1
|
Cassone B, Saviola F, Tambalo S, Amico E, Hübner S, Sarubbo S, Van De Ville D, Jovicich J. TR(Acking) Individuals Down: Exploring the Effect of Temporal Resolution in Resting-State Functional MRI Fingerprinting. Hum Brain Mapp 2025; 46:e70125. [PMID: 39887794 PMCID: PMC11780316 DOI: 10.1002/hbm.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/06/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Functional brain fingerprinting has emerged as an influential tool to quantify reliability in neuroimaging studies and to identify cognitive biomarkers in both healthy and clinical populations. Recent studies have revealed that brain fingerprints reside in the timescale-specific functional connectivity of particular brain regions. However, the impact of the acquisition's temporal resolution on fingerprinting remains unclear. In this study, we examine for the first time the reliability of functional fingerprinting derived from resting-state functional MRI (rs-fMRI) with different whole-brain temporal resolutions (TR = 0.5, 0.7, 1, 2, and 3 s) in a cohort of 20 healthy volunteers. Our findings indicate that subject identifiability within a fixed TR is successful across different temporal resolutions, with the highest identifiability observed at TR 0.5 and 3 s (TR(s)/identifiability(%): 0.5/64; 0.7/47; 1/44; 2/44; 3/56). We discuss this observation in terms of protocol-specific effects of physiological noise aliasing. We further show that, irrespective of TR, associative brain areas make an higher contribution to subject identifiability (functional connections with highest mean ICC: within subcortical network [SUB; ICC = 0.0387], within default mode network [DMN; ICC = 0.0058]; between DMN and somato-motor [SM] network [ICC = 0.0013]; between ventral attention network [VA] and DMN [ICC = 0.0008]; between VA and SM [ICC = 0.0007]), whereas sensory-motor regions become more influential when integrating data from different TRs (functional connections with highest mean ICC: within fronto-parietal network [ICC = 0.382], within dorsal attention network [DA; ICC = 0.373]; within SUB [ICC = 0.367]; between visual network [VIS] and DA [ICC = 0.362]; within VIS [ICC = 0.358]). We conclude that functional connectivity fingerprinting derived from rs-fMRI holds significant potential for multicentric studies also employing protocols with different temporal resolutions. However, it remains crucial to consider fMRI signal's sampling rate differences in subject identifiability between data samples, in order to improve reliability and generalizability of both whole-brain and specific functional networks' results. These findings contribute to a better understanding of the practical application of functional connectivity fingerprinting, and its implications for future neuroimaging research.
Collapse
Affiliation(s)
- Barbara Cassone
- CIMeC, Center for Mind/Brain SciencesUniversity of TrentoRoveretoTrentoItaly
- Department of PsychologyUniversity of Milano‐BicoccaMilanItaly
| | - Francesca Saviola
- CIMeC, Center for Mind/Brain SciencesUniversity of TrentoRoveretoTrentoItaly
- Neuro‐X InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
| | - Stefano Tambalo
- CIMeC, Center for Mind/Brain SciencesUniversity of TrentoRoveretoTrentoItaly
- Department of PhysicsUniversity of TorinoTorinoItaly
- Department of Molecular Biotechnology and Health SciencesUniversity of TrentoTorinoItaly
| | - Enrico Amico
- Neuro‐X InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
- School of MathematicsUniversity of BirminghamBirminghamUK
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Sebastian Hübner
- CIMeC, Center for Mind/Brain SciencesUniversity of TrentoRoveretoTrentoItaly
| | - Silvio Sarubbo
- Center for Medical Sciences, Center for Mind and Brain Sciences, Department for Cellular, Computational and Integrated Biology (CIBIO)University of TrentoItaly
- Department of Neurosurgery, “S. Chiara” University‐HospitalAzienda Provinciale per i Servizi Sanitari (APSS)TrentoItaly
| | - Dimitri Van De Ville
- Neuro‐X InstituteEcole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of GenevaGenevaSwitzerland
| | - Jorge Jovicich
- CIMeC, Center for Mind/Brain SciencesUniversity of TrentoRoveretoTrentoItaly
| |
Collapse
|
2
|
Liu W, Zhang X. Using independent component analysis to extract a cross-modality and individual-specific brain baseline pattern. Neuroimage 2024; 303:120925. [PMID: 39542069 DOI: 10.1016/j.neuroimage.2024.120925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
The ongoing brain activity serves as a baseline that supports both internal and external cognitive processes. However, its precise nature remains unclear. Considering that people display various patterns of brain activity even when engaging in the same task, it is reasonable to believe that individuals possess their unique brain baseline pattern. Using spatial independent component analysis on a large sample of fMRI data from the Human Connectome Project (HCP), we found an individual-specific component which can be consistently extracted from either resting-state or different task states and is reliable over months. Compared to functional connectome fingerprinting, it is much more stable across different fMRI modalities. Its stability is closely related to high explained variance and is minimally influenced by factors such as noise, scan duration, and scan interval. We propose that this component underlying the ongoing activity represents an individual-specific baseline pattern of brain activity.
Collapse
Affiliation(s)
- Wei Liu
- Beijing Key Laboratory of Applied Experimental Psychology. National Demonstration Center for Experimental Psychology Education (Beijing Normal University). Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | - Xuemin Zhang
- Beijing Key Laboratory of Applied Experimental Psychology. National Demonstration Center for Experimental Psychology Education (Beijing Normal University). Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Pourmotabbed H, Clarke DF, Chang C, Babajani-Feremi A. Genetic fingerprinting with heritable phenotypes of the resting-state brain network topology. Commun Biol 2024; 7:1221. [PMID: 39349968 PMCID: PMC11443053 DOI: 10.1038/s42003-024-06807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Cognitive, behavioral, and disease traits are influenced by both genetic and environmental factors. Individual differences in these traits have been associated with graph theoretical properties of resting-state networks, indicating that variations in connectome topology may be driven by genetics. In this study, we establish the heritability of global and local graph properties of resting-state networks derived from functional MRI (fMRI) and magnetoencephalography (MEG) using a large sample of twins and non-twin siblings from the Human Connectome Project. We examine the heritability of MEG in the source space, providing a more accurate estimate of genetic influences on electrophysiological networks. Our findings show that most graph measures are more heritable for MEG compared to fMRI and the heritability for MEG is greater for amplitude compared to phase synchrony in the delta, high beta, and gamma frequency bands. This suggests that the fast neuronal dynamics in MEG offer unique insights into the genetic basis of brain network organization. Furthermore, we demonstrate that brain network features can serve as genetic fingerprints to accurately identify pairs of identical twins within a cohort. These results highlight novel opportunities to relate individual connectome signatures to genetic mechanisms underlying brain function.
