1
|
Tie B, Yang W, Huo T, Gao Y, Yang X, Tian D, Pelowski M, Qiu J. Empathy to Creativity: The Associations Between Empathy and Everyday Creativity. J Pers 2024. [PMID: 39691954 DOI: 10.1111/jopy.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Everyday creativity is fundamental to human existence and improved well-being. Beyond recent attention regarding how contextual, lifestyle, personality, and neurobiological differences might foster everyday creativity, empathy may also constitute an intriguing connection. However, this potential relationship has not yet been systematically assessed. METHODS Study 1 used multiple psychometric instruments to examine the levels of emotional and cognitive empathies and everyday creativity among different samples (n = 809). Study 2 used a cross-lagged panel model (CLPM) to examine longitudinal behavioral data (n = 653 at T1, n = 413 at T2) to determine how cognitive empathy might predict everyday creativity. RESULTS Study 1 found that cognitive but not affective empathy exhibited a significant positive correlation with everyday creativity and domain-specific creative behaviors. Study 2 also reported a positive correlation between cognitive empathy, overall creative achievement, and certain domain-specific creative achievements. Cognitive empathy was linked to greater involvement in everyday creativity. CONCLUSION To our knowledge, these studies are the first to demonstrate a robust relationship between cognitive empathy and everyday creativity across different samples, measures, and longitudinal data, providing evidence of a nuanced relationship between cognitive empathy and creative achievement. Future studies should explore how creativity or empathy may foster empathic/creative development.
Collapse
Affiliation(s)
- Bijie Tie
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
| | - Wenjing Yang
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Tengbin Huo
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yixin Gao
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Xiongjian Yang
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Dingyue Tian
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
| | - Matthew Pelowski
- Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| | - Jiang Qiu
- Faculty of Psychology, Southwest University (SWU), Chongqing, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Wei W, Benn RA, Scholz R, Shevchenko V, Klatzmann U, Alberti F, Chiou R, Wassermann D, Vanderwal T, Smallwood J, Margulies DS. A function-based mapping of sensory integration along the cortical hierarchy. Commun Biol 2024; 7:1593. [PMID: 39613829 PMCID: PMC11607388 DOI: 10.1038/s42003-024-07224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Sensory information mainly travels along a hierarchy spanning unimodal to transmodal regions, forming multisensory integrative representations crucial for higher-order cognitive functions. Here, we develop an fMRI based two-dimensional framework to characterize sensory integration based on the anchoring role of the primary cortex in the organization of sensory processing. Sensory magnitude captures the percentage of variance explained by three primary sensory signals and decreases as the hierarchy ascends, exhibiting strong similarity to the known hierarchy and high stability across different conditions. Sensory angle converts associations with three primary sensory signals to an angle representing the proportional contributions of different sensory modalities. This dimension identifies differences between brain states and emphasizes how sensory integration changes flexibly in response to varying cognitive demands. Furthermore, meta-analytic functional decoding with our model highlights the close relationship between cognitive functions and sensory integration, showing its potential for future research of human cognition through sensory information processing.
Collapse
Affiliation(s)
- Wei Wei
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - R Austin Benn
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Robert Scholz
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Max Planck School of Cognition, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Victoria Shevchenko
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ulysse Klatzmann
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Francesco Alberti
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rocco Chiou
- School of Psychology, University of Surrey, Surrey, United Kingdom
| | | | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- BC Children's Hospital Research Institute, Vancouver, Canada
| | | | - Daniel S Margulies
- Cognitive Neuroanatomy Lab, Université Paris Cité, INCC UMR 8002, CNRS, Paris, France.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
3
|
Folia V, Silva S. Employing Verbal Divergent Thinking to Mitigate Cognitive Decline: Current State of Research and Reasons to Support Its Use. Geriatrics (Basel) 2024; 9:142. [PMID: 39584943 PMCID: PMC11587145 DOI: 10.3390/geriatrics9060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Divergent thinking (DT), the ability to generate alternative responses to open-ended problems, has become an increasingly relevant topic in aging research due to its inverse relationship with cognitive decline. METHODS In this narrative review, we explore the latest evidence supporting DT training as a potential strategy for dementia prevention. RESULTS We identify two pathways through which DT may protect against cognitive decline: (1) by fostering creative cognition and (2) by stimulating DT-related domains. Our findings suggest that verbal DT remains relatively well preserved in older adults, although there is limited empirical evidence to support the idea that DT training enhances creative cognition or DT-related domains in this population. CONCLUSIONS Therefore, while tools designed to enhance DT in older individuals seem promising, it is crucial to rigorously test their effects on the target population to maximize their impact on both the cognitive and psychological domains.
Collapse
Affiliation(s)
- Vasiliki Folia
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, University Campus, 546 26 Thessaloniki, Greece
| | - Susana Silva
- Center for Psychology, Faculty of Psychology and Educational Sciences, University of Porto, Rua Alfredo Allen, s/n, 4200-135 Porto, Portugal;
| |
Collapse
|
4
|
Zhang J, Feng Q, Qiu J. Frequent absent mindedness and the neural mechanism trapped by mobile phone addiction. Neuroscience 2024; 563:252-260. [PMID: 39454714 DOI: 10.1016/j.neuroscience.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
With the increased availability and sophistication of digital devices in the last decade, young people have become mainstream mobile phone users. Heavy mobile phone dependence causes affective problems (depression, anxiety) and loss of attention on current activities, leading to more cluttered thoughts. Problematic mobile phone use has been found to increase the occurrence of mind wandering, but the neural mechanism underlying this relationship remains unclear. The current study aims to investigate the neural mechanism between mobile phone use and mind wandering. University students from datasets (ongoing research project named Gene-Brain-Behavior project, GBB) completed psychological assessments of mobile phone addiction and mind wandering and underwent resting-state functional connectivity (FC) scanning. FC matrix was constructed to further conduct correlation and mediation analyses. Students with high mobile phone addiction scores were more likely to have high mind wandering scores. FC among the default mode, motor, frontoparietal, basal ganglia, limbic, medial frontal, visual association, and cerebellar networks formed the neural basis of mind wandering. FC between the frontoparietal and motor networks, between the default mode network and cerebellar network, and within the cerebellar network mediated the relationship between mobile phone addiction and mind wandering. The findings confirm that mobile phone addiction is a risk factor for increased mind wandering and reveal that FC in several brain networks underlies this relationship. They contribute to research on behavioral addiction, education, and mental health among young adults.
Collapse
Affiliation(s)
| | - Qiuyang Feng
- Department of Psychology, Southwest University, China.
| | - Jiang Qiu
- Department of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Wang X, Chen Q, Zhuang K, Zhang J, Cortes RA, Holzman DD, Fan L, Liu C, Sun J, Li X, Li Y, Feng Q, Chen H, Feng T, Lei X, He Q, Green AE, Qiu J. Semantic associative abilities and executive control functions predict novelty and appropriateness of idea generation. Commun Biol 2024; 7:703. [PMID: 38849461 PMCID: PMC11161622 DOI: 10.1038/s42003-024-06405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Novelty and appropriateness are two fundamental components of creativity. However, the way in which novelty and appropriateness are separated at behavioral and neural levels remains poorly understood. In the present study, we aim to distinguish behavioral and neural bases of novelty and appropriateness of creative idea generation. In alignment with two established theories of creative thinking, which respectively, emphasize semantic association and executive control, behavioral results indicate that novelty relies more on associative abilities, while appropriateness relies more on executive functions. Next, employing a connectome predictive modeling (CPM) approach in resting-state fMRI data, we define two functional network-based models-dominated by interactions within the default network and by interactions within the limbic network-that respectively, predict novelty and appropriateness (i.e., cross-brain prediction). Furthermore, the generalizability and specificity of the two functional connectivity patterns are verified in additional resting-state fMRI and task fMRI. Finally, the two functional connectivity patterns, respectively mediate the relationship between semantic association/executive control and novelty/appropriateness. These findings provide global and predictive distinctions between novelty and appropriateness in creative idea generation.
Collapse
Affiliation(s)
- Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingyi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Robert A Cortes
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Daniel D Holzman
- Department of Psychology, Georgetown University, Washington, DC, USA
| | - Li Fan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiangzhou Sun
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yu Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Adam E Green
- Department of Psychology, Georgetown University, Washington, DC, USA.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Chongqing, China.
| |
Collapse
|
6
|
Zhan X, Lang J, Yang LZ, Li H. Modeling the association between functional connectivity and lateralization with the activity flow framework. Brain Res 2024; 1830:148831. [PMID: 38412885 DOI: 10.1016/j.brainres.2024.148831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
The human brain is localized and distributed. On the one hand, each cognitive function tends to involve one hemisphere more than the other, also known as the principle of lateralization. On the other hand, interactions among brain regions in the form of functional connectivity (FC) are indispensable for intact function. Recent years have seen growing interest in the association between lateralization and FC. However, FC metrics vary from spurious correlation to causal associations. If lateralization manifests local processing and causal network interactions, more causally valid FC metrics should predict lateralization index (LI) better than FC based on simple correlations. The present study directly investigates this hypothesis within the activity flow framework to compare the association between lateralization and four brain connectivity metrics: correlation-based FC, multiple-regression FC, partial-correlation FC, and combinedFC. We propose two modeling approaches: the one-step approach, which models the relationship between LI and FC directly, and the two-step approach, which predicts the brain activation and calculates the LI. Our results indicated that multiple-regression FC, partial-correlation FC, and combinedFC could significantly improve the model prediction compared to correlation-based FC, which was consistent in a spatial working memory task (typically right-lateralized) and a language task (typically left-lateralized). The one-step and two-step approach yielded similar conclusions. In addition, the finding was replicated in a clinical sample of schizophrenia (SZ), bipolar disorder (BP), and attention deficit hyperactivity disorder (ADHD). The present study suggests that the causal interactions among brain regions help shape the lateralization pattern.
