1
|
Vallejo-Azar MN, Arenaza B, Elizalde Acevedo B, Alba-Ferrara L, Samengo I, Bendersky M, Gonzalez PN. Hemispheric asymmetries in cortical grey matter of gyri and sulci in modern human populations from South America. J Anat 2024; 244:815-830. [PMID: 38183319 PMCID: PMC11021627 DOI: 10.1111/joa.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Structural asymmetries of brain regions associated with lateralised functions have been extensively studied. However, there are fewer morphometric analyses of asymmetries of the gyri and sulci of the entire cortex. The current study assessed cortical asymmetries in a sample of healthy adults (N = 175) from an admixed population from South America. Grey matter volume and surface area of 66 gyri and sulci were quantified on T1 magnetic resonance images. The departure from zero of the differences between left and right hemispheres (L-R), a measure of directional asymmetry (DA), the variance of L-R, and an index of fluctuating asymmetry (FA) were evaluated for each region. Significant departures from perfect symmetry were found for most cortical gyri and sulci. Regions showed leftward asymmetry at the population level in the frontal lobe and superior lateral parts of the parietal lobe. Rightward asymmetry was found in the inferior parietal, occipital, frontopolar, and orbital regions, and the cingulate (anterior, middle, and posterior-ventral). Despite this general pattern, several sulci showed the opposite DA compared to the neighbouring gyri, which remarks the need to consider the neurobiological differences in gyral and sulcal development in the study of structural asymmetries. The results also confirm the absence of DA in most parts of the inferior frontal gyrus and the precentral region. This study contributes with data on populations underrepresented in the databases used in neurosciences. Among its findings, there is agreement with previous results obtained in populations of different ancestry and some discrepancies in the middle frontal and medial parietal regions. A significant DA not reported previously was found for the volume of long and short insular gyri and the central sulcus of the insula, frontomarginal, transverse frontopolar, paracentral, and middle and posterior parts of the cingulate gyrus and sulcus, gyrus rectus, occipital pole, and olfactory sulcus, as well as for the volume and area of the transverse collateral sulcus and suborbital sulcus. Also, several parcels displayed significant variability in the left-right differences, which can be partially attributable to developmental instability, a source of FA. Moreover, a few gyri and sulci displayed ideal FA with non-significant departures from perfect symmetry, such as subcentral and posterior cingulate gyri and sulci, inferior frontal and fusiform gyri, and the calcarine, transverse collateral, precentral, and orbital sulci. Overall, these results show that asymmetries are ubiquitous in the cerebral cortex.
Collapse
Affiliation(s)
- Mariana N Vallejo-Azar
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| | - Bautista Arenaza
- Department of Medical Physics and Instituto Balseiro, Centro Atómico Bariloche, CONICET, Bariloche, Argentina
| | - Bautista Elizalde Acevedo
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Bariloche, Argentina
| | - Lucía Alba-Ferrara
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| | - Inés Samengo
- Department of Medical Physics and Instituto Balseiro, Centro Atómico Bariloche, CONICET, Bariloche, Argentina
| | - Mariana Bendersky
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula N Gonzalez
- Estudios en Neurociencias y Sistemas Complejos, ENyS (CONICET, Universidad Nacional Arturo Jauretche, Hospital El Cruce), Florencio Varela, Argentina
| |
Collapse
|
2
|
Man C, Gilissen E, Michaud M. Sexual dimorphism in the cranium and endocast of the eastern lowland gorillas (Gorilla beringei graueri). J Hum Evol 2023; 184:103439. [PMID: 37804559 DOI: 10.1016/j.jhevol.2023.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/09/2023]
Abstract
Sexual dimorphism of the nervous system has been reported for a wide range of vertebrates. However, understanding of sexual dimorphism in primate cranial structures and soft tissues, and more particularly the brain, remains limited. In this study, we aimed to investigate the external and internal (i.e., endocast) cranial differences between male and female eastern lowland gorillas (Gorilla beringei graueri). We examined the differences in the size, shape, and disparity with the aim to compare how sexual dimorphism can impact these two structures distinctively, with a particular focus on the endocranium. To do so, we reconstructed gorilla external crania and endocasts from CT scans and used 3D geometric morphometric techniques combined with multivariate analyses to assess the cranial and endocranial differences between the sexes. Our results highlighted sexual dimorphism for the external cranium and endocast with regard to both size and shape. In particular, males display an elongated face accompanied by a pronounced sagittal crest and an elongated endocast along the rostroposterior axis, in contrast to females who are identified by a more rounded brain case and endocast. Males also show a significantly larger external cranium and endocast size than females. In addition, we described important differences for the posterior cranial fossae (i.e., the position of the cerebellum within the brain case) and olfactory bulb between the two sexes. Particularly, our results highlighted that, relatively to males, females have larger posterior cranial fossae, whereas males have been characterized by a larger and rostrally oriented olfactory bulb.