Collapse
Affiliation(s)
- Haatef Pourmotabbed
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dave F Clarke
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Abbas Babajani-Feremi
- Magnetoencephalography (MEG) Lab, The Norman Fixel Institute of Neurological Diseases, Gainesville, FL, USA.
- Department of Neurology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Stampacchia S, Asadi S, Tomczyk S, Ribaldi F, Scheffler M, Lövblad KO, Pievani M, Fall AB, Preti MG, Unschuld PG, Van De Ville D, Blanke O, Frisoni GB, Garibotto V, Amico E. Fingerprints of brain disease: connectome identifiability in Alzheimer's disease. Commun Biol 2024; 7:1169. [PMID: 39294332 PMCID: PMC11411139 DOI: 10.1038/s42003-024-06829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024] Open
Abstract
Functional connectivity patterns in the human brain, like the friction ridges of a fingerprint, can uniquely identify individuals. Does this "brain fingerprint" remain distinct even during Alzheimer's disease (AD)? Using fMRI data from healthy and pathologically ageing subjects, we find that individual functional connectivity profiles remain unique and highly heterogeneous during mild cognitive impairment and AD. However, the patterns that make individuals identifiable change with disease progression, revealing a reconfiguration of the brain fingerprint. Notably, connectivity shifts towards functional system connections in AD and lower-order cognitive functions in early disease stages. These findings emphasize the importance of focusing on individual variability rather than group differences in AD studies. Individual functional connectomes could be instrumental in creating personalized models of AD progression, predicting disease course, and optimizing treatments, paving the way for personalized medicine in AD management.
Collapse
Affiliation(s)
- Sara Stampacchia
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
| | - Saina Asadi
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Szymon Tomczyk
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- Neurodiagnostic and Neurointerventional Division, Geneva University Hospitals, Geneva, Switzerland
| | - Michela Pievani
- Lab of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Aïda B Fall
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Maria Giulia Preti
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Paul G Unschuld
- Division of Geriatric Psychiatry, University Hospitals of Geneva (HUG), 1226, Thônex, Switzerland
- Department of Psychiatry, University of Geneva (UniGE), 1205, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
| | - Olaf Blanke
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Department of Radiology and Medical Informatics, Geneva University Neurocenter, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Enrico Amico
- Neuro-X Institute and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- School of Mathematics, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
5
|
Zanin M, Aktürk T, Yıldırım E, Yerlikaya D, Yener G, Güntekin B. Reconstructing brain functional networks through identifiability and deep learning. Netw Neurosci 2024; 8:241-259. [PMID: 38562295 PMCID: PMC10923503 DOI: 10.1162/netn_a_00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/17/2023] [Indexed: 04/04/2024] Open
Abstract
We propose a novel approach for the reconstruction of functional networks representing brain dynamics based on the idea that the coparticipation of two brain regions in a common cognitive task should result in a drop in their identifiability, or in the uniqueness of their dynamics. This identifiability is estimated through the score obtained by deep learning models in supervised classification tasks and therefore requires no a priori assumptions about the nature of such coparticipation. The method is tested on EEG recordings obtained from Alzheimer's and Parkinson's disease patients, and matched healthy volunteers, for eyes-open and eyes-closed resting-state conditions, and the resulting functional networks are analysed through standard topological metrics. Both groups of patients are characterised by a reduction in the identifiability of the corresponding EEG signals, and by differences in the patterns that support such identifiability. Resulting functional networks are similar, but not identical to those reconstructed by using a correlation metric. Differences between control subjects and patients can be observed in network metrics like the clustering coefficient and the assortativity in different frequency bands. Differences are also observed between eyes open and closed conditions, especially for Parkinson's disease patients.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca, Spain
| | - Tuba Aktürk
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Yıldırım
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
- School of Medicine, Izmir University of Economics, Izmir, Turkey
- Brain Dynamics Multidisciplinary Research Center, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| |
Collapse
|
6
|
Zhuo L, Jin Z, Xie K, Li S, Lin F, Zhang J, Li L. Identifying individual's distractor suppression using functional connectivity between anatomical large-scale brain regions. Neuroimage 2024; 289:120552. [PMID: 38387742 DOI: 10.1016/j.neuroimage.2024.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, occipital, and temporal regions are also implicated. The present study aimed to examine the contribution of communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of participants for the study. One cohort participated in a visual search experiment where a salient distractor triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Questionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive models of the DS measured in visual search task using resting-state functional connectivity between large anatomical regions. It turned out that the models could successfully predict individual's DS, indicated by a significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, the model could also predict individual's daily distractibility in the other independent cohort (r = -0.34, p < 0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing connections between large anatomical regions and highlighted the importance of the communications between attention-related and visual information processing regions in distractor suppression. Current findings may potentially provide neurobiological markers of visual distractor suppression.
Collapse
Affiliation(s)
- Lei Zhuo
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Zhenlan Jin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Simeng Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Feng Lin
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Junjun Zhang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ling Li
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Psychiatry and Psychology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
7
|
Fitzgerald B, Bari S, Vike N, Lee TA, Lycke RJ, Auger JD, Leverenz LJ, Nauman E, Goñi J, Talavage TM. Longitudinal changes in resting state fMRI brain self-similarity of asymptomatic high school American football athletes. Sci Rep 2024; 14:1747. [PMID: 38243048 PMCID: PMC10799081 DOI: 10.1038/s41598-024-51688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
American football has become the focus of numerous studies highlighting a growing concern that cumulative exposure to repetitive, sports-related head acceleration events (HAEs) may have negative consequences for brain health, even in the absence of a diagnosed concussion. In this longitudinal study, brain functional connectivity was analyzed in a cohort of high school American football athletes over a single play season and compared against participants in non-collision high school sports. Football athletes underwent four resting-state functional magnetic resonance imaging sessions: once before (pre-season), twice during (in-season), and once 34-80 days after the contact activities play season ended (post-season). For each imaging session, functional connectomes (FCs) were computed for each athlete and compared across sessions using a metric reflecting the (self) similarity between two FCs. HAEs were monitored during all practices and games throughout the season using head-mounted sensors. Relative to the pre-season scan session, football athletes exhibited decreased FC self-similarity at the later in-season session, with apparent recovery of self-similarity by the time of the post-season session. In addition, both within and post-season self-similarity was correlated with cumulative exposure to head acceleration events. These results suggest that repetitive exposure to HAEs produces alterations in functional brain connectivity and highlight the necessity of collision-free recovery periods for football athletes.
