1
|
Dupont AC, Arlicot N, Vercouillie J, Serrière S, Maia S, Bonnet-Brilhault F, Santiago-Ribeiro MJ. Metabotropic Glutamate Receptor Subtype 5 Positron-Emission-Tomography Radioligands as a Tool for Central Nervous System Drug Development: Between Progress and Setbacks. Pharmaceuticals (Basel) 2023; 16:1127. [PMID: 37631042 PMCID: PMC10458693 DOI: 10.3390/ph16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGluR5) is a class C G-protein-coupled receptor (GPCR) that has been implicated in various neuronal processes and, consequently, in several neuropsychiatric or neurodevelopmental disorders. Over the past few decades, mGluR5 has become a major focus for pharmaceutical companies, as an attractive target for drug development, particularly through the therapeutic potential of its modulators. In particular, allosteric binding sites have been targeted for better specificity and efficacy. In this context, Positron Emission Tomography (PET) appears as a useful tool for making decisions along a drug candidate's development process, saving time and money. Thus, PET provides quantitative information about a potential drug candidate and its target at the molecular level. However, in this area, particular attention has to be given to the interpretation of the PET signal and its conclusions. Indeed, the complex pharmacology of both mGluR5 and radioligands, allosterism, the influence of endogenous glutamate and the choice of pharmacokinetic model are all factors that may influence the PET signal. This review focuses on mGluR5 PET radioligands used at several stages of central nervous system drug development, highlighting advances and setbacks related to the complex pharmacology of these radiotracers.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Nicolas Arlicot
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- CIC 1415, Tours University, INSERM, 37000 Tours, France
| | | | - Sophie Serrière
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Serge Maia
- Radiopharmacie, CHRU de Tours, 37000 Tours, France
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, 37000 Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Tours University, INSERM, 37000 Tours, France
- Nuclear Medicine Department, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
2
|
Kirkland AE, Browning BD, Green R, Liu H, Maralit AM, Ferguson PL, Meyerhoff DJ, Prisciandaro JJ, Miranda R, Brady KT, Tomko RL, Gray KM, Squeglia LM. N-acetylcysteine does not alter neurometabolite levels in non-treatment seeking adolescents who use alcohol heavily: A preliminary randomized clinical trial. Neuropsychopharmacology 2023; 48:1184-1193. [PMID: 36878996 PMCID: PMC10267108 DOI: 10.1038/s41386-023-01553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
Current treatments for adolescent alcohol use disorder (AUD) are mainly psychosocial and limited in their efficacy. As such, pharmacotherapies are being investigated as potential adjunctive treatments to bolster treatment outcomes. N-acetylcysteine is a promising candidate pharmacotherapy for adolescent AUD because of its tolerability and demonstrated ability to modulate glutamatergic, GABAergic, and glutathione systems. The primary objective of this double-blind, placebo-controlled, within-subjects crossover preliminary investigation was to measure potential changes within glutamate + glutamine (Glx), GABA, and glutathione levels in the dorsal anterior cingulate cortex (dACC) using proton magnetic resonance spectroscopy during 10-days of N-acetylcysteine (1200 mg twice daily) compared to 10-days of placebo in non-treatment seeking adolescents who use alcohol heavily (N = 31; 55% female). Medication adherence was confirmed via video. Effects on alcohol use were measured using Timeline Follow-Back as an exploratory aim. Linear mixed effects models controlling for baseline metabolite levels, brain tissue composition, alcohol use, cannabis use, and medication adherence found no significant differences in Glx, GABA, or glutathione levels in the dACC after N-acetylcysteine compared to placebo. There were also no measurable effects on alcohol use; however, this finding was underpowered. Findings were consistent in the subsample of participants who met criteria for AUD (n = 19). The preliminary null findings in brain metabolite levels may be due to the young age of participants, relatively low severity of alcohol use, and non-treatment seeking status of the population investigated. Future studies can use these findings to conduct larger, well-powered studies within adolescents with AUD.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Brittney D Browning