Collapse
Affiliation(s)
- Caitlin Man
- Laboratory of Ecology, Evolution and Biodiversity Conservation, Katholieke Universiteit Leuven, Charles Deberiotstraat 32 Bus 2439, 3000 Leuven, Belgium; Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium; Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, CP620 - Route de Lennik 808, 1070 Brussels, Belgium
| | - Margot Michaud
- Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium
| |
Collapse
|
3
|
Saltoun K, Adolphs R, Paul LK, Sharma V, Diedrichsen J, Yeo BTT, Bzdok D. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat Hum Behav 2023; 7:251-268. [PMID: 36344655 DOI: 10.1038/s41562-022-01461-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Broca reported ~150 years ago that particular lesions of the left hemisphere impair speech. Since then, other brain regions have been reported to show lateralized structure and function. Yet, studies of brain asymmetry have limited their focus to pairwise comparisons between homologous regions. Here, we characterized separable whole-brain asymmetry patterns in grey and white matter structure from n = 37,441 UK Biobank participants. By pooling information on left-right shifts underlying whole-brain structure, we deconvolved signatures of brain asymmetry that are spatially distributed rather than locally constrained. Classically asymmetric regions turned out to belong to more than one asymmetry pattern. Instead of a single dominant signature, we discovered complementary asymmetry patterns that contributed similarly to whole-brain asymmetry at the population level. These asymmetry patterns were associated with unique collections of phenotypes, ranging from early lifestyle factors to demographic status to mental health indicators.
Collapse
Affiliation(s)
- Karin Saltoun
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Quebec, Canada
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5), Pasadena, CA, USA.,Fuller Graduate School of Psychology, Travis Research Institute, Pasadena, CA, USA
| | - Vaibhav Sharma
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Joern Diedrichsen
- The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada.,Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Perez DC, Dworetsky A, Braga RM, Beeman M, Gratton C. Hemispheric Asymmetries of Individual Differences in Functional Connectivity. J Cogn Neurosci 2023; 35:200-225. [PMID: 36378901 PMCID: PMC10029817 DOI: 10.1162/jocn_a_01945] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resting-state fMRI studies have revealed that individuals exhibit stable, functionally meaningful divergences in large-scale network organization. The locations with strongest deviations (called network "variants") have a characteristic spatial distribution, with qualitative evidence from prior reports suggesting that this distribution differs across hemispheres. Hemispheric asymmetries can inform us on constraints guiding the development of these idiosyncratic regions. Here, we used data from the Human Connectome Project to systematically investigate hemispheric differences in network variants. Variants were significantly larger in the right hemisphere, particularly along the frontal operculum and medial frontal cortex. Variants in the left hemisphere appeared most commonly around the TPJ. We investigated how variant asymmetries vary by functional network and how they compare with typical network distributions. For some networks, variants seemingly increase group-average network asymmetries (e.g., the group-average language network is slightly bigger in the left hemisphere and variants also appeared more frequently in that hemisphere). For other networks, variants counter the group-average network asymmetries (e.g., the default mode network is slightly bigger in the left hemisphere, but variants were more frequent in the right hemisphere). Intriguingly, left- and right-handers differed in their network variant asymmetries for the cingulo-opercular and frontoparietal networks, suggesting that variant asymmetries are connected to lateralized traits. These findings demonstrate that idiosyncratic aspects of brain organization differ systematically across the hemispheres. We discuss how these asymmetries in brain organization may inform us on developmental constraints of network variants and how they may relate to functions differentially linked to the two hemispheres.