Collapse
Affiliation(s)
- Xue Zhan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jinwei Lang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China.
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China.
| |
Collapse
|
7
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
8
|
Watters H, Fazili A, Daley L, Belden A, LaGrow TJ, Bolt T, Loui P, Keilholz S. Creative tempo: Spatiotemporal dynamics of the default mode network in improvisational musicians. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588391. [PMID: 38645080 PMCID: PMC11030431 DOI: 10.1101/2024.04.07.588391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intrinsic dynamics of human brain activity display a recurring pattern of anti-correlated activity between the default mode network (DMN), associated with internal processing and mentation, and task positive regions, associated with externally directed attention. In human functional magnetic resonance imaging (fMRI) data, this anti-correlated pattern is detectable on the infraslow timescale (<0.1 Hz) as a quasi-periodic pattern (QPP). While the DMN is implicated in creativity and musicality in traditional time-averaged functional connectivity studies, no one has yet explored how creative training may alter dynamic spatiotemporal patterns involving the DMN such as QPPs. In the present study, we compare the outputs of two QPP detection approaches, sliding window algorithm and complex principal components analysis (cPCA). We apply both methods to an existing dataset of musicians captured with resting state fMRI, grouped as either classical, improvisational, or minimally trained non-musicians. The original time-averaged functional connectivity (FC) analysis of this dataset used improvisation as a proxy for creative thinking and found that the DMN and visual networks (VIS) display higher connectivity in improvisational musicians. We expand upon this dataset's original study and find that QPP analysis detects convergent results at the group level with both methods. In improvisational musicians, dynamic functional correlation in the group-averaged QPP was found to be increased between the DMN-VIS and DMN-FPN for both the QPP algorithm and complex principal components analysis (cPCA) methods. Additionally, we found an unexpected increase in FC in the group-averaged QPP between the dorsal attention network and amygdala in improvisational musicians; this result was not reported in the original seed-based study of this dataset. The current study represents a novel application of two dynamic FC detection methods with results that replicate and expand upon previous seed-based FC findings. The results show the robustness of both the QPP phenomenon and its detection methods. This study also demonstrates the value of dynamic FC methods in reproducing seed-based findings and their promise in detecting group-wise or individual differences that may be missed by traditional seed-based resting state fMRI studies.
Collapse
Affiliation(s)
| | | | - Lauren Daley
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | | | - T J LaGrow
- Georgia Institute of Technology School of Electrical and Computer Engineering
| | - Taylor Bolt
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| | | | - Shella Keilholz
- Department of Biomedical Engineering, Emory University/Georgia Institute of Technology
| |
Collapse
|
9
|
Zheng W, Zhang Q, Zhao Z, Zhang P, Zhao L, Wang X, Yang S, Zhang J, Yao Z, Hu B. Aberrant dynamic functional connectivity of thalamocortical circuitry in major depressive disorder. J Zhejiang Univ Sci B 2024; 25:857-877. [PMID: 39420522 PMCID: PMC11494164 DOI: 10.1631/jzus.b2300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/24/2023] [Indexed: 03/02/2024]
Abstract
Thalamocortical circuitry has a substantial impact on emotion and cognition. Previous studies have demonstrated alterations in thalamocortical functional connectivity (FC), characterized by region-dependent hypo- or hyper-connectivity, among individuals with major depressive disorder (MDD). However, the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear. Hence, we analyzed dynamic FC (dFC) between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls (HCs) to investigate time-varying changes in thalamocortical FC in patients with MDD. Moreover, dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time. Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated. We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks, compared with the HCs. In addition, MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration. The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort. Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms. Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients. The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.
Collapse
Affiliation(s)
- Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Songyu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730030, China. ,
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. ,
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China. ,
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China. ,
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
10
|
Li X, Peng C, Qin F, Luo Q, Ren Z, Wang X, Feng Q, Liu C, Li Y, Wei D, Qiu J. Basolateral Amygdala Functional Connectivity in Alexithymia: Linking Interoceptive Sensibility and Cognitive Empathy. Neuroscience 2024; 539:12-20. [PMID: 38176608 DOI: 10.1016/j.neuroscience.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Emotions rely on bodily states, and perceiving the emotions of others depends on awareness of one's own emotional state. However, the intercorrelations among interoception, alexithymia, and empathy are not well understood, and the neural mechanisms behind this connection are also largely unknown. To address these issues, 297 college students participated in this study, completing measures of interoceptive sensibility (IS), empathy and alexithymia and undergoing resting-state fMRI scans. The functional connectivity of the amygdala was analysed to identify the neural substrates of alexithymia, and mediation analyses were conducted to examine the mediation effect of alexithymia and alexithymia-specific amygdala functional connectivity on the relationship between IS and empathy. The results showed that higher levels of IS were associated with increased cognitive empathy through weakened alexithymia. Functional connectivity analysis indicated that right basolateral amygdala (BLA)-left precuneus connectivity was negatively related to alexithymia, while right BLA-left precentral gyrus connectivity was positively related to alexithymia. Furthermore, right BLA-left precuneus connectivity was found to mediate the impact of interoception on cognitive empathy. In conclusion, this study provides valuable insights into the relationships among IS, alexithymia, and empathy. The right BLA-left precuneus connectivity may serve as a shared neural substrate between interoception and cognitive empathy.
Collapse
Affiliation(s)
- Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Chuyao Peng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Facai Qin
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Qian Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment, Toward Basic Education Quality at Beijing Normal University, China.
| |
Collapse
|
11
|
Feng Q, Ren Z, Wei D, Liu C, Wang X, Li X, Tie B, Tang S, Qiu J. Connectome-based predictive modeling of Internet addiction symptomatology. Soc Cogn Affect Neurosci 2024; 19:nsae007. [PMID: 38334691 PMCID: PMC10878364 DOI: 10.1093/scan/nsae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Internet addiction symptomatology (IAS) is characterized by persistent and involuntary patterns of compulsive Internet use, leading to significant impairments in both physical and mental well-being. Here, a connectome-based predictive modeling approach was applied to decode IAS from whole-brain resting-state functional connectivity in healthy population. The findings showed that IAS could be predicted by the functional connectivity between prefrontal cortex with the cerebellum and limbic lobe and connections of the occipital lobe with the limbic lobe and insula lobe. The identified edges associated with IAS exhibit generalizability in predicting IAS within an independent sample. Furthermore, we found that the unique contributing network, which predicted IAS in contrast to the prediction networks of alcohol use disorder symptomatology (the range of symptoms and behaviors associated with alcohol use disorder), prominently comprised connections involving the occipital lobe and other lobes. The current data-driven approach provides the first evidence of the predictive brain features of IAS based on the organization of intrinsic brain networks, thus advancing our understanding of the neurobiological basis of Internet addiction disorder (IAD) susceptibility, and may have implications for the timely intervention of people potentially at risk of IAD.
Collapse
Affiliation(s)
- Qiuyang Feng
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Bijie Tie
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Shuang Tang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing 100000, China
| |
Collapse
|
12
|
Prasad R, Tarai S, Bit A. Hybrid computational model depicts the contribution of non-significant lobes of human brain during the perception of emotional stimuli. Comput Methods Biomech Biomed Engin 2024:1-27. [PMID: 38328832 DOI: 10.1080/10255842.2024.2311876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/03/2023] [Indexed: 02/09/2024]
Abstract
Emotions are synchronizing responses of human brain while executing cognitive tasks. Earlier studies had revealed strong correlation between specific lobes of the brain to different types of emotional valence. In the current study, a comprehensive three-dimensional mapping of human brain for executing emotion specific tasks had been formulated. A hybrid computational machine learning model customized from Custom Weight Allocation Model (CWAM) and defined as Custom Rank Allocation Model (CRAM). This regression-based hybrid computational model computes the allocated tasks to different lobes of the brain during their respective executive stage. Event Related Potentials (ERP) were obtained with significant effect at P1, P2, P3, N170, N2, and N4. These ERPs were configured at Pz, Cz, F3, and T8 regions of the brain with maximal responses; while regions like Cz, C4 and F4 were also found to make effective contributions to elevate the responses of the brain, and thus these regions were configured as augmented source regions of the brain. In another circumstance of frequent -deviant - equal (FDE) presentation of the emotional stimuli, it was observed that the brain channels C3, C4, P3, P4, O1, O2, and Oz were contributing their emotional quotient to the overall response of the brain regions; whereas, the interaction effect was found presentable at O2, Oz, P3, P4, T8 and C3 regions of brain. The proposed computational model had identified the potential neural pathways during the execution of emotional task.
Collapse
Affiliation(s)
| | | | - Arindam Bit
- Department of Biomedical Engineering, NIT Raipur
| |
Collapse
|
13
|
Porcu M, Cocco L, Marrosu F, Cau R, Suri JS, Qi Y, Pineda V, Bosin A, Malloci G, Ruggerone P, Puig J, Saba L. Impact of corpus callosum integrity on functional interhemispheric connectivity and cognition in healthy subjects. Brain Imaging Behav 2024; 18:141-158. [PMID: 37955809 DOI: 10.1007/s11682-023-00814-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
To examine the corpus callosum's (CC) integrity in terms of fractional anisotropy (FA) and how it affects resting-state hemispheric connectivity (rs-IHC) and cognitive function in healthy individuals. Sixty-eight healthy individuals were recruited for the study. The global FA (gFA) and FA values of each CC tract (forceps minor, body, tapetum, and forceps major) were evaluated using diffusion-weighted imaging (DWI) sequences. The homotopic functional connectivity technique was used to quantify the effects of FA in the CC tracts on bilateral functional connectivity, including the confounding effect of gFA. Brain regions with higher or lower rs-IHC were identified using the threshold-free cluster enhancement family-wise error-corrected p-value of 0.05. The null hypothesis was rejected if the p-value was ≤ 0.05 for the nonparametric partial correlation technique. Several clusters of increased rs-IHC were identified in relation to the FA of individual CC tracts, each with a unique topographic distribution and extension. Only forceps minor FA values correlated with cognitive scores. The integrity of CC influences rs-IHC differently in healthy subjects. Specifically, forceps minor anisotropy impacts rs-IHC and cognition more than other CC tracts do.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy.
