool for drawing causal inferences and exploring task-specific network interactions. Yet, a comprehensive synthesis of reading-related NIBS studies is still missing. We fill this gap by synthesizing the results of 78 NIBS studies investigating the causal involvement of brain regions for reading processing, and then link these results to a neurobiological model of reading. The included studies provide evidence for a functional-anatomical double dissociation for phonology versus semantics during reading-related processes within left inferior frontal and parietal areas. Additionally, the posterior parietal cortex and the anterior temporal lobe are identified as critical regions for reading-related processes. Overall, the findings provide some evidence for a dual-stream neurobiological model of reading, in which a dorsal stream (left temporo-parietal and inferior frontal areas) processes unfamiliar words and pseudowords, and a ventral stream (left occipito-temporal and inferior frontal areas, with assistance from the angular gyrus and the anterior temporal lobe) processes known words. However, individual differences in reading abilities and strategies, as well as differences in stimulation parameters, may impact the neuromodulatory effects induced by NIBS. We emphasize the need to investigate task-specific network interactions in future studies by combining NIBS with neuroimaging.
Collapse
Affiliation(s)
- Sabrina Turker
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Hartwigsen
- Lise Meitner Research Group 'Cognition and Plasticity', Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
29
|
Nascimento DC, Pinto-Orellana MA, Leite JP, Edwards DJ, Louzada F, Santos TEG. BrainWave Nets: Are Sparse Dynamic Models Susceptible to Brain Manipulation Experimentation? Front Syst Neurosci 2020; 14:527757. [PMID: 33324178 PMCID: PMC7726475 DOI: 10.3389/fnsys.2020.527757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/19/2020] [Indexed: 11/15/2022] Open
Abstract
Sparse time series models have shown promise in estimating contemporaneous and ongoing brain connectivity. This paper was motivated by a neuroscience experiment using EEG signals as the outcome of our established interventional protocol, a new method in neurorehabilitation toward developing a treatment for visual verticality disorder in post-stroke patients. To analyze the [complex outcome measure (EEG)] that reflects neural-network functioning and processing in more specific ways regarding traditional analyses, we make a comparison among sparse time series models (classic VAR, GLASSO, TSCGM, and TSCGM-modified with non-linear and iterative optimizations) combined with a graphical approach, such as a Dynamic Chain Graph Model (DCGM). These dynamic graphical models were useful in assessing the role of estimating the brain network structure and describing its causal relationship. In addition, the class of DCGM was able to visualize and compare experimental conditions and brain frequency domains [using finite impulse response (FIR) filter]. Moreover, using multilayer networks, the results corroborate with the susceptibility of sparse dynamic models, bypassing the false positives problem in estimation algorithms. We conclude that applying sparse dynamic models to EEG data may be useful for describing intervention-relocated changes in brain connectivity.
Collapse
Affiliation(s)
- Diego C Nascimento
- Institute of Mathematical Science and Computing, University of São Paulo, Sao Carlos, Brazil.,Departamento de Matemática, Universidad de Atacama de Chile, Copiapo, Chile
| | | | - Joao P Leite
- Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | - Dylan J Edwards
- Moss Rehabilitation Research Institute, Elkins Park, PA, United States.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Francisco Louzada
- Institute of Mathematical Science and Computing, University of São Paulo, Sao Carlos, Brazil
| | - Taiza E G Santos
- Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
30
|
Duffau H. Can Non-invasive Brain Stimulation Be Considered to Facilitate Reoperation for Low-Grade Glioma Relapse by Eliciting Neuroplasticity? Front Neurol 2020; 11:582489. [PMID: 33304307 PMCID: PMC7693634 DOI: 10.3389/fneur.2020.582489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Team “Plasticity of Central Nervous System, Stem Cells and Glial Tumors, ” National Institute for Health and Medical Research (INSERM), U1191 Laboratory, Institute of Functional Genomics, University of Montpellier, Montpellier, France
| |
Collapse
|
31
|
Sebastian R, Kim JH, Brenowitz R, Tippett DC, Desmond JE, Celnik PA, Hillis AE. Cerebellar neuromodulation improves naming in post-stroke aphasia. Brain Commun 2020; 2:fcaa179. [PMID: 33241212 PMCID: PMC7677607 DOI: 10.1093/braincomms/fcaa179] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Transcranial direct current stimulation has been shown to increase the efficiency of language therapy in chronic aphasia; however, to date, an optimal stimulation site has not been identified. We investigated whether neuromodulation of the right cerebellum can improve naming skills in chronic aphasia. Using a randomized, double-blind, sham-controlled, within-subject crossover study design, participants received anodal cerebellar stimulation (n = 12) or cathodal cerebellar stimulation (n = 12) + computerized aphasia therapy then sham + computerized aphasia therapy, or the opposite order. There was no significant effect of treatment (cerebellar stimulation versus sham) for trained naming. However, there was a significant order x treatment interaction, indicating that cerebellar stimulation was more effective than sham immediately post-treatment for participants who received cerebellar stimulation in the first phase. There was a significant effect of treatment (cerebellar stimulation versus sham) for untrained naming immediately post-treatment and the significant improvement in untrained naming was maintained at two months post-treatment. Greater gains in naming (relative to sham) were noted for participants receiving cathodal stimulation for both trained and untrained items. Thus, our study provides evidence that repetitive cerebellar transcranial direct stimulation combined with computerized aphasia treatment can improve picture naming in chronic post-stroke aphasia. These findings suggest that the right cerebellum might be an optimal stimulation site for aphasia rehabilitation and this could be an answer to handle heterogeneous participants who vary in their size and site of left hemisphere lesions.
