1
|
Zhao F, Wu Z, Wang L, Lin W, Li G. Longitudinally consistent registration and parcellation of cortical surfaces using semi-supervised learning. Med Image Anal 2024; 96:103193. [PMID: 38823362 PMCID: PMC11292586 DOI: 10.1016/j.media.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Temporally consistent and accurate registration and parcellation of longitudinal cortical surfaces is of great importance in studying longitudinal morphological and functional changes of human brains. However, most existing methods are developed for registration or parcellation of a single cortical surface. When applying to longitudinal studies, these methods independently register/parcellate each surface from longitudinal scans, thus often generating longitudinally inconsistent and inaccurate results, especially in small or ambiguous cortical regions. Essentially, longitudinal cortical surface registration and parcellation are highly correlated tasks with inherently shared constraints on both spatial and temporal feature representations, which are unfortunately ignored in existing methods. To this end, we unprecedentedly propose a novel semi-supervised learning framework to exploit these inherent relationships from limited labeled data and extensive unlabeled data for more robust and consistent registration and parcellation of longitudinal cortical surfaces. Our method utilizes the spherical topology characteristic of cortical surfaces. It employs a spherical network to function as an encoder, which extracts high-level cortical features. Subsequently, we build two specialized decoders dedicated to the tasks of registration and parcellation, respectively. To extract more meaningful spatial features, we design a novel parcellation map similarity loss to utilize the relationship between registration and parcellation tasks, i.e., the parcellation map warped by the deformation field in registration should match the atlas parcellation map, thereby providing extra supervision for the registration task and augmented data for parcellation task by warping the atlas parcellation map to unlabeled surfaces. To enable temporally more consistent feature representation, we additionally enforce longitudinal consistency among longitudinal surfaces after registering them together using their concatenated features. Experiments on two longitudinal datasets of infants and adults have shown that our method achieves significant improvements on both registration/parcellation accuracy and longitudinal consistency compared to existing methods, especially in small and challenging cortical regions.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Saker Z, Rizk M, Merie D, Nabha RH, Pariseau NJ, Nabha SM, Makki MI. Insight into brain sex differences of typically developed infants and brain pathologies: A systematic review. Eur J Neurosci 2024; 60:3491-3504. [PMID: 38693604 DOI: 10.1111/ejn.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The continually advancing landscape of neuroscientific and imaging research has broadened our comprehension of sex differences encoded in the human brain, expanding from the hypothalamus and sexual behaviour to encompass the entire brain, including its diverse lobes, structures, and functions. However, less is known about sex differences in the brains of neonates and infants, despite their relevance to various sex-linked diseases that develop early in life. In this review, we provide a synopsis of the literature evidence on sex differences in the brains of neonates and infants at the morphological, structural and network levels. We also briefly overview the present evidence on the sex bias in some brain disorders affecting infants and neonates.