- Department of Medical Imaging, Azienda Ospedaliera Universitaria di Cagliari, S.S: 554, Km 4,500 - CAP, Monserrato, 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | - Victor Pineda
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Cagliari, Italy
| | - Josep Puig
- Department of Medical Sciences, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
- Department of Radiology (IDI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Wang X, Huang CC, Tsai SJ, Lin CP, Cai Q. The aging trajectories of brain functional hierarchy and its impact on cognition across the adult lifespan. Front Aging Neurosci 2024; 16:1331574. [PMID: 38313436 PMCID: PMC10837851 DOI: 10.3389/fnagi.2024.1331574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction The hierarchical network architecture of the human brain, pivotal to cognition and behavior, can be explored via gradient analysis using restingstate functional MRI data. Although it has been employed to understand brain development and disorders, the impact of aging on this hierarchical architecture and its link to cognitive decline remains elusive. Methods This study utilized resting-state functional MRI data from 350 healthy adults (aged 20-85) to investigate the functional hierarchical network using connectome gradient analysis with a cross-age sliding window approach. Gradient-related metrics were estimated and correlated with age to evaluate trajectory of gradient changes across lifespan. Results The principal gradient (unimodal-to-transmodal) demonstrated a significant non-linear relationship with age, whereas the secondary gradient (visual-to-somatomotor) showed a simple linear decreasing pattern. Among the principal gradient, significant age-related changes were observed in the somatomotor, dorsal attention, limbic and default mode networks. The changes in the gradient scores of both the somatomotor and frontal-parietal networks were associated with greater working memory and visuospatial ability. Gender differences were found in global gradient metrics and gradient scores of somatomotor and default mode networks in the principal gradient, with no interaction with age effect. Discussion Our study delves into the aging trajectories of functional connectome gradient and its cognitive impact across the adult lifespan, providing insights for future research into the biological underpinnings of brain function and pathological models of atypical aging processes.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Shih-Jen Tsai
- Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ching-Po Lin
- Brain Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Institute of Neuroscience, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| |
Collapse
|
15
|
Gao Y, Wu X, Yan Y, Li M, Qin F, Ma M, Yuan X, Yang W, Qiu J. The unity and diversity of verbal and visuospatial creativity: Dynamic changes in hemispheric lateralisation. Hum Brain Mapp 2023; 44:6031-6042. [PMID: 37772359 PMCID: PMC10619400 DOI: 10.1002/hbm.26494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
The investigation of similarities and differences in the mechanisms of verbal and visuospatial creative thinking has long been a controversial topic. Prior studies found that visuospatial creativity was primarily supported by the right hemisphere, whereas verbal creativity relied on the interaction between both hemispheres. However, creative thinking also involves abundant dynamic features that may have been ignored in the previous static view. Recently, a new method has been developed that measures hemispheric laterality from a dynamic perspective, providing new insight into the exploration of creative thinking. In the present study, dynamic lateralisation index was calculated with resting-state fMRI data. We combined the dynamic lateralisation index with sparse canonical correlation analysis to examine similarities and differences in the mechanisms of verbal and visuospatial creativity. Our results showed that the laterality reversal of the default mode network, fronto-parietal network, cingulo-opercular network and visual network contributed significantly to both verbal and visuospatial creativity and consequently could be considered the common neural mechanisms shared by these creative modes. In addition, we found that verbal creativity relied more on the language network, while visuospatial creativity relied more on the somatomotor network, which can be considered a difference in their mechanism. Collectively, these findings indicated that verbal and visuospatial creativity may have similar mechanisms to support the basic creative thinking process and different mechanisms to adapt to the specific task conditions. These findings may have significant implications for our understanding of the neural mechanisms of different types of creative thinking.
Collapse
Affiliation(s)
- Yixin Gao
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Xinran Wu
- Institute of Science and Technology for Brain‐Inspired IntelligenceFudan UniversityShanghaiChina
| | - Yuchi Yan
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Min Li
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Facai Qin
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Mujie Ma
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Xiaoning Yuan
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU)Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest University (SWU)ChongqingChina
| |
Collapse
|
16
|
Zhuang K, Zeitlen DC, Beaty RE, Vatansever D, Chen Q, Qiu J. Diverse functional interaction driven by control-default network hubs supports creative thinking. Cereb Cortex 2023; 33:11206-11224. [PMID: 37823346 DOI: 10.1093/cercor/bhad356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Complex cognitive processes, like creative thinking, rely on interactions among multiple neurocognitive processes to generate effective and innovative behaviors on demand, for which the brain's connector hubs play a crucial role. However, the unique contribution of specific hub sets to creative thinking is unknown. Employing three functional magnetic resonance imaging datasets (total N = 1,911), we demonstrate that connector hub sets are organized in a hierarchical manner based on diversity, with "control-default hubs"-which combine regions from the frontoparietal control and default mode networks-positioned at the apex. Specifically, control-default hubs exhibit the most diverse resting-state connectivity profiles and play the most substantial role in facilitating interactions between regions with dissimilar neurocognitive functions, a phenomenon we refer to as "diverse functional interaction". Critically, we found that the involvement of control-default hubs in facilitating diverse functional interaction robustly relates to creativity, explaining both task-induced functional connectivity changes and individual creative performance. Our findings suggest that control-default hubs drive diverse functional interaction in the brain, enabling complex cognition, including creative thinking. We thus uncover a biologically plausible explanation that further elucidates the widely reported contributions of certain frontoparietal control and default mode network regions in creativity studies.
Collapse
Affiliation(s)
- Kaixiang Zhuang
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Daniel C Zeitlen
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Qunlin Chen
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| |
Collapse
|
17
|
Feng Q, Li Y, Liu C, Wang X, Tang S, Tie B, Li X, Qiu J. Functional connectivity mediating passive coping style and perceived stress in predicting anxiety. J Affect Disord 2023; 340:828-834. [PMID: 37597785 DOI: 10.1016/j.jad.2023.08.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Passive coping style (CS) and perceived stress play significant roles as influencing factors in the development of anxiety. However, the underlying neurobiological mechanism linking passive CS and perceived stress to anxiety susceptibility remains elusive. Thus, we aimed to investigate the relationships among passive CS, brain functional connectivity, perceived stress, and anxiety in young adults. METHODS Data from the longitudinal Gene-Brain-Behavior Project(GBB) and Southwest University Longitudinal Imaging Multimodal Project(SLIM) were used. We confirmed the relationship among anxiety, passive CS and perceived stress. Then, we investigated the mediated functional connectivity between passive CS and perceived stress, and used these functional connections to predict present anxiety and follow-up anxiety one year later. RESULTS Anxiety scores were significantly positively correlated with passive CS and perceived stress. At the brain network level, connections within the default mode network (DMN) and between the somatomotor network (SMN) and subcortical network (SUN) mediated the relationship between passive CS and perceived stress. Furthermore, present anxiety and follow-up anxiety one year later could be predicted by these mediated functional connections. Nodes with greater predictive contribution were mainly located in the left anterior cingulate gyrus (ACC), left inferior parietal gyrus (IPG), right superior frontal gyrus (SFG), and left middle frontal gyrus (MFG), mainly distributed on the DMN. CONCLUSION These findings demonstrated that the mediated neurobiological mechanisms between passive CS and perceived stress could be used to predict present and future anxiety, which enhance understanding of the neurobiological basis of anxiety susceptibility in this passive CS and perceived stress and may have implications for early preventing and intervening mental disorders.
Collapse
Affiliation(s)
- Qiuyang Feng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Center for Studies of Education and Psychology of Ethnic Minorities In Southwest China, Southwest University (SWU), Chongqing 400715, China
| | - Yu Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Education, Southwest University (SWU), Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Shuang Tang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Bijie Tie
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Center for Studies of Education and Psychology of Ethnic Minorities In Southwest China, Southwest University (SWU), Chongqing 400715, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China.
| |
Collapse
|
18
|
Geng L, Feng Q, Wang X, Gao Y, Hao L, Qiu J. Connectome-based modeling reveals a resting-state functional network that mediates the relationship between social rejection and rumination. Front Psychol 2023; 14:1264221. [PMID: 37965648 PMCID: PMC10642796 DOI: 10.3389/fpsyg.2023.1264221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background Rumination impedes problem solving and is one of the most important factors in the onset and maintenance of multiple psychiatric disorders. The current study aims to investigate the impact of social rejection on rumination and explore the underlying neural mechanisms involved in this process. Methods We utilized psychological questionnaire and resting-state brain imaging data from a sample of 560 individuals. The predictive model for rumination scores was constructed using resting-state functional connectivity data through connectome-based predictive modeling. Additionally, a mediation analysis was conducted to investigate the mediating role of the prediction network in the relationship between social rejection and rumination. Results A positive correlation between social rejection and rumination was found. We obtained the prediction model of rumination and found that the strongest contributions came from the intra- and internetwork connectivity within the default mode network (DMN), dorsal attention network (DAN), frontoparietal control network (FPCN), and sensorimotor networks (SMN). Analysis of node strength revealed the significance of the supramarginal gyrus (SMG) and angular gyrus (AG) as key nodes in the prediction model. In addition, mediation analysis showed that the strength of the prediction network mediated the relationship between social rejection and rumination. Conclusion The findings highlight the crucial role of functional connections among the DMN, DAN, FPCN, and SMN in linking social rejection and rumination, particular in brain regions implicated in social cognition and emotion, namely the SMG and AG regions. These results enhance our understanding of the consequences of social rejection and provide insights for novel intervention strategies targeting rumination.