Collapse
Affiliation(s)
- Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ji Hyun Kim
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Brenowitz
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donna C Tippett
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John E Desmond
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Argye E Hillis
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
32
|
Phillips NS, Kesler SR, Scoggins MA, Glass JO, Cheung YT, Liu W, Banerjee P, Ogg RJ, Srivastava D, Pui CH, Robison LL, Reddick WE, Hudson MM, Krull KR. Connectivity of the Cerebello-Thalamo-Cortical Pathway in Survivors of Childhood Leukemia Treated With Chemotherapy Only. JAMA Netw Open 2020; 3:e2025839. [PMID: 33216140 PMCID: PMC7679952 DOI: 10.1001/jamanetworkopen.2020.25839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPORTANCE Treatment with contemporary chemotherapy-only protocols is associated with risk for neurocognitive impairment among survivors of childhood acute lymphoblastic leukemia (ALL). OBJECTIVE To determine whether concurrent use of methotrexate and glucocorticoids is associated with interference with the antioxidant system of the brain and damage and disruption of glucocorticoid-sensitive regions of the cerebello-thalamo-cortical network. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study was conducted from December 2016 to July 2019 in a single pediatric cancer tertiary care center. Participants included survivors of childhood ALL who were more than 5 years from cancer diagnosis, age 8 years or older, and treated on an institutional chemotherapy-only protocol. Age-matched community members were recruited as a control group. Data were analyzed from August 2017 to August 2020. EXPOSURE ALL treatment using chemotherapy-only protocols. MAIN OUTCOMES AND MEASURES This study compared brain volumes between survivors and individuals in a community control group and examined associations among survivors of methotrexate and dexamethasone exposure with neurocognitive outcomes. Functional and effective connectivity measures were compared between survivors with and without cognitive impairment. The Rey-Osterrieth complex figure test, a neurocognitive evaluation in which individuals are asked to copy a figure and then draw the figure from memory, was scored according to published guidelines and transformed into age-adjusted z scores based on nationally representative reference data and used to measure organization and planning deficits. β values for neurocognitive tests represented the amount of change in cerebellar volume or chemotherapy exposure associated with 1 SD change in neurocognitive outcome by z score (mm3/1 SD in z score for cerebellum, mm3/[g×hr/L] for dexamethasone and methotrexate AUC, and mm3/intrathecal count for total intrathecal count). RESULTS Among 302 eligible individuals, 218 (72%) participated in the study and 176 (58%) had usable magnetic resonance imaging (MRI) results. Among these, 89 (51%) were female participants and the mean (range) age was 6.8 (1-18) years at diagnosis and 14.5 (8-27) years at evaluation. Of 100 community individuals recruited as the control group, 82 had usable MRI results; among these, 35 (43%) were female individuals and the mean (range) age was 13.8 (8-26) years at evaluation. There was no significant difference in total brain volume between survivors and individuals in the control group. Survivors of both sexes showed decreased mean (SD) cerebellar volumes compared with the control population (female: 70 568 [6465] mm3 vs 75 134 [6780] mm3; P < .001; male: 77 335 [6210] mm3 vs 79 020 [7420] mm3; P < .001). In female survivors, decreased cerebellar volume was associated with worse performance in Rey-Osterrieth complex figure test (left cerebellum: β = 55.54; SE = 25.55; P = .03; right cerebellum: β = 52.57; SE = 25.50; P = .04) and poorer dominant-hand motor processing speed (ie, grooved pegboard performance) (left cerebellum: β = 82.71; SE = 31.04; P = .009; right cerebellum: β = 91.06; SE = 30.72; P = .004). In female survivors, increased number of intrathecal treatments (ie, number of separate injections) was also associated with Worse Rey-Osterrieth test performance (β = -0.154; SE = 0.063; P = .02), as was increased dexamethasone exposure (β = -0.0014; SE = 0.0005; P = .01). Executive dysfunction was correlated with increased global efficiency between smaller brain regions (Pearson r = -0.24; P = .01) compared with individuals without dysfunction. Anatomical connectivity showed differences between impaired and nonimpaired survivors. Analysis of variance of effective-connectivity weights identified a significant interaction association (F = 3.99; P = .02) among the direction and strength of connectivity between the cerebellum and DLPFC, female sex, and executive dysfunction. Finally, no effective connectivity was found between the precuneus and DLPFC in female survivors with executive dysfunction. CONCLUSIONS AND RELEVANCE These findings suggest that dexamethasone exposure was associated with smaller cerebello-thalamo-cortical regions in survivors of ALL and that disruption of effective connectivity was associated with impairment of executive function in female survivors.