Collapse
Affiliation(s)
- Zahraa Saker
- Research Department, Al-Rassoul Al-Aazam Hospital, Beirut, Lebanon
| | - Mahdi Rizk
- School of Health Sciences, Modern University for Business and Science, Beirut, Lebanon
| | - Diana Merie
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Nicole J Pariseau
- Department of Pediatrics-Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malek I Makki
- Laboratory of Functional Neurosciences and Pathologies, University of Picardy Jules Verne, Amiens, France
| |
Collapse
|
3
|
Wang X, Leprince Y, Lebenberg J, Langlet C, Mohlberg H, Rivière D, Auzias G, Dickscheid T, Amunts K, Mangin JF. A framework to improve the alignment of individual cytoarchitectonic maps of the Julich-Brain atlas using cortical folding landmarks. Cereb Cortex 2024; 34:bhad538. [PMID: 38236742 DOI: 10.1093/cercor/bhad538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Yann Leprince
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Jessica Lebenberg
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
- Lariboisière University Hospital, APHP, Translational Neurovascular Centre and Department of Neurology, FHU NeuroVasc, Paris, France
| | - Clement Langlet
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
- Institute of Computer Science, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
- Cecile und Oskar Vogt Institut für Hirnforschung, University Hospital Düsseldorf, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
4
|
Siadat MR, Elisevich K, Soltanian-Zadeh H, Eetemadi A, Smith B. Curvature analysis of perisylvian epilepsy. Acta Neurol Belg 2023; 123:2303-2313. [PMID: 37368146 DOI: 10.1007/s13760-023-02238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/10/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE We assess whether alterations in the convolutional anatomy of the deep perisylvian area (DPSA) might indicate focal epileptogenicity. MATERIALS AND METHODS The DPSA of each hemisphere was segmented on MRI and a 3D gray-white matter interface (GWMI) geometrical model was constructed. Comparative visual and quantitative assessment of the convolutional anatomy of both the left and right DPSA models was performed. Both the density of thorn-like contours (peak percentage) and coarse interface curvatures was computed using Gaussian curvature and shape index, respectively. The proposed method was applied to a total of 14 subjects; 7 patients with an epileptogenic DPSA and 7 non-epileptic subjects. RESULTS A high peak percentage correlated well with the epileptogenic DPSA. It distinguished between patients and non-epileptic subjects (P = 0.029) and identified laterality of the epileptic focus in all but one case. A diminished regional curvature also identified epileptogenicity (P = 0.016) and, moreover, its laterality (P = 0.001). CONCLUSION An increased peak percentage from a global view of the GWMI of the DPSA provides some indication of a propensity toward a focal or regional DPSA epileptogenicity. A diminished convolutional anatomy (i.e., smoothing effect) appears also to coincide with the epileptogenic site in the DPSA and to distinguish laterality.
Collapse
Affiliation(s)
- Mohammad-Reza Siadat
- Department of Computer Science and Engineering, Oakland University, 115 Library Dr., #540, Rochester, MI, 48309, USA.
| | - Kost Elisevich
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Hamid Soltanian-Zadeh
- Department of Diagnostic Radiology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Ameen Eetemadi
- Department of Computer Science, University of California, Davis, CA, 95616, USA
| | - Brien Smith
- Department of Neurosurgery, Ohio Health, Columbus, OH, 43228, USA
| |
Collapse
|
5
|
Duan D, Wen D. MRI-based structural covariance network in early human brain development. Front Neurosci 2023; 17:1302069. [PMID: 38027513 PMCID: PMC10646325 DOI: 10.3389/fnins.2023.1302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
de Vareilles H, Rivière D, Mangin JF, Dubois J. Development of cortical folds in the human brain: An attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev Cogn Neurosci 2023; 61:101249. [PMID: 37141790 PMCID: PMC10311195 DOI: 10.1016/j.dcn.2023.101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The folding of the human brain mostly takes place in utero, making it challenging to study. After a few pioneer studies looking into it in post-mortem foetal specimen, modern approaches based on neuroimaging have allowed the community to investigate the folding process in vivo, its normal progression, its early disturbances, and its relationship to later functional outcomes. In this review article, we aimed to first give an overview of the current hypotheses on the mechanisms governing cortical folding. After describing the methodological difficulties raised by its study in fetuses, neonates and infants with magnetic resonance imaging (MRI), we reported our current understanding of sulcal pattern emergence in the developing brain. We then highlighted the functional relevance of early sulcal development, through recent insights about hemispheric asymmetries and early factors influencing this dynamic such as prematurity. Finally, we outlined how longitudinal studies have started to relate early folding markers and the child's sensorimotor and cognitive outcome. Through this review, we hope to raise awareness on the potential of studying early sulcal patterns both from a fundamental and clinical perspective, as a window into early neurodevelopment and plasticity in relation to growth in utero and postnatal environment of the child.