Collapse
Affiliation(s)
- Li Geng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Qiuyang Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yixin Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Lei Hao
- College of Teacher Education, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Panda R, Vanhaudenhuyse A, Piarulli A, Annen J, Demertzi A, Alnagger N, Chennu S, Laureys S, Faymonville ME, Gosseries O. Altered Brain Connectivity and Network Topological Organization in a Non-ordinary State of Consciousness Induced by Hypnosis. J Cogn Neurosci 2023; 35:1394-1409. [PMID: 37315333 DOI: 10.1162/jocn_a_02019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypnosis has been shown to be of clinical utility; however, its underlying neural mechanisms remain unclear. This study aims to investigate altered brain dynamics during the non-ordinary state of consciousness induced by hypnosis. We studied high-density EEG in 9 healthy participants during eyes-closed wakefulness and during hypnosis, induced by a muscle relaxation and eyes fixation procedure. Using hypotheses based on internal and external awareness brain networks, we assessed region-wise brain connectivity between six ROIs (right and left frontal, right and left parietal, upper and lower midline regions) at the scalp level and compared across conditions. Data-driven, graph-theory analyses were also carried out to characterize brain network topology in terms of brain network segregation and integration. During hypnosis, we observed (1) increased delta connectivity between left and right frontal, as well as between right frontal and parietal regions; (2) decreased connectivity for alpha (between right frontal and parietal and between upper and lower midline regions) and beta-2 bands (between upper midline and right frontal, frontal and parietal, also between upper and lower midline regions); and (3) increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. This higher network integration and segregation was measured bilaterally in frontal and right parietal electrodes, which were identified as central hub regions during hypnosis. This modified connectivity and increased network integration-segregation properties suggest a modification of the internal and external awareness brain networks that may reflect efficient cognitive-processing and lower incidences of mind-wandering during hypnosis.
Collapse
Affiliation(s)
| | | | | | - Jitka Annen
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| | | | - Naji Alnagger
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| | | | - Steven Laureys
- University of Liège, Belgium
- University Hospital of Liège, Belgium
- Laval University, Québec, Canada
| | | | - Olivia Gosseries
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| |
Collapse
|
20
|
Colautti L, Magenes S, Rago S, Camerin S, Zanaboni Dina C, Antonietti A, Cancer A. Creative thinking in Tourette's syndrome: A comparative study of patients and healthy controls. J Clin Exp Neuropsychol 2023; 45:482-497. [PMID: 37667639 DOI: 10.1080/13803395.2023.2251644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Tourette's syndrome is a neurological disorder characterized by tics, that may interfere with patients' everyday life. Research suggested that creative thinking (namely, divergent and convergent thinking) could help patients cope with their symptoms, and therefore it can be a resource in non-pharmacological interventions. The present study aimed at investigating (i) possible differences in creative thinking between Tourette's syndrome patients and healthy controls and (ii) whether creative thinking can support patients in coping with their symptomatology. METHODS A group of 25 Tourette's syndrome patients and 25 matched healthy controls underwent an assessment of creative thinking, fluid intelligence, and depressive symptoms. Creative thinking was compared between patients and healthy controls after controlling for fluid intelligence and depressive symptoms. Moreover, the moderating role of divergent and convergent thinking on the subjective impact of tics was tested in a group of 30 patients. RESULTS Tourette's syndrome patients outperformed healthy controls in convergent thinking. Moreover, divergent thinking was found as a significant moderator of the relationship between tics severity and the subjective impact in Tourette's syndrome patients. CONCLUSIONS Findings highlighted the specific impact of convergent and divergent thinking on Tourette's syndrome patients. Considering the supportive role of creative thinking in Tourette's syndrome, our results confirm that higher levels of divergent thinking may reduce the tic-related discomfort. These findings suggest the potential positive implications of creative thinking in non-pharmacological interventions for Tourette's syndrome.
Collapse
Affiliation(s)
- Laura Colautti
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Sara Magenes
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Fraternità e Amicizia Società Cooperativa Sociale ONLUS, Milan, Italy
| | - Sabrina Rago
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Stefania Camerin
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Carlotta Zanaboni Dina
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Tourette Syndrome Centre, IRCCS, San Raffaele,Milan, Italy
| | | | - Alice Cancer
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
21
|
Chen Q, Christensen AP, Kenett YN, Ren Z, Condon DM, Bilder RM, Qiu J, Beaty RE. Mapping the Creative Personality: A Psychometric Network Analysis of Highly Creative Artists and Scientists. CREATIVITY RESEARCH JOURNAL 2023. [DOI: 10.1080/10400419.2023.2184558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Qunlin Chen
- Southwest University
- Pennsylvania State University
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fan L, Zhuang K, Wang X, Zhang J, Liu C, Gu J, Qiu J. Exploring the behavioral and neural correlates of semantic distance in creative writing. Psychophysiology 2022; 60:e14239. [PMID: 36537015 DOI: 10.1111/psyp.14239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Creativity is critical to economic growth and societal progress. However, assessing creativity using objective approaches remains a challenge. To address this, we employ three objective indicators based on semantic distance to quantify the originality and appropriateness of creativity by analyzing long texts in a story-writing experiment. Global and local distances were generated separately by computing the mean distance of the whole text and the distance between adjacent sentences, and they were positively correlated with story originality in writing. Global cohesion was positively correlated with story rationality in writing, as generated by computing the semantic coherence between the text and story context. At the behavioral level, three semantic indicators were used to measure originality and appropriateness of creativity and reflected individual differences, including creative achievement and creative personality. At the neural level, global distance was best predicted by the features of the salience and default networks, whereas global cohesion corresponded to the control and salience networks. These findings point to a stable neural basis for semantic indicators and verify the idea of separating different dimensions of creativity. Taken together, our results demonstrate the significance of semantic indicators in assessing creativity and provide insights into analyzing long texts in natural paradigm.
Collapse
Affiliation(s)
- Li Fan
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Jingyi Zhang
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Jing Gu
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU) Ministry of Education Chongqing China
- Faculty of Psychology Southwest University Chongqing China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University Chongqing China
| |
Collapse
|
23
|
Huo T, Xia Y, Zhuang K, Chen Q, Sun J, Yang W, Qiu J. Linking functional connectome gradient to individual creativity. Cereb Cortex 2022; 32:5273-5284. [PMID: 35136988 DOI: 10.1093/cercor/bhac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Human brain network is organized as a hierarchical organization, exhibiting various connectome gradients. The principal gradient is anchored by the modality-specific primary areas and the transmodal regions. Previous studies have suggested that the unimodal-transmodal gradient in the functional connectome may offer an overarching framework for high-order cognitions of human brain. However, there is still a lacking of direct evidence to associate these two. OBJECTIVES Therefore, we aim to explore the association between creativity, a typical human high-order cognitive function, and unimodal-transmodal gradient, using two independent datasets of young adults. METHODS For each individual, we identified the unimodal-transmodal gradient in functional connectome and calculated its global measures. Then we correlated the individual creativity score with measures of unimodal-transmodal gradient at global-brain, subsystem, and regional level. RESULTS The results suggested that better creative performance was associated with greater distance between primary areas and transmodal regions in gradient axes, and less distance between ventral attention network and default mode network. Individual creativity was also found positively correlated with regional gradients in ventral attention network, and negatively correlated with gradients of regions in visual cortex. CONCLUSION Together, these findings directly link the unimodal-transmodal gradient to individual creativity, providing empirical evidence for the cognitive implications of functional connectome gradient.
Collapse
Affiliation(s)
- Tengbin Huo
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China.,School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yunman Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kaixiang Zhuang
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China.,School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China.,School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiangzhou Sun
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China.,School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China.,School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China.,School of Psychology, Southwest University (SWU), Chongqing 400715, China.,Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
24
|
Xia T, An Y, Guo J. Bilingualism and creativity: Benefits from cognitive inhibition and cognitive flexibility. Front Psychol 2022; 13:1016777. [PMID: 36405189 PMCID: PMC9670109 DOI: 10.3389/fpsyg.2022.1016777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2023] Open
Abstract
Bilingualism has been shown to be associated with creativity, but the mechanisms of this association are not very well understood. One possibility is that the skills that bilinguals use in switching back and forth between languages also promote the cognitive processes associated with creativity. We hypothesized that high-proficient Chinese-English bilinguals would show higher convergent and divergent thinking than low-proficient bilinguals, with the differences being mediated by cognitive inhibition and cognitive flexibility, respectively. Chinese university students (N = 54) were classified as high-proficient (n = 27) and low-proficient (n = 27) bilinguals based on their performance on the National English Test for College Students. As expected, group comparisons showed that the high-proficient group had higher scores on the Remote Associates Test (RAT, convergent thinking) and the Torrance Test of Creative Thinking (TTCT, divergent thinking). Also as expected, the association between bilingualism and convergent thinking was mediated by scores on a Stroop task (cognitive inhibition), and the association between bilingualism and divergent thinking was mediated by scores on a More-odd shifting task (cognitive flexibility). These findings suggest that bilingual learning can promote the development of different components of creativity through stronger cognitive inhibition and cognitive flexibility. The results provide empirical evidence for the relationship and mechanism between bilingual learning and creativity.