Collapse
Affiliation(s)
- Bradley Fitzgerald
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
| | - Sumra Bari
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Nicole Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Taylor A Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Roy J Lycke
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Joshua D Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Larry J Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Eric Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joaquín Goñi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Thomas M Talavage
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Griffa A, Mach M, Dedelley J, Gutierrez-Barragan D, Gozzi A, Allali G, Grandjean J, Van De Ville D, Amico E. Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice. Nat Commun 2023; 14:8216. [PMID: 38081838 PMCID: PMC10713651 DOI: 10.1038/s41467-023-43971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.
Collapse
Affiliation(s)
- Alessandra Griffa
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - Mathieu Mach
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Julien Dedelley
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Kampel N, Kiefer CM, Shah NJ, Neuner I, Dammers J. Neural fingerprinting on MEG time series using MiniRocket. Front Neurosci 2023; 17:1229371. [PMID: 37799343 PMCID: PMC10547883 DOI: 10.3389/fnins.2023.1229371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Neural fingerprinting is the identification of individuals in a cohort based on neuroimaging recordings of brain activity. In magneto- and electroencephalography (M/EEG), it is common practice to use second-order statistical measures, such as correlation or connectivity matrices, when neural fingerprinting is performed. These measures or features typically require coupling between signal channels and often ignore the individual temporal dynamics. In this study, we show that, following recent advances in multivariate time series classification, such as the development of the RandOm Convolutional KErnel Transformation (ROCKET) classifier, it is possible to perform classification directly on short time segments from MEG resting-state recordings with remarkably high classification accuracies. In a cohort of 124 subjects, it was possible to assign windows of time series of 1 s in duration to the correct subject with above 99% accuracy. The achieved accuracies are vastly superior to those of previous methods while simultaneously requiring considerably shorter time segments.
Collapse
Affiliation(s)
- Nikolas Kampel
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
| | - Christian M. Kiefer
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) – BRAIN – Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-11), Jülich Aachen Research Alliance (JARA), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – BRAIN – Translational Medicine, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Jürgen Dammers
- Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Jülich Aachen Research Alliance (JARA) – CSD – Center for Simulation and Data Science, Aachen, Germany
| |
Collapse
|
10
|
Yang H, Yao X, Zhang H, Meng C, Biswal B. Estimating dynamic individual coactivation patterns based on densely sampled resting-state fMRI data and utilizing it for better subject identification. Brain Struct Funct 2023; 228:1755-1769. [PMID: 37572108 DOI: 10.1007/s00429-023-02689-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
As a complex dynamic system, the brain exhibits spatially organized recurring patterns of activity over time. Coactivation patterns (CAPs), which analyzes data from each single frame, have been utilized to detect transient brain activity states recently. However, previous CAP analyses have been conducted at the group level, which might neglect meaningful individual differences. Here, we estimated individual CAP states at both subject- and scan-level based on a densely sampled dataset: Midnight Scan Club. We used differential identifiability, which measures the gap between intra- and inter-subject similarity, to evaluate individual differences. We found individual CAPs at the subject-level achieved the best fingerprinting ability by maintaining high intra-subject similarity and enlarging inter-subject differences, and brain regions of association networks mainly contributed to the identifiability. On the other hand, scan-level CAP states were unstable across scans for the same participant. Expectedly, we found subject-specific CAPs became more reliable and discriminative with more data (i.e., longer duration). As the acquisition time of each participant is limited in practice, our results recommend a data collection strategy that collects more scans with appropriate duration (e.g., 12 ~ 15 min/scan) to obtain more reliable subject-specific CAPs, when total acquisition time is fixed (e.g., 150 min). In summary, this work has constructed reliable subject-specific CAP states with meaningful individual differences, and recommended an appropriate data collection strategy, which can guide subsequent investigations into individualized brain dynamics.
Collapse
Affiliation(s)
- Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Xing Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, 607 Fenster Hall, Newark, NJ, 07102, USA.
| |
Collapse
|
11
|
Sasse L, Larabi DI, Omidvarnia A, Jung K, Hoffstaedter F, Jocham G, Eickhoff SB, Patil KR. Intermediately synchronised brain states optimise trade-off between subject specificity and predictive capacity. Commun Biol 2023; 6:705. [PMID: 37429937 PMCID: PMC10333234 DOI: 10.1038/s42003-023-05073-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Functional connectivity (FC) refers to the statistical dependencies between activity of distinct brain areas. To study temporal fluctuations in FC within the duration of a functional magnetic resonance imaging (fMRI) scanning session, researchers have proposed the computation of an edge time series (ETS) and their derivatives. Evidence suggests that FC is driven by a few time points of high-amplitude co-fluctuation (HACF) in the ETS, which may also contribute disproportionately to interindividual differences. However, it remains unclear to what degree different time points actually contribute to brain-behaviour associations. Here, we systematically evaluate this question by assessing the predictive utility of FC estimates at different levels of co-fluctuation using machine learning (ML) approaches. We demonstrate that time points of lower and intermediate co-fluctuation levels provide overall highest subject specificity as well as highest predictive capacity of individual-level phenotypes.