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - ReJoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Helen Liu
- College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Anna M Maralit
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela L Ferguson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Dieter J Meyerhoff
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Miranda
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI, USA
| | - Kathleen T Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Kevin M Gray
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Ritter C, Buchmann A, Müller ST, Volleberg M, Haynes M, Ghisleni C, Noeske R, Tuura R, Hasler G. Evaluation of Prefrontal γ-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy. JAMA Psychiatry 2022; 79:1209-1216. [PMID: 36260322 PMCID: PMC9582968 DOI: 10.1001/jamapsychiatry.2022.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023]
Abstract
Importance Major depressive disorder (MDD) is one of the most prevalent illnesses worldwide. Perturbations of the major inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate (Glu), respectively, as well as Glx (Glu or glutamine [Gln]) have been extensively reported in a multitude of brain areas of individuals with depression, but few studies have examined changes in Gln, the metabolic counterpart of synaptic Glu. Objective To investigate changes in GABA, Glx, Glu, and Gln levels in a voxel in the left dorsolateral prefrontal cortex of participants with no, past, and current MDD using proton magnetic resonance spectroscopy (1H-MRS). Design, Setting, and Participants This community-based study used a cross-sectional design using 3-T 1H-MRS in participants not taking MDD medication recruited from the community. The sample consisted of 251 healthy controls, 98 participants with a history of past MDD, and 47 participants who met the diagnostic criteria for current MDD. Diagnostic groups were comparable regarding age, education, income, and diet. Data were collected from March 2014 to October 2021, and data were analyzed from October 2021 to June 2022. Main Outcomes and Measures GABA, Glx, Glu, and Gln concentrations in the left dorsolateral prefrontal cortex. Results Of 396 included participants, 258 (65.2%) were female, and the mean (SD) age was 25.0 (4.7) years. Compared with healthy controls, those with past MDD and current MDD had lower GABA concentrations (mean [SEM] concentration: healthy controls, 2.70 [0.03] mmol/L; past MDD, 2.49 [0.05] mmol/L; current MDD, 2.54 [0.07] mmol/L; 92 with past MDD vs 236 healthy controls: r = 0.18; P = .002; 44 with current MDD vs 236 healthy controls: r = 0.13; P = .04). Compared with healthy controls, those with past MDD also had lower Glu concentrations (mean [SEM] concentration: healthy controls, 7.52 [0.06] mmol/L; past MDD, 7.23 [0.11] mmol/L; 93 with past MDD vs 234 healthy controls: r = 0.16; P = .01) and higher Gln concentrations (mean [SEM] concentration: healthy controls, 1.63 [0.04] mmol/L; past MDD, 1.84 [0.07] mmol/L; 66 with past MDD 153 healthy controls: r = 0.17; P = .04). Conclusions and Relevance In a large, mostly medication-free community sample, reduced prefrontal GABA concentrations were associated with past MDD, consistent with histopathologic studies reporting reduced glial cell and GABA cell density in the prefrontal cortex in individuals with depression. Patients with MDD also demonstrated increased Gln levels, indicative of increased synaptic Glu release, adding to previous evidence for the Glu hypothesis of MDD.