Collapse
Affiliation(s)
- H de Vareilles
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France.
| | - D Rivière
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J F Mangin
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J Dubois
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Bisiacchi P, Cainelli E. Structural and functional brain asymmetries in the early phases of life: a scoping review. Brain Struct Funct 2022; 227:479-496. [PMID: 33738578 PMCID: PMC8843922 DOI: 10.1007/s00429-021-02256-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
Asymmetry characterizes the brain in both structure and function. Anatomical asymmetries explain only a fraction of functional variability in lateralization, with structural and functional asymmetries developing at different periods of life and in different ways. In this work, we perform a scoping review of the cerebral asymmetries in the first brain development phases. We included all English-written studies providing direct evidence of hemispheric asymmetries in full-term neonates, foetuses, and premature infants, both at term post-conception and before. The final analysis included 57 studies. The reviewed literature shows large variability in the used techniques and methodological procedures. Most structural studies investigated the temporal lobe, showing a temporal planum more pronounced on the left than on the right (although not all data agree), a morphological asymmetry already present from the 29th week of gestation. Other brain structures have been poorly investigated, and the results are even more discordant. Unlike data on structural asymmetries, functional data agree with each other, identifying a leftward dominance for speech stimuli and an overall dominance of the right hemisphere in all other functional conditions. This generalized dominance of the right hemisphere for all conditions (except linguistic stimuli) is in line with theories stating that the right hemisphere develops earlier and that its development is less subject to external influences because it sustains functions necessary to survive.
Collapse
Affiliation(s)
- Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Via Venezia, 8, 35121, Padova, Italy.
- Padova Neuroscience Centre, PNC, Padova, Italy.
| | - Elisa Cainelli
- Department of General Psychology, University of Padova, Via Venezia, 8, 35121, Padova, Italy
| |
Collapse
|
8
|
Li X, Zhang S, Jiang X, Zhang S, Han J, Guo L, Zhang T. Cortical development coupling between surface area and sulcal depth on macaque brains. Brain Struct Funct 2022; 227:1013-1029. [PMID: 34989870 DOI: 10.1007/s00429-021-02444-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
Postnatal development of cerebral cortex is associated with a variety of neuronal processes and is thus critical to development of brain function and cognition. Longitudinal changes of cortical morphology and topology, such as postnatal cortical thinning and flattening have been widely studied. However, thorough and systematic investigation of such cortical change, including how to quantify it from multiple spatial directions and how to relate it to surface topology, is rarely found. In this work, based on a longitudinal macaque neuroimaging dataset, we quantified local changes in gyral white matter's surface area and sulcal depth during early development. We also investigated how these two metrics are coupled and how this coupling is linked to cortical surface topology, underlying white matter, and positions of functional areas. Semi-parametric generalized additive models were adopted to quantify the longitudinal changes of surface area (A) and sulcal depth (D), and the coupling patterns between them. This resulted in four classes of regions, according to how they change compared with global change throughout early development: slower surface area change and slower sulcal depth change (slowA_slowD), slower surface area change and faster sulcal depth change (slowA_fastD), faster surface area change and slower sulcal depth change (fastA_slowD), and faster surface area change and faster sulcal depth change (fastA_fastD). We found that cortex-related metrics, including folding pattern and cortical thickness, vary along slowA_fastD-fastA_slowD axis, and structural connection-related metrics vary along fastA_fastD-slowA_slowD axis, with which brain functional sites align better. It is also found that cortical landmarks, including sulcal pits and gyral hinges, spatially reside on the borders of the four patterns. These findings shed new lights on the relationship between cortex development, surface topology, axonal wiring pattern and brain functions.