Collapse
Affiliation(s)
- Leonard Sasse
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Gerhard Jocham
- Institute for Experimental Psychology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Bukhari H, Su C, Dhamala E, Gu Z, Jamison K, Kuceyeski A. Graph-matching distance between individuals' functional connectomes varies with relatedness, age, and cognitive score. Hum Brain Mapp 2023; 44:3541-3554. [PMID: 37042411 PMCID: PMC10203814 DOI: 10.1002/hbm.26296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC. We apply graph matching to align FCs between individuals from the the Human Connectome ProjectN = 997 and find that swap distance (i) increases with increasing familial distance, (ii) increases with subjects' ages, (iii) is smaller for pairs of females compared to pairs of males, and (iv) is larger for females with lower cognitive scores compared to females with larger cognitive scores. Regions that contributed most to individuals' swap distances were in higher-order networks, that is, default-mode and fronto-parietal, that underlie executive function and memory. These higher-order networks' regions also had swap frequencies that varied monotonically with familial relatedness of the individuals in question. We posit that the proposed graph matching technique provides a novel way to study inter-subject differences in FC and enables quantification of how FC may vary with age, relatedness, sex, and behavior.
Collapse
Affiliation(s)
- Hussain Bukhari
- Department of NeuroscienceWeill Cornell MedicineNew YorkNew YorkUSA
| | - Chang Su
- Department of BiostatisticsYale UniversityNew HavenConnecticutUSA
| | - Elvisha Dhamala
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
| | - Zijin Gu
- Department of Electrical and Computer EngineeringCornell UniversityIthacaNew YorkUSA
| | - Keith Jamison
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Amy Kuceyeski
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
13
|
Fan Y, Wang R, Yi C, Zhou L, Wu Y. Hierarchical overlapping modular structure in the human cerebral cortex improves individual identification. iScience 2023; 26:106575. [PMID: 37250302 PMCID: PMC10214405 DOI: 10.1016/j.isci.2023.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/23/2022] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
The idea that brain networks have a hierarchical modular organization is pervasive. Increasing evidence suggests that brain modules overlap. However, little is known about the hierarchical overlapping modular structure in the brain. In this study, we developed a framework to uncover brain hierarchical overlapping modular structures based on a nested-spectral partition algorithm and an edge-centric network model. Overlap degree between brain modules is symmetrical across hemispheres, with highest overlap observed in the control and salience/ventral attention networks. Furthermore, brain edges are clustered into two groups: intrasystem and intersystem edges, to form hierarchical overlapping modules. At different levels, modules are self-similar in the degree of overlap. Additionally, the brain's hierarchical structure contains more individual identifiable information than a single-level structure, particularly in the control and salience/ventral attention networks. Our results offer pathways for future studies aimed at relating the organization of hierarchical overlapping modules to brain cognitive behavior and disorders.
Collapse
Affiliation(s)
- Yongchen Fan
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Rong Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- College of Science, Xi’an University of Science and Technology, Xi’an 710049, China
| | - Chao Yi
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lv Zhou
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
14
|
Cutts SA, Faskowitz J, Betzel RF, Sporns O. Uncovering individual differences in fine-scale dynamics of functional connectivity. Cereb Cortex 2023; 33:2375-2394. [PMID: 35690591 DOI: 10.1093/cercor/bhac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain-behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
Collapse
Affiliation(s)
- Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
15
|
Jäncke L, Valizadeh SA. Identification of individual subjects based on neuroanatomical measures obtained seven years earlier. Eur J Neurosci 2022; 56:4642-4652. [PMID: 35831945 PMCID: PMC9543309 DOI: 10.1111/ejn.15770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
We analyzed a dataset comprising 118 subjects who were scanned three times (at baseline, 1-year follow-up, and 7-year follow-up) using structural MRI over the course of seven years. We aimed to examine whether it is possible to identify individual subjects based on a restricted number of neuroanatomical features measured 7 years previously. We used FreeSurfer to compute 15 standard brain measures (total intracranial volume (ICV), total cortical thickness (CT), total cortical surface area (CA), cortical gray matter (CoGM), cerebral white matter (CeWM), cerebellar cortex (CBGM), cerebellar white matter (CBWM), subcortical volumes [thalamus, putamen, pallidum, caudatus, hippocampus, amygdala, accumbens], and brain stem volume). We used linear discriminant analysis (LDA), random forest machine learning (RF), and a newly developed rule-based identification approach (RBIA) for the identification process. Using RBIA, different sets of neuroanatomical features (ranging from 2 to 14) obtained at baseline were combined by if-then rules and compared to the same set of neuroanatomical features derived from the 7-year follow-up measurement. We achieved excellent identification results with LDA, while the identification results for RF were very good but not perfect. The RBIA produced the best results, achieving perfect participant identification for some 4-feature sets. The identification results improved substantially when using larger feature sets, with 14 neuroanatomical features providing perfect identification. Thus, this study shows again that the human brain is highly individual in terms of neuroanatomical features. These results are discussed in the context of the current literature on brain plasticity and the scientific attempts to develop brain-fingerprinting techniques.
Collapse
Affiliation(s)
- L Jäncke
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.,University Research Priority Program "Dynamics of Healthy Aging," University Zurich
| | - S A Valizadeh
- Division Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Paret C, Unverhau N, Feingold F, Poldrack RA, Stirner M, Schmahl C, Sicorello M. Survey on Open Science Practices in Functional Neuroimaging. Neuroimage 2022; 257:119306. [PMID: 35595201 DOI: 10.1016/j.neuroimage.2022.119306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Replicability and reproducibility of scientific findings is paramount for sustainable progress in neuroscience. Preregistration of the hypotheses and methods of an empirical study before analysis, the sharing of primary research data, and compliance with data standards such as the Brain Imaging Data Structure (BIDS), are considered effective practices to secure progress and to substantiate quality of research. We investigated the current level of adoption of open science practices in neuroimaging and the difficulties that prevent researchers from using them. Email invitations to participate in the survey were sent to addresses received through a PubMed search of human functional magnetic resonance imaging studies that were published between 2010 and 2020. 283 persons completed the questionnaire. Although half of the participants were experienced with preregistration, the willingness to preregister studies in the future was modest. The majority of participants had experience with the sharing of primary neuroimaging data. Most of the participants were interested in implementing a standardized data structure such as BIDS in their labs. Based on demographic variables, we compared participants on seven subscales, which had been generated through factor analysis. Exploratory analyses found that experienced researchers at lower career level had higher fear of being transparent and researchers with residence in the EU had a higher need for data governance. Additionally, researchers at medical faculties as compared to other university faculties reported a more unsupportive supervisor with regards to open science practices and a higher need for data governance. The results suggest growing adoption of open science practices but also highlight a number of important impediments.