Collapse
Affiliation(s)
- Nicholas S. Phillips
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Shelli R. Kesler
- Now with School of Nursing, University of Texas at Austin
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Matthew A. Scoggins
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - John O. Glass
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Wei Liu
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Pia Banerjee
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Robert J. Ogg
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Deokumar Srivastava
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Wilburn E. Reddick
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kevin R. Krull
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Psychology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
33
|
Zhao C, Woodman GF. Converging Evidence That Neural Plasticity Underlies Transcranial Direct-Current Stimulation. J Cogn Neurosci 2020; 33:146-157. [PMID: 33054552 DOI: 10.1162/jocn_a_01639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.
Collapse
|
34
|
Cerreta AGB, Mruczek REB, Berryhill ME. Predicting Working Memory Training Benefits From Transcranial Direct Current Stimulation Using Resting-State fMRI. Front Psychol 2020; 11:570030. [PMID: 33154728 PMCID: PMC7591503 DOI: 10.3389/fpsyg.2020.570030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
The effects of transcranial direct current stimulation (tDCS) on working memory (WM) performance are promising but variable and contested. In particular, designs involving one session of tDCS are prone to variable outcomes with notable effects of individual differences. Some participants benefit, whereas others are impaired by the same tDCS protocol. In contrast, protocols including multiple sessions of tDCS more consistently report WM improvement across participants. The objective of the current project was to test whether differences in resting-state connectivity between stimulation site and two WM-relevant networks [default mode network (DMN) and central executive network (CEN)] could account for initial and longitudinal responses to tDCS. Healthy young adults completed 5 days of visual WM training during sham or anodal right frontal tDCS. The behavioral data showed that only the active tDCS group significantly improved over the visual WM training period. There were no significant correlations between initial response to tDCS and resting-state activity. DMN activity in the anterior cingulate cortex significantly correlated with WM training slope. These data underscore the importance of sampling in studies applying tDCS; homogeneity (e.g., of gender, special population, and WM capacity) may produce more consistent data in a single experiment with limited power, whereas heterogeneity is important in determining the mechanism(s) and potential for tDCS-linked protocols. This issue is a limitation in tDCS findings that continues to hamper its optimization and translational value.