Collapse
Affiliation(s)
| | | | | | | | - Caterina Gratton
- Northwestern University, Evanston, IL
- Florida State University, Tallahassee
| |
Collapse
|
5
|
De Vareilles H, Rivière D, Pascucci M, Sun ZY, Fischer C, Leroy F, Tataranno ML, Benders MJ, Dubois J, Mangin JF. Exploring the emergence of morphological asymmetries around the brain's Sylvian fissure: a longitudinal study of shape variability in preterm infants. Cereb Cortex 2023:7005629. [PMID: 36702802 DOI: 10.1093/cercor/bhac533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 12/21/2022] [Indexed: 01/28/2023] Open
Abstract
Brain folding patterns vary within the human species, but some folding properties are common across individuals, including the Sylvian fissure's inter-hemispheric asymmetry. Contrarily to the other brain folds (sulci), the Sylvian fissure develops through the process of opercularization, with the frontal, parietal, and temporal lobes growing over the insular lobe. Its asymmetry may be related to the leftward functional lateralization for language processing, but the time course of these asymmetries' development is still poorly understood. In this study, we investigated refined shape features of the Sylvian fissure and their longitudinal development in 71 infants born extremely preterm (mean gestational age at birth: 26.5 weeks) and imaged once before and once at term-equivalent age (TEA). We additionally assessed asymmetrical sulcal patterns at TEA in the perisylvian and inferior frontal regions, neighbor to the Sylvian fissure. While reproducing renowned strong asymmetries in the Sylvian fissure, we captured an early encoding of its main asymmetrical shape features, and we observed global asymmetrical shape features representative of a more pronounced opercularization in the left hemisphere, contrasting with the previously reported right hemisphere advance in sulcation around birth. This added novel insights about the processes governing early-life brain folding mechanisms, potentially linked to the development of language-related capacities.
Collapse
Affiliation(s)
| | - Denis Rivière
- NeuroSpin-BAOBAB, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Marco Pascucci
- NeuroSpin-BAOBAB, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Zhong-Yi Sun
- NeuroSpin-BAOBAB, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Clara Fischer
- NeuroSpin-BAOBAB, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - François Leroy
- NeuroSpin-BAOBAB, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France.,NeuroSpin-UNICOG, Inserm, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | - Maria-Luisa Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, Netherlands
| | - Manon J Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht 3584 CX, Netherlands
| | - Jessica Dubois
- NeuroDiderot, Inserm, Université Paris Cité, Paris 75019, France.,NeuroSpin-UNIACT, CEA, Université Paris-Saclay, Gif-sur-Yvette 91191, France
| | | |
Collapse
|
6
|
Zhao L, Matloff W, Shi Y, Cabeen RP, Toga AW. Mapping Complex Brain Torque Components and Their Genetic Architecture and Phenomic Associations in 24,112 Individuals. Biol Psychiatry 2022; 91:753-768. [PMID: 35027165 PMCID: PMC8957509 DOI: 10.1016/j.biopsych.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The functional significance and mechanisms determining the development and individual variability of structural brain asymmetry remain unclear. Here, we systematically analyzed all relevant components of the most prominent structural asymmetry, brain torque (BT), and their relationships with potential genetic and nongenetic modifiers in a sample comprising 24,112 individuals from six cohorts. METHODS BT features, including petalia, bending, dorsoventral shift, brain tissue distribution asymmetries, and cortical surface positional asymmetries, were directly modeled using a set of automatic three-dimensional brain shape analysis approaches. Age-, sex-, and handedness-related effects on BT were assessed. The genetic architecture and phenomic associations of BT were investigated using genome- and phenome-wide association scans. RESULTS Our results confirmed the population-level predominance of the typical counterclockwise torque and suggested a first attenuating, then enlarging dynamic across the life span (3-81 years) primarily for frontal, occipital, and perisylvian BT features. Sex/handedness, BT, and cognitive function of verbal-numerical reasoning were found to be interrelated statistically. We observed differential heritability of up to 56% for BT, especially in temporal language areas. Individual variations of BT were also associated with various phenotypic variables of neuroanatomy, cognition, lifestyle, sociodemographics, anthropometry, physical health, and adult and child mental health. Our genomic analyses identified a number of genetic associations at lenient significance levels, which need to be further validated using larger samples in the future. CONCLUSIONS This study provides a comprehensive description of BT and insights into biological and other factors that may contribute to the development and individual variations of BT.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - William Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, California.