Collapse
Affiliation(s)
- Xiao Li
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
9
|
de Vareilles H, Rivière D, Sun Z, Fischer C, Leroy F, Neumane S, Stopar N, Eijsermans R, Ballu M, Tataranno ML, Benders M, Mangin JF, Dubois J. Shape variability of the central sulcus in the developing brain: a longitudinal descriptive and predictive study in preterm infants. Neuroimage 2021; 251:118837. [PMID: 34965455 DOI: 10.1016/j.neuroimage.2021.118837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023] Open
Abstract
Despite growing evidence of links between sulcation and function in the adult brain, the folding dynamics, occurring mostly before normal-term-birth, is vastly unknown. Looking into the development of cortical sulci in infants can give us keys to address fundamental questions: what is the sulcal shape variability in the developing brain? When are the shape features encoded? How are these morphological parameters related to further functional development? In this study, we aimed to investigate the shape variability of the developing central sulcus, which is the frontier between the primary somatosensory and motor cortices. We studied a cohort of 71 extremely preterm infants scanned twice using MRI - once around 30 weeks post-menstrual age (w PMA) and once at term-equivalent age, around 40w PMA -, in order to quantify the sulcus's shape variability using manifold learning, regardless of age-group or hemisphere. We then used these shape descriptors to evaluate the sulcus's variability at both ages and to assess hemispheric and age-group specificities. This led us to propose a description of ten shape features capturing the variability in the central sulcus of preterm infants. Our results suggested that most of these features (8/10) are encoded as early as 30w PMA. We unprecedentedly observed hemispheric asymmetries at both ages, and the one captured at term-equivalent age seems to correspond with the asymmetry pattern previously reported in adults. We further trained classifiers in order to explore the predictive value of these shape features on manual performance at 5 years of age (handedness and fine motor outcome). The central sulcus's shape alone showed a limited but relevant predictive capacity in both cases. The study of sulcal shape features during early neurodevelopment may participate to a better comprehension of the complex links between morphological and functional organization of the developing brain.
Collapse
Affiliation(s)
- H de Vareilles
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France.
| | - D Rivière
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - Z Sun
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - C Fischer
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - F Leroy
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France; Université Paris-Saclay, NeuroSpin-UNICOG, Inserm, CEA, Gif-sur-Yvette, France
| | - S Neumane
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| | - N Stopar
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - R Eijsermans
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - M Ballu
- Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom
| | - M L Tataranno
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - Mjnl Benders
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - J F Mangin
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - J Dubois
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Borne L, Rivière D, Cachia A, Roca P, Mellerio C, Oppenheim C, Mangin JF. Automatic recognition of specific local cortical folding patterns. Neuroimage 2021; 238:118208. [PMID: 34089872 DOI: 10.1016/j.neuroimage.2021.118208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
The study of local cortical folding patterns showed links with psychiatric illnesses as well as cognitive functions. Despite the tools now available to visualize cortical folds in 3D, manually classifying local sulcal patterns is a time-consuming and tedious task. In fact, 3D visualization of folds helps experts to identify different sulcal patterns but fold variability is so high that the distinction between these patterns sometimes requires the definition of complex criteria, making manual classification difficult and not reliable. However, the assessment of the impact of these patterns on the functional organization of the cortex could benefit from the study of large databases, especially when studying rare patterns. In this paper, several algorithms for the automatic classification of fold patterns are proposed to allow morphological studies to be extended and confirmed on such large databases. Three methods are proposed, the first based on a Support Vector Machine (SVM) classifier, the second on the Scoring by Non-local Image Patch Estimator (SNIPE) approach and the third based on a 3D Convolution Neural Network (CNN). These methods are generic enough to be applicable to a wide range of folding patterns. They are tested on two types of patterns for which there is currently no method to automatically identify them: the Anterior Cingulate Cortex (ACC) patterns and the Power Button Sign (PBS). The two ACC patterns are almost equally present whereas PBS is a particularly rare pattern in the general population. The three models proposed achieve balanced accuracies of approximately 80% for ACC patterns classification and 60% for PBS classification. The CNN-based model is more interesting for the classification of ACC patterns thanks to its rapid execution. However, SVM and SNIPE-based models are more effective in managing unbalanced problems such as PBS recognition.