Collapse
Affiliation(s)
- Christian Paret
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Germany; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel-Aviv Sourasky Medical Center and School of Psychological Sciences, Tel-Aviv University, Israel.
| | - Nike Unverhau
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Germany
| | | | | | - Madita Stirner
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Germany
| | - Maurizio Sicorello
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim / Heidelberg University, Germany
| |
Collapse
|
17
|
Chiêm B, Abbas K, Amico E, Duong-Tran DA, Crevecoeur F, Goñi J. Improving Functional Connectome Fingerprinting with Degree-Normalization. Brain Connect 2022; 12:180-192. [PMID: 34015966 PMCID: PMC8978572 DOI: 10.1089/brain.2020.0968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional magnetic resonance imaging (fMRI) blood-oxygenation-level dependent time series. The network representation of functional connectivity, called a functional connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine. Materials and Methods: In this study, we show that a mathematical operation denominated degree-normalization can improve the extraction of FC fingerprints. Degree-normalization has the effect of reducing the excessive influence of strongly connected brain areas in the whole-brain network. We adopt the differential identifiability framework and apply it to both original and degree-normalized FCs of 409 individuals from the Human Connectome Project, in resting-state and 7 fMRI tasks. Results: Our results indicate that degree-normalization systematically improves three fingerprinting metrics, namely differential identifiability, identification rate, and matching rate. Moreover, the results related to the matching rate metric suggest that individual fingerprints are embedded in a low-dimensional space. Discussion: The results suggest that low-dimensional functional fingerprints lie in part in weakly connected subnetworks of the brain and that degree-normalization helps uncovering them. This work introduces a simple mathematical operation that could lead to significant improvements in future FC fingerprinting studies.
Collapse
Affiliation(s)
- Benjamin Chiêm
- Institute of Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neurosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kausar Abbas
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Duy Anh Duong-Tran
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Frédéric Crevecoeur
- Institute of Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neurosciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Billings J, Tivadar R, Murray MM, Franceschiello B, Petri G. Topological Features of Electroencephalography are Robust to Re-referencing and Preprocessing. Brain Topogr 2022; 35:79-95. [PMID: 35001322 DOI: 10.1007/s10548-021-00882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Electroencephalography (EEG) is among the most widely diffused, inexpensive, and adopted neuroimaging techniques. Nonetheless, EEG requires measurements against a reference site(s), which is typically chosen by the experimenter, and specific pre-processing steps precede analyses. It is therefore valuable to obtain quantities that are minimally affected by reference and pre-processing choices. Here, we show that the topological structure of embedding spaces, constructed either from multi-channel EEG timeseries or from their temporal structure, are subject-specific and robust to re-referencing and pre-processing pipelines. By contrast, the shape of correlation spaces, that is, discrete spaces where each point represents an electrode and the distance between them that is in turn related to the correlation between the respective timeseries, was neither significantly subject-specific nor robust to changes of reference. Our results suggest that the shape of spaces describing the observed configurations of EEG signals holds information about the individual specificity of the underlying individual's brain dynamics, and that temporal correlations constrain to a large degree the set of possible dynamics. In turn, these encode the differences between subjects' space of resting state EEG signals. Finally, our results and proposed methodology provide tools to explore the individual topographical landscapes and how they are explored dynamically. We propose therefore to augment conventional topographic analyses with an additional-topological-level of analysis, and to consider them jointly. More generally, these results provide a roadmap for the incorporation of topological analyses within EEG pipelines.
Collapse
Affiliation(s)
- Jacob Billings
- ISI Foundation, Turin, Italy
- Department of Complex Systems, Institute for Computer Science, Czech Academy of Science, Prague, Czechia
| | - Ruxandra Tivadar
- Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des aveugles and University of Lausanne, Lausanne, Switzerland
- Cognitive Computational Neuroscience Group, Institute for Computer Science, University of Bern, Bern, Switzerland
| | - Micah M Murray
- Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des aveugles and University of Lausanne, Lausanne, Switzerland
- EEG CHUV-UNIL Section, CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Benedetta Franceschiello
- Laboratory for Investigative Neurophysiology, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Ophthalmology, Fondation Asile des aveugles and University of Lausanne, Lausanne, Switzerland
- EEG CHUV-UNIL Section, CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Giovanni Petri
- ISI Foundation, Turin, Italy.
- ISI Global Science Foundation, New York, NY, USA.
| |
Collapse
|
19
|
Van De Ville D, Farouj Y, Preti MG, Liégeois R, Amico E. When makes you unique: Temporality of the human brain fingerprint. SCIENCE ADVANCES 2021; 7:eabj0751. [PMID: 34652937 PMCID: PMC8519575 DOI: 10.1126/sciadv.abj0751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/20/2021] [Indexed: 05/30/2023]
Abstract
The extraction of “fingerprints” from human brain connectivity data has become a new frontier in neuroscience. However, the time scales of human brain identifiability are still largely unexplored. We here investigate the dynamics of brain fingerprints along two complementary axes: (i) What is the optimal time scale at which brain fingerprints integrate information and (ii) when best identification happens. Using dynamic identifiability, we show that the best identification emerges at longer time scales; however, short transient “bursts of identifiability,” associated with neuronal activity, persist even when looking at shorter functional interactions. Furthermore, we report evidence that different parts of connectome fingerprints relate to different time scales, i.e., more visual-somatomotor at short temporal windows and more frontoparietal-DMN driven at increasing temporal windows. Last, different cognitive functions appear to be meta-analytically implicated in dynamic fingerprints across time scales. We hope that this investigation will advance our understanding of what makes our brains unique.