| |
Collapse
|
7
|
de Vareilles H, Rivière D, Sun Z, Fischer C, Leroy F, Neumane S, Stopar N, Eijsermans R, Ballu M, Tataranno ML, Benders M, Mangin JF, Dubois J. Shape variability of the central sulcus in the developing brain: a longitudinal descriptive and predictive study in preterm infants. Neuroimage 2021; 251:118837. [PMID: 34965455 DOI: 10.1016/j.neuroimage.2021.118837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023] Open
Abstract
Despite growing evidence of links between sulcation and function in the adult brain, the folding dynamics, occurring mostly before normal-term-birth, is vastly unknown. Looking into the development of cortical sulci in infants can give us keys to address fundamental questions: what is the sulcal shape variability in the developing brain? When are the shape features encoded? How are these morphological parameters related to further functional development? In this study, we aimed to investigate the shape variability of the developing central sulcus, which is the frontier between the primary somatosensory and motor cortices. We studied a cohort of 71 extremely preterm infants scanned twice using MRI - once around 30 weeks post-menstrual age (w PMA) and once at term-equivalent age, around 40w PMA -, in order to quantify the sulcus's shape variability using manifold learning, regardless of age-group or hemisphere. We then used these shape descriptors to evaluate the sulcus's variability at both ages and to assess hemispheric and age-group specificities. This led us to propose a description of ten shape features capturing the variability in the central sulcus of preterm infants. Our results suggested that most of these features (8/10) are encoded as early as 30w PMA. We unprecedentedly observed hemispheric asymmetries at both ages, and the one captured at term-equivalent age seems to correspond with the asymmetry pattern previously reported in adults. We further trained classifiers in order to explore the predictive value of these shape features on manual performance at 5 years of age (handedness and fine motor outcome). The central sulcus's shape alone showed a limited but relevant predictive capacity in both cases. The study of sulcal shape features during early neurodevelopment may participate to a better comprehension of the complex links between morphological and functional organization of the developing brain.
Collapse
Affiliation(s)
- H de Vareilles
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France.
| | - D Rivière
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - Z Sun
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - C Fischer
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - F Leroy
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France; Université Paris-Saclay, NeuroSpin-UNICOG, Inserm, CEA, Gif-sur-Yvette, France
| | - S Neumane
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| | - N Stopar
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - R Eijsermans
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - M Ballu
- Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, United Kingdom
| | - M L Tataranno
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - Mjnl Benders
- Utrecht University, University Medical Center Utrecht, Department of Neonatology, Utrecht, the Netherlands
| | - J F Mangin
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, Gif-sur-Yvette, France
| | - J Dubois
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Gonzalez PN, Vallejo-Azar M, Aristide L, Lopes R, Dos Reis SF, Perez SI. Endocranial asymmetry in New World monkeys: a comparative phylogenetic analysis of morphometric data. Brain Struct Funct 2021; 227:469-477. [PMID: 34455496 DOI: 10.1007/s00429-021-02371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Brain lateralization is a widespread phenomenon although its expression across primates is still controversial due to the reduced number of species analyzed and the disparity of methods used. To gain insight into the diversification of neuroanatomical asymmetries in non-human primates we analyze the endocasts, as a proxy of external brain morphology, of a large sample of New World monkeys and test the effect of brain size, home range and group sizes in the pattern and magnitude of shape asymmetry. Digital endocasts from 26 species were obtained from MicroCT scans and a set of 3D coordinates was digitized on endocast surfaces. Results indicate that Ateles, Brachyteles, Callicebus and Cacajao tend to have a rightward frontal and a leftward occipital lobe asymmetry, whereas Aotus, Callitrichinae and Cebinae have either the opposite pattern or no directional asymmetry. Such differences in the pattern of asymmetry were associated with group and home range sizes. Conversely, its magnitude was significantly associated with brain size, with larger-brained species showing higher inter-hemispheric differences. These findings support the hypothesis that reduction in inter-hemispheric connectivity in larger brains favors the lateralization and increases the structural asymmetries, whereas the patterns of shape asymmetry might be driven by socio-ecological differences among species.