Collapse
Affiliation(s)
- Léonie Borne
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France; University of Newcastle, HMRI, Systems Neuroscience Group, NSW, Australia.
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France
| | - Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France; Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Pauline Roca
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France; Pixyl, Research and Development Laboratory, Grenoble, France
| | - Charles Mellerio
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France; Centre d'imagerie du Nord, Saint Denis, France
| | - Catherine Oppenheim
- Université de Paris, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France; Groupe Hospitalier Universitaire Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Imaging Department, Paris, France
| | | |
Collapse
|
11
|
Bodin C, Pron A, Le Mao M, Régis J, Belin P, Coulon O. Plis de passage in the superior temporal sulcus: Morphology and local connectivity. Neuroimage 2020; 225:117513. [PMID: 33130271 DOI: 10.1016/j.neuroimage.2020.117513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
While there is a profusion of functional investigations involving the superior temporal sulcus (STS), our knowledge of the anatomy of this sulcus is still limited by a large individual variability. In particular, an accurate characterization of the "plis de passage" (PPs), annectant gyri inside the fold, is lacking to explain this variability. Performed on 90 subjects of the HCP database, our study revealed that PPs constitute landmarks that can be identified from the geometry of the STS walls. They were found associated with a specific U-shape white-matter connectivity between the two banks of the sulcus, the amount of connectivity being related to the depth of the PPs. These findings raise new hypotheses regarding the spatial organization of PPs, the relation between cortical anatomy and structural connectivity, as well as the possible role of PPs in the regional functional organization.
Collapse
Affiliation(s)
- C Bodin
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France.
| | - A Pron
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
| | - M Le Mao
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France
| | - J Régis
- INSERM U1106, Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - P Belin
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France; Département de Psychologie, Université de Montréal, Montréal, Canada; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - O Coulon
- CNRS, UMR 7289, Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| |
Collapse
|
12
|
Sun Y, Gao K, Niu S, Lin W, Li G, Wang L. Semi-supervised Transfer Learning for Infant Cerebellum Tissue Segmentation. MACHINE LEARNING IN MEDICAL IMAGING. MLMI (WORKSHOP) 2020; 12436:663-673. [PMID: 33598664 PMCID: PMC7885085 DOI: 10.1007/978-3-030-59861-7_67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To characterize early cerebellum development, accurate segmentation of the cerebellum into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) tissues is one of the most pivotal steps. However, due to the weak tissue contrast, extremely folded tiny structures, and severe partial volume effect, infant cerebellum tissue segmentation is especially challenging, and the manual labels are hard to obtain and correct for learning-based methods. To the best of our knowledge, there is no work on the cerebellum segmentation for infant subjects less than 24 months of age. In this work, we develop a semi-supervised transfer learning framework guided by a confidence map for tissue segmentation of cerebellum MR images from 24-month-old to 6-month-old infants. Note that only 24-month-old subjects have reliable manual labels for training, due to their high tissue contrast. Through the proposed semi-supervised transfer learning, the labels from 24-month-old subjects are gradually propagated to the 18-, 12-, and 6-month-old subjects, which have a low tissue contrast. Comparison with the state-of-the-art methods demonstrates the superior performance of the proposed method, especially for 6-month-old subjects.