Collapse
Affiliation(s)
| | | | - Jiayue Guo
- School of Art and Design, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Krieger-Redwood K, Steward A, Gao Z, Wang X, Halai A, Smallwood J, Jefferies E. Creativity in verbal associations is linked to semantic control. Cereb Cortex 2022; 33:5135-5147. [PMID: 36222614 PMCID: PMC10152057 DOI: 10.1093/cercor/bhac405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/13/2022] Open
Abstract
Although memory is known to play a key role in creativity, previous studies have not isolated the critical component processes and networks. We asked participants to generate links between words that ranged from strongly related to completely unrelated in long-term memory, delineating the neurocognitive processes that underpin more unusual versus stereotypical patterns of retrieval. More creative responses to strongly associated word-pairs were associated with greater engagement of episodic memory: in highly familiar situations, semantic, and episodic stores converge on the same information enabling participants to form a personal link between items. This pattern of retrieval was associated with greater engagement of core default mode network (DMN). In contrast, more creative responses to weakly associated word-pairs were associated with the controlled retrieval of less dominant semantic information and greater recruitment of the semantic control network, which overlaps with the dorsomedial subsystem of DMN. Although both controlled semantic and episodic patterns of retrieval are associated with activation within DMN, these processes show little overlap in activation. These findings demonstrate that controlled aspects of semantic cognition play an important role in verbal creativity.
Collapse
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Anna Steward
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom.,Graduate School of Systemic Neurosciences, Ludwig Maximilians-Universität, Institute for Stroke and Dementia Research, Feodor-Lynen-Strasse 17, 81377, Munich, Germany
| | - Zhiyao Gao
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Xiuyi Wang
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom.,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing 100101, China
| | - Ajay Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge, CB2 7EF, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Humphrey Hall, 62 Arch Street, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Xie C, Luchini S, Beaty RE, Du Y, Liu C, Li Y. Automated Creativity Prediction Using Natural Language Processing And Resting-State Functional Connectivity: An Fnirs Study. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2022.2108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Yadan Li
- Shaanxi Normal University
- Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University
| |
Collapse
|
27
|
Li Y, Beaty RE, Luchini S, Dai DY, Xiang S, Qi S, Li Y, Zhao R, Wang X, Hu W. Accelerating Creativity: Effects of Transcranial Direct Current Stimulation on the Temporal Dynamics of Divergent Thinking. CREATIVITY RESEARCH JOURNAL 2022. [DOI: 10.1080/10400419.2022.2068297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - David Yun Dai
- Shaanxi Normal University
- State University of New York at Albany
| | | | | | | | | | | | - Weiping Hu
- Shaanxi Normal University
- Shaanxi Normal University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University
| |
Collapse
|
28
|
Wan B, Bayrak Ş, Xu T, Schaare HL, Bethlehem RAI, Bernhardt BC, Valk SL. Heritability and cross-species comparisons of human cortical functional organization asymmetry. eLife 2022; 11:e77215. [PMID: 35904242 PMCID: PMC9381036 DOI: 10.7554/elife.77215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The human cerebral cortex is symmetrically organized along large-scale axes but also presents inter-hemispheric differences in structure and function. The quantified contralateral homologous difference, that is asymmetry, is a key feature of the human brain left-right axis supporting functional processes, such as language. Here, we assessed whether the asymmetry of cortical functional organization is heritable and phylogenetically conserved between humans and macaques. Our findings indicate asymmetric organization along an axis describing a functional trajectory from perceptual/action to abstract cognition. Whereas language network showed leftward asymmetric organization, frontoparietal network showed rightward asymmetric organization in humans. These asymmetries were heritable in humans and showed a similar spatial distribution with macaques, in the case of intra-hemispheric asymmetry of functional hierarchy. This suggests (phylo)genetic conservation. However, both language and frontoparietal networks showed a qualitatively larger asymmetry in humans relative to macaques. Overall, our findings suggest a genetic basis for asymmetry in intrinsic functional organization, linked to higher order cognitive functions uniquely developed in humans.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom)LeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Şeyma Bayrak
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of LeipzigLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
| | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill UniversityMontréalCanada
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre JülichJülichGermany
- Institute of Systems Neuroscience, Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
29
|
Jiang W, Merhar SL, Zeng Z, Zhu Z, Yin W, Zhou Z, Wang L, He L, Vannest J, Lin W. Neural alterations in opioid-exposed infants revealed by edge-centric brain functional networks. Brain Commun 2022; 4:fcac112. [PMID: 35602654 PMCID: PMC9117006 DOI: 10.1093/braincomms/fcac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Prenatal opioid exposure has been linked to adverse effects spanning multiple neurodevelopmental domains, including cognition, motor development, attention, and vision. However, the neural basis of these abnormalities is largely unknown. A total of 49 infants, including 21 opioid-exposed and 28 controls, were enrolled and underwent MRI (43 ± 6 days old) after birth, including resting state functional MRI. Edge-centric functional networks based on dynamic functional connections were constructed, and machine-learning methods were employed to identify neural features distinguishing opioid-exposed infants from unexposed controls. An accuracy of 73.6% (sensitivity 76.25% and specificity 69.33%) was achieved using 10 times 10-fold cross-validation, which substantially outperformed those obtained using conventional static functional connections (accuracy 56.9%). More importantly, we identified that prenatal opioid exposure preferentially affects inter- rather than intra-network dynamic functional connections, particularly with the visual, subcortical, and default mode networks. Consistent results at the brain regional and connection levels were also observed, where the brain regions and connections associated with visual and higher order cognitive functions played pivotal roles in distinguishing opioid-exposed infants from controls. Our findings support the clinical phenotype of infants exposed to opioids in utero and may potentially explain the higher rates of visual and emotional problems observed in this population. Finally, our findings suggested that edge-centric networks could better capture the neural differences between opioid-exposed infants and controls by abstracting the intrinsic co-fluctuation along edges, which may provide a promising tool for future studies focusing on investigating the effects of prenatal opioid exposure on neurodevelopment.
Collapse
Affiliation(s)
- Weixiong Jiang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Stephanie L. Merhar
- Perinatal Institute, Division of Neonatology, Cincinnati Children’s Hospital and University of Cincinnati Department of Pediatrics, Cincinnati OH, United States
| | - Zhuohao Zeng
- East Chapel Hill High School, Chapel Hill, North Carolina, United States
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Weiyan Yin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Zhen Zhou
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Li Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Lili He
- Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati, Cincinnati OH, United States
| | - Jennifer Vannest
- Department of Communication Sciences and Disorders, University of Cincinnati, Cincinnati OH, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
30
|
Feng G, Wang Y, Huang W, Chen H, Dai Z, Ma G, Li X, Zhang Z, Shu N. Methodological evaluation of individual cognitive prediction based on the brain white matter structural connectome. Hum Brain Mapp 2022; 43:3775-3791. [PMID: 35475571 PMCID: PMC9294303 DOI: 10.1002/hbm.25883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
An emerging trend is to use regression‐based machine learning approaches to predict cognitive functions at the individual level from neuroimaging data. However, individual prediction models are inherently influenced by the vast options for network construction and model selection in machine learning pipelines. In particular, the brain white matter (WM) structural connectome lacks a systematic evaluation of the effects of different options in the pipeline on predictive performance. Here, we focused on the methodological evaluation of brain structural connectome‐based predictions. For network construction, we considered two parcellation schemes for defining nodes and seven strategies for defining edges. For the regression algorithms, we used eight regression models. Four cognitive domains and brain age were targeted as predictive tasks based on two independent datasets (Beijing Aging Brain Rejuvenation Initiative [BABRI]: 633 healthy older adults; Human Connectome Projects in Aging [HCP‐A]: 560 healthy older adults). Based on the results, the WM structural connectome provided a satisfying predictive ability for individual age and cognitive functions, especially for executive function and attention. Second, different parcellation schemes induce a significant difference in predictive performance. Third, prediction results from different data sets showed that dMRI with distinct acquisition parameters may plausibly result in a preference for proper fiber reconstruction algorithms and different weighting options. Finally, deep learning and Elastic‐Net models are more accurate and robust in connectome‐based predictions. Together, significant effects of different options in WM network construction and regression algorithms on the predictive performances are identified in this study, which may provide important references and guidelines to select suitable options for future studies in this field.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Zhengjia Dai
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,BABRI Centre, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
31
|
Ren J, Huang F, Gao C, Gott J, Schoch SF, Qin S, Dresler M, Luo J. Functional lateralization of the medial temporal lobe in novel associative processing during creativity evaluation. Cereb Cortex 2022; 33:1186-1206. [PMID: 35353185 PMCID: PMC9930633 DOI: 10.1093/cercor/bhac129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 11/12/2022] Open
Abstract
Although hemispheric lateralization of creativity has been a longstanding topic of debate, the underlying neurocognitive mechanism remains poorly understood. Here we designed 2 types of novel stimuli-"novel useful and novel useless," adapted from "familiar useful" designs taken from daily life-to demonstrate how the left and right medial temporal lobe (MTL) respond to novel designs of different usefulness. Taking the "familiar useful" design as a baseline, we found that the right MTL showed increased activation in response to "novel useful" designs, followed by "novel useless" ones, while the left MTL only showed increased activation in response to "novel useful" designs. Calculating an asymmetry index suggests that usefulness processing is predominant in the left MTL, whereas the right MTL is predominantly involved in novelty processing. Moreover, the left parahippocampal gyrus (PHG) showed stronger functional connectivity with the anterior cingulate cortex when responding to "novel useless" designs. In contrast, the right PHG showed stronger connectivity with the amygdala, midbrain, and hippocampus. Critically, multivoxel representational similarity analyses revealed that the left MTL was more effective than the right MTL at distinguishing the usefulness differences in novel stimuli, while representational patterns in the left PHG positively predicted the post-behavior evaluation of "truly creative" products. These findings suggest an apparent dissociation of the left and right MTL in integrating the novelty and usefulness information and novel associative processing during creativity evaluation, respectively. Our results provide novel insights into a longstanding and controversial question in creativity research by demonstrating functional lateralization of the MTL in processing novel associations.