Collapse
Affiliation(s)
- Christopher Ritter
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | | | - Martin Volleberg
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Melanie Haynes
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Ghisleni
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | | | - Ruth Tuura
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
| |
Collapse
|
4
|
Nery FG, Tallman MJ, Cecil KM, Blom TJ, Patino LR, Adler CM, DelBello MP. N-acetylcysteine for depression and glutamate changes in the left prefrontal cortex in adolescents and young adults at risk for bipolar disorder: A pilot study. Early Interv Psychiatry 2022; 16:195-199. [PMID: 33797205 DOI: 10.1111/eip.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/19/2023]
Abstract
AIMS To investigate the mechanism of action of N-acetylcysteine (NAC) in depressive symptoms in young individuals at familial risk for bipolar disorder. METHODS We conducted an 8-week open label clinical trial of NAC 2400 mg/days in 15-24 years old depressed offspring of a bipolar I disorder parent, with baseline and endpoint proton magnetic resonance spectroscopy acquired within the left ventrolateral prefrontal cortex (VLPFC). RESULTS Nine participants were enrolled and finished the study. NAC significantly improved depressive and anxiety symptom scores, and clinical global impression (all p < .001). There was a non-significant reduction in glutamate levels in the left VLPFC. Reduction in depressive symptom scores was positively associated with reduction in glutamate levels in the left VLPFC (p = .007). CONCLUSIONS This pilot study suggests that NAC might be efficacious for depressive symptoms in at-risk youth, and that its mechanism of action involves the modulation of glutamate in the left VLPFC.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Maxwell J Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Tournier N, Comtat C, Lebon V, Gennisson JL. Challenges and Perspectives of the Hybridization of PET with Functional MRI or Ultrasound for Neuroimaging. Neuroscience 2021; 474:80-93. [DOI: 10.1016/j.neuroscience.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
|
6
|
Engeli EJE, Zoelch N, Hock A, Nordt C, Hulka LM, Kirschner M, Scheidegger M, Esposito F, Baumgartner MR, Henning A, Seifritz E, Quednow BB, Herdener M. Impaired glutamate homeostasis in the nucleus accumbens in human cocaine addiction. Mol Psychiatry 2021; 26:5277-5285. [PMID: 32601455 DOI: 10.1038/s41380-020-0828-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Cocaine addiction is characterized by overwhelming craving for the substance, which drives its escalating use despite adverse consequences. Animal models suggest a disrupted glutamate homeostasis in the nucleus accumbens to underlie addiction-like behavior. After chronic administration of cocaine, rodents show decreased levels of accumbal glutamate, whereas drug-seeking reinstatement is associated with enhanced glutamatergic transmission. However, due to technical obstacles, the role of disturbed glutamate homeostasis for cocaine addiction in humans remains only partially understood, and accordingly, no approved pharmacotherapy exists. Here, we applied a tailored proton magnetic resonance spectroscopy protocol that allows glutamate quantification within the human nucleus accumbens. We found significantly reduced basal glutamate concentrations in the nucleus accumbens in cocaine-addicted (N = 26) compared with healthy individuals (N = 30), and increased glutamate levels during cue-induced craving in cocaine-addicted individuals compared with baseline. These glutamatergic alterations, however, could not be significantly modulated by a short-term challenge of N-acetylcysteine (2400 mg/day on 2 days). Taken together, our findings reveal a disturbed accumbal glutamate homeostasis as a key neurometabolic feature of cocaine addiction also in humans. Therefore, we suggest the glutamatergic system as a promising target for the development of novel pharmacotherapies, and in addition, as a potential biomarker for a personalized medicine approach in addiction.
Collapse
Affiliation(s)
- Etna J E Engeli
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
| | - Niklaus Zoelch
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Andreas Hock
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Carlos Nordt
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Lea M Hulka
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias Kirschner
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Markus R Baumgartner
- Centre for Forensic Hair Analytics, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Anke Henning
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany.,Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Zurich Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.,Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Marcus Herdener
- Centre for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Fernández-Rodríguez S, Esposito-Zapero C, Zornoza T, Polache A, Granero L, Cano-Cebrián MJ. The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol. Pharmaceuticals (Basel) 2021; 14:ph14060593. [PMID: 34203104 PMCID: PMC8233914 DOI: 10.3390/ph14060593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper, we set out to assess both the potential involvement of the glutamate metabotropic receptors (mGluR) in the possible dual effect of NAC administered at two different doses and NAC's effect on ethanol-induced activation. To this aim, 30 or 120 mg/kg of NAC was intraperitoneally administered to rats with the presence or absence of the negative allosteric modulator of mGluR5 (MTEP 0.1 mg/kg). Thereafter, the cFOS IR-cell expression was analyzed. Secondly, we explored the effect of 120 mg/kg of NAC on the neurochemical and behavioral activation induced by intra-VTA ethanol administration (150 nmol). Our results showed that the high NAC dose stimulated cFOS expression in the NAcc, and that this effect was suppressed in the presence of MTEP, thus suggesting the implication of mGluR5. Additionally, high doses could attenuate the ethanol-induced increase in cFOS-expression in the NAcc, probably due to a phenomenon based on the long-term depression of the MSNs. Additional experiments are required to corroborate our hypothesis.