Collapse
Affiliation(s)
- Dimitri Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
| | - Younes Farouj
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Maria Giulia Preti
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
| | - Raphaël Liégeois
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
20
|
Brief segments of neurophysiological activity enable individual differentiation. Nat Commun 2021; 12:5713. [PMID: 34588439 PMCID: PMC8481307 DOI: 10.1038/s41467-021-25895-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
Large, openly available datasets and current analytic tools promise the emergence of population neuroscience. The considerable diversity in personality traits and behaviour between individuals is reflected in the statistical variability of neural data collected in such repositories. Recent studies with functional magnetic resonance imaging (fMRI) have concluded that patterns of resting-state functional connectivity can both successfully distinguish individual participants within a cohort and predict some individual traits, yielding the notion of an individual's neural fingerprint. Here, we aim to clarify the neurophysiological foundations of individual differentiation from features of the rich and complex dynamics of resting-state brain activity using magnetoencephalography (MEG) in 158 participants. We show that akin to fMRI approaches, neurophysiological functional connectomes enable the differentiation of individuals, with rates similar to those seen with fMRI. We also show that individual differentiation is equally successful from simpler measures of the spatial distribution of neurophysiological spectral signal power. Our data further indicate that differentiation can be achieved from brain recordings as short as 30 seconds, and that it is robust over time: the neural fingerprint is present in recordings performed weeks after their baseline reference data was collected. This work, thus, extends the notion of a neural or brain fingerprint to fast and large-scale resting-state electrophysiological dynamics.
Collapse
|
21
|
Svaldi DO, Goñi J, Abbas K, Amico E, Clark DG, Muralidharan C, Dzemidzic M, West JD, Risacher SL, Saykin AJ, Apostolova LG. Optimizing differential identifiability improves connectome predictive modeling of cognitive deficits from functional connectivity in Alzheimer's disease. Hum Brain Mapp 2021; 42:3500-3516. [PMID: 33949732 PMCID: PMC8249900 DOI: 10.1002/hbm.25448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Functional connectivity, as estimated using resting state functional MRI, has shown potential in bridging the gap between pathophysiology and cognition. However, clinical use of functional connectivity biomarkers is impeded by unreliable estimates of individual functional connectomes and lack of generalizability of models predicting cognitive outcomes from connectivity. To address these issues, we combine the frameworks of connectome predictive modeling and differential identifiability. Using the combined framework, we show that enhancing the individual fingerprint of resting state functional connectomes leads to robust identification of functional networks associated to cognitive outcomes and also improves prediction of cognitive outcomes from functional connectomes. Using a comprehensive spectrum of cognitive outcomes associated to Alzheimer's disease (AD), we identify and characterize functional networks associated to specific cognitive deficits exhibited in AD. This combined framework is an important step in making individual level predictions of cognition from resting state functional connectomes and in understanding the relationship between cognition and connectivity.
Collapse
Affiliation(s)
| | - Joaquín Goñi
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Kausar Abbas
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - Enrico Amico
- School of Industrial EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience, Purdue UniversityWest LafayetteIndianaUSA
| | - David G. Clark
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | - John D. West
- Indiana University School of MedicineIndianapolisIndianaUSA
| | | | | | | |
Collapse
|
22
|
Sareen E, Zahar S, Ville DVD, Gupta A, Griffa A, Amico E. Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations. Neuroimage 2021; 240:118331. [PMID: 34237444 DOI: 10.1016/j.neuroimage.2021.118331] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Individual characterization of subjects based on their functional connectome (FC), termed "FC fingerprinting", has become a highly sought-after goal in contemporary neuroscience research. Recent functional magnetic resonance imaging (fMRI) studies have demonstrated unique characterization and accurate identification of individuals as an accomplished task. However, FC fingerprinting in magnetoencephalography (MEG) data is still widely unexplored. Here, we study resting-state MEG data from the Human Connectome Project to assess the MEG FC fingerprinting and its relationship with several factors including amplitude- and phase-coupling functional connectivity measures, spatial leakage correction, frequency bands, and behavioral significance. To this end, we first employ two identification scoring methods, differential identifiability and success rate, to provide quantitative fingerprint scores for each FC measurement. Secondly, we explore the edgewise and nodal MEG fingerprinting patterns across the different frequency bands (delta, theta, alpha, beta, and gamma). Finally, we investigate the cross-modality fingerprinting patterns obtained from MEG and fMRI recordings from the same subjects. We assess the behavioral significance of FC across connectivity measures and imaging modalities using partial least square correlation analyses. Our results suggest that fingerprinting performance is heavily dependent on the functional connectivity measure, frequency band, identification scoring method, and spatial leakage correction. We report higher MEG fingerprinting performances in phase-coupling methods, central frequency bands (alpha and beta), and in the visual, frontoparietal, dorsal-attention, and default-mode networks. Furthermore, cross-modality comparisons reveal a certain degree of spatial concordance in fingerprinting patterns between the MEG and fMRI data, especially in the visual system. Finally, the multivariate correlation analyses show that MEG connectomes have strong behavioral significance, which however depends on the considered connectivity measure and temporal scale. This comprehensive, albeit preliminary investigation of MEG connectome test-retest identifiability offers a first characterization of MEG fingerprinting in relation to different methodological and electrophysiological factors and contributes to the understanding of fingerprinting cross-modal relationships. We hope that this first investigation will contribute to setting the grounds for MEG connectome identification.
Collapse
Affiliation(s)
- Ekansh Sareen
- Signal Processing and Biomedical Imaging, Dept. of Electronics and Communication Engineering, IIIT-Delhi, New Delhi, India
| | - Sélima Zahar
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Anubha Gupta
- Signal Processing and Biomedical Imaging, Dept. of Electronics and Communication Engineering, IIIT-Delhi, New Delhi, India
| | - Alessandra Griffa
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland; Department of Clinical Neurosciences, Division of Neurology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland.
| |
Collapse
|
23
|
Finn ES, Rosenberg MD. Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes. Neuroimage 2021; 239:118254. [PMID: 34118397 DOI: 10.1016/j.neuroimage.2021.118254] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Recent years have seen a surge of research on variability in functional brain connectivity within and between individuals, with encouraging progress toward understanding the consequences of this variability for cognition and behavior. At the same time, well-founded concerns over rigor and reproducibility in psychology and neuroscience have led many to question whether functional connectivity is sufficiently reliable, and call for methods to improve its reliability. The thesis of this opinion piece is that when studying variability in functional connectivity-both across individuals and within individuals over time-we should use behavior prediction as our benchmark rather than optimize reliability for its own sake. We discuss theoretical and empirical evidence to compel this perspective, both when the goal is to study stable, trait-level differences between people, as well as when the goal is to study state-related changes within individuals. We hope that this piece will be useful to the neuroimaging community as we continue efforts to characterize inter- and intra-subject variability in brain function and build predictive models with an eye toward eventual real-world applications.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, United States.