Collapse
Affiliation(s)
- Paula N Gonzalez
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET-UNAJ-HEC), Florencio Varela, Buenos Aires, Argentina.
| | - Mariana Vallejo-Azar
- Unidad Ejecutora de Estudios en Neurociencias y Sistemas Complejos (CONICET-UNAJ-HEC), Florencio Varela, Buenos Aires, Argentina
| | | | - Ricardo Lopes
- Centro de Tecnologia (UFRJ), Laboratório de Instrumentação Nuclear, Rio de Janeiro, Brazil
| | | | - S Ivan Perez
- División Antropología (FCNyM-UNLP), CONICET, La Plata, Argentina
| |
Collapse
|
9
|
Abstract
The endocast was paid great attention in the study of human brain evolution. However, compared to that of the cerebrum, the cerebellar lobe is poorly studied regarding its morphology, function, and evolutionary changes in the process of human evolution. In this study, we define the major axis and four measurements to inspect possible asymmetric patterns within the genus Homo. Results show that significant asymmetry is only observed for the cerebellar length in modern humans and is absent in Homo erectus and Neanderthals. The influence of occipital petalia is obscure due to the small sample size for H. erectus and Neanderthals, while it has a significant influence over the asymmetries of cerebellar height and horizontal orientation in modern humans. Although the length and height of the Neanderthal cerebellum are comparable to that of modern humans, its sagittal orientation is closer to that of H. erectus, which is wider than that of modern humans. The cerebellar morphological difference between Neanderthals and modern humans is suggested to be related to high cognitive activities, such as social factors and language ability.
Collapse
|
10
|
Xiang L, Crow TJ, Hopkins WD, Roberts N. Comparison of Surface Area and Cortical Thickness Asymmetry in the Human and Chimpanzee Brain. Cereb Cortex 2020; 34:bhaa202. [PMID: 33026423 PMCID: PMC10859246 DOI: 10.1093/cercor/bhaa202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Comparative study of the structural asymmetry of the human and chimpanzee brain may shed light on the evolution of language and other cognitive abilities in humans. Here we report the results of vertex-wise and ROI-based analyses that compared surface area (SA) and cortical thickness (CT) asymmetries in 3D MR images obtained for 91 humans and 77 chimpanzees. The human brain is substantially more asymmetric than the chimpanzee brain. In particular, the human brain has 1) larger total SA in the right compared with the left cerebral hemisphere, 2) a global torque-like asymmetry pattern of widespread thicker cortex in the left compared with the right frontal and the right compared with the left temporo-parieto-occipital lobe, and 3) local asymmetries, most notably in medial occipital cortex and superior temporal gyrus, where rightward asymmetry is observed for both SA and CT. There is also 4) a prominent asymmetry specific to the chimpanzee brain, namely, rightward CT asymmetry of precentral cortex. These findings provide evidence of there being substantial differences in asymmetry between the human and chimpanzee brain. The unique asymmetries of the human brain are potential neural substrates for cognitive specializations, and the presence of significant CT asymmetry of precentral gyrus in the chimpanzee brain should be further investigated.