Collapse
|
8
|
Study of influence of the glutamatergic concentration of [ 18F]FPEB binding to metabotropic glutamate receptor subtype 5 with N-acetylcysteine challenge in rats and SRM/PET study in human healthy volunteers. Transl Psychiatry 2021; 11:66. [PMID: 33473111 PMCID: PMC7817831 DOI: 10.1038/s41398-020-01152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
Altered glutamate signaling is thought to be involved in a myriad of psychiatric disorders. Positron emission tomography (PET) imaging with [18F]FPEB allows assessing dynamic changes in metabotropic glutamate receptor 5 (mGluR5) availability underlying neuropathological conditions. The influence of endogenous glutamatergic levels into receptor binding has not been well established yet. The purpose of this study was to explore the [18F]FPEB binding regarding to physiological fluctuations or acute changes of glutamate synaptic concentrations by a translational approach; a PET/MRS imaging study in 12 healthy human volunteers combined to a PET imaging after an N-acetylcysteine (NAc) pharmacological challenge in rodents. No significant differences were observed with small-animal PET in the test and retest conditions on the one hand and the NAc condition on the other hand for any regions. To test for an interaction of mGuR5 density and glutamatergic concentrations in healthy subjects, we correlated the [18F]FPEB BPND with Glu/Cr, Gln/Cr, Glx/Cr ratios in the anterior cingulate cortex VOI; respectively, no significance correlation has been revealed (Glu/Cr: r = 0.51, p = 0.09; Gln/Cr: r = -0.46, p = 0.13; Glx/Cr: r = -0.035, p = 0.92).These data suggest that the in vivo binding of [18F]FPEB to an allosteric site of the mGluR5 is not modulated by endogenous glutamate in vivo. Thus, [18F]FPEB appears unable to measure acute fluctuations in endogenous levels of glutamate.
Collapse
|
9
|
Abstract
RATIONALE Proton magnetic resonance spectroscopy (1H-MRS) is a cross-species neuroimaging technique that can measure concentrations of several brain metabolites, including glutamate and GABA. This non-invasive method has promise in developing centrally acting drugs, as it can be performed repeatedly within-subjects and be used to translate findings from the preclinical to clinical laboratory using the same imaging biomarker. OBJECTIVES This review focuses on the utility of single-voxel 1H-MRS in developing novel glutamatergic or GABAergic drugs for the treatment of psychiatric disorders and includes research performed in rodent models, healthy volunteers and patient cohorts. RESULTS Overall, these studies indicate that 1H-MRS is able to detect the predicted pharmacological effects of glutamatergic or GABAergic drugs on voxel glutamate or GABA concentrations, although there is a shortage of studies examining dose-related effects. Clinical studies have applied 1H-MRS to better understand drug therapeutic mechanisms, including the glutamatergic effects of ketamine in depression and of acamprosate in alcohol dependence. There is an emerging interest in identifying patient subgroups with 'high' or 'low' brain regional 1H-MRS glutamate levels for more targeted drug development, which may require ancillary biomarkers to improve the accuracy of subgroup discrimination. CONCLUSIONS Considerations for future research include the sensitivity of single-voxel 1H-MRS in detecting drug effects, inter-site measurement reliability and the interpretation of drug-induced changes in 1H-MRS metabolites relative to the known pharmacological molecular mechanisms. On-going technological development, in single-voxel 1H-MRS and in related complementary techniques, will further support applications within CNS drug discovery.
Collapse
Affiliation(s)
- Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK.