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, United States; Neuroscience Institute, University of Chicago, United States.
| |
Collapse
|
24
|
Jo Y, Faskowitz J, Esfahlani FZ, Sporns O, Betzel RF. Subject identification using edge-centric functional connectivity. Neuroimage 2021; 238:118204. [PMID: 34087363 DOI: 10.1016/j.neuroimage.2021.118204] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Group-level studies do not capture individual differences in network organization, an important prerequisite for understanding neural substrates shaping behavior and for developing interventions in clinical conditions. Recent studies have employed 'fingerprinting' analyses on functional connectivity to identify subjects' idiosyncratic features. Here, we develop a complementary approach based on an edge-centric model of functional connectivity, which focuses on the co-fluctuations of edges. We first show whole-brain edge functional connectivity (eFC) to be a robust substrate that improves identifiability over nodal FC (nFC) across different datasets and parcellations. Next, we characterize subjects' identifiability at different spatial scales, from single nodes to the level of functional systems and clusters using k-means clustering. Across spatial scales, we find that heteromodal brain regions exhibit consistently greater identifiability than unimodal, sensorimotor, and limbic regions. Lastly, we show that identifiability can be further improved by reconstructing eFC using specific subsets of its principal components. In summary, our results highlight the utility of the edge-centric network model for capturing meaningful subject-specific features and sets the stage for future investigations into individual differences using edge-centric models.
Collapse
Affiliation(s)
- Youngheun Jo
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Farnaz Zamani Esfahlani
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
25
|
Abbas K, Liu M, Venkatesh M, Amico E, Kaplan AD, Ventresca M, Pessoa L, Harezlak J, Goñi J. Geodesic Distance on Optimally Regularized Functional Connectomes Uncovers Individual Fingerprints. Brain Connect 2021; 11:333-348. [PMID: 33470164 PMCID: PMC8215418 DOI: 10.1089/brain.2020.0881] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Functional connectomes (FCs) have been shown to provide a reproducible individual fingerprint, which has opened the possibility of personalized medicine for neuro/psychiatric disorders. Thus, developing accurate ways to compare FCs is essential to establish associations with behavior and/or cognition at the individual level. Methods: Canonically, FCs are compared using Pearson's correlation coefficient of the entire functional connectivity profiles. Recently, it has been proposed that the use of geodesic distance is a more accurate way of comparing FCs, one which reflects the underlying non-Euclidean geometry of the data. Computing geodesic distance requires FCs to be positive-definite and hence invertible matrices. As this requirement depends on the functional magnetic resonance imaging scanning length and the parcellation used, it is not always attainable and sometimes a regularization procedure is required. Results: In the present work, we show that regularization is not only an algebraic operation for making FCs invertible, but also that an optimal magnitude of regularization leads to systematically higher fingerprints. We also show evidence that optimal regularization is data set-dependent and varies as a function of condition, parcellation, scanning length, and the number of frames used to compute the FCs. Discussion: We demonstrate that a universally fixed regularization does not fully uncover the potential of geodesic distance on individual fingerprinting and indeed could severely diminish it. Thus, an optimal regularization must be estimated on each data set to uncover the most differentiable across-subject and reproducible within-subject geodesic distances between FCs. The resulting pairwise geodesic distances at the optimal regularization level constitute a very reliable quantification of differences between subjects.
Collapse
Affiliation(s)
- Kausar Abbas
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Mintao Liu
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Manasij Venkatesh
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, USA
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | | | - Mario Ventresca
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Luiz Pessoa
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, USA
- Department of Psychology and Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, USA
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
26
|
Menara T, Lisi G, Pasqualetti F, Cortese A. Brain network dynamics fingerprints are resilient to data heterogeneity. J Neural Eng 2020; 18:026004. [PMID: 33361552 DOI: 10.1088/1741-2552/abd684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Large multi-site neuroimaging datasets have significantly advanced our quest to understand brain-behavior relationships and to develop biomarkers of psychiatric and neurodegenerative disorders. Yet, such data collections come at a cost, as the inevitable differences across samples may lead to biased or erroneous conclusions. OBJECTIVE We aim to validate the estimation of individual brain network dynamics fingerprints and appraise sources of variability in large resting-state functional magnetic resonance imaging (rs-fMRI) datasets by providing a novel point of view based on data-driven dynamical models. APPROACH Previous work has investigated this critical issue in terms of effects on static measures, such as functional connectivity and brain parcellations. Here, we utilize dynamical models (Hidden Markov models - HMM) to examine how diverse scanning factors in multi-site fMRI recordings affect our ability to infer the brain's spatiotemporal wandering between large-scale networks of activity. Specifically, we leverage a stable HMM trained on the Human Connectome Project (homogeneous) dataset, which we then apply to an heterogeneous dataset of traveling subjects scanned under a multitude of conditions. MAIN RESULTS Building upon this premise, we first replicate previous work on the emergence of non-random sequences of brain states. We next highlight how these time-varying brain activity patterns are robust subject-specific fingerprints. Finally, we suggest these fingerprints may be used to assess which scanning factors induce high variability in the data. SIGNIFICANCE These results demonstrate that we can i) use large scale dataset to train models that can be then used to interrogate subject-specific data, ii) recover the unique trajectories of brain activity changes in each individual, but also iii) urge caution as our ability to infer such patterns is affected by how, where and when we do so.