Collapse
Affiliation(s)
- Yue Sun
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Kun Gao
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Sijie Niu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
13
|
Duan D, Xia S, Rekik I, Wu Z, Wang L, Lin W, Gilmore JH, Shen D, Li G. Individual identification and individual variability analysis based on cortical folding features in developing infant singletons and twins. Hum Brain Mapp 2020; 41:1985-2003. [PMID: 31930620 PMCID: PMC7198353 DOI: 10.1002/hbm.24924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023] Open
Abstract
Studying the early dynamic development of cortical folding with remarkable individual variability is critical for understanding normal early brain development and related neurodevelopmental disorders. This study focuses on the fingerprinting capability and the individual variability of cortical folding during early brain development. Specifically, we aim to explore (a) whether the developing neonatal cortical folding is unique enough to be considered as a "fingerprint" that can reliably identify an individual within a cohort of infants; (b) which cortical regions manifest more individual variability and thus contribute more for infant identification; (c) whether the infant twins can be distinguished by cortical folding. Hence, for the first time, we conduct infant individual identification and individual variability analysis involving twins based on the developing cortical folding features (mean curvature, average convexity, and sulcal depth) in 472 neonates with 1,141 longitudinal MRI scans. Experimental results show that the infant individual identification achieves 100% accuracy when using the neonatal cortical folding features to predict the identities of 1- and 2-year-olds. Besides, we observe high identification capability in the high-order association cortices (i.e., prefrontal, lateral temporal, and inferior parietal regions) and two unimodal cortices (i.e., precentral gyrus and lateral occipital cortex), which largely overlap with the regions encoding remarkable individual variability in cortical folding during the first 2 years. For twins study, we show that even for monozygotic twins with identical genes and similar developmental environments, their cortical folding features are unique enough for accurate individual identification; and in some high-order association cortices, the differences between monozygotic twin pairs are significantly lower than those between dizygotic twins. This study thus provides important insights into individual identification and individual variability based on cortical folding during infancy.
Collapse
Affiliation(s)
- Dingna Duan
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| | - Islem Rekik
- BASIRA Lab, Faculty of Computer and Informatics, Istanbul Technical University, Istanbul, Turkey.,Computing, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Mangin JF, Le Guen Y, Labra N, Grigis A, Frouin V, Guevara M, Fischer C, Rivière D, Hopkins WD, Régis J, Sun ZY. "Plis de passage" Deserve a Role in Models of the Cortical Folding Process. Brain Topogr 2019; 32:1035-1048. [PMID: 31583493 PMCID: PMC6882753 DOI: 10.1007/s10548-019-00734-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022]
Abstract
Cortical folding is a hallmark of brain topography whose variability across individuals remains a puzzle. In this paper, we call for an effort to improve our understanding of the pli de passage phenomenon, namely annectant gyri buried in the depth of the main sulci. We suggest that plis de passage could become an interesting benchmark for models of the cortical folding process. As an illustration, we speculate on the link between modern biological models of cortical folding and the development of the Pli de Passage Frontal Moyen (PPFM) in the middle of the central sulcus. For this purpose, we have detected nine interrupted central sulci in the Human Connectome Project dataset, which are used to explore the organization of the hand sensorimotor areas in this rare configuration of the PPFM.
Collapse
Affiliation(s)
| | - Yann Le Guen
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - Nicole Labra
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - Antoine Grigis
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - Vincent Frouin
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - Miguel Guevara
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - Clara Fischer
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - Denis Rivière
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| | - William D Hopkins
- MD Anderson Cancer Center, University of Texas, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jean Régis
- INS, CHU La Timone, Aix-Marseille University, 264, rue Saint Pierre, 13385, Marseille, France
| | - Zhong Yi Sun
- Neurospin, CEA, Paris-Saclay University, 91191, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Zaidel DW. Coevolution of language and symbolic meaning: Co-opting meaning underlying the initial arts in early human culture. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 11:e1520. [PMID: 31502423 DOI: 10.1002/wcs.1520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022]
Abstract
Many of language's components, including communicating symbolic meaning, have neurobiological roots that go back millions of years in evolutionary time. The intersection with the human social survival strategy spawned additional adaptive meaning systems. Under conditions threatening survival in socially oriented human groups, extra-language meaning systems co-opted and adapted to facilitate unity, including the early formats of the arts. They would have percolated into cultural practice for this social purpose and ultimately survival. With evolutionary pressures tapping into biologically inherited, physiologically functioning sensory-motor pathways, anchored specifically in rhythm cognition and motor synchrony output, initial art practice conveyed symbolic group cohesion through communal, all-inclusive synchronously moving dance formations and rhythmically produced vocal or percussion sounds. As with the sounds of language in the deep past, and numerous other cultural behaviors, such nonmaterial early art formats would not have left marks in the archeological record but their evolutionary driven practice would have contributed to adaptive genetic factors woven into brain-behavior evolution. Their practice is likely to have well predated unearthed art-related objects. Consolidation of evidence and notions from language evolution, genetics, human physiology, comparative animal communication, archeology, and climate history in the distant past of early humans in Africa supports the evolutionary driven practice of initial nonmaterial art formats conveying symbolic expressions optimizing group survival. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language Psychology > Comparative Psychology.