| |
Collapse
|
10
|
Archibald J, MacMillan EL, Enzler A, Jutzeler CR, Schweinhardt P, Kramer JL. Excitatory and inhibitory responses in the brain to experimental pain: A systematic review of MR spectroscopy studies. Neuroimage 2020; 215:116794. [DOI: 10.1016/j.neuroimage.2020.116794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 01/21/2023] Open
|
11
|
Sander CY, Hansen HD, Wey HY. Advances in simultaneous PET/MR for imaging neuroreceptor function. J Cereb Blood Flow Metab 2020; 40:1148-1166. [PMID: 32169011 PMCID: PMC7238372 DOI: 10.1177/0271678x20910038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA.,Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
12
|
Brewer R, Blum K, Bowirrat A, Modestino EJ, Baron D, Badgaiyan RD, Moran M, Boyett B, Gold MS. Transmodulation of Dopaminergic Signaling to Mitigate Hypodopminergia and Pharmaceutical Opioid-Induced Hyperalgesia. CURRENT PSYCHOPHARMACOLOGY 2020; 9:164-184. [PMID: 37361136 PMCID: PMC10288629 DOI: 10.2174/2211556009999200628093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/28/2023]
Abstract
Neuroscientists and psychiatrists working in the areas of "pain and addiction" are asked in this perspective article to reconsider the current use of dopaminergic blockade (like chronic opioid agonist therapy), and instead to consider induction of dopamine homeostasis by putative pro-dopamine regulation. Pro-dopamine regulation could help pharmaceutical opioid analgesic agents to mitigate hypodopaminergia-induced hyperalgesia by inducing transmodulation of dopaminergic signaling. An optimistic view is that early predisposition to diagnosis based on genetic testing, (pharmacogenetic/pharmacogenomic monitoring), combined with appropriate urine drug screening, and treatment with pro-dopamine regulators, could conceivably reduce stress, craving, and relapse, enhance well-being and attenuate unwanted hyperalgesia. These concepts require intensive investigation. However, based on the rationale provided herein, there is a good chance that combining opioid analgesics with genetically directed pro-dopamine-regulation using KB220 (supported by 43 clinical studies). This may become a front-line technology with the potential to overcome, in part, the current heightened rates of chronic opioid-induced hyperalgesia and concomitant Reward Deficiency Syndrome (RDS) behaviors. Current research does support the hypothesis that low or hypodopaminergic function in the brain may predispose individuals to low pain tolerance or hyperalgesia.
Collapse
Affiliation(s)
- Raymond Brewer
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Kenneth Blum
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
- Western University Health Sciences, Pomona, CA., USA
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Eotvos Loránd University, Institute of Psychology, Budapest, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, USA
- Department of Psychiatry, University of Vermont, Burlington, VT., USA
| | - Abdalla Bowirrat
- Department of Neuroscience and Genetics, Interdisciplinary Center Herzliya, Israel
| | | | - David Baron
- Western University Health Sciences, Pomona, CA., USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, ICHAN School of Medicine, Mount Sinai, New York, NYC. & Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Mark Moran
- Department of Nutrigenomics, Genomic Testing Center, Geneus Health, LLC., San Antonio, TX, USA
| | - Brent Boyett
- Division of Neuroscience and Addiction Research, Pathway Healthcare, Birmingham, AL, USA
- Bradford Health Services, Madison, AL., USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Mo., USA
| |
Collapse
|
13
|
Su Y, Bian S, Sawan M. Real-time in vivo detection techniques for neurotransmitters: a review. Analyst 2020; 145:6193-6210. [DOI: 10.1039/d0an01175d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Functional synapses in the central nervous system depend on a chemical signal exchange process that involves neurotransmitter delivery between neurons and receptor cells in the neuro system.
Collapse
Affiliation(s)
- Yi Su
- Zhejiang university
- Hangzhou, 310058
- China
- CENBRAIN Lab
- School of Engineering
| | - Sumin Bian
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| | - Mohamad Sawan
- CENBRAIN Lab
- School of Engineering
- Westlake University
- Hangzhou
- China
| |
Collapse
|
14
|
Beaurain M, Salabert AS, Ribeiro MJ, Arlicot N, Damier P, Le Jeune F, Demonet JF, Payoux P. Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 2019; 6:268. [PMID: 31828073 PMCID: PMC6890558 DOI: 10.3389/fmed.2019.00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low steric hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.
Collapse
Affiliation(s)
- Marie Beaurain
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Anne-Sophie Salabert
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Inserm CIC 1415, University Hospital, Tours, France.,CHRU Tours, Tours, France
| | - Philippe Damier
- Inserm U913, Neurology Department, University Hospital, Nantes, France
| | | | - Jean-François Demonet
- Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Pierre Payoux
- CHU de Toulouse, Toulouse, France.,ToNIC, Toulouse NeuroImaging Center, Inserm U1214, Toulouse, France
| |
Collapse
|