Collapse
Affiliation(s)
- Tommaso Menara
- Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, California, 92521, UNITED STATES
| | - Giuseppe Lisi
- Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, JAPAN
| | - Fabio Pasqualetti
- Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, California, 92521, UNITED STATES
| | - Aurelio Cortese
- Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, JAPAN
| |
Collapse
|
27
|
Vera-Ávila VP, Sevilla-Escoboza R, Goñi J, Rivera-Durón RR, Buldú JM. Identifiability of structural networks of nonlinear electronic oscillators. Sci Rep 2020; 10:14668. [PMID: 32887920 PMCID: PMC7474090 DOI: 10.1038/s41598-020-71373-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
The interplay between structure and function is critical in the understanding of complex systems, their dynamics and their behavior. We investigated the interplay between structural and functional networks by means of the differential identifiability framework, which here quantifies the ability of identifying a particular network structure based on (1) the observation of its functional network and (2) the comparison with a prior observation under different initial conditions. We carried out an experiment consisting of the construction of [Formula: see text] different structural networks composed of [Formula: see text] nonlinear electronic circuits and studied the regions where network structures are identifiable. Specifically, we analyzed how differential identifiability is related to the coupling strength between dynamical units (modifying the level of synchronization) and what are the consequences of increasing the amount of noise existing in the functional networks. We observed that differential identifiability reaches its highest value for low to intermediate coupling strengths. Furthermore, it is possible to increase the identifiability parameter by including a principal component analysis in the comparison of functional networks, being especially beneficial for scenarios where noise reaches intermediate levels. Finally, we showed that the regime of the parameter space where differential identifiability is the highest is highly overlapped with the region where structural and functional networks correlate the most.
Collapse
Affiliation(s)
- V P Vera-Ávila
- Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de Leon, Paseos de la Montaña, 47460, Lagos de Moreno, Jalisco, Mexico
| | - R Sevilla-Escoboza
- Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz de Leon, Paseos de la Montaña, 47460, Lagos de Moreno, Jalisco, Mexico
| | - J Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West-Lafayette, IN, USA
| | - R R Rivera-Durón
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an, 710072, China
| | - J M Buldú
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an, 710072, China.
- Complex Systems Group and GISC, Universidad Rey Juan Carlos, Madrid, Spain.
- Laboratory of Biological Networks, Center for Biomedical Technology, UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.
| |
Collapse
|
28
|
Abbas K, Amico E, Svaldi DO, Tipnis U, Duong-Tran DA, Liu M, Rajapandian M, Harezlak J, Ances BM, Goñi J. GEFF: Graph embedding for functional fingerprinting. Neuroimage 2020; 221:117181. [PMID: 32702487 DOI: 10.1016/j.neuroimage.2020.117181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
It has been well established that Functional Connectomes (FCs), as estimated from functional MRI (fMRI) data, have an individual fingerprint that can be used to identify an individual from a population (subject-identification). Although identification rate is high when using resting-state FCs, other tasks show moderate to low values. Furthermore, identification rate is task-dependent, and is low when distinct cognitive states, as captured by different fMRI tasks, are compared. Here we propose an embedding framework, GEFF (Graph Embedding for Functional Fingerprinting), based on group-level decomposition of FCs into eigenvectors. GEFF creates an eigenspace representation of a group of subjects using one or more task FCs (Learning Stage). In the Identification Stage, we compare new instances of FCs from the Learning subjects within this eigenspace (validation dataset). The validation dataset contains FCs either from the same tasks as the Learning dataset or from the remaining tasks that were not included in Learning. Assessment of validation FCs within the eigenspace results in significantly increased subject-identification rates for all fMRI tasks tested and potentially task-independent fingerprinting process. It is noteworthy that combining resting-state with one fMRI task for GEFF Learning Stage covers most of the cognitive space for subject identification. Thus, while designing an experiment, one could choose a task fMRI to ask a specific question and combine it with resting-state fMRI to extract maximum subject differentiability using GEFF. In addition to subject-identification, GEFF was also used for identification of cognitive states, i.e. to identify the task associated to a given FC, regardless of the subject being already in the Learning dataset or not (subject-independent task-identification). In addition, we also show that eigenvectors from the Learning Stage can be characterized as task- and subject-dominant, subject-dominant or neither, using two-way ANOVA of their corresponding loadings, providing a deeper insight into the extent of variance in functional connectivity across individuals and cognitive states.
Collapse
Affiliation(s)
- Kausar Abbas
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA; School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Diana Otero Svaldi
- Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University, Indianapolis, IN, USA
| | - Uttara Tipnis
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA; School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Duy Anh Duong-Tran
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA; School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Mintao Liu
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA; School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Meenusree Rajapandian
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA; School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, IN, USA
| | - Beau M Ances
- Washington University School of Medicine, Washington University, St Louis, MO, USA
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA; School of Industrial Engineering, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Rajapandian M, Amico E, Abbas K, Ventresca M, Goñi J. Uncovering differential identifiability in network properties of human brain functional connectomes. Netw Neurosci 2020; 4:698-713. [PMID: 32885122 PMCID: PMC7462422 DOI: 10.1162/netn_a_00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/30/2020] [Indexed: 01/05/2023] Open
Abstract
The identifiability framework (𝕀f) has been shown to improve differential identifiability (reliability across-sessions and -sites, and differentiability across-subjects) of functional connectomes for a variety of fMRI tasks. But having a robust single session/subject functional connectome is just the starting point to subsequently assess network properties for characterizing properties of integration, segregation, and communicability, among others. Naturally, one wonders whether uncovering identifiability at the connectome level also uncovers identifiability on the derived network properties. This also raises the question of where to apply the 𝕀f framework: on the connectivity data or directly on each network measurement? Our work answers these questions by exploring the differential identifiability profiles of network measures when 𝕀f is applied (a) on the functional connectomes, and (b) directly on derived network measurements. Results show that improving across-session reliability of functional connectomes (FCs) also improves reliability of derived network measures. We also find that, for specific network properties, application of 𝕀f directly on network properties is more effective. Finally, we discover that applying the framework, either way, increases task sensitivity of network properties. At a time when the neuroscientific community is focused on subject-level inferences, this framework is able to uncover FC fingerprints, which propagate to derived network properties.
Collapse
Affiliation(s)
| | - Enrico Amico
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Integrative Neuroscience, West Lafayette, IN, USA
| | - Kausar Abbas
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Integrative Neuroscience, West Lafayette, IN, USA
| | - Mario Ventresca
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Joaquín Goñi
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute of Integrative Neuroscience, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, West Lafayette, IN, USA
| |
Collapse
|