Collapse
Affiliation(s)
- Adelle G B Cerreta
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| | - Ryan E B Mruczek
- Department of Psychology, College of the Holy Cross, Worcester, MA, United States
| | - Marian E Berryhill
- Program in Cognitive and Brain Sciences, Program in Integrative Neuroscience, Department of Psychology, University of Nevada, Reno, NV, United States
| |
Collapse
|
35
|
Matar SJ, Sorinola IO, Newton C, Pavlou M. Transcranial Direct-Current Stimulation May Improve Discourse Production in Healthy Older Adults. Front Neurol 2020; 11:935. [PMID: 32982943 PMCID: PMC7479316 DOI: 10.3389/fneur.2020.00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
Background: The use of transcranial direct-current stimulation (tDCS) for therapeutic and neurorehabilitation purposes has become increasingly popular in recent years. Previous research has found that anodal tDCS may enhance naming ability and verbal fluency in healthy participants. However, the effect of tDCS on more functional, higher level language skills such as discourse production has yet to be understood. Aims: The present study aimed to investigate in healthy, older adults (a) the effect of anodal tDCS on discourse production vs. sham stimulation and (b) optimal electrode placement for tDCS to target language improvement at the discourse level. Methods: Fourteen healthy, older right-handed participants took part in this sham controlled, repeated measures pilot study. Each participant experienced three different experimental conditions; anodal tDCS on the left inferior frontal gyrus (IFG), anodal tDCS on the right IFG and sham stimulation while performing a story telling task. Significant changes in language performance before and after each condition were examined in three discourse production tasks: recount, procedural and narrative. Results: Left and right IFG conditions showed a greater number of significant within-group improvements (p < 0.05) in discourse production compared to sham with 6/12 for left IFG, 4/12 for right IFG and 2/12 for sham. There were no significant differences noted between tDCS conditions. No relationship was noted between language performance and physical activity, age, or gender. Conclusions: This study suggests that anodal tDCS may significantly improve discourse production in healthy, older adults. In line with previous tDCS language studies, the left IFG is highlighted as an optimal stimulation site for the modulation of language in healthy speakers. The findings support further exploration of tDCS as a rehabilitative tool for higher-level language skills in persons with aphasia.
Collapse
Affiliation(s)
- Shereen J Matar
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Isaac O Sorinola
- Department of Public Health Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Caroline Newton
- Division of Psychology & Language Sciences, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Marousa Pavlou
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
36
|
Rodrigues de Almeida L, Pope PA, Hansen PC. Task load modulates tDCS effects on brain network for phonological processing. Cogn Process 2020; 21:341-363. [PMID: 32152767 PMCID: PMC7381442 DOI: 10.1007/s10339-020-00964-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Motor participation in phonological processing can be modulated by task nature across the speech perception to speech production range. The pars opercularis of the left inferior frontal gyrus (LIFG) would be increasingly active across this range, because of changing motor demands. Here, we investigated with simultaneous tDCS and fMRI whether the task load modulation of tDCS effects translates into predictable patterns of functional connectivity. Findings were analysed under the "multi-node framework", according to which task load and the network structure underlying cognitive functions are modulators of tDCS effects. In a within-subject study, participants (N = 20) performed categorical perception, lexical decision and word naming tasks [which differentially recruit the target of stimulation (LIFG)], which were repeatedly administered in three tDCS sessions (anodal, cathodal and sham). The LIFG, left superior temporal gyrus and their right homologues formed the target network subserving phonological processing. C-tDCS inhibition and A-tDCS excitation should increase with task load. Correspondingly, the larger the task load, the larger the relevance of the target for the task and smaller the room for compensation of C-tDCS inhibition by less relevant nodes. Functional connectivity analyses were performed with partial correlations, and network compensation globally inferred by comparing the relative number of significant connections each condition induced relative to sham. Overall, simultaneous tDCS and fMRI was adequate to show that motor participation in phonological processing is modulated by task nature. Network responses induced by C-tDCS across phonological processing tasks matched predictions. A-tDCS effects were attributed to optimisation of network efficiency.
Collapse
Affiliation(s)
| | - Paul A Pope
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter C Hansen
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
37
|
Modeling radio-frequency energy-induced heating due to the presence of transcranial electric stimulation setup at 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:793-807. [PMID: 32462558 PMCID: PMC7669803 DOI: 10.1007/s10334-020-00853-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/22/2020] [Accepted: 05/12/2020] [Indexed: 11/02/2022]
Abstract
PURPOSE The purpose of the present study was to develop a numerical workflow for simulating temperature increase in a high-resolution human head and torso model positioned in a whole-body magnetic resonance imaging (MRI) radio-frequency (RF) coil in the presence of a transcranial electric stimulation (tES) setup. METHODS A customized human head and torso model was developed from medical image data. Power deposition and temperature rise (ΔT) were evaluated with the model positioned in a whole-body birdcage RF coil in the presence of a tES setup. Multiphysics modeling at 3T (123.2 MHz) on unstructured meshes was based on RF circuit, 3D electromagnetic, and thermal co-simulations. ΔT was obtained for (1) a set of electrical and thermal properties assigned to the scalp region, (2) a set of electrical properties of the gel used to ensure proper electrical contact between the tES electrodes and the scalp, (3) a set of electrical conductivity values of skin tissue, (4) four gel patch shapes, and (5) three electrode shapes. RESULTS Significant dependence of power deposition and ΔT on the skin's electrical properties and electrode and gel patch geometries was observed. Differences in maximum ΔT (> 100%) and its location were observed when comparing the results from a model using realistic human tissue properties and one with an external container made of acrylic material. The electrical and thermal properties of the phantom container material also significantly (> 250%) impacted the ΔT results. CONCLUSION Simulation results predicted that the electrode and gel geometries, skin electrical conductivity, and position of the temperature sensors have a significant impact on the estimated temperature rise. Therefore, these factors must be considered for reliable assessment of ΔT in subjects undergoing an MRI examination in the presence of a tES setup.