Collapse
Affiliation(s)
- Jingyuan Ren
- Corresponding authors: Jingyuan Ren, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Trigon Building, Kapittelweg 29, Nijmegen 6525 EN, Netherlands, ; Jing Luo, Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Baiduizijia 23, Beijing 100048, China,
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Chuanji Gao
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
| | - Jarrod Gott
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
| | - Sarah F Schoch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
- Center of Competence Sleep & Health Zurich, University of Zurich, Zürich 8091, Switzerland
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Faculty of Psychology at Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, Netherlands
| | - Jing Luo
- Corresponding authors: Jingyuan Ren, Donders Center for Cognitive Neuroimaging, Radboud University Medical Center, Trigon Building, Kapittelweg 29, Nijmegen 6525 EN, Netherlands, ; Jing Luo, Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Baiduizijia 23, Beijing 100048, China,
| |
Collapse
|
32
|
Amir O, Utterback KJ, Lee J, Lee KS, Kwon S, Carroll DM, Papoutsaki A. The elephant in the room: attention to salient scene features increases with comedic expertise. Cogn Process 2022; 23:203-215. [PMID: 35267116 DOI: 10.1007/s10339-022-01079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
Abstract
What differentiates the joke writing strategy employed by professional comedians from non-comedians? Previous MRI work found that professional comedians relied to a greater extent on "bottom-up processes," i.e., associations driven by the prompt stimuli themselves, while controls relied more on prefrontal lobe directed, "top-down" processes. In the present work, professional improv comedians and controls generated humorous captions to cartoons while their eye movements were tracked. Participants' visual fixation patterns were compared to predictions of the saliency model (Harel et al. in Adv Neural Inf Process Syst 19:545-552, 2007)-a computer model for identifying the most salient locations in an image based on visual features. Captions generated by the participants were rated for funniness by independent raters. Relative to controls, professional comedians' gaze was driven to a greater extent by the cartoons' salient visual features. For all participants, captions' funniness positively correlated with visual attention to salient cartoon features. Results suggest that comedic expertise is associated with increased reliance on bottom-up, stimulus-driven creativity, and that a bottom-up strategy results, on average, in funnier captions whether employed by comedians or controls. The cognitive processes underlying successful comedic creativity appear to adhere to the old comedians' adage "pay attention to the elephant in the room."
Collapse
Affiliation(s)
- Ori Amir
- Psychological Science, Pomona College, Claremont, CA, USA.
| | | | - Justin Lee
- Psychological Science, Pomona College, Claremont, CA, USA
| | - Kevin S Lee
- Computer Science, Pomona College, Claremont, CA, USA
| | - Suehyun Kwon
- Psychological Science, Pomona College, Claremont, CA, USA
| | | | | |
Collapse
|
33
|
Wu X, Kong X, Vatansever D, Liu Z, Zhang K, Sahakian BJ, Robbins TW, Feng J, Thompson P, Zhang J. Dynamic changes in brain lateralization correlate with human cognitive performance. PLoS Biol 2022; 20:e3001560. [PMID: 35298460 PMCID: PMC8929635 DOI: 10.1371/journal.pbio.3001560] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders. Hemispheric lateralization constitutes a core architectural principle of human brain organization, often argued to represent a stable, trait-like feature, but how does this fit with our increasing appreciation of the inherently dynamic nature of brain networks? This neuroimaging study reveals the dynamic nature of functional brain lateralization at resting-state and its relationship with language function and cognitive flexibility.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Paul Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
34
|
Li X, Qin F, Liu J, Luo Q, Zhang Y, Hu J, Chen Y, Wei D, Qiu J. An insula-based network mediates the relation between rumination and interoceptive sensibility in the healthy population. J Affect Disord 2022; 299:6-11. [PMID: 34818518 DOI: 10.1016/j.jad.2021.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individuals sometimes continuously centered their attention on the same thoughts. When such process tends to be negative and self-referential, we delineated this mental state as rumination, which may undermine body's perception of endogenous signal, but little is known about the certainly relationship and the potential neural mechanisms. METHODS Rumination and interoceptive sensibility were measured by questionnaires, then insula-related network of rumination dimensions were examined by the whole brain resting-state functional connectivity (FC) in 479 college students, and whether the insula-based network mediate the relationship between rumination and interoceptive sensibility were tested. RESULTS Rumination (including brooding reflective pondering) and interoceptive sensibility showed positive correlations. The neural mechanisms of brooding and reflective pondering were all related to the insula-networks, to be specific, brooding was positively correlated with the FC between the left posterior insula (PI) and left parahippocampal gyrus/ hippocampus (PHG), reflective pondering were positively correlated with the FC between the insula subregion and the dorsolateral prefrontal cortex. Moreover, the relationship between brooding and interoceptive sensibility was mediated by the FC between left PI and left PHG. LIMITATIONS We just tested the relationship between rumination and interoceptive sensibility at a cross-sectional level, but it is unclear that whether the longitudinal relationship would be predicted by the related network. CONCLUSIONS Our findings provided new insights into neural mechanisms of brooding and reflective pondering, also the integration of brooding and interoceptive sensibility. The insula-related networks may contribute crucially to rumination and interoception.
Collapse
Affiliation(s)
- Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Facai Qin
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiahui Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Qian Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jun Hu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yulin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University.
| |
Collapse
|
35
|
Sex-specific intra- and inter-hemispheric structural connectivity related to divergent thinking. Neurosci Lett 2022; 774:136513. [PMID: 35149199 DOI: 10.1016/j.neulet.2022.136513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 11/21/2022]
Abstract
Gender differences in creativity partly underscore the diversity between males and females in society. Divergent thinking forms the core of creativity and enables humans to innovate and solve problems. Sex differences in functional activation associated with divergent thinking may reflect the use of distinct strategies in males and females when faced with tasks involving creativity. Although female-specific white matter associated to creativity has been found, fractional anisotropy measuring structural connectivity which can better reflect the degree of brain regions interplay should be adapted to corroborate sex-specific WM connectivity related to divergent thinking. Using fractional anisotropy indexes derived from diffusion tensor imaging in 425 participants (118 males), we observed that divergent thinking was positively associated with fractional anisotropy in the corpus callosum and right superior longitudinal fasciculus in females and was positively associated with fractional anisotropy in the right tapetum in males. Our findings provide insight into sex-specific intra- and inter-hemispheric structural connectivity bases underlying divergent thinking.
Collapse
|
36
|
Ovando-Tellez M, Kenett YN, Benedek M, Bernard M, Belo J, Beranger B, Bieth T, Volle E. Brain connectivity-based prediction of real-life creativity is mediated by semantic memory structure. SCIENCE ADVANCES 2022; 8:eabl4294. [PMID: 35119928 PMCID: PMC8816337 DOI: 10.1126/sciadv.abl4294] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/13/2021] [Indexed: 06/01/2023]
Abstract
Associative theories of creativity argue that creative cognition involves the abilities to generate remote associations and make useful connections between unrelated concepts in one's semantic memory. Yet, whether and how real-life creative behavior relies on semantic memory structure and its neural substrates remains unclear. We acquired multi-echo functional magnetic resonance imaging data while participants underwent a semantic relatedness judgment task. These ratings were used to estimate their individual semantic memory networks, whose properties significantly predicted their real-life creativity. Using a connectome predictive modeling approach, we identified patterns of task-based functional connectivity that predicted creativity-related semantic memory network properties. Furthermore, these properties mediated the relationship between functional connectivity and real-life creativity. These results provide new insights into how brain connectivity patterns support real-life creative behavior via the structure of semantic memory. We also show how computational network science can be used to couple behavioral, cognitive, and neural levels of analysis.
Collapse
Affiliation(s)
- Marcela Ovando-Tellez
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France
| | - Yoed N. Kenett
- Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Matthieu Bernard
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France
| | - Joan Belo
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France
| | - Benoit Beranger
- Sorbonne University, CENIR at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France
| | - Theophile Bieth
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France
- Neurology Department, Pitié-Salpêtrière Hospital, AP-HP, F-75013 Paris, France
| | - Emmanuelle Volle
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, 75013 Paris, France
| |
Collapse
|
37
|
Zhang S, Yang X, Si S, Zhang J. The neurobiological basis of divergent thinking: Insight from gene co-expression network-based analysis. Neuroimage 2021; 245:118762. [PMID: 34838948 DOI: 10.1016/j.neuroimage.2021.118762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Although many efforts have been made to explore the genetic basis of divergent thinking (DT), there is still a gap in the understanding of how these findings relate to the neurobiology of DT. In a combined sample of 1,682 Chinese participants, by integrating GWAS with previously identified brain-specific gene co-expression network modules, this study explored for the first time the functional brain-specific gene co-expression networks underlying DT. The results showed that gene co-expression network modules in anterior cingulate cortex, caudate, amygdala and substantia nigra were enriched with DT association signals. Further functional enrichment analysis showed that these DT-related gene co-expression network modules were enriched for key biological process and cellular component related to myelination, suggesting that cortical and sub-cortical grey matter myelination may serve as important neurobiological basis of DT. Although the underlying mechanisms need to be further refined, this exploratory study may provide new insight into the neurobiology of DT.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Xiaolei Yang
- College of Life Science, Qilu Normal University, Jinan, China
| | - Si Si
- Department of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China.