Collapse
Affiliation(s)
- Dahlia W Zaidel
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, California
| |
Collapse
|
16
|
|
17
|
Zhao F, Xia S, Wu Z, Wang L, Chen Z, Lin W, Gilmore JH, Shen D, Li G. SPHERICAL U-NET FOR INFANT CORTICAL SURFACE PARCELLATION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2019; 2019:1882-1886. [PMID: 31681458 PMCID: PMC6824603 DOI: 10.1109/isbi.2019.8759537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In human brain MRI studies, it is of great importance to accurately parcellate cortical surfaces into anatomically and functionally meaningful regions. In this paper, we propose a novel end-to-end deep learning method by formulating surface parcellation as a semantic segmentation task on the sphere. To extend the convolutional neural networks (CNNs) to the spherical space, corresponding operations of surface convolution, pooling and upsampling are first developed to deal with data representation on spherical surface meshes, and then spherical CNNs are constructed accordingly. Specifically, the U-Net and SegNet architectures are transformed to the spherical representation for neonatal cortical surface parcellation. Experimental results on 90 neonates indicate the effectiveness and efficiency of our proposed spherical U-Net, in comparison with the spherical SegNet and the previous patch-wise classification method.
Collapse
Affiliation(s)
- Fenqiang Zhao
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Zengsi Chen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
- College of Sciences, China Jiliang University, Zhejiang, 310018, China
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
18
|
Duan D, Xia S, Wu Z, Wang F, Wang L, Lin W, Gilmore JH, Shen D, Li G. CORTICAL FOLDINGPRINTS FOR INFANT IDENTIFICATION. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2019; 2019:396-399. [PMID: 31938450 PMCID: PMC6959198 DOI: 10.1109/isbi.2019.8759429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cortical folding of the adult brain is highly convoluted and encodes inter-subject variable characteristics. Recent studies suggest that it is useful for individual identification in adults. However, little is known about whether the infant cortical folding, which undergoes dynamic postnatal development, can be used for individual identification. To fill this gap, we propose to explore cortical folding patterns for infant subject identification. This study thus aims to address two important questions in neuroscience: 1) whether the infant cortical folding is unique for individual identification; and 2) considering the region-specific inter-subject variability, which cortical regions are more distinct and reliable for infant identification. To this end, we propose a novel discriminative descriptor of regional cortical folding based on multi-scale analysis of curvature maps via spherical wavelets, called FoldingPrint. Experiments are carried out on a large longitudinal dataset with 1,141 MRI scans from 472 infants. Despite the dramatic development in the first two years, successful identification of 1-year-olds and 2-year-olds using their neonatal cortical folding (with accuracy > 98%) indicates the effectiveness of the proposed method. Moreover, we reveal that regions with high identification accuracy and large inter-subject variability mainly distribute in high-order association cortices.
Collapse
Affiliation(s)
- Dingna Duan
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Shunren Xia
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, China
| | - Zhengwang Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Fan Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Li Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Weili Lin
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| | - Gang Li
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, USA
| |
Collapse
|