Collapse
|
38
|
Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation. Mol Psychiatry 2020; 25:397-407. [PMID: 31455860 PMCID: PMC6981019 DOI: 10.1038/s41380-019-0499-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/24/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a promising method for altering the function of neural systems, cognition, and behavior. Evidence is emerging that it can also influence psychiatric symptomatology, including major depression and schizophrenia. However, there are many open questions regarding how the method might have such an effect, and uncertainties surrounding its influence on neural activity, and human cognition and functioning. In the present critical review, we identify key priorities for future research into major depression and schizophrenia, including studies of the mechanism(s) of action of tDCS at the neuronal and systems levels, the establishment of the cognitive impact of tDCS, as well as investigations of the potential clinical efficacy of tDCS. We highlight areas of progress in each of these domains, including data that appear to favor an effect of tDCS on neural oscillations rather than spiking, and findings that tDCS administration to the prefrontal cortex during task training may be an effective way to enhance behavioral performance. Finally, we provide suggestions for further empirical study that will elucidate the impact of tDCS on brain and behavior, and may pave the way for efficacious clinical treatments for psychiatric disorders.
Collapse
|
39
|
Seghier ML, Fahim MA, Habak C. Educational fMRI: From the Lab to the Classroom. Front Psychol 2019; 10:2769. [PMID: 31866920 PMCID: PMC6909003 DOI: 10.3389/fpsyg.2019.02769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
Functional MRI (fMRI) findings hold many potential applications for education, and yet, the translation of fMRI findings to education has not flowed. Here, we address the types of fMRI that could better support applications of neuroscience to the classroom. This 'educational fMRI' comprises eight main challenges: (1) collecting artifact-free fMRI data in school-aged participants and in vulnerable young populations, (2) investigating heterogenous cohorts with wide variability in learning abilities and disabilities, (3) studying the brain under natural and ecological conditions, given that many practical topics of interest for education can be addressed only in ecological contexts, (4) depicting complex age-dependent associations of brain and behaviour with multi-modal imaging, (5) assessing changes in brain function related to developmental trajectories and instructional intervention with longitudinal designs, (6) providing system-level mechanistic explanations of brain function, so that useful individualized predictions about learning can be generated, (7) reporting negative findings, so that resources are not wasted on developing ineffective interventions, and (8) sharing data and creating large-scale longitudinal data repositories to ensure transparency and reproducibility of fMRI findings for education. These issues are of paramount importance to the development of optimal fMRI practices for educational applications.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Mohamed A Fahim
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| | - Claudine Habak
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education (ECAE), Abu Dhabi, United Arab Emirates
| |
Collapse
|
40
|
From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation. Behav Neurol 2019; 2019:9894571. [PMID: 31428210 PMCID: PMC6679886 DOI: 10.1155/2019/9894571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Communication in humans activates almost every part of the brain. Of course, the use of language predominates, but other cognitive functions such as attention, memory, emotion, and executive processes are also involved. However, in order to explain how our brain "understands," "speaks," and "writes," and in order to rehabilitate aphasic disorders, neuroscience has faced the challenge for years to reveal the responsible neural networks. Broca and Wernicke (and Lichtheim and many others), during the 19th century, when brain research was mainly observational and autopsy driven, offered fundamental knowledge about the brain and language, so the Wernicke-Geschwind model appeared and aphasiology during the 20th century was based on it. This model is still useful for a first approach into the classical categorization of aphasic syndromes, but it is outdated, because it does not adequately describe the neural networks relevant for language, and it offers a modular perspective, focusing mainly on cortical structures. During the last three decades, neuroscience conquered new imaging, recording, and manipulation techniques for brain research, and a new model of the functional neuroanatomy of language was developed, the dual stream model, consisting of two interacting networks ("streams"), one ventral, bilaterally organized, for language comprehension, and one dorsal, left hemisphere dominant, for production. This new model also has its limitations but helps us to understand, among others, why patients with different brain lesions can have similar language impairments. Furthermore, interesting aspects arise from studying language functions in aging brains (and also in young, developing brains) and in cognitively impaired patients and neuromodulation effects on reorganization of brain networks subserving language. In this selective review, we discuss methods for coupling new knowledge regarding the functional reorganization of the brain with sophisticated techniques capable of activating the available supportive networks in order to provide improved neurorehabilitation strategies for people suffering from neurogenic communication disorders.