| |
Collapse
|
38
|
Xie H, Beaty RE, Jahanikia S, Geniesse C, Sonalkar NS, Saggar M. Spontaneous and deliberate modes of creativity: Multitask eigen-connectivity analysis captures latent cognitive modes during creative thinking. Neuroimage 2021; 243:118531. [PMID: 34469816 DOI: 10.1016/j.neuroimage.2021.118531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022] Open
Abstract
Despite substantial progress in the quest of demystifying the brain basis of creativity, several questions remain open. One such issue concerns the relationship between two latent cognitive modes during creative thinking, i.e., deliberate goal-directed cognition and spontaneous thought generation. Although an interplay between deliberate and spontaneous thinking is often implicated in the creativity literature (e.g., dual-process models), a bottom-up data-driven validation of the cognitive processes associated with creative thinking is still lacking. Here, we attempted to capture the latent modes of creative thinking by utilizing a data-driven approach on a novel continuous multitask paradigm (CMP) that widely sampled a hypothetical two-dimensional cognitive plane of deliberate and spontaneous thinking in a single fMRI session. The CMP consisted of eight task blocks ranging from undirected mind wandering to goal-directed working memory task, while also included two widely-used creativity tasks, i.e., alternate uses task (AUT) and remote association task (RAT). Using eigen-connectivity (EC) analysis on the multitask whole-brain functional connectivity (FC) patterns, we embedded the multitask FCs into a low-dimensional latent space. The first two latent components, as revealed by the EC analysis, broadly mapped onto the two cognitive modes of deliberate and spontaneous thinking, respectively. Further, in this low-dimensional space, both creativity tasks were located in the upper right corner of high deliberate and spontaneous thinking (creative cognitive space). Neuroanatomically, the creative cognitive space was represented by not only increased intra-network connectivity within executive control and default mode network, but also by higher coupling between the two canonical brain networks. Further, individual differences reflected in the low-dimensional connectivity embeddings were related to differences in deliberate and spontaneous thinking abilities. Altogether, using a continuous multitask paradigm and a data-driven approach, we provide initial empirical evidence for the contribution of both deliberate and spontaneous modes of cognition during creative thinking.
Collapse
Affiliation(s)
- Hua Xie
- Department of Psychiatry and Behavioral Sciences, Stanford University, USA
| | - Roger E Beaty
- Department of Psychology, Pennsylvania State University, USA
| | - Sahar Jahanikia
- Department of Psychiatry and Behavioral Sciences, Stanford University, USA
| | | | | | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, USA.
| |
Collapse
|
39
|
Structural properties of corpus callosum are associated differently with verbal creativity and visual creativity. Brain Struct Funct 2021; 226:2511-2521. [PMID: 34430997 DOI: 10.1007/s00429-021-02329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
Recent neuroimaging studies demonstrate that creativity is related to brain regions across both hemispheres, and the corpus callosum forms the structural basis of inter-hemispheric information exchange. However, the findings regarding the relationship between inter-hemispheric interaction and creativity remain inconsistent, which may be caused by different types of creativity and neural features being adopted. To clarify the inconsistency, and understand how inter-hemispheric interactions are related to different kinds of creativity, we explored the correlation between eight structural measures of the corpus callosum (CC) and two different domains of creativity [verbal creativity (VerC) and visual creativity (VisC)] using a large healthy-adult sample (n = 446). The results showed that VerC was positively correlated with fractional anisotropy (FA) and negatively correlated with the radial diffusivity (RD) of CC; whereas there was no significant association between VisC and CC measures. These results persisted after regressing VisC from VerC, regressing VerC from VisC, and regress out general intelligence from both creativity measures. In summary, we showed that the structural properties of corpus collosum are associated in different ways with two domains of creativity, i.e., verbal creativity and visual creativity, which enriches our understanding of the underlying neural mechanism in different types of creativity.
Collapse
|
40
|
Gao Q, Xiang Y, Zhang J, Luo N, Liang M, Gong L, Yu J, Cui Q, Sepulcre J, Chen H. A reachable probability approach for the analysis of spatio-temporal dynamics in the human functional network. Neuroimage 2021; 243:118497. [PMID: 34428571 DOI: 10.1016/j.neuroimage.2021.118497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
The dynamic architecture of the human brain has been consistently observed. However, there is still limited modeling work to elucidate how neuronal circuits are hierarchically and flexibly organized in functional systems. Here we proposed a reachable probability approach based on non-homogeneous Markov chains, to characterize all possible connectivity flows and the hierarchical structure of brain functional systems at the dynamic level. We proved at the theoretical level the convergence of the functional brain network system, and demonstrated that this approach is able to detect network steady states across connectivity structure, particularly in areas of the default mode network. We further explored the dynamically hierarchical functional organization centered at the primary sensory cortices. We observed smaller optimal reachable steps to their local functional regions, and differentiated patterns in larger optimal reachable steps for primary perceptual modalities. The reachable paths with the largest and second largest transition probabilities between primary sensory seeds via multisensory integration regions were also tracked to explore the flexibility and plasticity of the multisensory integration. The present work provides a novel approach to depict both the stable and flexible hierarchical connectivity organization of the human brain.
Collapse
Affiliation(s)
- Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yu Xiang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiabao Zhang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ning Luo
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Minfeng Liang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lisha Gong
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiali Yu
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Huafu Chen
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing 400038, China.
| |
Collapse
|
41
|
Subcortical structures and visual divergent thinking: a resting-state functional MRI analysis. Brain Struct Funct 2021; 226:2617-2627. [PMID: 34342689 DOI: 10.1007/s00429-021-02355-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
An increasing number of studies have found that a few, specific subcortical regions are involved in creative visual divergent thinking. In addition, creative thinking is heavily reliant on the fronto-striatal dopaminergic pathways. This study aimed to explore whether spontaneous fluctuations in the subcortex, which contribute to our creative abilities, showed significant differences between individuals with different levels of creativity based on resting-state functional magnetic resonance imaging data. We calculated subcortical regions' seed-wise and dynamic functional connectivity (dFC), and then examined the differences between the high and low visual creativity groups. Furthermore, the topological properties of the subcortical network were measured, and their relationship with creative visual divergent thinking was calculated using brain-behavior correlation analyses. The results showed that functional connectivity (FC) between the putamen, pallidum, and thalamus indicated group differences within the subcortex. Whole-brain FC results showed group differences across subcortical (i.e., the thalamus and pallidum) and cerebral regions (i.e., the insula, middle frontal gyrus, and middle temporal gyrus). In addition, subcortical FC demonstrated a positive correlation with visual divergent thinking scores across the pallidum, putamen, and thalamus. Our findings provide novel insights into the relationship between visual divergent thinking and the activities of the subcortex. It is likely that not only fronto-striatal dopaminergic pathways, but also "motor" pathways, are involved in creative visual divergent thinking processing.
Collapse
|
42
|
Shi G, Li X, Zhu Y, Shang R, Sun Y, Guo H, Sui J. The divided brain: Functional brain asymmetry underlying self-construal. Neuroimage 2021; 240:118382. [PMID: 34252524 DOI: 10.1016/j.neuroimage.2021.118382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
Self-construal (orientations of independence and interdependence) is a fundamental concept that guides human behaviour, and it is linked to a large number of brain regions. However, understanding the connectivity of these regions and the critical principles underlying these self-functions are lacking. Because brain activity linked to self-related processes are intrinsic, the resting-state method has received substantial attention. Here, we focused on resting-state functional connectivity matrices based on brain asymmetry as indexed by the differential partition of the connectivity located in mirrored positions of the two hemispheres, hemispheric specialization measured using the intra-hemispheric (left or right) connectivity, brain communication via inter-hemispheric interactions, and global connectivity as the sum of the two intra-hemispheric connectivity. Combining machine learning techniques with hypothesis-driven network mapping approaches, we demonstrated that orientations of independence and interdependence were best predicted by the asymmetric matrix compared to brain communication, hemispheric specialization, and global connectivity matrices. The network results revealed that there were distinct asymmetric connections between the default mode network, the salience network and the executive control network which characterise independence and interdependence. These analyses shed light on the importance of brain asymmetry in understanding how complex self-functions are optimally represented in the brain networks.
Collapse
Affiliation(s)
- Gen Shi
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China.
| | - Yifan Zhu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | - Ruihong Shang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, PR China
| | - Yang Sun
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China
| | - Jie Sui
- School of Psychology, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
43
|
Wang Y, Li J, Wang Z, Liang B, Jiao B, Zhang P, Huang Y, Yang H, Yu R, Yu S, Zhang D, Liu M. Spontaneous Activity in Primary Visual Cortex Relates to Visual Creativity. Front Hum Neurosci 2021; 15:625888. [PMID: 33867956 PMCID: PMC8046910 DOI: 10.3389/fnhum.2021.625888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive and neural processes underlying visual creativity have attracted substantial attention. The current research uses a critical time point analysis (CTPA) to examine how spontaneous activity in the primary visual area (PVA) is related to visual creativity. We acquired the functional magnetic resonance imaging (fMRI) data of 16 participants at the resting state and during performing a visual creative synthesis task. According to the CTPA, we then classified spontaneous activity in the PVA into critical time points (CTPs), which reflect the most useful and important functional meaning of the entire resting-state condition, and the remaining time points (RTPs). We constructed functional brain networks based on the brain activity at two different time points and then subsequently based on the brain activity at the task state in a separate manner. We explore the relationship between resting-state and task-fMRI (T-fMRI) functional brain networks. Our results found that: (1) the pattern of spontaneous activity in the PVA may associate with mental imagery, which plays an important role in visual creativity; (2) in comparison with the RTPs-based brain network, the CTP-network showed an increase in global efficiency and a decrease in local efficiency; (3) the regional integrated properties of the CTP-network could predict the integrated properties of the creative-network while the RTP-network could not. Thus, our findings indicated that spontaneous activity in the PVA at CTPs was associated with a visual creative task-evoked brain response. Our findings may provide an insight into how the visual cortex is related to visual creativity.