Collapse
Affiliation(s)
- Li Xiang
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timothy J Crow
- POWIC, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
| | - William D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
11
|
Spocter MA, Sherwood CC, Schapiro SJ, Hopkins WD. Reproducibility of leftward planum temporale asymmetries in two genetically isolated populations of chimpanzees ( Pan troglodytes). Proc Biol Sci 2020; 287:20201320. [PMID: 32900313 PMCID: PMC7542794 DOI: 10.1098/rspb.2020.1320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Once considered a hallmark of human uniqueness, brain asymmetry has emerged as a feature shared with several other species, including chimpanzees, one of our closest living relatives. Most notable has been the discovery of asymmetries in homologues of cortical language areas in apes, particularly in the planum temporale (PT), considered a central node of the human language network. Several lines of evidence indicate a role for genetic mechanisms in the emergence of PT asymmetry; however, the genetic determinants of cerebral asymmetries have remained elusive. Studies in humans suggest that there is heritability of brain asymmetries of the PT, but this has not been explored to any extent in chimpanzees. Furthermore, the potential influence of non-genetic factors has raised questions about the reproducibility of earlier observations of PT asymmetry reported in chimpanzees. As such, the present study was aimed at examining both the heritability of phenotypic asymmetries in PT morphology, as well as their reproducibility. Using magnetic resonance imaging, we evaluated morphological asymmetries of PT surface area (mm2) and mean depth (mm) in captive chimpanzees (n = 291) derived from two genetically isolated populations. Our results confirm that chimpanzees exhibit a significant population-level leftward asymmetry for PT surface area, as well as significant heritability in the surface area and mean depth of the PT. These results conclusively demonstrate the existence of a leftward bias in PT asymmetry in chimpanzees and suggest that genetic mechanisms play a key role in the emergence of anatomical asymmetry in this region.
Collapse
Affiliation(s)
- Muhammad A. Spocter
- Department of Anatomy, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
- School of Anatomical Sciences, University of Witwatersrand, Johannesburg 2094, South Africa
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Steven J. Schapiro
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
- Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, UT MD Anderson Cancer Center Bastrop, TX 78602, USA
| |
Collapse
|
12
|
Roumazeilles L, Eichert N, Bryant KL, Folloni D, Sallet J, Vijayakumar S, Foxley S, Tendler BC, Jbabdi S, Reveley C, Verhagen L, Dershowitz LB, Guthrie M, Flach E, Miller KL, Mars RB. Longitudinal connections and the organization of the temporal cortex in macaques, great apes, and humans. PLoS Biol 2020; 18:e3000810. [PMID: 32735557 PMCID: PMC7423156 DOI: 10.1371/journal.pbio.3000810] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/12/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022] Open
Abstract
The temporal association cortex is considered a primate specialization and is involved in complex behaviors, with some, such as language, particularly characteristic of humans. The emergence of these behaviors has been linked to major differences in temporal lobe white matter in humans compared with monkeys. It is unknown, however, how the organization of the temporal lobe differs across several anthropoid primates. Therefore, we systematically compared the organization of the major temporal lobe white matter tracts in the human, gorilla, and chimpanzee great apes and in the macaque monkey. We show that humans and great apes, in particular the chimpanzee, exhibit an expanded and more complex occipital-temporal white matter system; additionally, in humans, the invasion of dorsal tracts into the temporal lobe provides a further specialization. We demonstrate the reorganization of different tracts along the primate evolutionary tree, including distinctive connectivity of human temporal gray matter.
Collapse
Affiliation(s)
- Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Katherine L. Bryant
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Suhas Vijayakumar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sean Foxley
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Colin Reveley
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Lori B. Dershowitz
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Martin Guthrie
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Edmund Flach
- Zoological Society of London, London, United Kingdom
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Cerebral torque is human specific and unrelated to brain size. Brain Struct Funct 2019; 224:1141-1150. [PMID: 30635713 PMCID: PMC6499874 DOI: 10.1007/s00429-018-01818-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 12/14/2018] [Indexed: 01/25/2023]
Abstract
The term "cerebral torque" refers to opposing right-left asymmetries of frontal and parieto-occipital regions. These are assumed to derive from a lateralized gradient of embryological development of the human brain. To establish the timing of its evolution, we computed and compared the torque, in terms of three principal features, namely petalia, shift, and bending of the inter-hemispheric fissure as well as the inter-hemispheric asymmetry of brain length, height and width for in vivo Magnetic Resonance Imaging (MRI) scans of 91 human and 78 chimpanzee brains. We found that the cerebral torque is specific to the human brain and that its magnitude is independent of brain size and that it comprises features that are inter-related. These findings are consistent with the concept that a "punctuational" genetic change of relatively large effect introduced lateralization in the hominid lineage. The existence of the cerebral torque remains an unsolved mystery and the present study provides further support for this most prominent structural brain asymmetry being specific to the human brain. Establishing the genetic origins of the torque may, therefore, have relevance for a better understanding on human evolution, the organisation of the human brain, and, perhaps, also aspects of the neural basis of language.
Collapse
|