Collapse
|
41
|
Fiori V, Nitsche MA, Cucuzza G, Caltagirone C, Marangolo P. High-Definition Transcranial Direct Current Stimulation Improves Verb Recovery in Aphasic Patients Depending on Current Intensity. Neuroscience 2019; 406:159-166. [PMID: 30876982 DOI: 10.1016/j.neuroscience.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/24/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
High-definition transcranial direct current stimulation (HD-tDCS) is a variant of tDCS, which produces more focal stimulation, delimiting brain current flow to a defined region compared to conventional tDCS. To date, only one study has been conducted to investigate HD-tDCS effects on language recovery in aphasia. Here, we aimed to assess the effects of cathodal HD-tDCS on verb naming by comparing two current intensities: 1 vs 2 mA. In a double-blinded cross over study, two groups of 10 aphasic individuals were submitted to active cathodal HD-tDCS and sham stimulation over the right homolog of Broca's area, while performing a verb naming task. Indeed, we reasoned that, by applying inhibitory current over the right Broca's area, we would decrease the inhibitory impact from the right hemisphere to the left perilesional cortex, thus boosting language recovery. The groups differed in the intensity of the active stimulation (1 mA or 2 mA). In both groups, each condition was carried out in five consecutive daily sessions with one week of interval between the two experimental conditions. A significant improvement in verb naming was found only after cathodal HD-tDCS at 2 mA, which endured one week after the end of treatment. The improvement was not observed on the group receiving cathodal HD-tDCS at 1 mA. Our findings showed that HD-tDCS applied to the right intact hemisphere are efficacious for language recovery. These results indicate that HD-tDCS represents a promising new technique for language rehabilitation. However, systematic determination of stimulation intensity appears to be crucial for obtaining relevant effects.
Collapse
Affiliation(s)
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, BG University Hospital Bergmannsheil, Bochum, Germany
| | | | - Carlo Caltagirone
- IRCCS, Fondazione Santa Lucia, Rome, Italy; Università degli Studi di Tor Vergata, Rome, Italy
| | - Paola Marangolo
- IRCCS, Fondazione Santa Lucia, Rome, Italy; Università Federico II, Naples, Italy.
| |
Collapse
|
42
|
Karabanov AN, Saturnino GB, Thielscher A, Siebner HR. Can Transcranial Electrical Stimulation Localize Brain Function? Front Psychol 2019; 10:213. [PMID: 30837911 PMCID: PMC6389710 DOI: 10.3389/fpsyg.2019.00213] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Transcranial electrical stimulation (TES) uses constant (TDCS) or alternating currents (TACS) to modulate brain activity. Most TES studies apply low-intensity currents through scalp electrodes (≤2 mA) using bipolar electrode arrangements, producing weak electrical fields in the brain (<1 V/m). Low-intensity TES has been employed in humans to induce changes in task performance during or after stimulation. In analogy to focal transcranial magnetic stimulation, TES-induced behavioral effects have often been taken as evidence for a causal involvement of the brain region underlying one of the two stimulation electrodes, often referred to as the active electrode. Here, we critically review the utility of bipolar low-intensity TES to localize human brain function. We summarize physiological substrates that constitute peripheral targets for TES and may mediate subliminal or overtly perceived peripheral stimulation during TES. We argue that peripheral co-stimulation may contribute to the behavioral effects of TES and should be controlled for by "sham" TES. We discuss biophysical properties of TES, which need to be considered, if one wishes to make realistic assumptions about which brain regions were preferentially targeted by TES. Using results from electric field calculations, we evaluate the validity of different strategies that have been used for selective spatial targeting. Finally, we comment on the challenge of adjusting the dose of TES considering dose-response relationships between the weak tissue currents and the physiological effects in targeted cortical areas. These considerations call for caution when attributing behavioral effects during or after low-intensity TES studies to a specific brain region and may facilitate the selection of best practices for future TES studies.
Collapse
Affiliation(s)
- Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Guilherme Bicalho Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Electrical Engineering, Technical University of Denmark, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|