Collapse
Affiliation(s)
- Yibo Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Junchao Li
- College of Education, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Zengjian Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Bishan Liang
- College of Education, Guangdong Polytechnic Normal University, Guangzhou, China
| | - Bingqing Jiao
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Peng Zhang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Yingying Huang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rengui Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Sifang Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Delong Zhang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Ming Liu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
44
|
PeÑa J, Sampedro A, GÓmez‐Gastiasoro A, Ibarretxe‐Bilbao N, Zubiaurre‐Elorza L, Aguiar C, Ojeda N. The Effect of Changing the Balance Between Right and Left Dorsolateral Prefrontal Cortex on Different Creativity Tasks: A Transcranial Random Noise Stimulation Study. JOURNAL OF CREATIVE BEHAVIOR 2021. [DOI: 10.1002/jocb.496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
He WJ, Wong WC. Gender Differences in the Distribution of Creativity Scores: Domain-Specific Patterns in Divergent Thinking and Creative Problem Solving. Front Psychol 2021; 12:626911. [PMID: 33746849 PMCID: PMC7969660 DOI: 10.3389/fpsyg.2021.626911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
The present study examined gender differences in the distribution of creative abilities through the lens of the greater male variability hypothesis, which postulated that men showed greater interindividual variability than women in both physical and psychological attributes (Ellis, 1894/1934). Two hundred and six (51.9% female) undergraduate students in Hong Kong completed two creativity measures that evaluated different aspects of creativity, including: (a) a divergent thinking test that aimed to assess idea generation and (b) a creative problem-solving test that aimed to assess restructuring ability. The present findings extended the research of greater male variability in creativity by showing that men generally exhibited greater variance than women in the overall distribution of the creativity scores in both divergent thinking and creative problem solving, despite trivial gender differences in mean scores. The findings further enriched the discourse of the greater male variability hypothesis by showing interesting domain-specific gendered patterns: (1) greater male variability was more likely to occur in figural forms of creativity, with larger effect sizes, when compared to the variability in verbal forms of creativity; and (2) mixed gendered patterns were found in the upper tails of the creativity score distribution with respect to the verbal domain but not the figural one, despite greater male representation being consistently observed in the lower tail of the distribution. Possible underlying mechanisms and implications were discussed.
Collapse
Affiliation(s)
- Wu-Jing He
- Department of Special Education and Counselling, The Education University of Hong Kong, Tai Po, Hong Kong.,Integrated Centre for Wellbeing, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Wan-Chi Wong
- Department of Educational Psychology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
46
|
Patil AU, Madathil D, Huang CM. Healthy Aging Alters the Functional Connectivity of Creative Cognition in the Default Mode Network and Cerebellar Network. Front Aging Neurosci 2021; 13:607988. [PMID: 33679372 PMCID: PMC7929978 DOI: 10.3389/fnagi.2021.607988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Creativity is a higher-order neurocognitive process that produces unusual and unique thoughts. Behavioral and neuroimaging studies of younger adults have revealed that creative performance is the product of dynamic and spontaneous processes involving multiple cognitive functions and interactions between large-scale brain networks, including the default mode network (DMN), fronto-parietal executive control network (ECN), and salience network (SN). In this resting-state functional magnetic resonance imaging (rs-fMRI) study, group independent component analysis (group-ICA) and resting state functional connectivity (RSFC) measures were applied to examine whether and how various functional connected networks of the creative brain, particularly the default-executive and cerebro-cerebellar networks, are altered with advancing age. The group-ICA approach identified 11 major brain networks across age groups that reflected age-invariant resting-state networks. Compared with older adults, younger adults exhibited more specific and widespread dorsal network and sensorimotor network connectivity within and between the DMN, fronto-parietal ECN, and visual, auditory, and cerebellar networks associated with creativity. This outcome suggests age-specific changes in the functional connected network, particularly in the default-executive and cerebro-cerebellar networks. Our connectivity data further elucidate the critical roles of the cerebellum and cerebro-cerebellar connectivity in creativity in older adults. Furthermore, our findings provide evidence supporting the default-executive coupling hypothesis of aging and novel insights into the interactions of cerebro-cerebellar networks with creative cognition in older adults, which suggest alterations in the cognitive processes of the creative aging brain.
Collapse
Affiliation(s)
- Abhishek Uday Patil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Deepa Madathil
- Department of Sensor and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.,Cognitive Neuroscience Laboratory, Institute of Linguistics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
47
|
Aroused and Impulsive Effects of Colour Stimuli on Lateral and Logical Abilities. Behav Sci (Basel) 2021; 11:bs11020024. [PMID: 33562365 PMCID: PMC7916084 DOI: 10.3390/bs11020024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 11/27/2022] Open
Abstract
The purpose of this study was to explore the influence of environmental colour on people’s lateral and logical abilities. This was done by evaluating study participants’ response time and error rate when completing six types of psychometric tests that were performed in various hue backgrounds on a computer. To maximise the colour stimulation provided by the monitor, the experiment was carried out in a dark laboratory. Analysis of participants’ response time and error rate showed that different colours could significantly influence arousal and impulsiveness, which suggests that colour has indirect impacts on cognitive abilities. Further analysis revealed that different colours had various effects depending on the type of psychometric test given. These findings suggest that future research on environmental design should consider how to effectively use colour to impact people’s performance and behaviour.
Collapse
|
48
|
Saggar M, Volle E, Uddin LQ, Chrysikou EG, Green AE. Creativity and the brain: An editorial introduction to the special issue on the neuroscience of creativity. Neuroimage 2021; 231:117836. [PMID: 33549759 DOI: 10.1016/j.neuroimage.2021.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Manish Saggar
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Emmanuelle Volle
- Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Paris, France
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, USA.
| | | | - Adam E Green
- Department of Psychology, Georgetown University, Washington, DC, USA
| |
Collapse
|
49
|
Zhuang K, Yang W, Li Y, Zhang J, Chen Q, Meng J, Wei D, Sun J, He L, Mao Y, Wang X, Vatansever D, Qiu J. Connectome-based evidence for creative thinking as an emergent property of ordinary cognitive operations. Neuroimage 2020; 227:117632. [PMID: 33316392 DOI: 10.1016/j.neuroimage.2020.117632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/02/2020] [Accepted: 12/05/2020] [Indexed: 01/23/2023] Open
Abstract
Creative thinking is a hallmark of human cognition, which enables us to generate novel and useful ideas. Nevertheless, its emergence within the macro-scale neurocognitive circuitry remains largely unknown. Using resting-state fMRI data from two large population samples (SWU: n = 931; HCP: n = 1001) and a novel "travelling pattern prediction analysis", here we identified the modularized functional connectivity patterns linked to creative thinking ability, which concurrently explained individual variability across ordinary cognitive abilities such as episodic memory, working memory and relational processing. Further interrogation of this neural pattern with graph theoretical tools revealed both hub-like brain structures and globally-efficient information transfer paths that together may facilitate higher creative thinking ability through the convergence of distinct cognitive operations. Collectively, our results provide reliable evidence for the hypothesized emergence of creative thinking from core cognitive components through neural integration, and thus allude to a significant theoretical advancement in the study of creativity.
Collapse
Affiliation(s)
- Kaixiang Zhuang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Yu Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Jie Meng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Jiangzhou Sun
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Li He
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Yu Mao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; School of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing 400715, China.
| |
Collapse
|
50
|
Profant O, Škoch A, Tintěra J, Svobodová V, Kuchárová D, Svobodová Burianová J, Syka J. The Influence of Aging, Hearing, and Tinnitus on the Morphology of Cortical Gray Matter, Amygdala, and Hippocampus. Front Aging Neurosci 2020; 12:553461. [PMID: 33343328 PMCID: PMC7746808 DOI: 10.3389/fnagi.2020.553461] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Age related hearing loss (presbycusis) is a natural process represented by elevated auditory thresholds and decreased speech intelligibility, especially in noisy conditions. Tinnitus is a phantom sound that also potentially leads to cortical changes, with its highest occurrence coinciding with the clinical onset of presbycusis. The aim of our project was to identify age, hearing loss and tinnitus related structural changes, within the auditory system and associated structures. Groups of subjects with presbycusis and tinnitus (22 subjects), with only presbycusis (24 subjects), young tinnitus patients with normal hearing (10 subjects) and young controls (17 subjects), underwent an audiological examination to characterize hearing loss and tinnitus. In addition, MRI (3T MR system, analysis in Freesurfer software) scans were used to identify changes in the cortical and subcortical structures. The following areas of the brain were analyzed: Heschl gyrus (HG), planum temporale (PT), primary visual cortex (V1), gyrus parahippocampus (PH), anterior insula (Ins), amygdala (Amg), and hippocampus (HP). A statistical analysis was performed in R framework using linear mixed-effects models with explanatory variables: age, tinnitus, laterality and hearing. In all of the cortical structures, the gray matter thickness decreased significantly with aging without having an effect on laterality (differences between the left and right hemispheres). The decrease in the gray matter thickness was faster in the HG, PT and Ins in comparison with the PH and V1. Aging did not influence the surface of the cortical areas, however there were differences between the surface size of the reported regions in the left and right hemispheres. Hearing loss caused only a borderline decrease of the cortical surface in the HG. Tinnitus was accompanied by a borderline decrease of the Ins surface and led to an increase in the volume of Amy and HP. In summary, aging is accompanied by a decrease in the cortical gray matter thickness; hearing loss only has a limited effect on the structure of the investigated cortical areas and tinnitus causes structural changes which are predominantly within the limbic system and insula, with the structure of the auditory system only being minimally affected.
Collapse
Affiliation(s)
- Oliver Profant
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology, 3rd Faculty of Medicine, Faculty Hospital Kralovske Vinohrady, Charles University, Prague, Czechia
| | - Antonín Škoch
- MR Unit, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Tintěra
- MR Unit, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Veronika Svobodová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Diana Kuchárová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czechia
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|